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ABSTRACT

Message passing graph neural networks (GNNs) are known to have their expres-
siveness upper-bounded by 1-dimensional Weisfeiler-Lehman (1-WL) algorithm.
To achieve more powerful GNNs, existing attempts either require ad hoc features,
or involve operations that incur high time and space complexities. In this work,
we propose a general and provably powerful GNN framework that preserves the
scalability of message passing scheme. In particular, we first propose to empower
1-WL for graph isomorphism test by considering edges among neighbors, giving
rise to NC-1-WL. The expressiveness of NC-1-WL is shown to be strictly above
1-WL and below 3-WL theoretically. Further, we propose the NC-GNN framework
as a differentiable neural version of NC-1-WL. Our simple implementation of
NC-GNN is provably as powerful as NC-1-WL. Experiments demonstrate that our
NC-GNN achieves remarkable performance on various benchmarks.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Gori et al., 2005; Scarselli et al., 2008) have been demonstrated to
be effective for various graph tasks. In general, modern GNNs employ a message passing mechanism
where the representation of each node is recursively updated by aggregating representations from
its neighbors (Atwood & Towsley, 2016; Li et al., 2016; Kipf & Welling, 2017; Hamilton et al.,
2017; Veličković et al., 2018; Xu et al., 2019; Gilmer et al., 2017). Such message passing GNNs,
however, have been shown to be at most as powerful as the 1-dimensional Weisfeiler-Lehman (1-WL)
algorithm (Weisfeiler & Lehman, 1968) in distinguishing non-isomorphic graphs (Xu et al., 2019;
Morris et al., 2019). Thus, message passing GNNs cannot distinguish some simple graphs and cannot
detect certain important structural concepts (Chen et al., 2020; Arvind et al., 2020).

Recently, a lot of efforts have been made to improve the expressiveness of message passing GNNs
by considering high-dimensional WL algorithms (e.g., Morris et al. (2019); Maron et al. (2019)),
exploiting subgraph information (e.g., Bodnar et al. (2021a); Zhang & Li (2021)), or adding more
distinguishable features (e.g., Murphy et al. (2019); Bouritsas et al. (2022)). As thoroughly discussed
in Section 5, these existing methods either rely on handcrafted/predefined/domain-specific features, or
require high computational cost and memory budget. In contrast, our goal in this work is to develop
a general GNN framework with provably expressive power, while maintaining the scalability of
the message passing scheme.

Specifically, we first propose an extension of the 1-WL algorithm, namely NC-1-WL, by considering
the edges among neighbors. In other words, we incorporate the information of which two neighbors
are communicating (i.e., connected) into the graph isomorphism test algorithm. To achieve this, we
mathematically model the edges among neighbors as a multiset of multisets, in which each edge
is represented as a multiset of two elements. We theoretically show that the expressiveness of our
NC-1-WL in distinguishing non-isomorphic graphs is stricly above 1-WL and below 3-WL. Further,
based on NC-1-WL, we propose a general GNN framework, known as NC-GNN, which can be
considered as a differentiable neural version of NC-1-WL. We provide a simple implementation of
NC-GNN that is proved to be as powerful as NC-1-WL. Compared to existing expressive GNNs, our
NC-GNN is a general, provably powerful and, more importantly, scalable framework.
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The main question addressed in our work is how to make best use of information in the one-hop
neighborhood to improve expressive power while preserving scalability. In the one-hop neighborhood
of each node, the local patterns we can consider are (A) what are the neighbors and (B) how
the neighbors are connected to each other. The previous message passing GNNs only consider
(A). We move a significant step forward to consider (B) by modeling edges among neighbors as
a multiset of multisets, thereby leading to provably expressive power and preserved scalability.
From this perspective, our method is fundamentally different from existing methods that encode
triangle features, such as MotifNet (Monti et al., 2018) and SIGN (Rossi et al., 2020). Specifically,
these methods employ triangle-related motif-induced adjacency matrices in their convolution and
diffusion operators, respectively. The edge weight in a motif-induced adjacency matrix is obtained by
multiplying the original edge weight with the frequency that each edge participates in triangle motifs.
Compared to this hand-crafted way, our method is a general framework to encode how the neighbors
are connected to each other, and the expressiveness of our framework can be rigorously characterized.

We perform experiments on graph classification and node classification to evaluate NC-GNN compre-
hensively. Our NC-GNN consistently outperforms GIN, which is as powerful as 1-WL, by significant
margins on various tasks. Remarkably, NC-GNN outperforms GIN by an absolute margin over 12.0
on CLUSTER in term of test accuracy. In addition, NC-GNN performs competitively, often achieves
better results, compared to existing expressive GNNs, while being much more efficient.

2 PRELIMINARIES

We start by introducing notations. We represent an undirected graph as G = (V,E,X), where V
is the set of nodes and E ⊆ V × V denotes the set of edges. We represent an edge {v, u} ∈ E
by (v, u) or (u, v) for simplicity. X = [x1, · · · ,xn]

T ∈ Rn×d is the node feature matrix, where
n = |V | is the number of nodes and xv ∈ Rd represents the d-dimensional feature of node v.
Nv = {u ∈ V |(v, u) ∈ E} is the set of neighboring nodes of node v. A multiset is denoted as
{{· · · }} and formally defined as follows.

Definition 1 (Multiset). A multiset is a generalized concept of set allowing repeating elements. A
multiset X can be formally represented by a 2-tuple as X = (SX ,mX), where SX is the underlying
set formed by the distinct elements in the multiset and mX : SX → Z+ gives the multiplicity (i.e.,
the number of occurrences) of the elements. If the elements in the multiset are generally drawn from
a set X (i.e., SX ⊆ X ), then X is the universe of X and we denote it as X ⊆ X for ease of notation.

Message passing GNNs. Modern GNNs usually follow a message passing scheme to learn node
representations in graphs (Gilmer et al., 2017). To be specific, the representation of each node is
updated iteratively by aggregating the multiset of representations formed by its neighbors. In general,
the ℓ-th layer of a message passing GNN can be expressed as

a(ℓ)
v = f aggregate

(ℓ)
(
{{h(ℓ−1)

u |u ∈ Nv}}
)
, h(ℓ)

v = f update
(ℓ)

(
h(ℓ−1)
v ,a(ℓ)

v

)
. (1)

f aggregate
(ℓ) and f update

(ℓ) are the parameterized functions of the ℓ-th layer. h(ℓ)
v is the representation

of node v at the ℓ-th layer and h
(0)
v can be initialized as xv . After employing L such layers, the final

representation h
(L)
v can be used for prediction tasks on each node v. For graph-level problems, a

graph representation hG can be obtained by applying a readout function as,

hG = f readout

(
{{h(L)

v |v ∈ V }}
)
. (2)

Definition 2 (Isomorphism). Two graphs G = (V,E,X) and H = (P, F,Y ) are isomorphic,
denoted as G ≃ H, if there exists a bijective mapping g : V → P such that xv = yg(v),∀v ∈ V
and (v, u) ∈ E iff (g(v), g(u)) ∈ F . Graph isomorphism is still an open problem without a known
polynomial-time solution.

Weisfeiler-Lehman algorithm. The Weisfeiler-Lehman algorithm (Weisfeiler & Lehman, 1968)
provides a hierarchy for graph isomorphism testing problem. Its 1-dimensional form (a.k.a., 1-WL or
color refinement) is a heuristic method that can efficiently distinguish a broad class of non-isomorphic
graphs (Babai & Kucera, 1979). 1-WL assigns a color c(0)v to each node v according to its initial label
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Figure 1: (a) Several example pairs of non-isomorphic graphs, partially adapted from Sato (2020),
that cannot be distinguished by 1-WL. Colors represent initial node labels or features. Our NC-1-WL
can distinguish them. (b) A comparison between the executions of 1-WL and NC-1-WL on two
non-isomorphic graphs.

(or feature)1 and then iteratively refines the colors until convergence. Convergence means that the
subsets of nodes with the same colors can not be further split to different color groups. In particular,
at each iteration ℓ, it aggregates the colors of nodes and their neighborhoods, which are represented
as multisets, and hashes the aggregated results into unique new colors (i.e., injectively). Formally,

c(ℓ)v ← HASH
(
c(ℓ−1)
v , {{c(ℓ−1)

u |u ∈ Nv}}
)
. (3)

1-WL decides two graphs to be non-isomorphic once the colorings between these two graphs differ
at some iteration. Instead of coloring each node, k-WL generalizes 1-WL by coloring each k-tuple
of nodes and thus needs to refine the colors for nk tuples. The details of k-WL are provided in
Algorithm 2, Appendix A.2. It is known that 1-WL is as powerful as 2-WL in terms of distinguishing
non-isomorphic graphs (Cai et al., 1992; Grohe & Otto, 2015; Grohe, 2017). Moreover, for k ≥ 2,
(k + 1)-WL is strictly more powerful than k-WL2 (Grohe & Otto, 2015). More details of the WL
algorithms are given in Cai et al. (1992); Grohe (2017); Sato (2020); Morris et al. (2021).

Given the similarity between message passing GNNs and 1-WL algorithm (i.e. Eq. (1) vs. Eq. (3)),
message passing GNNs can be viewed as a differentiable neural version of 1-WL. In fact, it has been
shown that message passing GNNs are at most as powerful as 1-WL in distinguishing non-isomorphic
graphs (Xu et al., 2019; Morris et al., 2019). Further, Xu et al. (2019) proves that message passing
GNNs can achieve the same expressiveness as 1-WL if the aggregate, update, and readout functions
are injective, thereby developing the GIN model (Xu et al., 2019). Thus, the expressive power of
message passing GNNs is upper bounded by 1-WL. In other words, if two non-isomorphic graphs
cannot be distinguished by 1-WL, then message passing GNNs must yield the same embedding
for them. Importantly, such expressive power is not sufficient to distinguish some common graphs
and cannot capture certain basic structural information such as triangles (Chen et al., 2020; Arvind
et al., 2020), which play significant roles in certain tasks, such as tasks over social networks. Several
examples that cannot be distinguished by 1-WL or message passing GNNs are shown in Figure 1 (a).

3 THE NC-1-WL ALGORITHM

In this section, we introduce the proposed NC-1-WL algorithm, which extends the 1-WL algorithm
by taking the edges among neighbors into consideration. With such simple but non-trivial extension,
NC-1-WL is proved to be strictly more powerful than 1-WL and less powerful than 3-WL, while
preserving the efficiency of 1-WL.

1If there are no initial features or labels, 1-WL assigns the same color to all the nodes in the graph.
2There are two families of WL algorithms; they are k-WL and k-FWL (Folklore WL). They both consider

coloring k-tuples and their difference lies in how to aggregate colors from neighboring k-tuples. It is known that
(k − 1)-FWL is as powerful as k-WL for k ≥ 3 (Grohe & Otto, 2015; Grohe, 2017; Maron et al., 2019). To
avoid ambiguity, in this work, we only involve k-WL.
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Algorithm 1 NC-1-WL vs. 1-WL for graph isomorphism test
Input: Two graphs G = (V,E,X) andH = (P, F,Y )

c
(0)
v ← HASH(xv),∀v ∈ V
d
(0)
p ← HASH(yp),∀p ∈ P

repeat (ℓ = 1, 2, · · · )
if {{c(ℓ−1)

v |v ∈ V }} ̸= {{d(ℓ−1)
p |p ∈ P}} then

return G ̸≃ H
end if
for v ∈ V do

c
(ℓ)
v ← HASH

(
c
(ℓ−1)
v , {{c(ℓ−1)

u |u ∈ Nv}}, {{{{c(ℓ−1)
u1 , c

(ℓ−1)
u2 }}|u1, u2 ∈ Nv, (u1, u2) ∈ E}}

)
end for
for p ∈ P do

d
(ℓ)
p ← HASH

(
d
(ℓ−1)
p , {{d(ℓ−1)

q |q ∈ Np}}, {{{{d(ℓ−1)
q1 , d

(ℓ−1)
q2 }}|q1, q2 ∈ Np, (q1, q2) ∈ F}}

)
end for

until convergence
return G ≃ H

As shown in Eq. (3) and (1), 1-WL and message passing GNNs consider neighbors of each node
as a multiset of representations. Here, we move one step forward by further treating edges among
neighbors as a multiset, where each element is also a multiset corresponding to an edge. We formally
define a multiset of multisets as follows.

Definition 3 (Multiset of multisets). A multiset of multisets, denoted by W , is a multiset where
each element is also a multiset. In this work, we only need to consider that each element in W is a
multiset formed by 2 elements. Following our definition of multiset, if these 2 elements are generally
drawn from a set X , the universe of W is the setW = {{{w1, w2}}|w1, w2 ∈ X}. We can formally
represent W = (SW ,mW ), where the underlying set SW ⊆ W and mW : SW → Z+ gives the
multiplicity. Similarly, we have W ⊆ W .

Particularly, our NC-1-WL considers modeling edges among neighbors as a multiset of multisets and
extends 1-WL (i.e., Eq. (3)) to

c(ℓ)v ← HASH
(
c(ℓ−1)
v , {{c(ℓ−1)

u |u ∈ Nv}}, {{{{c(ℓ−1)
u1

, c(ℓ−1)
u2

}}|u1, u2 ∈ Nv, (u1, u2) ∈ E}}︸ ︷︷ ︸
A multiset of multisets

)
.

(4)
As 1-WL, our NC-1-WL determines two graphs to be non-isomorphic as long as the colorings of
these two graphs are different at some iteration. We summarize the overall process of NC-1-WL in
Algorithm 1, where the difference with 1-WL is underlined.

Importantly, our NC-1-WL is more powerful than 1-WL in distinguishing non-isomorphic graphs.
Several examples that cannot be distinguished by 1-WL are shown in Figure 1 (a). Our NC-1-WL
can distinguish them easily. An example of executions is demonstrated in Figure 1 (b). We rigorously
characterize the expressiveness of NC-1-WL by the following theorems. The proofs are given in
Appendix A.1 and A.2.
Theorem 1. NC-1-WL is strictly more powerful than 1-WL in distinguishing non-isomorphic graphs.

Theorem 2. NC-1-WL is strictly less powerful than 3-WL in distinguishing non-isomorphic graphs.

Although NC-1-WL is less powerful than 3-WL, it is much more efficient. 3-WL has to refine
the color of each 3-tuple, resulting in n3 refinement steps in each iteration. In contrast, as 1-WL,
NC-1-WL only needs to color each node, which corresponds to n refinement steps in each iteration.
Thus, the superiority of our NC-1-WL lies in improving the expressiveness over 1-WL, while being
efficient as 1-WL.

Note that our NC-1-WL differs from the concept of Subgraph-1-WL (Zhao et al., 2022), which
ideally generalizes 1-WL from mapping the neighborhood to mapping the subgraph rooted at each
node. Specifically, the refinement step in Subgraph-1-WL is c(ℓ)v ← HASH

(
G[N k

v ]
)
, where G[N k

v ]
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is the subgraph induced by the k-hop neighbors of node v. However, it requires an injective hash
function for subgraphs, which is essentially as hard as the graph isomorphism problem and cannot
be achieved. In contrast, our NC-1-WL does not aim to injectively map the neighborhood subgraph.
Instead, we enhance 1-WL by mathematically modeling the edges among neighbors as a multiset of
multisets. Then, injectively mapping such multiset of multisets in NC-1-WL is naturally satisfied.

4 THE NC-GNN FRAMEWORK

In this section, we propose the NC-GNN framework as a differentiable neural version of NC-1-
WL. Further, we establish an instance of NC-GNN that is provably as powerful as NC-1-WL in
distinguishing non-isomorphic graphs.

Differing from previous message passing GNNs as Eq. (1), NC-GNN further considers the edges
among neighbors as NC-1-WL. One layer of the NC-GNN framework can be formulated as

c(ℓ)v = f communicate
(ℓ)

(
{{{{h(ℓ−1)

u1
,h(ℓ−1)

u2
}}|u1, u2 ∈ Nv, (u1, u2) ∈ E}}

)
,

a(ℓ)
v = f aggregate

(ℓ)
(
{{h(ℓ−1)

u |u ∈ Nv}}
)
,

h(ℓ)
v = f update

(ℓ)
(
h(ℓ−1)
v ,a(ℓ)

v , c(ℓ)v

)
.

(5)

f communicate
(ℓ) is the parameterized function operating on multisets of multisets. The following

theorem establishes the conditions under which our NC-GNN can be as powerful as NC-1-WL.
Theorem 3. LetM : G → Rd be an NC-GNN model with a sufficient number of layers following
Eq. (5). M is as powerful as NC-1-WL in distinguishing non-isomorphic graphs if the following
conditions hold: (1) At each layer ℓ, f communicate

(ℓ), f aggregate
(ℓ), and f update

(ℓ) are injective. (2) The
final readout function f readout is injective.

The proof is provided in Appendix A.3. One may wonder what advantages NC-GNN has over NC-1-
WL. Note that NC-1-WL only yields different colors to distinguish nodes according to their neighbors
and edges among neighbors. These colors, however, do not represent any similarity information and
are essentially one-hot encodings. In contrast, NC-GNN, a neural generalization of NC-1-WL, aims
at representing nodes in the embedding space. Thus, an NC-GNN model satisfying Theorem 3 can
not only distinguish nodes according to their neighbors and edges among neighbors, but also learn to
map nodes with certain structural similarities to similar embeddings, based on the supervision from
the on-hand task. This has the same philosophy as the relationship between message passing GNN
and 1-WL (Xu et al., 2019).

There could exist many ways to implement the communicate, aggregate, and update functions in the
NC-GNN framework. Here, following the NC-GNN framework, we provide a simple architecture,
that provably satisfies Theorem 3 and thus has the same expressive power as NC-1-WL. To achieve
this, we generalize the prior results of parameterizing universal functions over sets (Zaheer et al.,
2017) and multisets (Xu et al., 2019) to consider both multisets and multisets of multisets. Such non-
trivial generalization is formalized in the following lemmas. The proofs are available in Appendix A.4
and A.5. As Xu et al. (2019), we assume that the node feature space is countable.
Lemma 4. Assume X is countable. There exist two functions f1 and f2 so that h(X,W ) =∑

x∈X f1(x) +
∑

{{w1,w2}}∈W f2(f1(w1) + f1(w2)) is unique for any distinct pair of (X,W ),
where X ⊆ X is a multiset with a bounded cardinality and W ⊆ W = {{{w1, w2}}|w1, w2 ∈ X}
is a multiset of multisets with a bounded cardinality. Moreover, any function g on (X,W ) can
be decomposed as g(X,W ) = ϕ

(∑
x∈X f1(x) +

∑
{{w1,w2}}∈W f2(f1(w1) + f1(w2))

)
for some

function ϕ.
Lemma 5. Assume X is countable. There exist two functions f1 and f2 so that for infinitely
many choices of ϵ, including all irrational numbers, h(c,X,W ) = (1 + ϵ)f1(c) +

∑
x∈X f1(x) +∑

{{w1,w2}}∈W f2(f1(w1) + f1(w2)) is unique for any distinct 3-tuple of (c,X,W ), where c ∈ X ,
X ⊆ X is a multiset with a bounded cardinality, and W ⊆ W = {{{w1, w2}}|w1, w2 ∈ X} is
a multiset of multisets with a bounded cardinality. Moreover, any function g on (c,X,W ) can be
decomposed as g(c,X,W ) = φ

(
(1+ϵ)f1(c)+

∑
x∈X f1(x)+

∑
{{w1,w2}}∈W f2(f1(w1)+f1(w2))

)
for some function φ.
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Table 1: Comparison of expressive GNNs. d is the maximum degree of nodes. T is the number of
triangles in the graph. t is the maximum #MessageNC of nodes. s is the maximum number of nodes
in the neighborhood subgraphs, which grows exponentially with the subgraph depth. It is unknown
how the expressiveness upper bound of Nested GNN compares to 3-WL

Method Memory Time Expressiveness upper bound Scale to large graphs
GIN O(n) O(nd) 1-WL ✓
1-2-3-GNN O(n3) O(n4) 1-WL ∼ 3-WL -
PPGN O(n2) O(n3) 3-WL -
Nested GNN O(ns) O(nds) 1-WL ∼ Unknown -

NC-GNN (ours) O(n+ min(m, 3T )) O(n(d+ t)) 1-WL ∼ 3-WL ✓

As Xu et al. (2019), we can use multi-layer perceptrons (MLPs) to model and learn f1, f2, and φ
in Lemma 5, since MLPs are universal approximators (Hornik et al., 1989; Hornik, 1991). To be
specific, we use one MLP to model the compositional function f (ℓ+1)

1 ◦ φ(ℓ) and another MLP to
model f (ℓ)2 for ℓ = 1, 2, · · · , L. At the first layer, we do not need f (1)1 if the input features are one-hot
encodings, since there exists a function f (1)2 that can preserve the injectivity (See Appendix A.5 for
details). Overall, one layer of our architecture can be formulated as

h(ℓ)
v = MLP(ℓ)

1

((
1 + ϵ(ℓ)

)
h(ℓ−1)
v +

∑
u∈Nv

h(ℓ−1)
u +

∑
u1,u2∈Nv

(u1,u2)∈E

MLP(ℓ)
2

(
h(ℓ−1)
u1

+ h(ℓ−1)
u2

)
︸ ︷︷ ︸

The difference with GIN

)
, (6)

where ϵ(ℓ) is a learnable scalar parameter. According to Lemma 5 and Theorem 3, this simple
architecture, plus an injective readout function, has the same expressive power as NC-1-WL. Note
that this architecture follows the GIN model (Xu et al., 2019) closely. The fundamental difference
between our model and GIN is highlighted in Eq. (6), which is also our key contribution. Note that if
there does not exist any edges among neighbors for all nodes in a graph, the third term in Eq. (6) will
be zero for all nodes, and the model will reduce to the GIN model.

Complexity. Suppose a graph has n nodes and m edges. Message passing GNNs, such as GIN,
require O(n) memory and have O(nd) time complexity, where d is the maximum degree of nodes.
For each node, we define #MessageNC as the number of edges existing among neighbors of the node.
An NC-GNN model as Eq (6) has O(n(d + t)) time complexity, where t denotes the maximum
#MessageNC of nodes. Suppose there are totally T triangles in the graph, in addition to n node
representations, we need to further store 3T representations as the input of MLP2. If 3T > m, we
can alternatively store (hu1 + hu2) for each edge (u1, u2) ∈ E. Thus, the memory complexity is
O(n + min(m, 3T )). Hence, compared to message passing GNNs, our NC-GNN has a bounded
memory increasement and preserves the linear time complexity with a constant factor. We compare
with several existing expressive GNNs in Table 1. Our NC-GNN has much better scalability. More
discussions with related works are in Section 5.

5 RELATED WORK

The most straightforward idea to enhance the expressiveness of message passing GNNs is to mimic
the k-WL (k ≥ 3) algorithms (Morris et al., 2019; 2020b; Maron et al., 2019; Chen et al., 2019). For
example, Morris et al. (2019) proposes 1-2-3-GNN according to the set-based 3-WL, which is more
powerful than 1-WL and less powerful than the tuple-based 3-WL. It requires O(n3) memory since
representations corresponding to all sets of 3 nodes needs to be stored. Moreover, without considering
the sparsity of the graph, it has O(n4) time complexity since each set aggregates messages from n
neighboring sets. Maron et al. (2019) develops PPGN based on high order invariant GNNs (Maron
et al., 2018) and 2-FWL, which has the same power as 3-WL. Thereby, PPGN achieves the same
power as 3-WL with O(n2) memory and O(n3) time complexity. Nonetheless, the computational
and memory cost of these expressive models are still too high to scale to large graphs.

Another line of research for improving GNNs is to exploit subgraph information (Frasca et al.,
2022). Bodnar et al. (2021b;a) perform message passing on high-order substructures of graphs, such
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as simplicial and cellular complexes. Its preprocessing and message passing step are computationally
expensive. Also, domain knowledge is usually required to predefine the substructure bank, while it
is often unavailable in general tasks. GraphSNN (Wijesinghe & Wang, 2022) defines the overlaps
between the subgraphs of each node and its neighbors, and then incorporates such overlap information
into message passing scheme by using handcrafted structural coefficients. ESAN (Bevilacqua et al.,
2022) employs an equivariant framework to learn from a bag of subgraphs of the graph and further
proposes a subgraph selection strategy to reduce the high computational cost. Zeng et al. (2021);
Sandfelder et al. (2021); Zhang & Li (2021); Zhao et al. (2022) apply GNNs to the neighborhood
subgraph of each node. For example, Nested GNN (Zhang & Li, 2021) first applies a base GNN
to encode the neighborhood subgraph information of each node and then employs another GNN
on the subgraph-encoded representations. Since message passing is performed on n neighborhood
subgraphs, the memory complexity is O(ns) and the time complexity is O(nds), where s is the
maximum number of nodes in a neighborhood subgraph. Note that s grows exponentially with
the depths of the neighborhood subgraph, thus limiting the scalability. The recently proposed KP-
GNN (Feng et al., 2022) focuses on formulating the K-hop message passing framework and analyzing
its expressive power. In contrast, we dedicate to the consideration of edges among neighbors, leading
to the powerful and efficient NC-1-WL and NC-GNN with a different proof of expressivity.

Due to the high memory and time complexity, most of the above methods are usually evaluated
on graph-level tasks over small graphs, such as molecular graphs, and can be hardly applied to
large graphs like social networks. Compared to these works, our approach differs fundamentally by
proposing a general (i.e., without ad hoc features) and provably powerful GNN framework, while
preserving the scalability in terms of computational time and memory requirement. We compare our
NC-GNN with several existing expressive GNNs in Table 1.

There are several other heuristic methods proposed to strengthen GNNs by adding identity-aware
information (Murphy et al., 2019; Vignac et al., 2020; You et al., 2021), random features (Abboud
et al., 2021; Dasoulas et al., 2021; Sato et al., 2021), predefined structural features (Li et al., 2020;
Bouritsas et al., 2022) to nodes, or randomly drop node (Papp et al., 2021). Another direction is
to improve GNNs in terms of the generalization ability (Puny et al., 2020). These works improve
GNNs from perspectives orthogonal to ours, and thus could be used as techniques to further augment
our NC-GNN. In addition, PNA (Corso et al., 2020) applies multiple aggregators to enhance the
GNN performance. Most recently, Morris et al. (2022) proposes a new hierarchy, which is more
fine-grained than the WL hierarchy, for graph isomorphism problem. For deeper understanding of
expressive GNNs, we recommend referring to the recent surveys (Sato, 2020; Morris et al., 2021;
Jegelka, 2022).

6 EXPERIMENTS

In this section, we perform extensive experiments to evaluate the effectiveness of the proposed
NC-GNN model on real benchmarks. In particular, we consider widely used datasets from TU-
Datasets (Morris et al., 2020a), Open Graph Benchmark (OGB) (Hu et al., 2020), and GNN Bench-
mark (Dwivedi et al., 2020). These datasets are from various domains and cover different tasks over
graphs, including graph classification and node classification. Thus, they can provide a comprehensive
evaluation of our method. Note that certain datasets, such as REDDIT-BINARY and ogbg-molhiv, do
not have many edges among neighbors (i.e., Avg. #MessageNC < 0.2). In this case, our NC-GNN
model will almost reduce to the GIN model and thus perform nearly the same as GIN. Hence, we omit
such datasets in our results. All the used datasets and their statistics, including Avg. #MessageNC,
are summarized in Table 7, Appendix B.1. Our implementation is based on the PyG library (Fey &
Lenssen, 2019). The detailed model configurations and training hyperparameters of NC-GNN on
each dataset are summarized in Table 8, Appendix B.2.

Baselines. As shown in Eq. (6), the fundamental difference between our NC-GNN model and GIN is
that we further consider modeling edges among neighbors, as highlighted in Eq. (6). Hence, compar-
ing to GIN can directly demonstrate the effectiveness of including such information in our NC-GNN,
which is the core contribution of our theoretical result. Therefore, in the following experimental
results, we highlight our results if they are better than GIN, and analyze the improvements over GIN.
We also consider the WL subtree kernel (Shervashidze et al., 2011) and several typical message
passing GNNs as baseline; those are DCNN (Atwood & Towsley, 2016), DGCNN (Zhang et al.,
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Table 2: Results (%) on TUDatasets. The top three results on each dataset are highlighted as first,
second, and third. We also highlight the cells of NC-GNN results if they are better than GIN.

Dataset WL subtree DCNN DGCNN GIN PPGN SIN CIN GNN-AK GraphSNN NC-GNN (ours)

IMDB-B 73.8±3.9 49.1±1.4 70.0±0.9 75.1±5.1 73.0±5.8 75.6±3.2 75.6±3.7 75.0±4.2 77.9±3.6 75.2±4.5

IMDB-M 50.9±3.8 33.5±1.4 47.8±0.9 52.3±2.8 50.5±3.6 52.5±3.0 52.7±3.1 N/A N/A 52.5±3.2

COLLAB 78.9±1.9 52.1±0.7 73.8±0.5 80.2±1.9 81.4±1.4 N/A N/A N/A N/A 82.5±1.2

PROTEINS 75.0±3.1 61.3±1.6 75.5±0.9 76.2±2.8 77.2±4.7 76.5±3.4 77.0±4.3 77.1±5.7 76.8±2.5 76.5±4.4

2018), GCN (Kipf & Welling, 2017), and GraphSAGE (Hamilton et al., 2017). In addition, we further
include the following recent methods that improve GNN expressiveness as baselines. Specifically,
SIN (Bodnar et al., 2021b), CIN (Bodnar et al., 2021a), GNN-AK (Zhao et al., 2022), GraphSNN (Wi-
jesinghe & Wang, 2022) improve the expressive power of GNNs by using the subgraph information.
RingGNN (Chen et al., 2019) and PPGN (Maron et al., 2019) are models based on 3-WL.

TUDatasets. Following GIN (Xu et al., 2019), we first conduct experiments on four graph classifi-
cation datasets from TUDatasets (Morris et al., 2020a); those are IMDB-BINARY, IMDB-MULTI,
COLLAB, and PROTEINS. Note that we omit other datasets used by GIN since they do not have
many edges among neighbors. We employ the same number of layers as GIN. We report the 10-fold
cross validation accuracy following the protocol as (Xu et al., 2019) for fair comparison. The results
of baselines are directly obtained from the literature.

As presented in Table 2, we can observe that our NC-GNN outperforms GIN on all datasets con-
sistently. Moreover, NC-GNN performs competitively with other methods aiming at improving the
GNN expressiveness. The consistent improvements over GIN can show that modeling edges among
neighbors in NC-GNN is practically effective. Notably, NC-GNN achieves an obvious improvement
margin of 2.3 on COLLAB. This is intuitively reasonable since the Avg. #MessageNC on COLLAB is
much larger than other datasets, as provided in Table 7, Appendix B.1. In this case, NC-GNN can use
such informative edges existing among neighbors to boost the performance.

Open Graph Benchmark. We also perform experiments on the large-scale dataset ogbg-ppa (Hu
et al., 2020), which has over 150K graphs and is known as a more convincing testbed. The graphs
in ogbg-ppa are extracted from the protein-protein association networks of different species. It
formulates a graph classification task and the data are split based on species. Differing from
TUDatasets, the graphs in ogbg-ppa have edge features representing the type of protein-protein
association. In order to apply NC-GNN to these graphs, we further define a variant of our NC-GNN
by incorporating edge features into the NC-GNN framework, inspired by the GIN model with edge
features introduced by Hu et al. (2019). The details of the resulting model is given in Appendix B.3.

Since we have one more MLP than GIN at each layer, one may wonder if our improvements are
brought by the larger number of learnable parameters, instead of our claimed expressiveness. Thus,
here we compare with GIN under the same parameter budget. Specifically, we use the same number
of layers as GIN to ensure the same receptive field, and tune the hidden dimension to obtain an
NC-GNN model that has the similar number of learnable parameters as GIN. Following (Hu et al.,
2020), we compare the best validation accuracy and the test accuracy at the best validation epoch. We
also include the training accuracy at the best validation epoch for reference. Results over 10 random
runs are reported. The results of GIN are obtained from the official benchmark leaderboard.

Table 3: Results (%) on ogbg-ppa. All models in this table
consider edge features. We highlight the cells of NC-GNN
results if they are better than GIN.

Model # Param Training Acc. Validation Acc. Test Acc.

GIN 1836942 97.55±0.52 65.62±1.07 68.92±1.00

NC-GNN (ours) 1754445 99.37±0.16 66.82±0.67 71.94±0.43

As reported in Table 3, our NC-GNN
consistently achieves better results in
terms of validation accuracy and test
accuracy. Specifically, our NC-GNN
model outperforms GIN on the test set
by an obvious absolute margin of 3.02.
Note that the only difference between
NC-GNN and GIN is that edges among neighbors are modeled and considered in NC-GNN. Thus,
the obvious improvements over GIN can demonstrate the practical effectiveness of incorporating
such information. Therefore, combining with the previous experiments on TUDatasets, we can
conclude that our NC-GNN not only has theoretically provable expressiveness, but also achieves
good empirical performance on real-world tasks.

8



Under review as a conference paper at ICLR 2023

GNN Benchmark. In addition to graph classification tasks, we further experiment with node
classification tasks on two datasets, PATTERN and CLUSTER, from GNN Benchmark (Dwivedi
et al., 2020). PATTERN and CLUSTER respectively contain 14K and 12K graphs generated from
Stochastic Block Models (Abbe, 2017), a widely used mathematical modeling method for studying
communities in social networks. The tasks on these two datasets it to classify nodes in each graph.
To be specific, on PATTERN, the goal is to determine if a node belongs to specific predetermined
subgraph patterns. On CLUSTER, we aim at categorizing each node to its belonging community.
The details of the construction of these datasets are available in (Dwivedi et al., 2020).

We compare with typical message passing GNNs, including GIN, and two methods that mimic
3-WL; those are PPGN and RingGNN. To ensure fair comparison, we follow Dwivedi et al. (2020) to
compare different methods under two budgets of learnable parameters, 100K and 500K, by tuning
the number of layers and the hidden dimensions. Average results over 4 random runs are reported
in Table 4, where the results of baselines are obtained from (Dwivedi et al., 2020). On each dataset,
we also present the absolute improvement margin of our NC-GNN over GIN, denoted as ∆↑, by
comparing their corresponding best result.

Table 4: Results (%) on GNN Benchmark. The top three
results on each dataset are highlighted as first, second, and
third. We also highlight the cells of NC-GNN results if they
are better than GIN.

PATTERN CLUSTER
Model # Layers # Param Test Acc. # Param Test Acc.

GCN 4 100923 85.498±0.045 101655 47.828±1.510

16 500823 85.614±0.032 501687 69.026±1.372

GraphSAGE 4 101739 50.516±0.001 102187 50.454±0.145

16 502842 50.492±0.001 503350 63.844±0.110

GIN 4 100884 85.590±0.011 103544 58.384±0.236

16 508574 85.387±0.136 517570 64.716±1.553

RingGNN 2 105206 86.245±0.013 104746 42.418±20.063

2 504766 86.244±0.025 524202 22.340±0.000

8 505749 Diverged 514380 Diverged
PPGN 3 103572 85.661±0.353 105552 57.130±6.539

3 502872 85.341±0.207 507252 55.489±7.863

8 581716 Diverged 586788 Diverged

NC-GNN (ours) 4 106756 86.627±0.017 107320 69.335±0.357

4 506512 86.732±0.007 508428 69.838±0.135

16 506512 86.607±0.119 508428 76.718±0.071

∆↑ (over GIN) 1.142 ↑ 12.002 ↑

We observe that our NC-GNN obtains
significant improvements over GIN. To
be specific, NC-GNN remarkably out-
performs GIN by an absolute margin
of 1.142 and 12.002 on PATTERN and
CLUSTER, respectively. This further
strongly demonstrates the effective-
ness of modeling the information of
edges among neighbors, which aligns
with our theoretical results. Notably,
NC-GNN obtains outstanding perfor-
mance on CLUSTER. Since the task
on CLUSTER is to identify commu-
nities, we reasonably conjecture that
considering which neighbors are con-
nected is essential for inferring com-
munities. Thus, we believe that our
NC-GNN can be a strong basic method
for tasks over social network graphs.

Moreover, NC-GNN achieves much better empirical performance than RingGNN and PPGN, although
they theoretically mimic 3-WL. It is observed that these 3-WL based methods are difficult to train
and thus having fluctuating performance (Dwivedi et al., 2020). In contrast, our NC-GNN is easier to
train since it preserves the locality of message passing, thereby being more practically effective.

Table 5: Comparison of real training time.
dataset IMDB-B PATTERN CLUSTER
Avg. #MessageNC 59.5 3440.1 1301.5

Model Acc. Time/epoch Acc. Time/epoch Acc. Time/epoch

GIN 75.1±5.1 1.075s 85.590±0.011 7.431s 58.384±0.236 6.180s
PPGN 73.0±5.8 4.586s 85.661±0.353 147.063s 57.130±6.539 144.106s
NC-GNN (ours) 75.2±4.5 1.252s 86.627±0.017 44.882s 69.838±0.135 28.505s

Time analysis. In
Table 5, we compare
the real training time
of models with 100K
learnable parame-
ters on IMDB-B,
PATTERN, and
CLUSTER. We can observe that our NC-GNN is much more efficient than PPGN, since our
NC-GNN preserves the linear time complexity w.r.t. number of nodes as GIN, according to the
analysis in Table 1. Compared to GIN, the increasement of the real running time of our NC-GNN
depends on the number of edges among neighbors. For example, the time consumption of NC-GNN
is similar to GIN on IMDB-B, since the Avg. #MessageNC is considerably smaller than that
in PATTERN and CLUSTER. Overall, our NC-GNN is shown to be more powerful than GIN
theoretically and empirically, while maintaining the scalability with reasonable overhead.

Thorough comparison with subgraph GNNs. We further perform a comprehensive empirical
comparison with subgraph GNNs. Specifically, we compare to GIN-AK+ (Zhao et al., 2022), a
representative method in the subgraph GNN family, on test accuracy, training time per epoch, total
training time for convergence, GPU memory usage, MACS, and inference time. For each experiment,
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Table 6: The thorough comparison between NCGNN and GIN-AK+ on PATTERN and CLUSTER.
Datasets Methods # Layers # Param Test Acc.↑ Time/epoch↓ Total Time↓ GPU Memory↓ MACS ↓ Inference Time↓

PATTERN GIN-AK+ 4 601134 86.836±0.007 77.503s 0.667h 31434MB 176.445G 32.188s
NC-GNN (ours) 4 552096 86.717±0.069 42.517s 0.555h 15625MB 1.142G 12.025s

CLUSTER GIN-AK+ 16 602586 76.502±0.210 148.983s 1.420h 32142MB 110.518G 27.163s
NC-GNN (ours) 16 562948 76.992±0.063 48.869s 0.679h 22386MB 0.841G 5.1763s

we run it four times and report the average results for test accuracy, training time per epoch, total
time consumed to achieve the best epoch, and GPU memory consumption while keeping the same
batch size. In order to compare the computational cost, FLOPS is commonly used as the number
of floating operations for the model(Tan & Le, 2019). Here we use a similar metric MACS to
calculate the average multiply-accumulate operations for each graph in the test set. Note that each
multiply-accumulate operation includes two float operations. The results are summarized in Table 6.
Our NC-GNN achieves competitive accuracies as GIN-AK+, while being more efficient in training,
including training time per epoch and total training time. In addition, we use less GPU memory
since we do not have to consider updating node representations for all the nodes in the expanded
subgraphs as GIN-AK+. More importantly, the MACS overhead of GIN-AK+ is 100x more than our
NC-GNN. Since our NC-GNN calculates each node representation from the original graph instead
of the expanded subgraphs, it can save huge MACS overhead during the forward procedure. To
further show the advantage of fewer MACS overhead, we provide the inference time comparison
and our NC-GNN takes less time during inference. Overall, NC-GNN reaches a sweet spot between
expressivity and scalability, from both theoretical and practical observations.

7 CONCLUSIONS AND OUTLOOKS

In this work, based on our proposed NC-1-WL, we present NC-GNN, a general, provably powerful,
and scalable framework for graph representation learning. In addition to the theoretical expressive-
ness, we empirically demonstrate that NC-GNN achieves outstanding performance on various real
benchmarks. Thus, we anticipate that NC-GNN will become an important base model for learning
from graphs, especially social network graphs. To further improve the expressiveness of NC-GNN, in
future work, we may consider how to effectively and efficiently model the interactions between two
edges that exist among neighbors.
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A PROOFS OF THEOREMS AND LEMMAS

A.1 PROOF OF THEOREM 1

Theorem 1. NC-1-WL is strictly more powerful than 1-WL in distinguishing non-isomorphic graphs.

Proof. To prove that NC-1-WL is strictly more powerful than 1-WL, we prove the correctness of the
following two statements. (1) If two graphs are determined to be isomorphic by NC-1-WL, then they
must be indistinguishable by 1-WL as well. (2) There exist at least two non-isomorphic graphs that
cannot be distinguished by 1-WL but can be distinguished by NC-1-WL.

(1) Assume two graphs G = (V,E,X) and H = (P, F,Y ) cannot be distinguished
by NC-1-WL. Then, according to Algorithm 1, at any iteration ℓ = 1, 2, · · · , we have{{(

c
(ℓ−1)
v , {{c(ℓ−1)

u |u ∈ Nv}}, {{{{c(ℓ−1)
u1 , c

(ℓ−1)
u2 }}|u1, u2 ∈ Nv, (u1, u2) ∈ E}}

)
|v ∈ V

}}
={{(

d
(ℓ−1)
p , {{d(ℓ−1)

q |q ∈ Np}}, {{{{d(ℓ−1)
q1 , d

(ℓ−1)
q2 }}|q1, q2 ∈ Np, (q1, q2) ∈ F}}

)
|p ∈ P

}}
.

This naturally implies that, at any iteration ℓ = 1, 2, · · · , we have{{(
c
(ℓ−1)
v , {{c(ℓ−1)

u |u ∈ Nv}}
)
|v ∈ V

}}
=

{{(
d
(ℓ−1)
p , {{d(ℓ−1)

q |q ∈ Np}}
)
|p ∈ P

}}
. This

indicates that 1-WL cannot distinguish graph G and graphH as well.

(2) In Figure 1 (a), we provide several pairs as example to show that there exist such non-isomorphic
graphs that can be distinguished by NC-1-WL but cannot be distinguished by 1-WL.

A.2 PROOF OF THEOREM 2

Theorem 2. NC-1-WL is strictly less powerful than 3-WL in distinguishing non-isomorphic graphs.

Proof. To prove that NC-1-WL is strictly less powerful than 3-WL, we prove the correctness of the
following two statements. (1) If two graphs are determined to be isomorphic by 3-WL, then they
must be indistinguishable by NC-1-WL as well. (2) There exist at least two non-isomorphic graphs
that cannot be distinguished by NC-1-WL but can be distinguished by 3-WL.

We first describe the details of k-WL in Algorithm 2, following Sato (2020). k-WL aims at coloring
each k-tuple of nodes, denoted as v ∈ V k. The i-th neighborhood of each tuple v = (v1, v2, · · · , vk)
is defined as Nv,i = {(v1, · · · , vi−1, s, vi+1, · · · , vk)|s ∈ V }. Similarly, The i-th neighborhood of
each tuple p = (p1, p2, · · · , pk) is defined as Np,i = {(p1, · · · , pi−1, t, pi+1, · · · , pk)|t ∈ P}. The
initial color of each tuple v is determined by the isomorphic type of the subgraph induced by the
tuple, i.e., G[v]. (See Sato (2020) for details). Note that the nodes in G[v] are ordered based on their
orders in the tuple v. Thus, HASH(G[v]) = HASH(H[p]) iff (a) xvi = ypi for i = 1, 2, · · · , k and
(b) (vi, vj) ∈ E iff (pi, pj) ∈ F .

(1) Assume two graphs G = (V,E,X) and H = (P, F,Y ) are determined to be isomorphic by
3-WL. G andH have the same number of nodes3, denoted as n. Then, according to Algorithm 2, we
have {{c(0)v |v ∈ V k}} = {{d(0)p |p ∈ P k}}. There always exists an injective mapping g : V → P

such that c(0)v = d
(0)
g(v) (i.e., HASH(G[v]) = HASH(H[g(v)])), ∀v ∈ V k. Here, we directly apply

g to a tuple v for ease of notation, which means g(v) = g((v1, v2, v3)) = (g(v1), g(v2), g(v3)).
Without losing generality, we assume g maps vj to pj for j = 1, 2, · · · , n. Then, we can obtain the
following results.

(a) We can consider the tuples v = (vj , vj , vj),∀vj ∈ V . Given c(0)v = d
(0)
g(v), we can derive

xvj = ypj
,∀vj ∈ V .

(b) We further consider the tuples v = (vj , vj , vr),∀vj ∈ V . According to c(0)v = d
(0)
g(v), we have

xvr = ypr . We can also have pr ∈ Npj iff vr ∈ Nvj (Otherwise, c(0)v ̸= d
(0)
g(v)).

3Two graphs with different numbers of nodes can be easily distinguished by comparing the multisets of node
colors, given that the cardinalities of the two multisets are different.
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Algorithm 2 k-WL for graph isomorphism test
Input: Two graphs G = (V,E,X) andH = (P, F,Y )

c
(0)
v ← HASH(G[v]),∀v ∈ V k

d
(0)
p ← HASH(H[p]),∀p ∈ P k

repeat (ℓ = 1, 2, · · · )
if {{c(ℓ−1)

v |v ∈ V k}} ̸= {{d(ℓ−1)
p |v ∈ P k}} then

return G ̸≃ H
end if
for v ∈ V k do

c
(ℓ)
v,i = {{c

(ℓ−1)
u |u ∈ Nv,i}}, for i = 1, 2, · · · , k

c
(ℓ)
v ← HASH

(
c
(ℓ−1)
v , c

(ℓ)
v,1, c

(ℓ)
v,2, · · · , c

(ℓ)
v,k

)
end for
for p ∈ P k do

d
(ℓ)
p,i = {{d

(ℓ−1)
q |q ∈ Np,i}}, for i = 1, 2, · · · , k

d
(ℓ)
p ← HASH

(
d
(ℓ−1)
p , d

(ℓ)
p,1, d

(ℓ)
p,2, · · · , d

(ℓ)
p,k

)
end for

until convergence
return G ≃ H

Figure 2: Two graphs, adapted from Sato (2020), that cannot be distinguished by NC-1-WL but can
be distinguished by 3-WL.

(c) At last, we consider the tuples v = (vj , vr, vw),∀vj ∈ V . Similarly, based on c(0)v = d
(0)
g(v), we

can obtain xvr = ypr and xvw = ypw . Also, we can have pr, pw ∈ Npj iff vr, vw ∈ Nvj , and
(pr, pw) ∈ F iff (vr, vw) ∈ E.

Now, we consider performing NC-1-WL (Algorithm 1) on these two graphs G = (V,E,X) and
H = (P, F,Y ) to color each node v ∈ V and p ∈ P . We have the same injective mapping
g : V → P as above. Based on (a), we have xv = yg(v),∀v ∈ V , which indicates c(0)v =

d
(0)
g(v),∀v ∈ V in the NC-1-WL coloring process. Similarly, according to (b) and (c), we have

{{c(0)u |u ∈ Nv}} = {{d(0)q |q ∈ Ng(v)}},∀v ∈ V and {{{{c(0)u1 , c
(0)
u2 }}|u1, u2 ∈ Nv, (u1, u2) ∈ E}} =

{{{{d(0)q1 , d
(0)
q2 }}|q1, q2 ∈ Ng(v), (q1, q2) ∈ F}},∀v ∈ V , respectively. Therefore, with initial colors

satisfying such conditions, NC-1-WL cannot distinguish G and H since c(l−1)
v = d

(l−1)
g(v) ,∀v ∈ V

always holds for ℓ = 1, 2, · · · . In other words, {{c(ℓ−1)
v |v ∈ V }} = {{d(ℓ−1)

p |p ∈ P}} always holds
no matter how many iterations (i.e., ℓ) we apply.

(2) In Figure 2, we provide two non-isomorphic graphs that can be distinguished by 3-WL but cannot
be distinguished by NC-1-WL. For these two graphs, our NC-1-WL reduces to 1-WL since there
does not exist any neighbors that are communicating.

A.3 PROOF OF THEOREM 3

Theorem 3. LetM : G → Rd be an NC-GNN model with a sufficient number of layers following
Eq. (5). M is as powerful as NC-1-WL in distinguishing non-isomorphic graphs if the following
conditions hold: (1) At each layer ℓ, f communicate

(ℓ), f aggregate
(ℓ), and f update

(ℓ) are injective. (2) The
final readout function f readout is injective.
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Proof. We prove the theorem by showing that an NC-GNN model that satisfies the conditions can
yield different embeddings for any two graphs that are determined to be non-isomorphic by NC-1-WL.
We denote such model asM. Assume two graphs G1 = (V1, E1,X1) and G2 = (V2, E2,X2) are
determined to be non-isomorphic by NC-1-WL at iteration L. Given that f readout ofM can injectively
map different multisets of node features into different embeddings, we only need to demonstrate that
M, with a sufficient number of layers, can map G1 and G2 to different multisets of node features.

To achieve this, following Xu et al. (2019), we show that, for any iteration ℓ, there always exists an
injective function φ such that h(ℓ)

v = φ(c
(ℓ)
v ), where h

(ℓ)
v is the node representation given by the

modelM and c(ℓ)v is the color produced by NC-1-WL. We will show this by induction. Note that
here v represents a general node that can be a node in G1 or G2.

Let ϕ denote the injective hash function used in NC-1-WL. For ℓ = 0, we have c(0)v = ϕ(xv) and
h
(0)
v = xv. Thus, φ could be ϕ−1 for ℓ = 0. Suppose there exists an injective function φ such that

h
(ℓ−1)
v = φ(c

(ℓ−1)
v ),∀v ∈ V1 ∪ V2, we show that there also exists such an injective function for

iteration ℓ. According to Eq. (5), we have

h(ℓ)
v = f update

(ℓ)
(
h(ℓ−1)
v , f aggregate

(ℓ)
(
{{h(ℓ−1)

u |u ∈ Nv}}
)
,

f communicate
(ℓ)

(
{{{{h(ℓ−1)

u1
,h(ℓ−1)

u2
}}|u1, u2 ∈ Nv, (u1, u2) ∈ E}}

))
.

(7)

According to h
(ℓ−1)
v = φ(c

(ℓ−1)
v ), we further have

h(ℓ)
v = f update

(ℓ)
(
φ(c(ℓ−1)

v ), f aggregate
(ℓ)

(
{{φ(c(ℓ−1)

u )|u ∈ Nv}}
)
,

f communicate
(ℓ)

(
{{{{φ(c(ℓ−1)

u1
), φ(c(ℓ−1)

u2
)}}|u1, u2 ∈ Nv, (u1, u2) ∈ E}}

))
,

(8)

where f communicate
(ℓ), f aggregate

(ℓ), f update
(ℓ), and φ are all injective functions. Since the composition

of injective functions is also injective, there must exist some injective function ψ such that

h(ℓ)
v = ψ

(
c(ℓ−1)
v , {{c(ℓ−1)

u |u ∈ Nv}}, {{{{c(ℓ−1)
u1

, c(ℓ−1)
u2

}}|u1, u2 ∈ Nv, (u1, u2) ∈ E}}
)
. (9)

Then, we can obtain

h(ℓ)
v = ψ

(
ϕ−1

(
ϕ
(
c(ℓ−1)
v , {{c(ℓ−1)

u |u ∈ Nv}}, {{{{c(ℓ−1)
u1

, c(ℓ−1)
u2

}}|u1, u2 ∈ Nv, (u1, u2) ∈ E}}
)))

,

= ψ
(
ϕ−1

(
c(ℓ)v

))
.

(10)
Then, φ = ψ ◦ ϕ−1 is an injective function such that h(ℓ)

v = φ(c
(ℓ)
v ),∀v ∈ V1 ∪ V2.

Therefore, it is proved that for any iteration ℓ, there always exists an injective function φ such that
h
(ℓ)
v = φ(c

(ℓ)
v ). Since NC-1-WL determines G1 and G2 to be non-isomorphic at iteration L, we

have {{c(L)
v |v ∈ V1}} ̸= {{c(L)

v |v ∈ V2}}. As proved above, we also have {{h(L)
v |v ∈ V1}} =

{{φ(c(L)
v )|v ∈ V1}}, {{h(L)

v |v ∈ V2}} = {{φ(c(L)
v )|v ∈ V2}}, and φ is injective. Hence, the multisets

of node features produced byM for G1 and G2 are also different, i.e., {{h(L)
v |v ∈ V1}} ̸= {{h(L)

v |v ∈
V2}}, which indicates that the NC-GNN modelM can also distinguish G1 and G2.

A.4 PROOF OF LEMMA 4

Lemma 4. Assume X is countable. There exist two functions f1 and f2 so that h(X,W ) =∑
x∈X f1(x) +

∑
{{w1,w2}}∈W f2(f1(w1) + f1(w2)) is unique for any distinct pair of (X,W ),

where X ⊆ X is a multiset with a bounded cardinality and W ⊆ W = {{{w1, w2}}|w1, w2 ∈ X}
is a multiset of multisets with a bounded cardinality. Moreover, any function g on (X,W ) can
be decomposed as g(X,W ) = ϕ

(∑
x∈X f1(x) +

∑
{{w1,w2}}∈W f2(f1(w1) + f1(w2))

)
for some

function ϕ.

Proof. To prove this Lemma, we need the following fact, which is also used by Xu et al. (2019).
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Fact 1. Assume X is countable. h(X) =
∑

x∈X N−Z(x) is unique for any multiset X ⊆ X of
bounded cardinality, where the mapping Z : X → N is an injection from x ∈ X to natural numbers
and N ∈ N satisfies N > |X| for all X .

To prove the correctness of this fact, we show thatX can be uniquely obtained from the value of h(X).
Following the notations in our main texts, we formally denote X = (SX ,mX), where SX is the un-
derlying set of X and mX : SX → Z+ gives the multiplicity of the elements in SX . Hence, we need
to uniquely determine the elements in SX and their corresponding multiplicities, using the value of
h(X). Let {x1, x2, · · · , xn} denote the countable set X (n could go infinitely). Without losing gener-
ality, we assume Z maps x1 → 0, x2 → 1, etc.. Then we can compute (q, r) = h(X) divmod N−0,
where q is the quotient and r is the remainder. If q = 0, we can conclude x1 is not in SX . If q > 0,
then x1 is in SX and q gives the multiplicity of x1. Afterwards, we use the remainder r to replace
h(X) and compute (q, r) = h(X) divmod N−1, and the results can be used to infer if x2 is in SX

and its multiplicity. We can do this recursively until r = 0. Note that X has a bounded cardinality
and N ∈ N satisfies N > |X| for all X . Otherwise, Fact 1 will not hold. Here we provide an
example to show the correctness of Fact 1. Let a multiset X = {{x1, x3, x3}} and Z injectively maps
the elements in X to natural numbers, thus obtaining a multiset {{0, 2, 2}}. Let N = 4. We have
h(X) =

∑
x∈X N−Z(x) = 4−0 + 4−2 + 4−2 = 9/8. Next, following our description above, we

show how we can infer X by the value of h(X). First, according to 9/8 divmod 4−0 = (1, 1/8), we
can conclude that there is one x1 in X . Then, with 1/8 divmod 4−1 = (0, 1/8), we can infer that x2
is not in X . Finally, we have 1/8 divmod 4−2 = (2, 0), which indicates that there are two x3 in X .
We can stop the process since the remainder reaches 0.

Let us go back to the proof of Lemma 4. Since X is countable, W = {{{w1, w2}}|w1, w2 ∈ X}
is also countable. Because both X and W have bounded cardinalities, we can find an number
N ∈ N such that N > max(|X| + |W |, 2) for all (X,W ) pairs. Let Z1 : X → Nodd be an
injection from x ∈ X to odd natural numbers. We consider f1 = N−Z1(x). For ease of notation,
we let ψ({{w1, w2}}) = f1(w1) + f1(w2). According to Fact 1, ψ({{w1, w2}}) is unique for any
{{w1, w2}} ∈ W . We define the set Y = {ψ({{w1, w2}})|w1, w2 ∈ X}. Thus, Y is also countable
as W . We consider Z2 : Y → Neven be an injection from y ∈ Y to even natural numbers and
f2 = N−Z2(y). Then, the resulting h(X,W ) =

∑
x∈X f1(x)+

∑
{{w1,w2}}∈W f2(f1(w1)+f1(w2))

is an injective function on (X,W ). In other words, we can uniquely determine (X,W ) from the
value of h(X,W ). To be specific, from the value of h(X,W ), we can infer the histograms of natural
numbers as we show in Fact 1. Then, we can uniquely obtain X (i.e., its underlying set Sx and
multiplicities.) based on the odd natural numbers. According to the even natural numbers, we
can infer {{ψ({{w1, w2}})|{{w1, w2}} ∈ W}}. Further, since ψ({{w1, w2}}) is injective, we can
uniquely obtain W .

For any function g on (X,W ), we can construct a function ϕ such that ϕ
(
h(X,W )

)
= g(X,W ).

This is always achievable since h(X,W ) is injective.

A.5 PROOF OF LEMMA 5

Lemma 5. Assume X is countable. There exist two functions f1 and f2 so that for infinitely
many choices of ϵ, including all irrational numbers, h(c,X,W ) = (1 + ϵ)f1(c) +

∑
x∈X f1(x) +∑

{{w1,w2}}∈W f2(f1(w1) + f1(w2)) is unique for any distinct 3-tuple of (c,X,W ), where c ∈ X ,
X ⊆ X is a multiset with a bounded cardinality, and W ⊆ W = {{{w1, w2}}|w1, w2 ∈ X} is
a multiset of multisets with a bounded cardinality. Moreover, any function g on (c,X,W ) can be
decomposed as g(c,X,W ) = φ

(
(1+ϵ)f1(c)+

∑
x∈X f1(x)+

∑
{{w1,w2}}∈W f2(f1(w1)+f1(w2))

)
for some function φ.

Proof. We consider the same functions f1 = N−Z1(x) and f2 = N−Z2(y) as in our proof for
Lemma 4. We prove this lemma by showing that, if ϵ is an irrational number, h(c,X,W ) ̸=
h(c′, X ′,W ′) holds for any (c,X,W ) ̸= (c′, X ′,W ′). We need to consider the following two cases.

(1) If c = c′ but (X,W ) ̸= (X ′,W ′), according to Lemma 4, we have
∑

x∈X f1(x) +∑
{{w1,w2}}∈W f2(f1(w1)+f1(w2)) ̸=

∑
x∈X′ f1(x)+

∑
{{w1,w2}}∈W ′ f2(f1(w1)+f1(w2)). Thus,

we can obtain h(c,X,W ) ̸= h(c′, X ′,W ′).
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(2) If c ̸= c′, we show h(c,X,W ) ̸= h(c′, X ′,W ′) by contradiction. Assume h(c,X,W ) =
h(c′, X ′,W ′), we have

(1 + ϵ)f1(c) +
∑
x∈X

f1(x) +
∑

{{w1,w2}}∈W

f2(f1(w1) + f1(w2)) =

(1 + ϵ)f1(c
′) +

∑
x∈X′

f1(x) +
∑

{{w1,w2}}∈W ′

f2(f1(w1) + f1(w2)).
(11)

This can be rewritten as

ϵ(f1(c)− f1(c′)) =
(
f1(c

′) +
∑
x∈X′

f1(x) +
∑

{{w1,w2}}∈W ′

f2(f1(w1) + f1(w2))
)

−
(
f1(c) +

∑
x∈X

f1(x) +
∑

{{w1,w2}}∈W

f2(f1(w1) + f1(w2))
)
.

(12)

Since f1(c) − f1(c′) ̸= 0 and it is rational, given ϵ is irrational, we can conclude that L.H.S. of
Eq. (12) is irrational. R.H.S. of Eq. (12), however, is rational. This reaches a contradiction. Thus, if
c ̸= c′, we have h(c,X,W ) ̸= h(c′, X ′,W ′).

For any function g on (c,X,W ), we can construct a function φ such that φ
(
h(c,X,W )

)
=

g(c,X,W ). This is always achievable since h(c,X,W ) is injective.

Further justification for the first layer. If the input features x ∈ X are one-hot encodings, f1 is
not necessary and thus can be removed. In other words, we can show as follows that there exists an
f2 such that h′(c,X,W ) = (1 + ϵ)c +

∑
x∈X x +

∑
{{w1,w2}}∈W f2(w1 + w2) is unique for any

distinct 3-tuple of (c,X,W ). Note that
∑

x∈X x is injective if input features are one-hot encodings,
and the value of

∑
x∈X x must be composed of integers. In addition, ψ′({{w1, w2}}) = w1 + w2

is also injective. Similarly, We define the set Y ′ = {ψ′({{w1, w2}})|w1, w2 ∈ X}. We consider
Z2 : Y ′ → N be an injection from y ∈ Y ′ to natural numbers and f2 = N−Z2(y), where N > |W |
for all W . Then h′(c,X,W ) = (1+ ϵ)c+

∑
x∈X x+

∑
{{w1,w2}}∈W f2(w1+w2) is injective, since∑

{{w1,w2}}∈W f2(w1 + w2) is unique for any W and is a number ∈ (0, 1), thus differing from the

integer-valued
∑

x∈X x. This is why we do not need another MLP to model f (1)1 in Eq. (6).

B EXPERIMENTAL DETAILS

B.1 DATASET STATISTICS

Table 7: Dataset Statistics. Avg. #MessageNC denotes the average #MessageNC per node.
Dataset Task Domain #Graphs Avg. #Nodes Avg. #Edges Avg. #MessageNC

IMDB-B Graph classification Social network 1000 19.7 96.5 59.5
IMDB-M Graph classification Social network 1500 13 131.8 70.6
COLLAB Graph classification Social network 5000 74.5 4915.6 5016.2
PROTEINS Graph classification Bioinformatics network 1113 39.1 145.6 2.1

ogbg-ppa Graph classification Bioinformatics network 78200/45100/34800 243.4 2266.1 179.3

PATTERN Node classification Social network 10000/2000/2000 118.9 6079.8 3440.1
CLUSTER Node classification Social network 10000/1000/1000 117.2 4303.8 1301.5

B.2 MODEL CONFIGURATIONS AND TRAINING HYPERPARAMETERS

For efficiency, we do not tune the model configurations and training hyperparameters for NC-GNN
extensively. Since our NC-GNN model is a natural extension of GIN, we usually use the model
configurations and tuned hyperparameters of GIN from the comminity as the start point for NC-GNN
and then tune them a little bit according to the validation results.

For the model architecture, we tune the following configurations; those are (1) the number of layers,
(2) the number of hidden dimensions, (3) using jumping knowledge (JK) technique or not, and (4)
using residual connection or not. To ensure fair comparison, we only consider employing techniques
(3) and (4) on the datasets where the baseline GIN model also use them.
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In terms of training, we consider tuning the following hyperparameters. those are (1) the initial
learning rate, (2) the step size of learning rate decay, (3) the multiplicative factor of learning rate
decay, (4) the batch size, (5) the dropout rate, and (6) the total number of epochs.

The selected model configurations and training hyperparameters for all datasets are summarized
in Table 8. For each dataset from GNN Benchmark, we have several NC-GNN models under
different parameter budgets, as described in Section 6. Accordingly, we list the configurations and
hyperparameters for all of these models for reproducibility.

Table 8: The selected model configurations and training hyperparameters of NC-GNN on all datasets.
Dataset IMDB-B IMDB-M COLLAB PROTEINS ogbg-ppa PATTERN CLUSTER

# Layers 5 5 5 5 5 4/4/16 4/4/16
# Hidden Dim. 64 64 64 32 300 70/154/78 70/154/78
JK ✓ ✓ ✓ ✓ - ✓ ✓
Residual Con. - - - - - - -

Initial LR 0.001 0.005 0.005 0.001 0.01 0.001 0.001
Step size of LR 50 50 20 50 30 20 20
Mul. fac. of LR 0.5 0.5 0.5 0.5 0.1 0.5 0.5
Batch size 32 128 256 32 32 32 32
Dropout rate 0.5 0.5 0.5 0 0.5 0/0.1/0.1 0/0/0.5
# Epochs 200 300 100 100 80 100/140/140 100/100/200

B.3 THE NC-GNN MODEL FOR GRAPHS WITH EDGE FEATURES

The layer-wise formulation of our NC-GNN model with considering edge features is

h(ℓ)
v = MLP(ℓ)

1

((
1+ϵ(ℓ)

)
h(ℓ−1)
v +

∑
u∈Nv

RELU(h(ℓ−1)
u +euv)+

∑
u1,u2∈Nv

(u1,u2)∈E

MLP(ℓ)
2

(
h(ℓ−1)
u1

+ h(ℓ−1)
u2

+ eu1u2

) )
,

which is a natural extension of Eq. (6) by including edge features. euv is the edge feature associated
with edge (u, v). In practice, we usually apply an embedding layer to input edge features such that
they have the same dimension as the node representations.

For reference, the GIN model with considering edge features (Hu et al., 2019) can be formulated as

h(ℓ)
v = MLP(ℓ)

1

((
1 + ϵ(ℓ)

)
h(ℓ−1)
v +

∑
u∈Nv

RELU(h(ℓ−1)
u + euv)

)
.
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