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Abstract

Long-context understanding is crucial for many001
NLP applications, yet transformers struggle002
with efficiency due to the quadratic complex-003
ity of self-attention. Sparse attention meth-004
ods alleviate this cost but often impose static,005
predefined masks, failing to capture heteroge-006
neous attention patterns. This results in subop-007
timal token interactions, limiting adaptability008
and retrieval accuracy in long-sequence tasks.009
This work introduces a dynamic sparse atten-010
tion mechanism that assigns adaptive masks at011
the attention-map level, preserving heteroge-012
neous patterns across layers and heads. Un-013
like existing approaches, our method elimi-014
nates the need for fine-tuning and predefined015
mask structures while maintaining computa-016
tional efficiency. By learning context-aware017
attention structures, it achieves high alignment018
with full-attention models, ensuring minimal019
performance degradation while reducing mem-020
ory and compute overhead. This approach pro-021
vides a scalable alternative to full attention, en-022
abling the practical deployment of large-scale023
Large Langue Models (LLMs) without sacrific-024
ing retrieval performance.025

1 Introduction026

Understanding long contexts is essential for doc-027

ument summarization, question answering, and028

retrieval-augmented generation. Long-context029

NLP applications power legal analysis, financial re-030

porting, and knowledge graph construction, where031

maintaining coherence across tokens is critical.032

However, existing LLMs struggle with long se-033

quences due to inefficiencies in self-attention.034

LLMs leverage the Transformer architecture,035

which models long-range dependencies through036

self-attention, enabling direct interactions between037

all tokens. Multi-head attention enhances expres-038

sivity by capturing multiple token relationships,039

while positional embeddings preserve order infor-040

mation. Dynamic token representations allow con-041

textual meaning to evolve across layers, ensuring 042

coherent and accurate long-term recall. 043

Despite these advantages, transformers process 044

long contexts inefficiently. Quadratic complexity 045

makes full attention computationally prohibitive, 046

forcing models to truncate inputs, leading to infor- 047

mation loss in long-document tasks. Attempts to 048

mitigate this through fixed context windows or uni- 049

form attention fail to distinguish between critical 050

and redundant information. Meanwhile, streaming 051

applications suffer from recomputing attention at 052

every step, increasing latency and making real-time 053

processing impractical. 054

The inability to process long contexts directly im- 055

pacts businesses and researchers. Legal and finan- 056

cial institutions rely on AI to analyze contracts and 057

reports, but truncated inputs cause critical details 058

to be lost. AI assistants in customer service forget 059

past interactions, failing to maintain coherent con- 060

versations. Researchers pushing transformer effi- 061

ciency face skyrocketing computational costs, mak- 062

ing large-scale deployment unsustainable. Without 063

an efficient solution, enterprises must rely on costly 064

and ineffective workarounds like document chunk- 065

ing, which destroys contextual coherence. 066

Sparse attention is an efficiency-driven approach 067

to mitigating long-context inefficiency in genera- 068

tive LLMs by enforcing structured sparsity. Fig- 069

ure 1(b) illustrates static sparse attention methods 070

that reduce computational cost by enforcing fixed- 071

span sliding window and global masks across all 072

heads and input lengths. This approach improves 073

efficiency but sacrifices flexibility, forcing models 074

to rely only on local interactions. As a result, these 075

models fail to adapt to long-range dependencies, re- 076

ducing accuracy in complex retrieval and reasoning 077

tasks. Figure 1(c) improves flexibility by assigning 078

different masks to layers and heads, removing the 079

need for fine-tuning. However, it assumes attention 080

structures can be predefined, failing to capture het- 081

erogeneous token interactions that emerge dynami- 082
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Figure 1: Attention patterns of the short input sequence "paper boats sailed across a puddle of stardust" is a subset
of the longer input sequence "paper boats sailed across a puddle of stardust drifting toward the moon. (a) Each query
token attends to the full list of others, longer attention patterns are extensions of short patterns. (b) Static attention
map captures classical global and sliding-window patterns for general usage to all attention maps. (c) Different
masks assign to corresponding maps with predefined patterns. (d) Heterogeneous map remains feature patterns.

cally. The result is a rigid sparsity pattern that still083

requires processing all sequence lengths, making it084

resource-intensive for long-context applications.085

This work introduces DAM, a novel framework086

for dynamic sparse attention, as illustrated in Fig-087

ure 1(d). DAM generates adaptive sparse atten-088

tion masks at the granularity of individual attention089

maps, thereby capturing both layer-specific struc-090

tural patterns and input-dependent variations in at-091

tention. In contrast to prior approaches that often092

rely on fixed or globally-defined sparsity patterns,093

DAM preserves the heterogeneity of attention pat-094

terns across different layers and heads, leading to095

improved expressiveness. Furthermore, the method096

eliminates the need for manual, task-specific fine-097

tuning of the sparsity structure, while maintaining098

the computational benefits of sparse attention.099

Our contributions are summarized as follows:100

• We propose a novel dynamic sparse attention101

mechanism and framework that assigns distinct,102

adaptive masks to each attention map, preserving103

heterogeneous patterns across heads and layers.104

• Our approach is fine-tuning-free and generalizes105

seamlessly to varying input lengths, eliminating106

the need for manual sparsity pattern design.107

• We incorporate a flexible “true mask” mechanism108

to focus attention on relevant regions, reducing109

unnecessary computations on padding tokens or110

less informative areas.111

• We demonstrate that DAM achieves performance112

comparable to full-attention models while signif-113

icantly improving computational efficiency.114

2 Related Work 115

Attention mechanisms enable transformers to 116

model dependencies across sequences but intro- 117

duce computational challenges at scale. Re- 118

searchers have explored multiple strategies to ad- 119

dress these inefficiencies, including KV-caching 120

for faster inference, sparse and hierarchical atten- 121

tion for memory reduction, state-space models 122

for efficient streaming, and hybrid architectures 123

for improved long-term memory tracking. While 124

these approaches enhance scalability, each intro- 125

duces trade-offs that limit their applicability to 126

long-sequence processing. 127

KV-cache enhances autoregressive decoding by 128

storing key and value representations from previous 129

steps, allowing reuse instead of recomputing atten- 130

tion scores for all tokens (Ge et al., 2023; Li et al., 131

2024; Zhang et al., 2024b; Zhao et al., 2024; Chen 132

et al., 2024; Liu et al., 2024; Adnan et al., 2024; Ge 133

et al., 2023). This reduces redundant computation 134

and accelerates inference but increases memory us- 135

age, limiting scalability for long sequences (Zhang 136

et al., 2024a; Ye et al., 2024; Hu et al., 2024). 137

Cache management adds complexity, and perfor- 138

mance gains depend on reuse efficiency (Zheng 139

et al., 2024b,a; Xiong et al., 2024; Gao et al., 2024). 140

While KV-cache mitigates inefficiencies in autore- 141

gressive generation, it does not reduce the funda- 142

mental complexity of self-attention. 143

Sparse attention reduces token interactions to 144

improve efficiency (Child et al., 2019; Yun et al., 145

2020; Ho et al., 2019). Static sparse attention ap- 146
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plies predefined masks across all processed sen-147

tences to lower computational cost and improve148

hardware utilization (Roy et al., 2021; Kitaev et al.,149

2020; Tay et al., 2019; Choromanski et al., 2020).150

Common approaches include global, sliding win-151

dow, and random masks, with local attention pat-152

terns enabling KV-cache eviction beyond the atten-153

tion span to reduce memory usage (Beltagy et al.,154

2020a; Ainslie et al., 2004; Zaheer et al., 2020).155

However, static masks remain uniform across lay-156

ers and heads, ignoring token-specific dependen-157

cies. This rigidity leads to information loss in long-158

sequence tasks, where retrieval accuracy relies on159

adapting attention spans dynamically.160

Other strategies generate distinct masks by lever-161

aging statistical information, defining role-specific162

constraints for attention heads, or introducing163

context-dependent sparsity (Wang et al., 2020; Fu164

et al., 2024b; Correia et al., 2019). While these165

approaches increase flexibility, they fail to dynami-166

cally capture heterogeneous attention within indi-167

vidual maps and still process all sequence lengths,168

raising resource costs.169

To introduce flexibility, some approaches assign170

different predefined sparse patterns to layers and171

heads (Fu et al., 2024b; Wang et al., 2020; Fu et al.;172

Correia et al., 2019). They select masks based173

on input length, improving adaptability without174

requiring fine-tuning. However, it assumes opti-175

mal attention structures are predefined, missing176

dynamic token interactions, and require evaluat-177

ing multiple sequence lengths, thereby increasing178

computational overhead.179

3 Preliminaries180

Transformer models adopt the scaled dot-product181

attention mechanism, a core component for cap-182

turing relationships between tokens in a sequence183

(Vaswani, 2017). Attention scores are calculated184

as S = QK⊤
√
dk

, where Q ∈ Rn×dk and K ∈ Rm×dk185

denote the query and key matrices, respectively.186

Here, n and m denote the number of query and187

key/value vectors, while dk represents the dimen-188

sionality of each key/query vector. The resulting189

matrix S ∈ Rn×m contains the unnormalized at-190

tention logits, representing the pairwise similarities191

between queries and keys. The scaling factor 1√
dk

192

is crucial for maintaining numerical stability during193

training, preventing the dot products from grow-194

ing excessively large, which can lead to vanishing195

gradients during backpropagation. This scaling mit-196

igates issues caused by large variances in the logits, 197

particularly when applying a masking operation. 198

The computation of attention scores for all pairs 199

of tokens has a quadratic time complexity of 200

O(n2) with respect to the sequence length, which 201

becomes computationally expensive for long se- 202

quences. Sparse attention mechanisms address this 203

computational bottleneck by imposing structured 204

sparsity on the attention matrix. This is achieved 205

through a binary mask Mℓ,h ∈ {0, 1}n×m for each 206

layer ℓ and head h, defined as: 207

Mℓ,h,i,j =


1, if token i attends to token j

in layer ℓ and head h,

0, otherwise.

208

The mask Mℓ,h is applied element-wise to the at- 209

tention logits S′ = S ⊙Mℓ,h, where ⊙ denotes the 210

Hadamard product (element-wise multiplication). 211

This effectively prevents attention between specific 212

token pairs. The masked attention logits are then 213

normalized using the softmax function: 214

Aij =
exp(S′

ij)∑m
k=1 exp(S

′
ik)

. 215

The output of the attention mechanism is com- 216

puted as a weighted sum of the values, where 217

V ∈ Rm×dv is the value matrix as O = AV . 218

While sparse attention mechanisms substantially 219

improve computational efficiency, they inherently 220

restrict the model’s ability to learn long-range de- 221

pendencies by limiting token interactions. A key 222

limitation of many sparse attention approaches is 223

their reliance on fixed sparsity patterns. Such pat- 224

terns are unable to adapt to the dynamic nature of 225

attention, including variations in sequence length 226

and the diversity of attention distributions across 227

different inputs. This rigidity can result in a sig- 228

nificant reduction in performance, especially when 229

dealing with long sequences or tasks requiring the 230

modeling of intricate relationships. Moreover, pre- 231

defined sparse attention structures like sliding win- 232

dow (Beltagy et al., 2020b) or global attention (Liu 233

et al., 2021) often overlook the critical variations in 234

attention patterns that occur across different layers 235

and heads within the network. The optimal set of 236

token interactions evolves across layers, rendering 237

fixed sparsity patterns a bottleneck. 238

4 Dynamic Attention Masks (DAM) 239

This section introduces our proposed Dynamic At- 240

tention Mask (DAM) mechanism. We first motivate 241

the design by illustrating the dynamic nature of 242
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attention patterns across layers and heads in Trans-243

former models. Then, we detail the architecture of244

DAM, and finally, we describe its integration into245

the standard Transformer framework.246

4.1 Dynamic Attention Patterns247
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Figure 2: Visualization of dynamic attention patterns
across layers and heads. The figure compares the ef-
fect of averaging (top row) and applying the Box-Cox
transformation (bottom row) to attention values from
a LLaMA 3.2 3B Instruct model on the Multi-News
dataset. The Box-Cox transformation enhances the visi-
bility of dynamic patterns.

Prior research has investigated and validated248

the existence of dynamic attention patterns across249

attention heads and layers in Transformer mod-250

els (Goindani and Shrivastava, 2021; Xiao et al.,251

2024a). To visualize these patterns, we analyze252

attention maps obtained from a LLaMA 3.2 3B253

Instruct model (AI, 2024) evaluated on the Multi-254

News summarization benchmark (Fabbri et al.,255

2019). Figure 2 presents these attention maps, re-256

vealing inconsistencies in the underlying sparse257

structures across different heads and layers. The258

top row of Figure 2 displays the average attention259

values across the dataset. While these average maps260

suggest the presence of dynamic patterns, the pat-261

terns themselves are not readily discernible, hin-262

dering a deeper understanding and impeding the263

design of effective sparsity-inducing techniques.264

We posit that enhancing the contrast between265

significant and less significant attention values can266

reveal these dynamic patterns more clearly. Specif-267

ically, we aim to preserve the largest attention val-268

ues (e.g., those corresponding to the leftmost col-269

umn in each attention map), while simultaneously270

accentuating the intermediate values (e.g., those271

distributed along the diagonal) and differentiating272

them from the smallest values (e.g., those in the273

bottom-left regions). To achieve this, we evaluated274

nine different transformation methods and found275

the Box-Cox transformation (Box and Cox, 1964) 276

consistently yielded the most informative visualiza- 277

tions, as shown in the bottom row of Figure 2. 278

The Box-Cox transformation effectively ampli- 279

fies both small and intermediate attention values 280

without causing the largest values to become dis- 281

proportionately large. This transformation results 282

in a more uniform distribution of attention values, 283

thereby facilitating the observation and selection 284

of salient attention patterns. This improved visual- 285

ization motivates the design of DAM, which aims 286

to learn and exploit these dynamic patterns. 287

4.2 Two-Stage Dynamic Attention Masks 288

DAM is a novel framework designed to enhance the 289

efficiency of Transformer models by learning adap- 290

tive sparse attention masks. It addresses the lim- 291

itation of predefined sparsity patterns, which can 292

discard valuable, low-magnitude connections, by 293

dynamically adjusting the attention mask based on 294

observed attention patterns. The framework oper- 295

ates in two stages. First, a frozen pre-trained model 296

processes input sequences (truncated to a man- 297

ageable Pattern Capture Length, PCL) to extract 298

full attention maps. These maps undergo a Box- 299

Cox transformation for normalization, followed by 300

thresholding to generate “true masks” represent- 301

ing key dependencies. Structural pattern analysis 302

(identifying vertical and diagonal patterns) then en- 303

ables the extrapolation of these masks to lengths 304

exceeding the PCL, creating “extended masks”. 305

The second stage applies these generated, adap- 306

tive sparse attention masks (either true or extended, 307

depending on sequence length) to a sparse Trans- 308

former model. This application occurs before the 309

softmax operation within the attention mechanism, 310

effectively limiting computations to the unmasked 311

connections. This significantly reduces both mem- 312

ory and computational overhead compared to full 313

attention, while preserving the crucial dependen- 314

cies identified in the first stage. By focusing on 315

observed attention patterns and extrapolating struc- 316

tural regularities, DAM achieves a balance between 317

efficiency and the ability to capture nuanced, long- 318

range dependencies in input sequences, making it 319

suitable for processing long sequences that would 320

otherwise be computationally prohibitive. 321

4.2.1 Pattern Capture Length (PCL) 322

The Pattern Capture Length (PCL), denoted as L, 323

represents a critical parameter within the DAM 324

framework. It defines the maximum sequence 325
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Figure 3: Two-stage DAM overview. The first stage extracts full attention patterns from sequences of varying
lengths, applies a Box-Cox transformation, and generates masks that capture essential dependencies. The second
stage applies these masks to a sparse model, enabling efficient inference while preserving key attention structures.

length processed by the frozen model to extract the326

initial, full attention distributions. This constraint327

is essential for maintaining computational feasibil-328

ity, particularly given the quadratic complexity of329

full attention mechanisms.330

Let S represent the length of an input sequence.331

The PCL, L, is determined as L = min(S,Lmax)332

where Lmax is the maximum sequence length for333

which full attention computation remains compu-334

tationally tractable given the available resources335

(e.g., GPU memory). In essence, the PCL acts as336

a truncation point, ensuring that the initial atten-337

tion map extraction is performed on sequences of338

a manageable length, while still capturing repre-339

sentative attention patterns. The choice of Lmax340

is a hyperparameter that depends on the specific341

hardware and model architecture.342

4.2.2 Feature Amplification via Box-Cox343

This section details the process of amplifying and344

normalizing attention scores using the Box-Cox345

transformation. This step aims to address the often-346

observed skewness in attention distributions, where347

a few connections dominate while many others348

have very low values. By amplifying smaller atten-349

tion values, we reveal potentially significant con-350

nections that might otherwise remain masked.351

First, mean attention scores are computed across352

all valid token pairs within the dataset. Let Aℓ,h,i,j353

denote the accumulated attention value at layer ℓ, 354

head h, from token i to token j, summed across 355

multiple batches. A binary mask m
(b)
i,j ∈ {0, 1} 356

indicates whether the attention weight for token 357

pair (i, j) was computed in batch b. The count 358

matrix Cℓ,h,i,j records the number of times each 359

token pair (i, j) appears across all batches, we have 360

Cℓ,h,i,j =
∑

bm
(b)
i,j . The mean attention score, 361

Āℓ,h,i,j , is then calculated as: 362

Āℓ,h,i,j =
Aℓ,h,i,j

Cℓ,h,i,j + ϵ
, 363

where ϵ is a small constant (e.g., 10−8) added to 364

the denominator to prevent division by zero and 365

ensure numerical stability. 366

To mitigate the skewness of the attention scores 367

and emphasize smaller values, a Box-Cox trans- 368

formation is applied. To ensure the input to the 369

transformation is strictly positive, a small con- 370

stant ϵ is added to the mean attention scores as 371

Xℓ,h,i,j = max(Āℓ,h,i,j , ϵ). The Box-Cox transfor- 372

mation is then applied to Xℓ,h,i,j as follows: 373

Bℓ,h,i,j =

{
Xλ

ℓ,h,i,j−1

λ , if λ ̸= 0

ln(Xℓ,h,i,j), if λ = 0
374

where λ is the transformation parameter. In this 375

work, we set λ = 0.5. 376

To ensure the transformed values Bℓ,h,i,j re- 377
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main non-negative, we subtract the minimum value378

across all heads and layers:379

B∗
ℓ,h,i,j = Bℓ,h,i,j − min

ℓ′,h′,i′,j′
(Bℓ′,h′,i′,j′).380

Finally, the normalized attention map Ãℓ,h,i,j381

is defined as Ãℓ,h,i,j = B∗
ℓ,h,i,j . With amplified382

smaller values, Ãℓ,h,i,j is then used for subsequent383

mask generation.384

4.2.3 True Mask Generation385

We detail the process of generating "true masks,"386

denoted as Mℓ,h, which represent the binarized387

and thresholded version of the normalized attention388

maps. These masks serve as the basis for identify-389

ing structural patterns and subsequently construct-390

ing the extended, sparse attention masks.391

A binary thresholding operation is applied to the392

normalized attention maps, Ãℓ,h (obtained as de-393

scribed in Section 4.2.2), to produce the true masks.394

Each true mask Mℓ,h has the same dimensions as395

the corresponding attention map: Mℓ,h = [mi,j ] ∈396

{0, 1}L×L, where L is the Pattern Capture Length397

(PCL). The elements of the true mask, mi,j , are398

determined by comparing the corresponding nor-399

malized attention values, Ãℓ,h,i,j , to a predefined400

threshold, τ :401

mi,j =

{
1, if Ãℓ,h,i,j ≥ τ,

0, if Ãℓ,h,i,j < τ.
402

This thresholding operation is applied indepen-403

dently to each layer ℓ and attention head h. The404

threshold, τ , acts as a hyperparameter controlling405

the sparsity of the true masks. A higher value406

of τ results in a sparser mask, retaining only the407

strongest attention connections.408

4.2.4 Dynamic Mask Generation via409

Structural Pattern Matching410

We construct DAM by identifying and combining411

predefined structural patterns within the true atten-412

tion masks. A pattern pool, P , is defined, con-413

sisting of a set of predefined attention patterns.414

Each pattern is represented as a binary matrix415

Pk = [pi,j ] ∈ {0, 1}L×L, where L denotes the416

PCL and Pk represents the k-th pattern in the pool.417

The pattern pool, in this work, includes diagonal418

and vertical patterns, reflecting common attention419

structures observed in Transformer models.420

A diagonal pattern, Pdiag,r, starts at row index r421

and extends diagonally downwards:422

pi,j =

{
1, if j = i− r,

0, otherwise.
423

for r ∈ {0, 1, . . . , L−1}. A vertical pattern, Pvert,c, 424

captures column-wise attention (i.e., tokens attend- 425

ing to a specific column c): 426

pi,j =

{
1, if j = c and i ≥ c,

0, otherwise.
427

for c ∈ {0, 1, . . . , L − 1}. The complete pattern 428

pool is the union of these sets: 429

P = {Pdiag,r} ∪ {Pvert,c}. 430

Each true mask Mℓ,h is compared against pat- 431

terns in P . The match score γk for a pattern Pk is 432

computed as: 433

γk =

∑
i,j M

(i,j)
ℓ,h · P (i,j)

k∑
i,j P

(i,j)
k

. 434

A pattern Pk is considered a valid match if its 435

match score γk exceeds a predefined threshold µ, 436

where µ ∈ [0, 1] is a hyperparameter controlling 437

the sensitivity of the pattern matching. Higher val- 438

ues of µ lead to fewer patterns being matched, re- 439

sulting in sparser masks. 440

The extended mask, M̃ℓ,h, is constructed by sum- 441

ming all matched patterns. Because patterns can 442

overlap, summing them effectively combines mul- 443

tiple structural patterns: 444

M̃ℓ,h =
∑

Pk∈P,γk≥µ

Pk. 445

Finally, to ensure the extended mask is binary, a 446

thresholding operation is applied: 447

M̃
(i,j)
ℓ,h =

{
1, if

∑
Pk∈P,γk≥µ P

(i,j)
k ≥ 1,

0, otherwise.
448

4.3 Applying the Dynamic Attention Masks 449

Case 1: If the input sequence length S satisfies 450

S ≤ L, Mℓ,h will be applied as the attention mask. 451

Case 2: If S > L, the method constructs an ex- 452

tended mask M̃ℓ,h of size S × S. The first L× L 453

region remains unchanged: 454

M̃
(i,j)
ℓ,h = M

(i,j)
ℓ,h , for i, j ≤ L. 455

For i, j > L, attention is allowed if the token 456

pair (i, j) is in the stored matched positions Pℓ,h: 457

M̃
(i,j)
ℓ,h =

{
1, if (i, j) ∈ Pℓ,h,

0, otherwise.
458

The attention mask applies before softmax. The 459

modified attention score matrix is: 460

A′
ℓ,h =

Qℓ,hK
T
ℓ,h√

dk
⊙ M̃ℓ,h. 461

The model sets masked positions M̃ (i,j)
ℓ,h = 0 to 462

−∞ before softmax, ensuring a probability of zero. 463

The final output is: O′
ℓ,h = softmax(A′

ℓ,h)Vℓ,h. 464
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5 Experiment465

5.1 Experiment Setup466

Experiments evaluate DAM on long-context re-467

trieval and QA tasks, comparing against full atten-468

tion and structured sparsity baselines across multi-469

ple sequence lengths and model scales.470

Baselines. We compare DAM against MoA (Fu471

et al., 2024a), StreamingLLM (Xiao et al., 2024b),472

and H2O (Zhang et al., 2023). MoA uses prede-473

fined sparse attention patterns per layer and head,474

while StreamingLLM and H2O enhance efficiency475

during autoregressive decoding.476

Base Models. The experiments use LLaMA-3.2-477

1B-Instruct and LLaMA-3.2-3B-Instruct to analyze478

scalability across different parameter sizes.479

Benchmarks. The evaluation uses LongEval (Kr-480

ishna et al., 2023) and LV-Eval (Yuan et al., 2024)481

to assess long-context understanding. LongEval482

measures key-value retrieval accuracy with 100483

data items per sequence length level, offering in-484

sights into contextual recall performance.485

Hardware. The experiments run on multiple GPU486

configurations: 4 × A100 (40GB) for LongEval,487

2 × H100 (80GB) for LV-Eval, and 1 × A100488

(40GB) for efficiency evaluations.489

DAM Configuration:490

• Dataset for attention map capture: Multi-491

News (Fabbri et al., 2019), a large-scale multi-492

document dataset that captures diverse attention493

patterns for general language capability.494

• Pattern Capture Length: 512, balancing feasi-495

bility with attention pattern extraction.496

• Threshold for true masks: 0.3, determined497

through attention sparsity analysis.498

• Threshold for approximate masks: 0.8, ensur-499

ing effective structural alignment while minimiz-500

ing unnecessary attention connections.501

5.2 Performance502

Long-Context Retrieval. The LongEval lines503

task evaluates retrieval accuracy across different504

sequence lengths by measuring a model’s ability505

to extract predefined tokens embedded within in-506

put sequences ranging from 3K to 104K tokens507

(illustration ends with base model accuracy smaller508

than 0.5). Figure 4 shows that DAM maintains an509

average accuracy of 0.7966, closely matching full510

attention (0.8011). The accuracy gap remains min-511

imal across all tested lengths, confirming DAM’s512

ability to preserve long-range dependencies. MoA513

and StreamingLLM experience sharp performance514

3.1
k
5.6

k
8.2

k
10

.7k
13

.3k
15

.8k
18

.4k
20

.9k
23

.5k
26

.0k
28

.5k
31

.1k
33

.6k
36

.2k
38

.7k

Prompt Length

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

LLaMA 3.2 3B
DAM
H2O
MoA
StreamingLLM

Figure 4: LongEval line accuracy task using the base
model LLaMA 3.2 3B. The results depict input se-
quences ranging from 200 to 3100 lines, corresponding
to prompt lengths from 3.1k to 38.7k tokens. DAM
exhibits almost no performance degradation.
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Figure 5: LongEval retrieval accuracy for LLaMA 3.2
3B and 1B models. DAM aligns with dense model per-
formance, while others begin losing retrieval accuracy
at early short input lengths.

declines beyond 20K tokens, with accuracy drop- 515

ping to 0.394 and 0.356, respectively. These mod- 516

els fail to capture heterogeneous attention patterns 517

dynamically, leading to reduced retrieval accuracy. 518

The retrieval accuracy task evaluates the abil- 519

ity to locate predefined tokens across different se- 520

quence lengths. Figure 6 shows that DAM main- 521

tains alignment with the full attention model for 522

both 1B and 3B configurations. For the 3B model, 523

other methods show performance degradation at 524

shorter sequences. DAM preserves accuracy across 525

different retrieval positions and lengths, while MoA 526

and StreamingLLM show early declines. At 10K 527

tokens, both models begin to lose retrieval effec- 528

tiveness, failing to track long-range dependencies. 529

Long-Context Tasks. The LV-Eval benchmark 530

evaluates retrieval performance in long-context 531

question-answering tasks. This experiment exam- 532
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16k 32k 64k

LLaMA 3.2 3B DAM H2O MoA StreamingLLM

Figure 6: LV-Eval retrieval score across long-context QA tasks. DAM closely matches full attention, achieving
18.61 score at 64K tokens. MoA, StreamingLLM, and H2O lose performance as sequence length increases, with
DAM outperforming alternative sparse attention methods.

ines sequence lengths from 16K to 256K tokens,533

with results shown up to 64K tokens. Beyond 128K534

tokens, base model performance remains stable,535

while retrieval score declines at 256K tokens. The536

benchmark includes single-hop and multi-hop QA537

tasks that require retrieving relevant information538

from long input contexts. Single-hop QA datasets539

include cmrc-mixup, multifieldqa-en-mixup, and540

multifieldqa-zh-mixup. Multi-hop QA datasets in-541

clude dureader-mixup, loogle-CR-mixup, loogle-542

MR-mixup, hotpotwikiqa-mixup, and lic-mixup.543

Figure 6 shows that DAM closely follows full544

attention across all datasets. At 64K tokens, DAM545

reaches an average score of 18.61, compared to546

19.29 for full attention. The small gap confirms547

DAM’s ability to retain retrieval scores without548

quadratic attention costs. MoA and StreamingLLM549

lose scores as sequence length increases. At 64K550

tokens, MoA reaches 7.56 and StreamingLLM551

7.47, both lower than DAM and full attention.552

These models fail to retain long-range dependen-553

cies, reducing effectiveness in multi-hop retrieval.554

H2O holds performance better than MoA and555

StreamingLLM but scores lower than DAM. At556

64K tokens, H2O records 7.59, slightly above MoA557

and StreamingLLM but below DAM.558

5.3 Efficiency559

The efficiency evaluation compares GPU memory560

usage across different models and sequence lengths,561

as shown in Table 1. LLaMA-3.2 represents the562

base model with full attention, while H2O, MoA,563

and DAM apply sparse attention mechanisms. For564

the 1B model, LLaMA-3.2 runs out of memory565

(OOM) at 16K tokens, consuming 28.4GB at 8K566

tokens. DAM maintains the lowest memory foot-567

print, using 4.0GB at 16K tokens, compared to568

Base Size Framework Memory (GB)

1k 2k 4k 8k 16k

1B

H2O 3.9 4.3 5.4 6.7 9.3
MoA 2.8 3.0 3.4 4.2 5.8
DAM (ours) 2.5 2.6 2.8 3.2 4.0
LLaMA-3.2 5.2 8.6 15.2 28.4 OOM

3B

H2O 15.7 20.7 27.3 30.7 OOM
MoA 14.8 15.6 17.2 20.6 OOM
DAM (ours) 12.9 13.3 14.1 15.6 18.6
LLaMA-3.2 16.9 26.6 32.1 OOM OOM

Table 1: GPU memory usage comparison for different
methods across sequence lengths. DAM maintains the
lowest memory footprint, enabling longer sequence pro-
cessing compared to MoA, H2O, and LLaMA-3.2.

MoA (5.8GB) and H2O (9.3GB). For the 3B model, 569

LLaMA-3.2 encounters OOM beyond 8K tokens, 570

while DAM processes up to 16K tokens within 571

18.6GB. MoA and H2O exceed this memory usage 572

before 16K tokens. DAM achieves efficient mem- 573

ory scaling while maintaining retrieval accuracy, 574

demonstrating a practical balance between long- 575

context capability and computational efficiency. 576

6 Conclusion 577

We introduce DAM, a sparse attention method that 578

dynamically captures heterogeneous token inter- 579

actions, overcoming the limitations of static and 580

predefined sparsity patterns. DAM learns adaptive 581

attention masks that retain crucial dependencies, 582

improving retrieval accuracy while significantly re- 583

ducing computational cost. Experiments across 584

long-context benchmarks demonstrate DAM’s ef- 585

fectiveness in maintaining full-attention perfor- 586

mance with lower memory and compute require- 587

ments. By bridging the gap between efficiency and 588

expressivity in sparse attention, DAM provides a 589

scalable solution for long-context processing. 590
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7 Limitations591

While reducing attention computation at runtime,592

dynamic sparse masks add preprocessing overhead593

versus fixed masks. Optimizing mask generation to594

minimize overhead while maintaining adaptability595

remains a challenge. Additionally, the approach as-596

sumes that structured sparsity in attention patterns597

can be effectively learned and generalized, but this598

may not always align with optimal information flow599

in every task. Future work could explore adaptive600

learning mechanisms that refine sparsity patterns601

based on downstream task performance. Though602

this method scales more efficiently than full at-603

tention, handling extremely long sequences—such604

as multi-million-token documents or continuous605

streaming inputs—remains a challenge due to mem-606

ory constraints in mask storage and extension. Ex-607

ploring hybrid models that integrate retrieval-based608

or memory-augmented techniques could improve609

efficiency for such cases.610
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