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Abstract

Recent benchmarks for Large Language Model (LLM) agents primarily fo-
cus on evaluating reasoning, planning, and execution capabilities, while
another critical component—memory, encompassing how agents memorize,
update, and retrieve long-term information—is under-evaluated due to the
lack of benchmarks. We term agents with memory mechanisms as mem-
ory agents. In this paper, based on classic theories from memory sci-
ence and cognitive science, we identify four core competencies essential
for memory agents: accurate retrieval, test-time learning, long-range un-
derstanding, and selective forgetting. Existing benchmarks either rely on
limited context lengths or are tailored for static, long-context settings like
book-based QA, which do not reflect the interactive, multi-turn nature
of memory agents that incrementally accumulate information. Moreover,
no existing benchmarks cover all four competencies. We introduce Memo-
ryAgentBench, a new benchmark specifically designed for memory agents.
Our benchmark transforms existing long-context datasets and incorporates
newly constructed datasets into a multi-turn format, effectively simulating
the incremental information processing characteristic of memory agents.
By carefully selecting and curating datasets, our benchmark provides com-
prehensive coverage of the four core memory competencies outlined above,
thereby offering a systematic and challenging testbed for assessing memory
quality. We evaluate a diverse set of memory agents, ranging from sim-
ple context-based and retrieval-augmented generation (RAG) systems to
advanced agents with external memory modules and tool integration. Em-
pirical results reveal that current methods fall short of mastering all four
competencies, underscoring the need for further research into comprehen-
sive memory mechanisms for LLM agents.

1 Introduction

Large Language Model (LLM) agents have rapidly transitioned from proof-of-concept
chatbots to end-to-end systems that can write software (Wang et al., 2024c), control
browsers (Müller & Žunič, 2024), and reason over multi-modal inputs. Frameworks such as
Manus, OWL (Hu et al., 2025), OpenHands (Wang et al., 2024c), and Codex routinely
solve complex, tool-rich tasks and achieve state-of-the-art results on agentic benchmarks
like GAIA (Mialon et al., 2023) and SWE-Bench (Jimenez et al., 2023). Yet these eval-
uations focus almost exclusively on reasoning (planning, tool using, code synthesis) and
leave the equally important question of memorization (abstraction, storing, updating, re-
trieving) largely under-explored. Recent memory-centric architectures—ranging from para-
metric memory systems like MemoryLLM (Wang et al., 2024d), SELF-PARAM (Wang
et al.), and M+(Wang et al., 2025) to commercial token-level memory solutions such
as MemGPT(Packer et al., 2023; Lin et al., 2025), Mem0(Chhikara et al., 2025),
Cognee(Markovic et al., 2025), and Zep(Rasmussen et al., 2025)—employ diverse strate-
gies for storing and retrieving past information. Despite growing interest, their real-world
effectiveness remains largely anecdotal, and there is currently no unified benchmark for sys-
tematically evaluating the quality of memory in agents. In this paper, we refer to agents
equipped with memory mechanisms as Memory Agents, where memory can take various
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Figure 1: Four complementary competencies that memory agents should have.

forms, including parameters, vectors, textual histories, or external databases. In this paper,
we primarily focus on memory agents that utilize textual histories and external databases,
as these approaches are most commonly deployed in real-world applications. In contrast,
memory encoded in model parameters (Wang et al., 2024d; 2025; Yin et al., 2024) remains
largely within academic research and is typically less capable than proprietary memory
systems equipped on closed-sourced API models.
Based on some classic theories in memory and cognitive science (James, 1890; McClelland
et al., 1995; Anderson & Neely, 1996; Wimber et al., 2015), we identify four complementary
competencies (Examples shown in Figure 1) to evaluate memory agents: (1) Accurate
Retrieval (AR): The ability to extract the correct snippet in response to a query. This can
involve one-hop or multi-hop retrieval, as long as the relevant information can be accessed
with a single query. (2) Test-Time Learning (TTL): The capacity to incorporate new
behaviors or acquire new skills during deployment, without additional training. (3) Long-
Range Understanding (LRU): The ability to integrate information distributed across
extended contexts (≥ 100k tokens) and answer questions requiring a global understanding
of the entire sequence. (4) Selective Forgetting (SF): The skill to revise, overwrite,
or remove previously stored information when faced with contradictory evidence, aligning
with goals in model editing and knowledge unlearning tasks (Meng et al., 2023; Wang et al.,
2024e). For these fuor competencies, we provide more detailed definitions in Appendix B.
Previous datasets developed to evaluate memory in language models have notable limi-
tations. Early benchmarks such as LOCOMO (Maharana et al., 2024) (∼ 9k tokens),
LooGLE(Li et al., 2023) (∼ 24k tokens), and LongBench(Bai et al., 2023) (∼ 20k to-
kens) feature relatively short contexts that no longer challenge current models. More recent
datasets like NovelQA(Wang et al., 2024a) (∼200k tokens), NOCHA(Karpinska et al., 2024)
(∼127k tokens), Loong(Wang et al., 2024b) (∼100k tokens), and ∞-Bench(Zhang et al.,
2024) (∼150k tokens) extend the context length to evaluate global reasoning and retrieval
capabilities. However, these datasets were primarily designed for evaluating long-context
language models rather than memory agents. The reason that long-context benchmarks
cannot be directly used to evaluate memory agents is as follows. There is a fundamental
distinction between memory and long context: memory serves as a compressed and distilled
representation of past information. Rather than storing all historical content verbatim,
memory selectively extracts salient details, removes irrelevant information, and often in-
corporates new inferences derived from prior experiences. Consequently, memory agents
are designed to process context incrementally—absorbing input piece by piece, ab-
stracting and consolidating information over time, generating new inferences, and learning
novel rules from accumulated history. For this reason, datasets that provide the entire con-
text in a single block are not directly applicable to evaluating memory agents. A more
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recent effort, LongMemEval (Wu et al., 2025), seeks to address this limitation by using
synthetic long-form conversations, which can be injected into memory gradually, session by
session. Nonetheless, its evaluation framework remains constrained by limited topical diver-
sity and less realistic interaction patterns, reducing its applicability to real-world memory
agent scenarios.
To address these limitations, we introduce a unified benchmark framework, MemoryA-
gentBench, specifically designed to evaluate a broad spectrum of memory mechanisms
in agent systems. We also provide a framework for memory agent evaluation. In this
framework, agents are presented with sequences of textual inputs that simulate multi-turn
interactions with users. We reconstructed existing datasets originally developed for long-
context LLM evaluation by segmenting and reconstructing inputs into multiple dialogue
chunks and feeding them incrementally to the agent in a time order. However, since these
datasets do not fully capture all four targeted memory competencies, we also introduce two
new datasets: EventQA and FactConsolidation, designed to evaluate accurate retrieval
and selective forgetting, respectively. Our benchmark includes evaluations of state-of-the-
art commercial memory agents (such as MIRIX and MemGPT), long-context agents that
treat the full input as memory, and RAG agents that extend their memory through retrieval
methods. We examine how techniques developed for long-context models and RAG transfer
to the memory agent setting. By providing a consistent evaluation protocol across diverse
agent architectures and datasets, MemoryAgentBench delivers comprehensive insights
into agent performance across the four core memory competencies.
Our contributions are summarized as follows:

• Datasets: We reconstruct existing datasets and create two new datasets to construct a
comprehensive benchmark, covering four distinct memory competencies.

• Framework: We provide a unified evaluation framework, and open-source the codebase
and datasets to encourage reproducibility and further research.

• Empirical Study: We implement various simple agents with diverse memory mecha-
nisms, adopt commercial agents, and evaluate these agents on our proposed benchmark.
With our results, we show that existing memory agents, while effective in some tasks,
still face significant challenges on some aspects.

2 Related Work

2.1 Benchmarks with Long Input

In this section, we review prior work on long-context benchmarks. Early benchmarks de-
signed for long-context evaluation include LongBench(Bai et al., 2023) and LooGLE(Li et al.,
2023), with average input lengths of approximately 20k and 24k tokens, respectively. More
recent benchmarks—such as ∞-Bench (Zhang et al., 2024), HELMET(Yen et al., 2024),
RULER(Hsieh et al., 2024), NOCHA(Karpinska et al., 2024), NoLiMa (Modarressi et al.,
2025) and LongBench V2(Bai et al., 2024)—extend context lengths to over 100k tokens
and are primarily intended to evaluate the capabilities of long-context models. However,
despite their scale, these benchmarks are not designed to assess memory agents, and no
prior work has repurposed them for that goal. More recently, LOCOMO (Maharana et al.,
2024), LongMemEval (Wu et al., 2025), RealTalk (Lee et al., 2025) and StoryBench (Wan &
Ma, 2025) have been proposed specifically for evaluating memory agents. While promising,
LOCOMO still features relatively short conversations (∼9k), and LongMemEval uses syn-
thetic conversations with limited topical diversity, making the dialogues less realistic and
potentially less representative of real-world memory use cases. Meanwhile, the evaluation
scope of the above benchmarks is not sufficient to comprehensively assess long-term memory
from multiple dimensions.

2.2 Agents with Memory Mechanisms

Memory mechanisms are attracting more and more attention lately (Wang et al., 2025/02).
Recent advancements in LLMs have demonstrated the capability to process extended context
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lengths, ranging from 100K to over 1 million tokens. For instance, models such as GPT-
4o (OpenAI, 2025b) and Claude 3.7 (Anthropic, 2025) can handle inputs of approximately
100K to 200K tokens, while models like Gemini 2.0 Pro (DeepMind, 2025) and the GPT-4.1
series extend this capacity beyond 1 million tokens. These strong long-context capabilities
enable a simple yet effective form of memory: storing information directly within the context
window. However, this approach is inherently constrained by a hard limit—once the context
window is exceeded, earlier information must be discarded.
In parallel, RAG continues to serve as a dominant paradigm for managing excessive con-
text. By retrieving relevant information from earlier context and feeding it to the LLM, RAG
allows systems to overcome context length limitations. For example, OpenAI’s recent mem-
ory functionality1 combines explicit user preference tracking with retrieval-based methods
that reference prior interactions. RAG methods can be broadly classified into three cate-
gories: Simple RAG: These methods rely on string-matching techniques such as TF-IDF,
BM25 (Robertson & Walker, 1994), and BMX (Li et al., 2024), which are entirely non-neural
and operate on string-level similarity. Embedding-based RAG: This class leverages neu-
ral encoders, primarily transformers, to map text into dense vector representations (Wu
et al., 2022). Early methods like DPR (Karpukhin et al., 2020) and Contriever (Izacard
et al., 2021) are based on BERT (Devlin et al., 2019), while more recent models such as
Qwen3-Embedding (Zhang et al., 2025) achieve significantly improved retrieval performance.
Structure-Augmented RAG: These approaches enhance retrieval with structural repre-
sentations such as graphs or trees. Representative systems include GraphRAG (Edge et al.,
2024), RAPTOR (Sarthi et al., 2024), HippoRAG-V2 (Gutiérrez et al., 2025), Cognee,
Zep (Rasmussen et al., 2025), MemoRAG (Qian et al., 2025), Mem0 (Chhikara et al., 2025),
MemoryOS (Kang et al., 2025), Memary (kingjulio8238 & Memary contributors, 2024) and
Memobase (memodb-io & Memobase contributors, 2025). Despite their effectiveness, RAG-
based methods face challenges with ambiguous queries, multi-hop reasoning, and long-range
comprehension. When questions require integrating knowledge across an entire session or
learning from long, skill-encoding inputs, the retrieval mechanism—limited to the top-k
most relevant passages—may fail to surface the necessary information. To address these
limitations, Agentic Memory Agents introduce an iterative, decision-driven framework.
Rather than relying on a single-pass retrieval, these agents dynamically process the query,
retrieve evidence, reflect, and iterate through multiple retrieval and reasoning cycles. Ex-
amples include MemGPT (Packer et al., 2023), Self-RAG (Asai et al., 2023), Auto-RAG (Yu
et al., 2024), A-MEM (Xu et al., 2025), Mem1 (Zhou et al., 2025), MemAgent (Yu et al.,
2025), and MIRIX (Wang & Chen, 2025). This agentic design is particularly effective for
resolving ambiguous or multi-step queries. Nonetheless, these methods remain fundamen-
tally constrained by the limitations of RAG—namely, the inability to fully understand or
learn from long-range context that is inaccessible via retrieval alone.

Table 1: Overview of evaluation datasets. We select datasets that cover various important
long-context capabilities. In the table, we underline the datasets we constructed ourselves.
AvgL.: Average Context Length (measured using the GPT-4o-mini model’s tokenizer).

Category Dataset Metrics AvgL. Description

Accurate
Retrieval

SH-Doc QA
Accuracy

197K Single-Hop Gold passage retrieval QA.
MH-Doc QA 421K Multiple-Hop Gold passage retrieval QA.
LongMemEval (S*) 355K Dialogues based QA.
EventQA 534K Novel multiple-choice QA on characters events.

Test-time
Learning

BANKING77

Accuracy 103K

Banking intent classification, 77 labels.
CLINC150 Intent classification, 151 labels.
NLU Task intent classification, 68 labels.
TREC Coarse Question type classification, 6 labels.
TREC Fine Question type classification, 50 labels.
Movie Recommendation Recall@5 1.44M Recommend movies based on provided dialogues examples.

Long Range
Understanding

∞Bench-Sum F1-Score 172K Novel summarization with entity replacement.
Detective QA Accuaracy 124K Long-range reasoning QA on detective novels.

Selective
Forgetting

FactConsolidation-SH Accuracy 262K Single hop reasoning in facts judgment.
FactConsolidation-MH Multiple hop reasoning in facts judgment.

1https://openai.com/index/memory-and-new-controls-for-chatgpt/
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3 MemoryAgentBench

3.1 Dataset Preperation

In this section, we describe how we reconstruct existing datasets and build new ones for
evaluating each competency aspect. All datasets with their categories are shown in Table
1. We introduce the details in datasets curation in Appendix B.

Datasets for Accurate Retrieval (AR) We adopt four datasets to evaluate the accu-
rate retrieval capability of memory agents. Three are reconstructed from existing bench-
marks, and one is newly created: (1) Document Question Answering: This is a NIAH-
style QA task where a long passage contains single (SH-QA) or multiple (MH-QA) docu-
ments answering the input question. The agent must identify and extract relevant snippets
from the extended context. (2) LongMemEval: This benchmark evaluates memory agents
on long dialogue histories. Although task types like information extraction (IE) or multi-
session reasoning are included, most tasks can be reformulated as single-retrieval problems
requiring agents to retrieve the correct segments spanning a long multi-turn conversation.
We reformulated chat history into five long dialogues (∼355K tokens) with 300 questions
(LongMemEval (S*) in Table 1). We create LongMemEval (S*) specifically for increasing
the number of questions per context, mitigating the exhaustive needs of reconstructing the
memory for each question. (3) EventQA (ours): We introduce EventQA this reasoning
style NIAH task to evaluate agents’ ability to recall and reason about temporal sequences
in long-form narratives. In this dataset, the agent is required to read a novel and select the
correct event from a series of candidates after receiving up-to five previous events. Unlike
other long-range narrative text datasets that require extensive manual annotation (Zhang
et al., 2024; Xu et al., 2024), our dataset is built through a fully automated pipeline, making
the process more efficient and scalable. Moreover, this pipeline can be directly applied to
other novel-style texts.

Datasets for Test-Time Learning (TTL) We evaluate TTL via two task categories:
(1) Multi-Class Classification (MCC): We reconstructed five classification datasets used
in prior TTL work (Bertsch et al., 2024; Yen et al., 2024): BANKING77 (Casanueva et al.,
2020), CLINC150 (Larson et al., 2019), TREC-Coarse, TREC-Fine (Li & Roth, 2002), and
NLU (Liu et al., 2019). Each task requires the agent to map sentences to class labels,
leveraging previously seen labeled examples in context. (2) Recommendation: Based
on the setup from (Li et al., 2018; He et al., 2023), we construct a dataset to evaluate
movie recommendation via dialogue history. The agent is exposed to thousands of movie-
related dialogue turns and is asked to recommend twenty relevant movies based on the long
interaction history.

Datasets for Long Range Understanding (LRU) We evaluate LRU via two tasks:
(1) Novel Summarization (Summ.): We adopt the Summarization task En.Sum from
∞-Bench (Zhang et al., 2024). The agent is required to analyze and organize the plot and
characters of the novel, and then compose a summary of 1000 to 1200 words. (2) Detective
QA (Det QA): We also create a difficult question set from Detective QA (Xu et al., 2024),
which include ten novels with 71 questions and these questions require agents to do reasoning
over a longer narrative range.

Datasets for Selective Forgetting (SF) To assess whether an agent can forget out
of date memory and reason over them, we construct a new dataset called FactCon-
solidation. Specifically, We build this benchmark using counterfactual edit pairs from
MQUAKE (Zhong et al., 2023). Each pair contains a true fact and a rewritten, con-
tradictory version. These are ordered such that the rewritten (new) fact appears after the
original, simulating a realistic update scenario. We concatenate multiple such edit pairs
to create long contexts of length 6K, 32K, 64K, 262K. We then adpot MQUAKE’s origi-
nal questions and categorize them into: (1) FactConsolidation-SH (Ours) (SH means
Single-Hop), requiring direct factual recall (e.g., “Which country was tool A created in?”),
and (2) FactConsolidation-MH (Ours) (MH refers to Multi-Hop), requiring inference
over multiple facts (e.g., “What is the location of death of the spouse of person B?”). Agents
are prompted to prioritize later information in case of conflict and reason based on the fi-
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nal memory state. This setup directly evaluates the strength and consistency of selective
forgetting over long sequences.

3.2 Different Categories of Memory Agents

We evaluate three major types of memory agents that reflect common strategies for handling
long-term information: Long-Context Agents, RAG Agents, and Agentic Memory Agents.
These approaches differ in how they store, retrieve, and reason over past inputs.
(1) Long Context Agents Modern language models often support extended context win-
dows ranging from 128K to over 1M tokens. A straightforward strategy for memory is to
maintain a context buffer of the most recent tokens. For example, in a model with a 128K-
token limit, the agent concatenates all incoming chunks until the total exceeds the window
size. Once the limit is reached, the earliest chunks are evicted in a FIFO (first-in, first-out)
manner. This agent design relies solely on positional recency and assumes the model can
attend effectively over the current context window. (2) RAG Agents RAG-based agents
address context limitations by storing past information in an external memory pool and re-
trieving relevant content as needed. We consider three RAG variants: Simple RAG Agents:
All input chunks are stored as raw text. During inference, a keyword or rule-based string
matching mechanism retrieves relevant passages. Embedding-based RAG Agents: Each input
chunk is embedded and saved. At query time, the agent embeds the query and performs
retrieval using cosine similarity between embeddings. Structure-Augmented RAG Agents:
After ingesting all input chunks, the agent constructs a structured representation (e.g.,
knowledge graph or event timeline). Subsequent queries are answered based on this struc-
tured memory. (3) Agentic Memory Agents Agentic memory agents extend beyond
static memory stores by employing agentic loops—iterative reasoning cycles in which the
agent may reformulate questions, perform memory lookups, and update its working mem-
ory. These agents are designed to simulate a more human-like process of recalling, verifying,
and integrating knowledge.

3.3 Datasets and Agents Formulation

Datasets Formulation We standardize all datasets into the format: c1, c2, · · · , cn

(chunks), q1, q2, · · · , qm (questions), and a1, a2, · · · , am (answers), where ci denotes the i-th
chunk wrapped to construct a user message with instructions of memorizing the content in
a sequential input, and c1, c2, · · · , cn represents a single conversation. Each chunk is accom-
panied by instructions prompting the agent to memorize its contents. Example prompts are
provided in Appendix D.1. When curating datasets like EventQA and FactConsolidation,
we deliberately design scenarios where multiple questions follow a single context. This allows
us to probe the model’s memory multiple times with one sequential injection. For example,
in LME (S*), five contexts are paired with 300 questions (shown in Table 5 in Appendix B).
This design choice reflects a key trend: as LLMs support increasingly long context windows
and memory agents become more capable of handling extended inputs, evaluation datasets
must also scale accordingly. Injecting 1M tokens for just one question is resource-inefficient,
whereas associating the same input with many questions provides significantly higher utility.

Agents Formulation In our framework, all agents are required to take the chunks one
by one, absorb them into memory, and incrementally update the memory. After seeing all
the chunks, we ask the agent to answer the related questions.

4 Experiments

4.1 Experimental Setup

The datasets are split into four categories and the statistics of all datasets are also shown
in Table 5. The evaluation metrics for all datasets are shown in Table 1, along with more
dataset details. For the agents, as described in Section 3.2, we consider three categories
of agents: Long-Context Agents, RAG agents and Agentic Memory Agents, where RAG
Agents can be further split into Simple RAG Agents, Embedding-based RAG Agents and
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Table 2: Overall Performance Comparison. In the absence of a specified model, All RAG
agents and commercial memory agents use GPT-4o-mini as the backbone. Thus we highlight
the performance of GPT-4o-mini as the reference. FC-SH and FC-MH mean FactConsoli-
dation Single Hop and FactConsolidation Multi Hop, respectively. Best viewed in colors.

AR TTL LRU SF Overall
Agent Type SH-QA MH-QA LME(S*) EventQA Avg. MCC Recom. Avg. Summ. DetQA Avg. FC-SH FC-MH Avg. Scores

Long-Context Agents
GPT-4o 72.0 51.0 32.0 77.2 58.1 87.6 12.3 50.0 32.2 77.5 54.9 60.0 5.0 32.5 48.8
GPT-4o-mini 64.0 43.0 30.7 59.0 49.2 82.0 15.1 48.6 28.9 63.4 46.2 45.0 5.0 25.0 42.2
GPT-4.1-mini 83.0 66.0 55.7 82.6 71.8 75.6 16.7 46.2 41.9 56.3 49.1 36.0 5.0 20.5 46.9
Gemini-2.0-Flash 87.0 59.0 47.0 67.2 65.1 84.0 8.7 46.4 23.9 59.2 41.6 30.0 3.0 16.5 42.4
Claude-3.7-Sonnet 77.0 53.0 34.0 74.6 59.7 89.4 18.3 53.9 52.5 71.8 62.2 43.0 2.0 22.5 49.6

GPT-4o-mini 64.0 43.0 30.7 59.0 49.2 82.0 15.1 48.6 28.9 63.4 46.2 45.0 5.0 25.0 42.3
Simple RAG Agents

BM25 66.0 56.0 45.3 74.6 60.5 75.4 13.6 44.5 19.0 52.1 35.6 48.0 3.0 25.5 41.5
Embedding RAG Agents

Contriever 22.0 31.0 15.7 66.8 33.9 70.6 15.2 42.9 17.2 42.3 29.8 18.0 7.0 12.5 29.8
Text-Embed-3-Small 60.0 44.0 48.3 63.0 53.8 70.0 15.3 42.7 17.7 54.9 36.3 28.0 3.0 15.5 37.1
Text-Embed-3-Large 54.0 44.0 50.3 70.0 54.6 72.4 16.2 44.3 18.2 56.3 37.3 28.0 4.0 16.0 38.0
Qwen3-Embedding-4B 57.0 47.0 43.3 71.4 54.7 78.0 12.2 45.1 14.8 59.2 37.0 29.0 3.0 16.0 38.2

Structure-Augmented RAG Agents
RAPTOR 29.0 38.0 34.3 45.8 36.8 59.4 12.3 35.9 13.4 42.3 27.9 14.0 1.0 7.5 27.0
GraphRAG 47.0 47.0 35.0 34.4 40.9 39.8 9.8 24.8 0.4 39.4 19.9 14.0 2.0 8.0 23.4
MemoRAG 29.0 33.0 20.0 56.0 34.5 77.0 13.1 45.1 9.2 50.7 30.0 21.0 7.0 14.0 30.9
HippoRAG-v2 76.0 66.0 50.7 67.6 65.1 61.4 10.2 35.8 14.6 57.7 36.2 54.0 5.0 29.5 41.6
Mem0 25.0 32.0 36.0 37.5 32.6 32.4 10.0 21.2 4.8 36.6 20.7 18.0 2.0 10.0 21.1
Cognee 31.0 26.0 29.3 26.8 28.3 35.4 10.1 22.8 2.3 29.6 16.0 28.0 3.0 15.5 20.6
Zep 44.0 25.0 38.3 42.5 37.5 62.8 12.1 37.5 4.2 28.2 16.2 7.0 3.0 5.0 24.0

Agentic Memory Agents
Self-RAG 35.0 42.0 25.7 31.8 33.6 11.6 12.8 12.2 0.9 35.2 18.1 19.0 3.0 11.0 18.7
MemGPT 41.0 38.0 32.0 26.2 34.3 67.6 14.0 40.8 2.5 42.3 22.4 28.0 3.0 15.5 28.3
MIRIX 62.0 61.0 37.3 29.8 47.5 38.4 9.8 24.1 9.9 40.8 25.4 14.0 2.0 8.0 26.2
MIRIX (4.1-mini) 73.0 75.0 51.0 53.0 63.0 61.0 10.3 35.7 18.9 62.0 40.5 20.0 3.0 11.5 37.7

Structure-Augmented RAG Agents. We give the detailed introduction of each memory agent
in Appendix C. For chunk size settings, we choose a chunk size of 512 for the SH-Doc QA,
MH-Doc QA, and LME(S*) tasks in AR, as well as for all tasks in SF. This is mainly
because these tasks are composed of long texts synthesized from multiple short texts. For
other tasks, we use a chunk size of 4096. Considering computational overhead and API cost,
we uniformly use a chunk size of 4096 for the Mem0, Cognee, Zep, and MIRIX. We report
the settings of the chunk size in Table 14 in Appendix E.

4.2 Overall Performance Comparison

Table 2 presents the overall performance across different benchmarks. We summarize the
key findings as follows: (1) Superiority of RAG methods in Accurate Retrieval
Tasks. Most RAG Agents are better than the backbone model “GPT-4o-mini” in the tasks
within the Accurate Retrieval Category. This matches our intuition where RAG agents typ-
ically excel at extracting a small snippet of text that is crucial for answering the question.
(2) Superiority of Long-Context Models in Test-Time Learning and Long-Range
Understanding. Long-context models achieve the best performance on TTL and LRU.
This highlights a fundamental limitation of RAG methods and commercial memory agents,
which still follow an agentic RAG paradigm. These systems retrieve only partial informa-
tion from the past context, lacking the ability to capture a holistic understanding of the
input—let alone perform learning across it. (3) Limitation of All Existing Methods
on Selective Forgetting. Although being a well-discussed task in model-editing com-
munity (Mitchell et al., 2022; Fang et al., 2024), forgetting out-of-date memory poses a
significant challenge on memory agents. We observe that all methods fail on the multi-hop
situation (with achieving at most 7% accuracy). Only long context agents can achieve fairly
reasonable results on single-hop scenarios. In Section 4.3.4, we show that current reasoning
models can have much better performance, while it does not change the conclusion that
Selective Forgetting still poses a significant challenge to all memory mechanisms.

4.3 Analysis and Ablation Study

In this section, we present experiments and analysis along five dimensions: input chunk size,
retrieval top-k, backbone model, dataset validation, and computational latency. Additional
results are provided in the appendix, including context length analysis (Appendix E.4),
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Figure 2: Performances on SH-Doc QA and ∞-Bench-Sum with different chunk sizes.
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Figure 3: The accuracies on different benchmarks when varying the retrieval top-k to be 2,
5 and 10.

latency and GPU memory usage comparisons (Appendix E.5, E.6), as well as further details
on chunk size and top-k ablations (Appendix E.2, E.3).

4.3.1 Ablation Study on Input Chunk Size

To understand how chunk size impacts performance, particularly for RAG methods and
agentic memory agents, we conduct an additional analysis where we vary the chunk size
while fixing the number of retrieved chunks to 10. The results are presented in Figure 2.
From the figure, we observe that when resources permit, using smaller chunk sizes and in-
creasing the number of retrieval calls during memory construction can improve performance
on Accurate Retrieval (AR) tasks. Finer-grained segmentation enhances the relevance of
retrieved information, particularly for embedding-based methods. However, for tasks requir-
ing Long-Range Understanding (LRU), varying the chunk size hurts the performance. This
is likely because RAG methods are inherently less suited for tasks that demand integration
of information across a large, coherent context.

4.3.2 Ablation Study on Retrieval TopK

In our experiments, although we report most results with the number of retrieved chunks
set to 10 in Table 2, we also conducted ablation studies with varying retrieval sizes. A
subset of these results is visualized in Figure 3, with the full results provided in Table 8 in
Appendix E. The results indicate that increasing the number of retrieved chunks generally
improves performance across most tasks. It is worth noting that, with a chunk size of 4096
tokens, retrieving 10 chunks already yields an input of approximately 40k tokens. This
places significant demands on model capacity. Due to this high token volume, we do not
evaluate settings with 20 retrieved chunks.

4.3.3 Ablation Study on Backbone Model

To investigate how different backbone models impact the performance of various memory
agents, we experimented with three different backbone models and selected four represen-
tative methods from both the RAG Agents and Agentic Memory categories. The complete
experimental results are presented in Table 3. Our findings show that for RAG Agents, once

8
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Table 3: Performance comparison on three different backbone LLMs and four representative
memory agents. We choose one dataset from every competency to evaluate agent perfor-
mance.

Agent Type Backbone Model EventQA Recom ∞Bench-Sum FactCon-SH Avg.
GPT-4o-mini 74.6 13.6 19.0 48.0 38.8

BM25 GPT-4.1-mini 76.4 14.0 19.4 51.0 40.2
Gemini-2.0-Flash 70.8 10.0 18.9 47.0 36.7

GPT-4o-mini 63.0 15.3 17.7 28.0 31.0
Text-Embed-3-Small GPT-4.1-mini 62.0 15.5 17.9 30.0 31.4

Gemini-2.0-Flash 64.0 10.3 17.2 27.0 29.6
GPT-4o-mini 34.4 9.8 0.4 14.0 14.7

GraphRAG GPT-4.1-mini 39.0 10.3 1.2 16.0 16.6
Gemini-2.0-Flash 36.2 7.2 0.8 13.0 14.3

MIRIX GPT-4o-mini 29.8 9.8 9.9 14.0 15.9
GPT-4.1-mini 53.0 (23.2↑) 10.3 (0.5↑) 18.9 (9.0↑) 20.0 (6.0↑) 25.6 (9.7↑)

the backbone is sufficiently strong, it no longer serves as the main performance bottleneck.
Compared to the default setup, upgrading to a more powerful model like GPT-4.1-mini
yields only marginal improvements. In contrast, the main results in Table 2 for the MIRIX
method under the Agentic Memory category, using a stronger backbone leads to substantial
performance gains. This suggests that future advances in backbone models could further
boost the effectiveness of Agentic Memory methods.

4.3.4 Validation of Dataset FactConsolidation

Table 4: Performances of reasoning models
on the dataset FactConsolidation.

FactCon-SH FactCon-MH
6K 32K 6K 32K

GPT-4o 92.0 88.0 28.0 10.0
O4-mini 100.0 61.0 80.0 14.0

As the performance of different models on this
dataset remains drastically low, we turn to
the stronger reasoning model o4-mini and val-
idate our dataset by checking the performance
of o4-mini on a smaller version of this dataset.
The results are shown in Table 4. We found
that on the 6K version of the FactCon-SH
dataset, both models perform well and are
generally able to complete the task effectively. However, their performance drops when the
context length increases to 32K. Similarly, on the 6K version of the FactCon-MH dataset,
the stronger O4-mini reasoning model achieves a decent score of 80.0, but its performance
significantly drops to 14.0 when the context window reaches 32K. This indicates that our
dataset is solvable under short-context settings, but current memory agents still lack strong
long-range reasoning capabilities, making them unable to handle the task when presented
with longer historical inputs.

5 Conclusion

In this paper, we introduce MemoryAgentBench, a unified benchmark designed to evalu-
ate memory agents across four essential competencies: accurate retrieval, test-time learning,
long-range understanding, and selective forgetting. While prior benchmarks focus largely
on skill execution or long-context question answering, MemoryAgentBench fills a critical
gap by assessing how agents store, update, and utilize long-term information across multi-
turn interactions. To build this benchmark, we restructure existing datasets and propose
two new ones—EventQA and FactConsolidation—tailored to stress specific memory be-
haviors often overlooked in prior work. We evaluate a wide spectrum of agents, including
long-context models, RAG-based systems, and commercial memory agents, under a consis-
tent evaluation protocol. Our results reveal that, despite recent advances, current memory
agents still exhibit substantial limitations when faced with tasks requiring dynamic memory
updates and long-range consistency. One limitation of our work is that due to budget con-
straints, so we could only conduct experiments on some relatively representative Memory
Agents. As future work, we aim to provide more evaluation results for more memory agents.
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Ethics Statement

This work adheres to the ICLR Code of Ethics and associated author guidance; we assess
potential impacts and document mitigations accordingly. We evaluate memory in LLM
agents using dialogs , license-compliant corpora; no personally identifiable information or
data from minors were collected. To reduce dual-use risks, we release only safety-screened
prompts and provide usage notes discouraging surveillance-oriented applications. We will
release code under the MIT License and datasets/benchmark artifacts under CC BY 4.0;
third-party materials retain their original licenses.

Reproducibility Statement

Upon acceptance, we will open-source all code and data used in this paper. The reposi-
tory will include (i) training/evaluation scripts, configuration files, and exact prompts; (ii)
dataset releases and generation scripts with seeds to fully regenerate interactions; and (iii)
end-to-end run recipes. We will pin software dependencies and provide a containerized en-
vironment (Dockerfile plus conda/requirements.txt) and report hardware, CUDA/cuDNN,
and OS details to support deterministic re-runs, in line with community guidance on repro-
ducibility statements and artifact preparation.
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A The Use of Large Language Models (LLMs)

In this paper writing process, we used an LLM to assist with content polishing—for example,
identifying grammatical errors and suggesting revisions for sentences that were unclear or
potentially ambiguous. Additionally, we used the LLM to generate character icons, which
were later used in the creation of our main plot visualization.

B Details of Dataset

Here we provide a detailed introduction to the datasets used for evaluating the four core
competencies, including the dataset curation, corresponding metrics, average context length,
and a brief description. Details are shown in Table 1.

B.1 Accurate Retrieval (AR)

B.1.1 Definition of AR

The task of accurately retrieving information has been extensively explored in prior work. In
the domain of long-context modeling, the Needle-in-a-Haystack (NIAH) task is widely used
to evaluate a model’s ability to locate the specific value based on a given key within a lengthy
input. In the RAG setting, this corresponds to document-based QA, where the model must
identify and extract relevant snippets from one or more documents to answer a query. These
snippets might reside in a single location or be distributed across multiple documents. In
this paper, we focus on agentic settings, where the “long context” or “multiple documents”
become long-form conversations. We define Accurate Retrieval (AR) as the ability of an
agent to identify and retrieve important information that may be dispersed throughout a
long dialogue history.

B.1.2 Details on AR datasets

We use four datasets to evaluate the accurate retrieval capability of memory agents.

(1) Document Question Answering We improved two QA datasets from (Hsieh et al.,
2024). These datasets provide multiple synthetic contexts of varying lengths, ranging from
3K to over 200K tokens. We select 100 questions from the datasets with shorter context
length. For each of these 100 questions, we collect the context and remove duplicate short
documents, and then shuffle and concatenate them to create new long documents of 197K
or 421K tokens, making sure the new context containing the gold passages. Since most
answers are short informational entities, such as years, names, or yes/no responses, we use
substring exact match (SubEM) to calculate the accuracy of QA. SubEM measures whether
the predicted answer exactly matches the gold answer as a sub-string, which is a common
standard in question answering systems.

(2) LongMemEval This is a dialogue-based QA dataset. For LME(S*), we use multi-
ple historical conversation data segments, arrange them in chronological order, and finally
concatenate them to create five long conversation histories, each with a length of approxi-
mately 355K tokens. Since some of the questions have open-ended answers, we adopt the
approach used in previous work and employ the GPT-4o model to assess whether the agent’s
responses meet the requirements. If a response is deemed satisfactory, it is marked as True.
Finally, we calculate the proportion of satisfactory responses as the evaluation metric. Wu
et al. (2025) reported in Table 6 that a prompt-engineered GPT-4o judge achieves 98.0%
accuracy and demonstrates very high stability.

(3) EventQA Using five books from ∞-Bench (each contains more than 390K tokens,
counted using the gpt-4o-mini tokenizer), we identify the ten most frequently mentioned
characters via SpaCy NER. We extract 101 events experienced by key characters using
gpt-4o. For each event, we construct a 6-way multiple-choice question by pairing the true
event with five distractors generated via gpt-4o. The agent receives up-to five previous
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events and must identify the correct continuation. We report the mean accuracy over 100
such questions per book, and ultimately present the average accuracy across all five books.

B.2 Test-time Learning (TTL)

B.2.1 Definition of TTL

An essential capability for real-world agents is the ability to acquire new skills dynamically
through interaction with users. This mirrors the concept of In-Context Learning (ICL)
in LLMs, where the model learns from a prompt containing a small number of examples,
often framed as few-shot classification tasks. Ideally, performance improves with additional
examples in the prompt. In the conversational agent setting, prompts are replaced by
dialogue histories. We define Test-Time Learning (TTL) as the agent’s ability to learn to
perform new tasks directly from the conversation. This property is crucial for enabling
self-evolving agents that can continuously adapt and improve in real-world deployments.

B.2.2 Details on TTL datasets

We evaluate TTL via two task categories:

(1) Multi-Class Classification (MCC) We adopt five classification datasets used in
prior TTL work. For dataset curation, we use thousands of sentence samples from different
categories, with each type of sample assigned a number as its label. Following the format
"{sentence} \n Label: {label} \n", we concatenate all the sentences into a long context and
shuffle them to prevent samples of the same type from being too concentrated. In this task,
the agent needs to refer to a long context and correctly classify the input content. Therefore,
we use average accuracy as the evaluation metric.

(2) Recommendation (Recom.) We concatenate multiple short dialogues about movie
recommendations from the original dataset, remove duplicate dialogues, and create a long
context containing over a thousand recommendation instances. In this task, the agent is
required to recommend 20 movies based on the content of the dialogue. We evaluate the
recommendations by calculating Recall@5, which measures the overlap between the top 5
recommended movies and the ground truth.

B.3 Long-Range Understanding (LRU)

B.3.1 Definition of LRU

Long-range understanding refers to the agent’s ability to form abstract, high-level compre-
hension over extended conversations. For example, when a user narrates a long story, the
agent should retain the content and derive a holistic understanding rather than just recall
isolated facts. We define Long-Range Understanding (LRU) as the ability to reason about
long-form inputs and answer high-level questions that require an understanding of the over-
all content, rather than detailed recall. An example question might be: “Summarize the
main experiences of Harry Potter.”

B.3.2 Details on LRU datasets

We evaluate LRU via the Summarization task En.Sum from ∞-Bench (Zhang et al., 2024).
We follow the settings from (Yen et al., 2024) and use the GPT-4o model in evaluating the
summarized text. In this process, we assess the fluency of the input text (scored as 0 or 1)
and use the dot product of this score with the F1 score as the final evaluation metric.

B.4 Selective Forgetting (SF)

B.4.1 Definition of SF

In long-term interactions, agents often face evolving or conflicting information—whether
about the external world (e.g., changes in political leadership) or user-specific facts (e.g., a
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new occupation). This challenge is closely related to model editing (Meng et al., 2023; Fang
et al., 2024) and knowledge unlearning (Wang et al., 2024e), which focus on modifying or
removing factual knowledge from language models. We define Selective Forgetting (SF) as
the agent’s ability to detect and resolve contradictions between out of date knowledge and
newly acquired information, ensuring the agent remains aligned with current realities and
user states. SF is distinct from Abstractive Retrieval (AR) in two key ways. (1) Certain
questions requiring SF cannot be answered solely through AR. As illustrated in Figure 1, an
agent that retrieves all facts related to pears may fail to identify the updated information
in the second message. (2) In AR, earlier messages remain relevant and should be retained,
even when multiple pieces of evidence are required. In contrast, SF involves identifying
outdated or incorrect information and discarding it. That is, AR requires preservation of all
related content, whereas SF requires overwriting prior facts to reflect the most up-to-date
truth.

B.4.2 Details on SF datasets

We use counterfactual edit pairs from the MQUAKE (Zhong et al., 2023) dataset. Each
sentence containing information was assigned a number. For each edit pair, the sentence
representing outdated information (the distractor) is given a smaller number, while the sen-
tence representing more recent information (the one containing the answer) is given a larger
number. We then concatenate these sentences into a long context in order according to
their assigned numbers. We evaluate the SF via two datasets: Single-Hop FactConsol-
idation and Multi-Hop FactConsolidation. In these tasks, the agent’s responses are
mostly informational entities. Therefore, we also use SubEM (Substring Exact Match) as
the evaluation metric to calculate the accuracy of QA.

B.5 Justification for competencies based on cognitive science

Accurate retrieval is central to human memory research, as evidenced by classical forgetting
curves and recall tests that foreground fidelity of recall (Ebbinghaus, 2013). However, a
sole focus on accuracy obscures another fundamental axis: the timescale of learning and
consolidation. Ebbinghaus observed that an initial, fleeting grasp rarely endures without
reinforcement (Ebbinghaus, 2013), and James (1890) distinguished primary (immediate)
from secondary (enduring) memory. These classic distinctions ground our notions of test-
time learning (incorporation of new information via memory) and long-range understanding
(durable, integrated knowledge). Consistent with this, the Complementary Learning Sys-
tems (CLS) framework delineates a hippocampal system for rapid episodic learning and a
neocortical system for gradual, structured knowledge accumulation, underscoring the need
to assess both quick memorization and long-horizon retention (McClelland et al., 1995).
Beyond the acquisition–consolidation axis, another equally fundamental challenge is selective
forgetting. Overlapping or contradictory traces can impede retrieval, and interference has
long been recognized as a primary driver of forgetting in cognitive psychology (Anderson &
Neely, 1996). Neurocognitive evidence further shows that the brain engages targeted control
mechanisms to resolve such interference at retrieval time (Wimber et al., 2015). We therefore
include selective forgetting—the ability to handle interference and contradictions—as a core
dimension.
In sum, our four categories—accurate retrieval, test-time learning, long-range understand-
ing, and selective forgetting—align with key dimensions of memory identified in cognitive
science and AI memory systems, covering the essential capabilities that any robust memory
mechanism must support in practice.

C Detailed Memory Agents Description

We give detailed description of the memory agents used in experiments in this section.
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Table 5: Datasets categorized by the specific aspects of evaluation. Here 1K is 1024.

Capability Tasks # of Sequences : QAs Avg Len

Accurate
Retrieval

SH-Doc QA 1 : 100 197K
MH-Doc QA 1 : 100 421K
LongMemEval (S*) 5 : 300 355K
EventQA 5 : 500 534K

Test-Time
Learning

BANKING-77 1 : 100
CLINC-150 1 : 100
NLU 1 : 100 103K
TREC (Coarse) 1 : 100
TREC (Fine) 1 : 100
Movie-Rec Redial 1 : 200 1.44M

Long-Range
Understanding

∞Bench-Sum 100 : 100 172K
Detective QA 10 : 71 124K

Selective Forgetting FactConsolidation-SH 1 : 100 262KFactConsolidation-MH 1 : 100

C.1 Long-Context Agents

We evaluate five modern long-context LLMs: GPT-4o (OpenAI, 2025b) serves as the high-
performance, low-latency model with better cost efficiency than prior generations. While
GPT-4o-mini is a lightweight, budget-friendly alternative that enables large-scale evalua-
tions by delivering faster responses and lower per-token costs. Notably, the GPT-4.1 (Ope-
nAI, 2025a) family strengthens instruction following and maintains strong performance at
very large context windows (reported up to 1M tokens). Considering the higher token cost,
we choose the GPT-4.1-mini in evaluation. Gemini-2.0-Flash (DeepMind, 2025) targets
high throughput and the use of built-in tools, offering a 1M token context window for ef-
ficient long-context processing. Claude-3.7-Sonnet (Anthropic, 2025) is a hybrid-reasoning
model with optional visible “extended thinking,” strong math/coding skills, and developer-
controlled thinking budgets.

C.2 RAG Agents

We consider three RAG variants: Simple RAG Agents, Embedding-based RAG Agents, and
Structure-Augmented RAG Agents.

(1) Simple RAG Agents We implement a BM25 (Robertson & Walker, 1994) retriever
as a strong lexical baseline: it scores documents by term frequency with saturation and
inverse document frequency, with length normalization controlled by parameters k1 and b.
BM25 remains competitive for exact-match queries and complements dense retrievers with
robust precision on keyworded questions.

(2) Embedding-based RAG Agents Contriever (Izacard et al., 2021) is an unsuper-
vised dense retriever trained via contrastive learning on large text corpora, enabling semantic
matching without labeled pairs. Text-Embedding-3-Small/Large (OpenAI, 2024) are Ope-
nAI’s general-purpose embedding models offering a cost–quality trade-off (e.g., 1,536 vs.
3,072 dimensions) for search and retrieval. Qwen3-Embedding-4B (Zhang et al., 2025) is a
4B-parameter embedding/reranking model family geared toward multilingual retrieval and
long-text understanding.

(3) Structure-Augmented RAG Agents RAPTOR (Sarthi et al., 2024) is method
building a hierarchical tree of recursive summaries (bottom-up clustering and abstraction)
and retrieves across levels for long-document QA. GraphRAG (Edge et al., 2024) extracts
a knowledge graph and community hierarchy, then performs graph-aware retrieval and
summarization. MemoRAG (Qian et al., 2025) introduces a dual-system pipeline with a
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light “global-memory” model to guide retrieval and a stronger model for final answers.
HippoRAG-v2 (Gutiérrez et al., 2025) extends hippocampal-inspired retrieval to improve
factual, sense-making, and associative memory tasks over standard RAG. We also evaluate
three open-sourced memory agents: Mem0, Cognee and Zep. Mem0 (Chhikara et al., 2025)
provides a persistent agent memory layer for storing/retrieving user-specific knowledge to
enhance personalization. Cognee (Markovic et al., 2025) is an open-source memory engine
that builds structured (graph-native) memories via ECL pipelines to power graph-aware
RAG. Zep (Rasmussen et al., 2025) is a temporal knowledge-graph memory platform for
agents, designed to assemble and retrieve long-term conversational and business context.

C.3 Agentic Memory Agents

For Agentic Memory Agents, We evaluate the Self-RAG (Asai et al., 2023),
MemGPT (Packer et al., 2023), and MIRIX (Wang & Chen, 2025) on our benchmark.
Self-RAG use LLMs as the agent to decide when/what to retrieve and to critique its own
outputs. MemGPT operates the hierarchical memory management, paging relevant snip-
pets between short-term and long-term stores and using event-driven interrupts to maintain
coherence and evolvability over extended interactions. MIRIX adopts a multi-agent mem-
ory architecture with six specialized memory types (Core, Episodic, Semantic, Procedural,
Resource, Knowledge Vault) and a coordinator that orchestrates updates/retrieval across
agents.
For comparability, we standardize prompts, tool access, and settings (like retrieval TopK
and input chunk size) across above all systems.

D Prompts

We introduce the examples of prompt used memory construction and task execution in this
section.

D.1 Instructions for Memory Construction

When processing long-context inputs, we split the content into chunks of a specified size and
feed these chunks into the agent as memory. The agent can then extract relevant information
from its memory based on the query to assist with query execution. This chunking approach
helps organize and manage large amounts of contextual information, making retrieval and
reasoning more efficient. In Figure 4, we provide several example instructions that require
the agent to memorize the corresponding context.

D.2 Instructions for Task Execution

In Figure 5, we provide the examples of instructions used on different of datasets when
handling the input queries. For some existing datasets, we refer the prompt settings from
previous work such as (Hsieh et al., 2024; Wu et al., 2025). For the dataset ∞Bench-
Sum, we also insert two answer examples as ⟨demo⟩ in the prompt to help the agent better
understand the questions and standardize its outputs.

E Detailed Experimental Results

In this section, we provide detailed versions of the results presented in the main text.

E.1 Detailed Results on TTL

We give detailed results on Multi-Class Classification (MCC) task in Table 6. For all three
types of tasks, RAG-based agents generally underperform compared to their respective
GPT-4o-mini backbones. This observation highlights certain limitations inherent to the
RAG approach. For instance, in TTL tasks, RAG-based methods often struggle to more
accurately retrieve context from memory that is closely associated with the input.
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Prompts Used for Memory Construction on Various Tasks

Document Question Answering (SH-Doc QA or MH-Doc QA):
Here is a dialogue between User and Assistant on ⟨time⟩:
⟨User⟩: The following context consists the documents I have read: ⟨chunk⟩. Please memorize it and I
will ask some questions based on it in future.
⟨Assistant⟩: Sure! I have learned the documents and I will answer the question you ask.

LME(S*):
Here is a dialogue between User and Assistant on ⟨time⟩:
⟨User⟩: The following context is the dialogue history that I have talked with a ChatBoT: ⟨chunk⟩.
Please memorize it and I will ask some questions based on it in future.
⟨Assistant⟩: Sure! I have memorized the dialogue history and I will answer the question you ask.

EventQA:
Here is a dialogue between User and Assistant on ⟨time⟩:
⟨User⟩: The following context is the sections in a novel that I have read: ⟨chunk⟩. Please memorize it
and I will ask some questions based on it in future.
⟨Assistant⟩: Sure! I have memorized the novel sections and I will answer the question you ask.

Multi-Class Classification (MCC):
Here is a dialogue between User and Assistant on ⟨time⟩:
⟨User⟩: The following context is the examples I have learned: ⟨chunk⟩. Please memorize it and I will
ask some questions based on it in future.
⟨Assistant⟩: Sure! I have memorized the examples and I will answer the question you ask.

Recommendation (Recom):
Here is a dialogue between User and Assistant on ⟨time⟩:
⟨User⟩: The following context is the dialogue history that I have talked with a recommender system:
⟨chunk⟩. Please memorize it and I will ask some questions based on it in future.
⟨Assistant⟩: Sure! I have memorized the dialogues and I will answer the question you ask.

Novel Summarization:
Here is a dialogue between User and Assistant on ⟨time⟩:
⟨User⟩: The following context is the sections in a novel that I have read: ⟨chunk⟩. Please memorize it
and I will need you to summarize based on it in future.
⟨Assistant⟩: Sure! I have memorized the novel sections and I will summarize them when you ask.

Detective QA (Det QA):
Here is a dialogue between User and Assistant on ⟨time⟩:
⟨User⟩: The following context is the sections in a novel that I have read: ⟨chunk⟩. Please memorize it
and I will need you to answer the questions based on the entire novel.
⟨Assistant⟩: Sure! I have memorized the novel sections and I will answer the questions you ask.

Selective Forgetting (SF):
Here is a dialogue between User and Assistant on ⟨time⟩:
⟨User⟩: The following context is the facts that I have learned: ⟨chunk⟩. Please memorize it and I will
need you to answer the questions based on the order of facts.
⟨Assistant⟩: Sure! I have memorized the facts and I will answer the questions you ask.

Figure 4: The prompts we use for the agents to create the memory.

E.2 Results on Input Chunk Size Ablation Study

In Table 7, we report the detailed results on evaluating the RAG-based Agents on different
chunk sizes and datasets. We selected chunk sizes from the two sets {512, 4096} and {512,
1024, 2048, 4096}.

E.3 Results on Retrieval TopK Ablation Study

In Table 8, we report the detailed results of the selected RAG-based Agents evaluated on
five datasets. We choose different TopK ranging from {2, 5, 10}.
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Examples of Prompts Used for Task Execution on Various Dataset

Document Question Answering (SH-Doc QA or MH-Doc QA)
The context is given as below: ⟨memory⟩. \n Answer the question based on the context. Only give
me the answer and do not output any other words. \n Now Answer the Question: ⟨question⟩ \n Answer:

LME(S*)
Here is the context of dialogue history: ⟨memory⟩ \n. Based on the relevant chat history, answer the
question concisely, using a single phrase if possible.\n Current Date: ⟨question_date⟩, \n Now Answer
the Question: ⟨question⟩ \n Answer:

EventQA
The context is given as below: ⟨memory⟩. \n Based on the context above, complete the task below:
\n ⟨question⟩ \n Your task is to choose from the above events which event happens next based on the
book excerpt. In your response to me, only include the answer without anything else. \n The event
that happens next is:

Multi-Class Classification (MCC)
The context is given as below: ⟨memory⟩. \n Use the provided mapping examples from the context to
numerical label to assign a numerical label to the context. Only output "label: {{label}}" and nothing
else. \n Question: ⟨question⟩ \n label:

Recommendation (Recom)
Here is the context of dialogue history: ⟨memory⟩. \n Pretend you are a movie recommender system.
You need to recommend movies based on the above dialogue history. Now I will give you a new
conversation between a user and you (a recommender system). Based on the conversation, you reply
me with 20 recommendations without extra sentences. \n For Example:\n [Conversation] \n The
recommendations are: \n 1.movie1 \n 2.movie2 \n ...\n Here is the conversation: ⟨question⟩ \n The
recommendations are:

Novel Summarization
The book is given as below: ⟨memory⟩ \n You are given a book above and you are tasked to summarize
it. Write a summary of about 1000 to 1200 words. Only write about the plot and characters of
the story. Do not discuss the themes or background of the book. Do not provide any analysis or
commentary. \n ⟨demo⟩ \n Now summarize the book.

Detective QA (Det QA)
The context is given as below: ⟨memory⟩. \n Based on the context above, complete the task below:
You are required to answer the question based on the strict output format.\n ⟨question⟩ \n

Fact Consolidation
Here is a knowledge pool with lots of new facts: ⟨memory⟩. \n Pretend you are a knowledge manage-
ment system. Each fact in the knowledge pool is provided with a serial number at the beginning, and
the newer fact has larger serial number. \n You need to solve the conflicts of facts in the knowledge
pool by finding the newest fact. You need to answer a question based on this rule. You should give a
very concise answer without saying other words for the question **only** from the knowledge pool
you have memorized rather than the real facts in real world. \n For example: \n [Knowledge Pool]
\n Question: Based on the provided Knowledge Pool, what is the name of the current president of
Country R? \n Answer: Person D. \n Now Answer the Question: Based on the provided Knowledge
Pool, ⟨question⟩ \n Answer:

Figure 5: The example prompts we use for the Memory Agents in Table 2. Here ⟨memory⟩
refers to the accumulated text from the sequential inputs.

E.4 Results on Different Context Length Ablation Study

In Table 9, we report the performances of different agents when scaling the input length.
We measure the average context length via the tokenizer of GPT-4o-mini and here 1K
is 1024. For Long-Context Agents, tasks in the AR series generally achieve satisfactory
performance at relatively small context lengths (e.g., around 50K tokens). However, as the
context length increases, the performance of these agents declines accordingly. In contrast,
for the RAG-based agents Mem0 and Cognee, their performance is significantly lower than
that of their backbone, GPT-4o-mini, even when the context length is relatively small.
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Table 6: Overall performance comparison on the datasets for TTL. All RAG agents and
commercial memory agents use GPT-4o-mini as the backbone.

Agent Type BANKING CLINC NLU TREC C TREC F
Long-Context Agents

GPT-4o 96.0 96.0 90.0 87.0 69.0
GPT-4o-mini 93.0 93.0 87.0 73.0 66.0
GPT-4.1-mini 93.0 82.0 85.0 68.0 50.0
Gemini-2.0-Flash 91.0 90.0 84.0 88.0 67.0
Claude-3.7-Sonnet 97.0 98.0 86.0 87.0 79.0

GPT-4o-mini 93.0 93.0 87.0 73.0 66.0
Simple RAG Agents

BM25 89.0 89.0 84.0 62.0 53.0
Embedding RAG Agents

Contriever 89.0 88.0 80.0 55.0 41.0
Text-Embed-3-Small 88.0 89.0 83.0 54.0 36.0
Text-Embed-3-Large 90.0 91.0 80.0 55.0 46.0
Qwen3-Embedding-4B 90.0 88.0 86.0 67.0 59.0

Structure-Augmented RAG Agents
RAPTOR 78.0 75.0 73.0 48.0 23.0
GraphRAG 64.0 54.0 49.0 24.0 6.0
MemoRAG 90.0 87.0 86.0 66.0 56.0
HippoRAG-v2 81.0 86.0 73.0 38.0 29.0
Mem0 35.0 37.0 35.0 29.0 26.0
Cognee 34.0 42.0 42.0 41.0 18.0
Zep 83.0 74.0 70.0 50.0 37.0

Agentic Memory Agents
Self-RAG 19.0 13.0 6.0 15.0 5.0
MemGPT 89.0 83.0 79.0 56.0 31.0
MIRIX 42.0 53.0 49.0 36.0 12.0
MIRIX(4.1-mini) 65.0 83.0 69.0 73.0 25.0

Table 7: Performance comparison on different datasets and chunk sizes. Here we choose
chunk sizes from {512, 1024, 2048, 4096} and we use k=10 for RAG-based methods.

SH-Doc QA MH-Doc QA ∞Bench-Sum
512 1024 2048 4096 512 1024 2048 4096 512 1024 2048 4096

BM25 66.0 67.0 68.0 66.0 56.0 54.0 52.0 56.0 11.5 13.2 15.2 19.0
Qwen3-Embedding-4B 57.0 53.0 52.0 50.0 47.0 44.0 40.0 38.0 7.9 9.4 13.2 14.8

HippoRAG-v2 76.0 70.0 57.0 49.0 66.0 63.0 51.0 38.0 4.6 6.0 10.5 14.6
MemGPT 41.0 32.0 24.0 27.0 38.0 33.0 37.0 35.0 1.2 1.8 4.2 2.5

Table 8: Performance comparison on different retrieve number.

SH-Doc QA MH-Doc QA EventQA TTL (MCC)
R=2 R=5 R=10 R=2 R=5 R=10 R=2 R=5 R=10 R=2 R=5 R=10

BM25 50.0 60.0 66.0 49.0 54.0 56.0 66.6 71.2 74.6 67.8 74.6 75.4
Contriever 17.0 20.0 22.0 22.0 27.0 31.0 54.4 66.8 56.0 63.0 70.0 70.6

Text-Embed-3-Large 36.0 47.0 54.0 37.0 41.0 44.0 51.8 62.4 70.0 59.4 69.4 72.4
RAPTOR 22.0 27.0 29.0 30.0 36.0 38.0 45.8 41.8 40.4 56.3 57.4 59.4

HippoRAG-v2 60.0 69.0 76.0 53.0 60.0 66.0 58.8 67.6 67.4 58.8 61.4 61.4
Self-RAG 27.0 33.0 35.0 34.0 39.0 42.0 28.2 30.6 31.8 9.0 11.6 11.6

Table 9: Performance comparison on different context length.

SH-Doc QA MH-Doc QA EventQA FactCon-SH FactCon-MH
51K 104K 197K 51K 104K 421K 51K 108K 534K 32K 64K 262K 32K 64K 262K

GPT-4o 91.0 84.0 72.0 72.0 68.0 51.0 96.8 94.0 77.2 88.0 85.0 60.0 10.0 13.0 5.0
GPT-4o-mini 84.0 83.0 64.0 58.0 54.0 43.0 90.2 85.8 59.0 63.0 58.0 45.0 10.0 5.0 5.0
GPT-4.1-mini 93.0 86.0 83.0 72.0 75.0 66.0 97.0 93.8 82.6 82.0 72.0 36.0 7.0 9.0 5.0

Gemini-2.0-Flash 92.0 87.0 87.0 69.0 61.0 59.0 93.4 88.6 67.2 49.0 62.0 30.0 7.0 9.0 3.0
Claude-3.7-Sonnet 90.0 82.0 77.0 67.0 59.0 53.0 96.6 95.2 74.6 46.0 45.0 43.0 2.0 2.0 2.0

Mem0 31.0 25.0 25.0 36.0 29.0 32.0 60.8 47.0 37.5 22.0 8.0 18.0 3.0 2.0 2.0
Cognee 38.0 42.0 31.0 36.0 38.0 26.0 53.4 39.0 26.8 39.0 31.0 28.0 4.0 5.0 3.0

E.5 Results on Computational Latency Analysis

To illustrate the latency of various memory agents in terms of (1) Memory Construction
(M.C.); (2) Query Execution (Q.E.), we report the latency of various memory agents on
MH-QA and LME (S*). This part of experiments is done on a server with Four NVDIA

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 10: Computational latency (in seconds) comparison on Long-Context Agents.

MH-QA LME (S*)
GPT-4o 17.0 20.1

GPT-4o-mini 4.9 5.4
GPT-4.1-mini 9.0 7.4

Gemini-2.0-Flash 12.4 10.1
Claude-3.7-Sonnet 23.3 22.7

Table 11: Computational latency (in seconds) comparison on RAG based agents. M.C.
means Memory Construction and Q.E. means Query Execution. *Indicates that the time is
obtained through estimation.

MH-QA LME (S*)
512 4096 512 4096

M.C. Q.E. M.C. Q.E. M.C. Q.E. M.C. Q.E.
BM25 0.12 0.47 0.11 1.7 0.09 1.1 0.08 1.9

Contriever 7.4 0.59 1.7 2.0 6.9 0.92 1.6 1.9
Text-Embed-3-Large 6.1 0.46 5.0 1.7 6.5 0.62 5.8 1.8

Qwen3-Embedding-4B 367 0.49 470 1.9 293 0.71 372 1.8
RAPTOR 193 0.41 161 0.67 108 0.60 104 0.53

GraphRAG 97.8 12.8 91.9 10.9 149 7.0 88.8 7.8
HippoRAG-v2 1089 0.71 380 1.71 544 1.5 188 3.5

Mem0 10804 0.79 1334 0.65 18483 1.6 2946 1.7
Cognee 11890 58.7 1185 4.8 4728 7.7 738 4.1

Self-RAG 11.4 3.1 8.1 2.4 5.3 0.82 5.2 1.0
MemGPT 433 9.4 101 10.5 392 11.7 85.5 12.3

MIRIX 29000* - 20171 14.1 12600* - 3258 8.7
MIRIX (GPT-4.1-mini) 28800* - 21361 16.9 9000* - 2512 9.2

Table 12: Peak GPU memory usage of embedding models (MB). We measure the memory
usage on MH-QA dataset with different chunk size.

Agents / Chunk Size 512 4096
HippoRAG-v2 (NV-Embed-v2) 27674 60205

Qwen3-Embedding-4B 16671 41262

L40 GPU and AMD EPYC 7713 64-Core CPU. We use the NV-Embed-v2 (7B) as the
embedding model in HippoRAG-v2. We show the results in Table 10 and 11. From the
table, we find that using a smaller chunk size requires significantly more time for memory
construction, especially for methods such as HippoRAG-v2, Mem0, Cognee, and MemGPT.
Meanwhile, methods such as Mem0, Cognee and MIRIX need extremely high resources when
constructing the memory.

E.6 GPU Memory Usage Comparison

In main experiments, we mostly use the LLM API as the backbone models which do not
need local GPUs. In our experiments, the HippoRAG-v2 (NV-Embed-v2) and Qwen3-
Embedding-4B require running the embedding model on GPU. We report their peak GPU
memory usage in Table 12, where all experiments are conducted on a single A100 80GB
GPU.

F Experimental Settings

In this section, we present the experimental settings in evaluation.
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Table 13: Maximum output token limits for various tasks

Task Max Output Tokens
SH-QA / MH-QA 50

LME(S*) 100
EventQA 40

MCC 20
Movie Recommendation 300

∞ Bench-Sum 1,200
Detective QA 500

FactConsolidation 10

Table 14: The choice of chunk size for different datasets.

Chunk Size 512 4096
SH-QA, MH-QA ∞Bench-Sum

Dataset FactCon-SH, FactCon-MH MCC, Recom
LME(S*) EventQA, Detective QA

F.1 Max Output Tokens

We provide the token number limitation for each task in Table 13.

F.2 Settings of the RAG Agents

For the embedding model selection in Structure-Augmented RAG Agents and Agentic Mem-
ory Agents, most approaches utilize OpenAI’s embedding models, such as Text-Embed-3-
Small. While for the HippoRAG-v2 method, we follow the same experimental setting as in
Gutiérrez et al. (2025), employing the NV-Embed-v2 model.
We implement three open-sourced memory agents in our main experiments. (1) For Mem0,
we use memory.add() function to add the message with the content from each context
chunk into the agent’s memory repository during memory consolidation. During query
execution, the relevant memory elements are retrieved through memory.search() function.
The retrieved memories are then integrated into the query before being processed by the
GPT-4o-mini backbone model to complete the requested tasks. (2) For MemGPT, we
employ the insert_passage() function during the memory consolidation phase to inject
long context chunks into the Archival Memory structure. During query execution, this
agent processes requests via the send_message() function which generates appropriate
responses based on the archived information. (3) For Cognee, we utilize the cognee.add()
and cognee.cognify() functions to construct the memory graph from input chunks wherein
the memory consolidation phase. During query execution, the cognee.search() function
is used to retrieve contextually relevant information from the memory graph based on the
input query.

F.3 Settings of the Chunk Size

We use smaller chunk size (512) for synthetic context used in AR and SF. For some tasks
based on continuous text, such as ∞Bench and EventQA, we used a larger chunk size (4096).
For tasks such as MCC and Recom, considering the characteristics of these tasks and the
computational cost, we also chose a larger chunk size (4096). For the memory construction
methods that are more time-consuming and requiring more API cost, Mem0, Zep, Cognee
and MIRIX, we uniformly used a chunk size of 4096 across all datasets. The detailed settings
are presented in Table 14.
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