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Abstract
Motivated by policy gradient methods in the context of reinforcement learning, we identify a large
deviation rate function for the iterates generated by stochastic gradient descent for possibly non-
convex objectives satisfying a Polyak-Łojasiewicz condition. Leveraging the contraction principle
from large deviations theory, we illustrate the potential of this result by showing how convergence
properties of policy gradient with a softmax parametrization and an entropy regularized objective
can be naturally extended to a wide spectrum of other policy parametrizations.

1. Introduction and related work.

Policy gradient methods are at the core of several reinforcement learning (RL) algorithms. e.g.,
see Sutton et al. (1999); Degris et al. (2012); Agarwal et al. (2021). As such, a wide adoption of
these algorithms is aided by precisely understanding their performance. To that end, in scenarios
where policy gradients can only be evaluated stochastically, it is crucial to understand the underlying
distribution governing the evolution of policy iterates. Despite the popularity of stochastic policy
gradient methods for over 20 years, global convergence has been only understood recently (Fazel
et al., 2018; Zhang et al., 2020; Bhandari and Russo, 2019; Agarwal et al., 2021). Although global
convergence proofs are actively developed for different policy gradient algorithm templates (Bhandari
and Russo, 2019; Agarwal et al., 2021; Cen et al., 2022), two aspects of the current convergence
analysis would benefit from further study: 1) global convergence guarantees are often stated in
terms of expected suboptimality; and 2) the choice of policy parametrizations impacts convergence
behavior (Mei et al., 2020a). In light of these observations, this paper aims to derive sharp convergence
rates in probability and to provide a unifying approach towards understanding the effect of different
policy parametrizations. As we build upon a rich history of work, we succinctly comment on: (i)
high probability analysis in stochastic optimization and RL; and (ii) policy gradient methods in RL.

(i) Despite stochastic gradient descent (SGD) being over 70 years old (Robbins and Monro,
1951), there has been a surge of interest in terms of high probability analysis for (SGD): for strongly-
convex objectives (Harvey et al., 2019); non-convex objectives satisfying a Polyak-Łojasiewicz (PL)
condition (Madden et al., 2020); and non-convex objectives (Ghadimi and Lan, 2013; Liu et al.,
2023) with Lipschitz gradients. A motivation for studying tight convergence bounds in terms of
probabilities over convergence in expectation is due to the fact that the iterates generated by SGD can
be brittle and large deviations from the expected value can occur, e.g., see Gower et al. (2020) and
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references therein. Hence, a high-probability bound is attractive since it reassures the practitioner
that certain behavior occurs at least with a close-to-1 probability for a single realization of iterates.

(ii) Policy gradient methods can be interpreted as gradient descent applied to the policy op-
timization problem in RL (Sutton and Barto, 2018, Ch. 13), see in particular (Sutton and Barto,
2018, p. 337) for historical remarks. Therefore, when the state space is large (Bottou, 2010) and
due to necessary approximation, one oftentimes resorts to stochastic variants, whose convergence
guarantees are often stated in terms of expectations (Lan, 2023), with the exception of (Ding et al.,
2021), see also (Madden et al., 2020, § 2.2). The high-probability convergence rate provided in Ding
et al. (2021) can be seen as a loosened bound of the large deviation rate we aim to derive. The
pursuit of a tight high-probability concentration bound for the iterations produced by stochastic
policy gradient methods holds significant potential for bolstering the practical implementation and
interpretability of policy gradient methods, thereby improving the overall applicability of RL. Study-
ing the concentration behavior of SGD iterates through the lens of large deviations is pioneered by
Bajovic et al. (2023). It is worth mentioning that, however, their analysis exploits strong convexity of
the optimization objective. Then, a first step towards understanding more precisely the concentration
behavior of stochastic policy gradient iterates would be to study its entropy-regularized variant,
which already faces the difficulties of non-convexity and non-uniformity of the PL constant.

As the theory of large deviations is the key tool in this paper, we briefly introduce it already
at this stage. Let Xt ∈ Rd be the tth iterate of some stochastic algorithm aimed at driving Xt

to x⋆ for t → +∞, then, many aforementioned works provide statistical guarantees of the form
P(∥Xt − x⋆∥2 ≤ ε) ≥ 1 − β ∀t ≥ T for an appropriately chosen triple (T, ε, β). Although often
impressive pieces of work, there are some remarks to be made. First, it is often not clear if these
high-probability bounds are tight. Secondly, the discrepancy is often measured by a sufficiently
simple function, like the ℓ2-norm in this case, however, in practice one might be interested in vastly
different sublevel sets, e.g., sublevel sets capturing harmful events, the ones that are of interest in
safe RL. Third, the guarantees are oftentimes states for particular policy parametrizations, a unifying
framework that generalizes performance analysis across different policy parametrizations remains
largely unexplored. The theory of large deviations is precisely powerful when one aims to address
these aforementioned points. Let us clarify terminology and provide intuition, yet, while skipping
some details. A sequence of finite (probability) measures (µt)t on Rd is said to satisfy a large
deviation principle (LDP) with rate function I : Rd → [0,+∞] when for any Borel set Θ ⊆ Rd

−r̊ := − inf
θ∈Θ̊

I(θ) ≤ lim inf
t→+∞

1

t
logµt(Θ) ≤ lim sup

t→+∞

1

t
logµt(Θ) ≤ − inf

θ∈Θ
I(θ) =: −r, (1)

where Θ̊ denotes the interior of Θ, and Θ denotes the closure of Θ. Now, identifying (µt)t with a
sequence of random variables (Xt)t, we have after rearranging (1) that exp(−r̊t+ o(t)) ≤ P(Xt ∈
Θ) ≤ exp(−rt + o(t)). As such, an LDP captures—possibly tight, e.g., under mild topological
assumptions—convergence rates. Indeed, regarding applicability, once the rate function is identified,
the corresponding inaccuracy rate can be obtained for any new given region of interest. For a
detailed exposition of large deviations, we refer to an overview paper by Varadhan (2008) and
the book by Dembo and Zeitouni (2009). As alluded to above, we will use the theory of large
deviations to study stochastic policy gradient iterates, that is, to study the iterates of a non-convex
optimization algorithm. Although large deviation tools appeared in seminal work on non-convex
optimization Ghadimi and Lan (2013), that work does not provide an LDP. What is more, large
deviations are intimately connected to rare events, whose analysis is of interest to RL (Frank et al.,
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2008). Also, efficient adaptive sampling techniques become available thanks to careful deployment
of large deviation theory (Dupuis and Wang, 2004), an approach that is recently attracting interest in
the context of SGD (Lahire, 2023).

Contributions.

(i) We find, with high probability, an lower bound on the rate function for iterates generated by
softmax policy gradient with an entropy regularized objective (4), see Theorem 5. We also
recover results similar to Madden et al. (2020), yet, via large deviation theory, see Lemma 3.

(ii) We demonstrate the wide applicability of having established a large deviation rate by leveraging
the contraction principle to establish large deviation rates for a wide range of tabular policy
parametrizations beyond the softmax parametrization.

(iii) Effectively, we establish a LDP upper bound for SGD under a PL condition, which is of
independent interest.

In Section 2 we describe the RL setting under consideration whereas in Section 3 we derive a
preliminary exponential bound on the convergence of the value function in probability. Then, in
Section 4 we provide our main result: a LDP upper bound for the stochastic policy gradient iterates.
At last, we show in Section 5 that this LDP upper bound can be lifted from a softmax parametrization
to a whole family of parametrizations, which directly leads to exponential convergence rates for
existing and new policy parametrizations, with high probability.

2. Problem statement.

Markov decision process (MDP). We consider a finite MDP given by a six-tuple (S,A, P, c, γ, ρ)
consisting of a finite state space S = {1, . . . , S}, a finite action space A = {1, . . . , A}, a transition
kernel P : S × A → P(S), a cost-per-stage function c : S × A → R, assumed to be bounded1, a
discount factor γ ∈ (0, 1), and an initial distribution ρ ∈ P(S). Here, we use P(S) := {p ∈ R|S| :∑|S|

i=1 pi = 1, p ≥ 0} to denote the probability simplex over S . Throughout the rest of the paper we
restrict attention to stationary policies, which are described by a stochastic kernel π ∈ Π := P(A)|S|.
The value function V π : P(S)→ R associated with π is defined through

V π(ρ) := E
[∑∞

k=0 γ
kc (sk, ak) |s0 ∼ ρ, ak ∼ π (·|sk) , sk+1 ∼ P (·|sk, ak)

]
, (2)

and the main objective is to minimize V π(ρ) across all π ∈ Π.

Entropy-regularized reinforcement learning (RL). It is sometimes useful to work with the
modified objective where a regularizer is added, that is, V π

τ (ρ) := V π(ρ) + τ ·H(ρ, π) (Neu et al.,
2017; Mei et al., 2020b), where τ > 0 and

H(ρ, π) := E
[∑∞

k=0−γk log π (ak|sk) |s0 ∼ ρ, ak ∼ π (·|sk) , sk+1 ∼ P (·|sk, ak)
]
.

An optimal policy π⋆ ∈ Π is defined through the condition V π⋆

τ (ρ) ≤ V π
τ (ρ) for all π ∈ Π.

1. One can set the cost of a particular stage to be ∞ but that results in an infeasible/unbounded optimization problem.
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Softmax policy gradient for entropy-regularized objective. The softmax transform πθ(·|s) :=
softmax(θ(s, ·)) of any function θ : S ×A → R is defined through

πθ(a|s) =
exp (θ(s, a))∑

a′∈A exp (θ (s, a′))
∀a ∈ A. (3)

In the remainder, we frequently think of θ as a policy parameter in Rd=|S||A| and we use V θ
τ (ρ) for

V πθ
τ (ρ). By (Nachum et al., 2017, Thm. 3) there exists θ⋆ ∈ Rd such that πθ⋆ is the optimal policy of

the entropy-regularized MDP. By the policy gradient theorem (Sutton et al., 1999), the policy gradient
g(θt) := ∂V θ

τ (ρ)/∂θ|θ=θt is given by ∂V θ
τ (ρ)/∂θ(s, a) = 1/(1 − γ) · dθρ(s) · πθ(a|s) · Aθ

τ (s, a)

, where dθρ denotes the discounted state-visitation frequency measure, and Aθ
τ is the advantage

function associated with the regularized objective, see also (Mei et al., 2020b, Lem. 1). In practice,
however, computing the advantage function is computationally expensive. It is therefore convenient
to work with estimates of the exact gradient. Throughout the rest of the paper we assume unbiased
stochastic sample access to ∂θV

πθ
τ (ρ)|θ=θ′ , denoted as g̃(θ′). Stochastic softmax policy gradient

with entropy-regularized objective thus suggests to update policy parameters via
θt+1 ← θt − ηt · g̃(θt). (4)

Assumption 1 (Warm start with sufficient exploration) The initial state distribution satisfies
mins∈S ρ(s) > 0. In addition, the initial iterate θ1 is chosen around a ∆-neighborhood of θ⋆

in the sense that minθ⋆∈Θ⋆ ∥θ1 − θ⋆∥2 ≤ ∆ where Θ⋆ is the set of all optimal solutions.

The above assumption simplifies the exposition and such an initial θ1 can be obtained by a stochastic
policy gradient method such as (Ding et al., 2021, Alg. 3.2). We additionally define Zt :=
g(θt)− g̃(θt). As in (Bajovic et al., 2023) we make the following assumption.

Assumption 2 (Gradient estimation uncertainty) The stochastic process (Zt)t satisfies: (i) Zt

depends on the past only through θt; (ii) E[Zt|θt = θ] = 0 for any θ and (iii) the distribution of Zt

is independent of the iterate index t ∈ N.

By Assumption 2 (i), the process (θt)t≥0 generated by (4) is a Markov chain. We use Λ(λ; θ) =
logE[exp(⟨λ, Zt⟩) | θt = θ] to denote the conditional log-moment generating function (LMGF) of
Zt ∈ Rd. We also define M(ν; θ) = E[exp(ν∥Zt∥22) | θt = θ] as the conditional moment-generating
function (MGF) of ∥Zt∥22. Now, we impose the following technical assumption to ensure that the tail
probabilities of the disturbances (Zt)t decay sufficiently fast.

Assumption 3 (Sub-Gaussian process) All elements of the sequence (Zt)t follow a σ-sub-Gaussian
distribution for some σ > 0, i.e.,

Λ(λ; θ) ≤ 1
2σ

2∥λ∥22 ∀λ, θ ∈ Rd. (5)

A Monte-Carlo gradient estimation method that satisfies the above assumptions is proposed by Ding
et al. (2021). The method operates by generating trajectories of the MDP with policy parameter θ
and then estimate the advantage function based on these trajectories.
Lemma 1 (L1-smoothness of the value function (Mei et al., 2020b, Lem. 7 & 14)) There exists
a constant L1 > 0 such that

|V πθ
τ (ρ)− V

πθ′
τ (ρ)− ⟨g(θ′), θ − θ′⟩| ≤ 1

2L1∥θ − θ′∥22 ∀θ, θ′ ∈ Rd. (6)

For the dependency of L1 on the four-tuple (c, γ, τ, |A|) see (Mei et al., 2020b, Lem. 7 & 14).
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3. Preliminaries.

Lemma 2 (Non-uniform Polyak-Łojasiewicz condition) If Assumption 1 holds, then ∥g(θ)∥22 ≥
µ(θ)

(
V θ
τ (ρ) − V θ⋆

τ (ρ)
)
, where µ(θ) = 2τ |S|−1mins ρ(s)mins,a πθ(a|s)2∥dπθ⋆

ρ /ρ∥−1
∞ . Moreover,

if Assumption 2 and 3 hold and ηt ≤ η/(t+
√
3σ2/(2ϵ∆)), for iterates generated by (4), we have

µ= inft≥1 µ(θt)>0 with probability at least 1− ϵ/6.

Proof By (Mei et al., 2020b, Lem. 15), we have ∥g(θ)∥22 ≥ µ(θ)
(
V θ
τ (ρ) − V θ⋆

τ (ρ)
)
, where

µ(θ) = 2τ |S|−1mins ρ(s)mins,a πθ(a|s)2∥dπθ⋆
ρ /ρ∥−1

∞ . According to (Ding et al., 2021, Lem. 6.4)
we further have inft≥1 πθt(a|s) > 0 with probability 1− ϵ/6, which concludes the proof.

Lemma 2 states that along a trajectory of (4), with high probability, we have that µ(θt) > 0 for all
t. In what follows we will exploit that µ= inft≥1 µ(θt) is strictly positive with high probability.
Next, we derive elementary recursive inequalities and provide the first main result. If ηt satisfies
0 < ηt ≤ 1/L1 for all t = 1, . . . , T , then (4) implies that

V θt+1
τ (ρ) = V θt−ηtg(θt)+ηtZt

τ (ρ)

≤ V θt
τ (ρ)− ηt⟨g(θt), g(θt)− Zt⟩+ 1

2η
2
tL1∥g(θt)− Zt∥22

≤ V θt
τ (ρ)− ηt∥g(θt)∥22 + ηt⟨g(θt), Zt⟩+ η2tL1

(
∥g(θt)∥22 + ∥Zt∥22

)
≤ V θt

τ (ρ) + µ
(
η2tL1 − ηt

) (
V θt
τ (ρ)− V θ⋆

τ (ρ)
)
+ ηt⟨g(θt), Zt⟩+ η2tL1∥Zt∥22,

where the first inequality follows from the L1-smoothness of the value function, the second inequality
exploits that ∥x − y∥22 ≤ 2∥x∥22 + 2∥y∥22 for all x, y ∈ Rd, and the last inequality holds because
ηt ≤ 1/L1 and the PL condition from Lemma 2. Subtracting V θ⋆

τ (ρ) from both sides yields

V θt+1
τ (ρ)− V θ⋆

τ (ρ) ≤ (1− µηt + µη2tL1)(V
θt
τ (ρ)− V θ⋆

τ (ρ)) + ηt⟨g(θt), Zt⟩+ η2tL1∥Zt∥22. (7)

Also, observe that since2 ηt ≤ 1/L1, µ ≤ L1 and ηt, L1 > 0, we have µηt(ηtL1 − 1) ∈ (−1, 0] and
thus (1−µηt+µη2tL1) ∈ (0, 1] for t = 1, . . . , T . Next, by substituting the points θ′ = θ−1/L1 ·g(θ)
and θ into (6), we obtain V

θ−1/L1·g(θ)
τ (ρ) ≤ V θ

τ (ρ)− 1
2L

−1
1 ∥g(θ)∥22. Using the optimality of θ⋆, we

may then conclude that V θ⋆
τ (ρ) ≤ V

θ−1/L1·g(θ)
τ (ρ) ≤ V θ

τ (ρ)− 1
2L

−1
1 ∥g(θ)∥22 which implies that

∥g(θ)∥22 ≤ 2L1(V
θ
τ (ρ)− V θ⋆

τ (ρ)) ∀θ ∈ Rd. (8)

Lemma 3 (Exponential upper bound) Suppose Assumptions 1, 2, and 3 hold, and choose T > 1,
ϵ ∈ (0, 1). Then, there is a universal constant C > 0 such that the following event holds with
probability at least 1− ϵ/6. Let CM = (σ

√
|S||A|C)2 where σ is as in (5), and set η > 0 such that

(µη − 1) > σ2/CM. Let ηt = η/(t+ t0 + 1) for all t = 1, . . . , T and choose t0 and K such that

t0 ≥max

{
η2L1

(µη − 1)−B0C0η2
− 1, L1η − 2,

√
3σ2

2ϵ∆
− 1

}
,

K ≥ max
t=1,...,T

{
B−1

0 , (t0 + 1)
(
V θ1
τ (ρ)− V θ⋆

τ (ρ)
)
,

2ctCM

1− (at +B0C0b2t )

}
, (9)

2. To show that µ ≤ L1, one exploits that L1-smoothness implies Lipschitz continuity of the gradient and recalls that the
PL condition implies a quadratic growth condition (Karimi et al., 2016, App. A).
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where B0 = 1/(2η2L1CM), C0 = 2L1σ
2,

at =
t+ t0 + 1

t+ t0

(
1− µηt + µη2tL1

)
, bt =

η√
t+ t0

, and ct =
η2L1

t+ t0 + 1
. (10)

Then, for any δ ≥ 0 and t = 1, . . . , T we have that P
((

V
θt+1
τ (ρ)− V θ⋆

τ (ρ)
)
≥ δ

)
≤ e1−(t+t0+1)δ/K .

The proof is inspired by (Bajovic et al., 2023), with the difference being that they work with strongly
convex objective functions. Unfortunately, V θ

τ (ρ) fails to be convex in θ.
Proof Define an auxiliary process Yt = (t+ t0)(V

θt
τ (ρ)− V θ⋆

τ (ρ)). Then, the recursion (7) implies
that Yt+1 ≤ atYt + bt

√
t+ t0⟨g(θt), Zt⟩ + ct∥Zt∥2, where at, bt and ct are as in (10). Defining

the MGFs associated with Yt as Φt(ν) = E [exp (νYt)] and Φt+1|t (ν; θt) = E [exp (νYt+1) | θt] for
ν ∈ R, the recursion (7) further implies that

Φt+1|t (ν; θt)≤ exp (atνYt)E
[
exp

(
2btν
√
t+ t0⟨g(θt), Zt⟩

)
| θt

]1/2 E[exp (2ctν ∥Zt∥22
)
| θt

]1/2
≤ exp (atνYt) exp

(
σ2b2t ν

2(t+ t0)∥g(θt)∥22
)1/2 E [

exp
(
2ctν ∥Zt∥22

)
| θt

]1/2
≤ exp (atνYt) exp

(
2L1σ

2b2t ν
2Yt

)1/2 E [
exp

(
2ctν ∥Zt∥22

)
| θt

]1/2
,

where the first inequality follows from Hölder’s inequality, the second inequality follows from (5) and
the last inequality follows from (8). Recall that d = dim(Zt) and define B0 = 1/(2η2L1(σ

√
dC)2).

Then, there is a constant C > 0 such that for all ν ∈ [0, B0], we have by monotonicity of ct, Hölder’s
inequality for p = 1/(ν2η2L1(σ

√
dC)2) ≥ 1 and (Jin et al., 2019, Lem. 2) that M(2ctν; θ) ≤

exp(2ctν(σ
√
dC)2). Recall that (σ

√
dC)2 = CM because d = |S||A|. Moreover, as exp(x) ≥

exp(x)1/2 for x ≥ 0, we can simplify the above inequality to

Φt+1|t (ν; θt) ≤ exp (atνYt) exp
(
2L1σ

2b2t ν
2Yt

)
exp(2ctνCM)

= exp
(
ν
(
at + νC0b

2
t

)
Yt
)
exp(2ctνCM) ∀ν ≤ B0

(11)

for C0 = 2L1σ
2. Taking expectations on both sides of (11) yields

Φt+1(ν) ≤ Φt

(
ν(at +B0C0b

2
t )
)
exp(2ctνCM) ∀ν ≤ B0. (12)

We aim to show that Φt+1(ν) ≤ exp(νK) for t = 1, . . . , T by studying the magnitude of (at +
B0C0b

2
t ) and using induction. First, it can be shown that at < 1 for all t ≥ 1. To do so, rewrite at as

at = 1− µη − 1

t+ t0

(
1− µη2L1

(µη − 1)(t+ t0 + 1)

)
, (13)

where we exploit the identity 1 + 1/s = (s + 1)/s for s ̸= 0. We have that (µη − 1) > 0. Now
since t0 ≥ L1η − 2 by assumption, we have ηt ≤ 1/L1. Recall as well the fact that µ ≤ L1,
which leads to ηt ≤ 1/µ and thus µηt ≤ 1, that is, µη/(t+ t0 + 1) ≤ 1. Exactly this implies that
(µη − 1)/(t+ t0) ∈ (0, 1]. This covers the first non-trivial fraction of (13). Now for the second part,
we have the implication that

t0 + 1 ≥ µη2L1

µη − 1
=⇒ µη2L1

(µη − 1)(t+ t0 + 1)
∈ (0, 1],

6
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from where we can conclude that at ∈ [0, 1) for any finite t ≥ 1. However, we will need (at +
B0C0b

2
t ) < 1. As bt decays with t0, this can be achieved by selecting a sufficiently large t0.

Explicitly, let µη = 1 + ε for some ε > 0. By the definition of bt and at as in (13) we then obtain

at +B0C0b
2
t = 1− ε

t+ t0

(
1− B0C0η

2

ε
− µη2L1

ε(t+ t0 + 1)

)
. (14)

By assumption, we have µη − 1 > σ2/CM. This implies that ε > B0C0η
2. It then follows that

at + B0C0b
2
t ∈ [0, 1) for any finite t ≥ 1 and t0 + 1 ≥ µη2L1/(ε − B0C0η

2). Recall also that
t0 ≥ L1η− 2 by assumption. Thus, we have ηt ≤ 1/L1. Assumption 1 allows then for the following
inductive procedure. Let ν ∈ [0, 1/K] for K as in (9) then, for t = 1, we have Φ1(ν) ≤ exp(νK)
since K ≥ t0

(
V θ1
τ (ρ)− V θ⋆

τ (ρ)
)
. Now suppose Φt(ν) ≤ exp(νK) for some arbitrary t ≥ 1,

then, we have by the inductive assumption that Φt+1 ≤ exp(2ctCMν)exp(ν(at + B0C0b
2
t )K).

However, since for t = 1, . . . , T we also have that K ≥ 2ctCM/(1− (at+B0C0b
2
t )), which is well-

defined since (at +B0C0b
2
t ) < 1, by our selection of t0 and η, it follows that Φt+1(ν) ≤ exp(νK)

for t = 1, . . . , T . By (Harvey et al., 2019, Claim A.7), if a random variable X ∈ R satisfies
E[exp(λX)] ≤ C1exp(λC2) for all λ ≤ 1/C2 and some universal constants C1 and C2, then
P(X ≥ C2 log(1/δ)) ≤ C1eδ. Hence, after applying (Harvey et al., 2019, Claim A.7) one finds that
P(Yt ≥ C3) ≤ exp(1−C3/K), for any choice of C3 ≥ 0 and t = 1, . . . , T . The proof is concluded
by substituting the expression for Yt into the previous inequality and a union bound.

We note that by the expressions for (at, bt, ct) and (14) it follows that limt→+∞ 2ctCM/(1− (at +
B0C0b

2
t )) is bounded, that is, one can freely select T , which we will exploit later in Theorem 4.

4. Large deviations.

To provide our main result, we need to impose another assumption on the random variables (Zt)t.

Assumption 4 (Conditional LMGF regularity) There is a LΛ ≥ 0 such that

|Λ(λ; θ1)− Λ(λ; θ2)| ≤ LΛ∥λ∥22∥θ1 − θ2∥2 ∀(λ, θ1, θ2) ∈ Rd × Rd × Rd.

We refer to (Bajovic et al., 2023, p. 5) for a discussion of this assumption. For instance, when
the conditional distribution of Zt given θt = θ is Gaussian, and its covariance matrix is Lipschitz
continuous in θ, then Assumption 4 holds. In particular, if the covariance is independent of θ, this
trivially holds true. Next, we define the MGF of θt as Rd ∋ λ 7→ Γt(λ) := E [exp(⟨λ, θt − θ⋆⟩)] and
similarly the LMGF as Rd ∋ λ 7→ log Γt(λ). Now we are equipped to provide our main technical
result, leading directly to a large deviation principle (LDP) upper bound. Note that Γt(λ) depends on
the optimal solution θ⋆ which is fixed and unknown.

Theorem 4 (Limiting LMGF) Suppose that Assumptions 1, 2, 3 and 4 hold and set ηt = η/(t+
t0 + 1) as in Lemma 3. Then, conditioning on the event that µ= inft≥1 µ(θt)>0, we have that

lim sup
t→+∞

1

t
log Γt(tλ) ≤ r(λ) +

∫ 1

0
Λ
(
ηQD(x)Q⊤λ; θ⋆

)
dx =: Ψ(λ), (15)

where r(λ) = O(∥λ∥32) with its expression presented in the proof below, and Q and D(x) are such
that H(θ⋆) = QDQ⊤, QQ⊤ = Id, D = diag(ρ1, . . . , ρn) being the diagonalization of H(θ⋆), and
D(x) = diag(xηρ1−1, . . . , xηρn−1).
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To prove Theorem 4, we will largely follow the proof strategy of (Bajovic et al., 2023, Lem. 6),
yet, with technical deviations regarding indexing of the sequences. In addition, we cannot appeal to
the strong convexity exploited in (Bajovic et al., 2023).
Proof We provide a brief overview of the proof. Step 0 constructs a deterministic sequence as a
basis for deriving recursions of MGF. Step 1 defines a ball around the optimal parameter and split the
cases depending on whether θℓ resides within the ball. Step 2-4 study individual cases leading to their
respective recursive relation. Finally, Step 5 summarizes the previously derived recursions, takes the
limit and concludes. Step 0, sequence. Fix some vector λ ∈ Rd, integer t ≥ 1 and define the sequence
of vectors ζℓ = Bt,ℓζt via Bt,ℓ = (I − ηℓH(θ⋆)) · ... · (I − ηt−1H(θ⋆)) and ζt = tλ, with 1 ≤ ℓ < t.
As ηt ≤ 1/L1 we have that ∥I − ηtH(θ⋆)∥2 ≤ 1 − ηtλmin(H(θ⋆)). Hence, using (Bajovic et al.,
2023, Lem. 2) and exploiting ηλmin(H(θ⋆)) > 1, i.e., recall ηµ > 1 from Lemma 3, one can show
that

∥ζℓ∥2 ≤ t

(
ℓ+ t0 + 1

t+ t0 + 1

)ηλmin(H(θ⋆))

∥λ∥2 ≤ (ℓ+ t0 + 1)∥λ∥2.

Step 1, conditional MGF. Let µℓ and νℓ be Borel measures induced by θℓ and ∥θℓ− θ⋆∥2, respectively.
Then, one readily shows that Γℓ+1(ζℓ) =

∫
Rd Γℓ+1|ℓ(ζℓ; θ)µℓ(dθ). Next, define the sets Bℓ(θ

⋆, δ) =
{θℓ : ∥θℓ − θ⋆∥2 ≤ δ}. Now we can construct the decomposition Γℓ+1(ζℓ) = Γℓ+1|Bℓ(θ⋆,δ)(ζℓ) +
Γℓ+1|Bc

ℓ (θ
⋆,δ)(ζℓ), which we study separately. Step 2, θ ∈ Bℓ(θ

⋆, δ). We have that Γℓ+1|ℓ(ζℓ; θ) =
exp (Λ(ηℓζℓ; θ) + ⟨ζℓ, θ − ηℓg(θ)− θ⋆⟩) . Let H(θ) denote the Hessian of V πθ

τ (ρ) at θ and define
the residual term h(θ) = g(θ)−H(θ⋆)(θ − θ⋆). Recall Step 0, Assumption 4 and define the largest
residual term h̄(δ) = supθ∈Bℓ(θ⋆,δ)

∥h(θ)∥2, it follows that

Γℓ+1|ℓ(ζℓ; θ) ≤exp
(
Λ(ηℓζℓ; θ

⋆) + LΛη
2
ℓ ∥ζℓ∥22δ + ηℓ∥ζℓ∥2h̄(δ) + ⟨ζℓ−1, θ − θ⋆⟩

)
≤exp (Λ(ηℓζℓ; θ⋆) + r0(λ, δ)) exp(⟨ζℓ−1, θ − θ⋆⟩)

for r0(λ, δ) = 4LΛη
2∥λ∥22δ + 2η∥λ∥2h̄(δ). Hence, integrating, we find that

Γℓ+1|Bℓ(θ⋆,δ)(ζℓ) ≤ exp (Λ(ηℓζℓ; θ
⋆) + r0(λ, δ)) Γℓ(ζℓ−1). (16)

Step 3, contraction. We construct another recursive formula. Start from

∥θt+1 − θ⋆∥2 = ∥θt − ηtg(θt) + ηtZt − θ⋆∥2 ≤ ∥θt − ηtg(θt)− θ⋆∥2 + ηt∥Zt∥2,

and expand ∥θt−ηtg(θt)−θ⋆∥22 = ∥θt−θ⋆∥22−2ηt⟨θt−θ⋆, g(θt)⟩+η2t ∥g(θt)∥22. Due to optimality
of θ⋆ and L1-smoothness of V θ

τ we have ∥g(θt)∥22 ≤ L2
1∥θt − θ⋆∥22 and

−⟨θt − θ⋆, g(θt)⟩ ≤ 1
2L1∥θt − θ⋆∥22 + (V θt

τ (ρ)− V θ⋆

τ (ρ))

≤ 1
2L1∥θt − θ⋆∥22 +

1

2µ(θt)
∥g(θt)∥22 ≤ 1

2L1∥θt − θ⋆∥22 +
L2
1

2µ(θt)
∥θt − θ⋆∥22.

As such, one can set γt := (1 + ηtL1 + ηtL
2
1/Mµ(θt) + η2tL

2
1)

1/2 ≤ (3 + L1/µ)
1/2 =: γ̄ such that

∥θt+1 − θ⋆∥2 ≤ γt∥θt − θ⋆∥2 + ηt∥Zt∥2 t = 1, . . . , T. (17)

Step 4, θ ∈ Bc
ℓ(θ

⋆, δ). Using Step 3 and Assumption 3 one can show that Γℓ+1|ℓ(ζℓ; θ) ≤
exp

(
1
2σ

2η2∥λ∥22
)
exp(γ̄(ℓ+ t0 + 1)∥λ∥2∥θ − θ⋆∥2). Hence, we have

Γℓ+1|Bc
ℓ (θ

⋆,δ)(ζℓ) ≤ exp
(
1
2σ

2η2∥λ∥22
) ∫

τ≥δ
exp(γ̄(ℓ+ t0 + 1)∥λ∥2τ)νℓ(dτ).
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Exploiting Lemma 3, i.e. νℓ being induced by P (∥θℓ − θ⋆∥2 ≥ δ) ≤ e1−(ℓ+t0)L1δ2/(2K), we know
there is a sufficiently large δ(λ) = O(γ̄∥λ∥2K/L1), denoted as δ̄(λ) such that

Γℓ+1|Bc
ℓ (θ

⋆,δ)(ζℓ) ≤ C̄exp
(
1
2σ

2η2∥λ∥22
)

(18)

for some constant C̄ cf. (Bajovic et al., 2023, Proof of Lem. 6). Step 5, limiting recursion. Combin-
ing (16) and (18) then yields Γℓ+1(ζℓ) ≤ C̄exp

(
1
2σ

2η2∥λ∥22
)
+ exp (Λ(ηℓζℓ; θ

⋆) + r(λ)) Γℓ(ζℓ−1),
where r(λ) = r0(λ, δ̄(λ)). Continuing with the recursion provides us with

Γt+1(tλ) ≤exp
(∑t

ℓ=1 Λ(ηℓζℓ; θ
⋆) + r(λ)

)
Γ1(ζ1)

+ C̄exp
(
1
2σ

2η2∥λ∥22
)∑t

ℓ=1 exp
(∑t

j=ℓ Λ(ηjζj ; θ
⋆) + r(λ)

)
Note that Γ1(ζ1) is finite by Assumption 1. Then we immediately obtain that

lim sup
t→+∞

t−1 log Γt+1(tλ) ≤ r(λ) + lim sup
t→+∞

t−1∑t
ℓ=1 Λ(ηℓζℓ; θ

⋆).

To complete the proof, we appeal to (Bajovic et al., 2023, Lemma C.3) and find that

lim
t→+∞

t−1∑t
ℓ=1 Λ(ηℓζℓ; θ

⋆) =
∫ 1
0 Λ

(
ηQD(x)Q⊤λ; θ⋆

)
dx.

To provide our main result, we recall that the Legendre-Fenchel transform of a function Ψ : Rd → R
is defined by I(θ′) = supλ∈Rd⟨θ′, λ⟩ −Ψ(λ) for all θ′.

The Theorem below is a strict generalization of Lemma 3. Specifically, Theorem 5 characterizes
the concentration rate applicable to any Borel set.

Theorem 5 (LDP upper bound) Suppose that Assumption 1, 2, 3 and 4 hold and set ηt = η/(t+
t0 + 1) as in Lemma 3. Define Ψ as in Theorem 4. Then, with probability at least 1− ϵ/6 we have
that the sequence (θt)t satisfies a LDP upper bound with a rate function I . The function I is the
Legendre-Fenchel transformation of Ψ. That is, for any Borel set Θ ⊆ R|S||A|, we have that

lim sup
t→+∞

1

t
logP(θt ∈ Θ) ≤ − inf

θ′+θ⋆∈Θ
I(θ′). (19)

Proof Directly from Theorem 4 and the Gärtner-Ellis theorem (Gärtner, 1977; Ellis, 1984).

Note, one can also bring the offset term θ⋆ into the left-hand-side of (19), i.e., consider P(θt−θ⋆ ∈ Θ).
Indeed, strictly speaking, the LDP upper bound is derived for the sequence (θt − θ⋆)t.

5. Ramifications

One could argue that the results (bounds) from above contribute towards a better understanding of the
softmax transformation, the effect of the regularization parameter τ , the effect of initialization and
the analysis of restrictive policy parametrizations, all active topics of research Hennes et al. (2020);
Mei et al. (2020a); Li et al. (2021); Mei et al. (2020b). However, more interesting is that Theorem 5
also allows for a simple proof of exponential decay, with high probability, for a whole family of
policy parametrizations different from softmax.
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The structure of Ψ (non-negativity and finiteness) immediately reveals that its Fenchel conjugate
(Legendre-Fenchel transform) I satisfies I(0) = 0, better yet, I(θ′) > 0 for all θ′ ̸= 0. Hence,
I can be identified as a good rate function (Dembo and Zeitouni, 2009, p. 4). Moreover, for any
Borel set Θ such that θ⋆ ̸∈ Θ we have, with high probability, that the probability P(θt ∈ Θ) decays
exponentially fast. Not only that, we can provide a bound on the convergence rate for any of those
sets, i.e., let r := infθ′+θ⋆∈Θ I(θ′), then, P(θt ∈ Θ) ≤ exp(−rt + o(t)). To lift this observation
to any continuous transformation of the softmax parametrization we need the following principle
from the theory of large deviations. To avoid pathological examples, we assume all our sets to be
topological Hausdorff spaces.

Theorem 6 (Contraction principle (Dembo and Zeitouni, 2009, § 4.2.1)) Consider U ⊆ Rd and
W ⊆ Rq, and f : U → W a continuous map. Define I ′ : W → [0,+∞] through I ′(w) =
infu∈U,w=f(u) I(u) for all w ∈W, where I : U → [0,+∞] is a good rate function. Then, I ′ is also
a good rate function on W .

Although we studied a softmax policy, the contraction principle, originally used by Donsker and
Varadhan (1976), allows us to extend our LDP results to any continuous transformation f of
θt−θ⋆, e.g., one recovers the escort transformation (Mei et al., 2020a) by transforming θt component-
wise by the map R ∋ w 7→ p log |w| for p ≥ 1. To be explicit, whereas the softmax policy is given
by (3), the escort parametrization is given by πθ(a|s) = |θ(s, a)|p/

∑
a′∈A |θ (s, a′) |p. Hence, we

directly infer that the exponential decay rate extends from the softmax- to the escort parametrization.
Indeed, w 7→ p log |w| is not a smooth function, yet, for p ≥ 2 the escort policy parametrization
is differentiable, which is precisely the setting for which an exponential decay rate under entropic
regularization is provided by (Mei et al., 2020a, Thm. 4). To formally summarize this observation,
by combining Theorem 5 and Theorem 6 we get the following.

Corollary 7 (Going beyond softmax) Let (θt − θ⋆)t ⊂ R|S||A| be a sequence corresponding to
softmax policy gradient and let the sequence (ωt − ω⋆)t ⊂ Rq be defined via a continuous map
f : R|S||A| → Rq through ωt − ω⋆ := f(θt − θ⋆) ∀t, then, with probability at least 1− ϵ/6,

lim sup
t→+∞

1

t
logP(ωt ∈ Ω) ≤ − inf

ω′+ω⋆∈Ω
I ′(ω′), (20)

for any Borel set Ω ⊆ Rq and I ′ as in Theorem 6.

Similar to the escort transformation, one can study spherical- and Taylor softmax (de Brébisson and
Vincent, 2016). However, Corollary 7 is ought to be most interesting to apply to prospective policy
parametrizations leading to (20) being non-trivial. Indeed, we emphasize that one must verify that the
solution to the non-linear optimization problem (20) is non-trivial, there is no free lunch. Moreover,
the gradient estimation errors needs to remain well-behaved after the transformation, which may
not be true for an arbitrary continuous mapping f . We leave it to future work to explore the exact
characterizations of the scope of Corollary 7.

To remove the (1− ϵ/6)-high probability statements throughout, future work aims at studying
the multiphase algorithm from (Ding et al., 2021) in the context of large deviations, this requires
being able to study a controlled sequence (Zt)t, which is a non-trivial extension. We also remark
that in the context of SGD for an objective satisfying a PL condition, the LDP upper bound always
holds, simply since µ > 0, cf. Lemma 2.
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