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ABSTRACT

Trees are convenient models for obtaining explainable predictions on relatively
small datasets. While many proposals exist for end-to-end construction of such
trees in supervised learning, learning a tree end-to-end for clustering without la-
bels remains an open challenge. As most works focus on interpreting with trees
the result of another clustering algorithm, we present here two novel end-to-end
trained unsupervised trees for clustering, respectively Kauri for datasets with a
large number of features using binary decision trees, and Douglas for datasets
with a large number of samples using k-ary differentiable trees. Both methods are
composed of a learnable tree structure in which parameters are optimised accord-
ing to a generalised mutual information (GEMINI) and present results on par with
other existing methods while maintaining interpretability. We compare these two
models on multiple datasets with the most recent unsupervised trees and provide
guidelines for choosing the most suitable model.

1 INTRODUCTION

Decision tree classifiers are one of the most intuitive models in machine learning owing to their
intrinsic interpretability (Molnar, 2020, Section 3.2). Trees consist of a set of hierarchically sorted
nodes starting from one single root node. Each node comprises two or more conditions called rules,
each of which leading to a different child node. Once a node does not have any child, a decision is
returned. A childless node is named a leaf.

While the end model is eventually interpretable, building it implies some questions to be addressed,
notably regarding the number of nodes, the feature (or set of features) on which to apply a decision
rule, the construction of a decision rule i.e. the number of thresholds and hence the number of
children per node. Learning the structure is easier in the case of supervised learning, whereas the
absence of labels makes the construction of unsupervised trees more challenging. In recent related
works, the problem was oftentimes addressed with twofold methods (Tavallali et al., 2021; Laber
et al., 2023): first learning clusters using another algorithm e.g. KMeans, then applying a supervised
decision tree to uncover explanations of the clusters. However, such unsupervised trees are not fully
unsupervised in fact since their training still requires the presence of external labels for guidance
which are provided by KMeans.

To achieve end-to-end unsupervised learning in trees, we propose a framework where we merge the
view of trees as statistical models with learnable parameters and a clustering criterion to maximise:
the generalised mutual information (GEMINI, Ohl et al., 2022), a distance-based score. We derive
two new clustering algorithms from this framework; respectively binary decision trees for datasets
with a large number of features (Kauri) and k-ary differentiable trees for datasets with a large number
of samples (Douglas). A short description of these methods is provided in Fig. 1. The contributions
of this framework are therefore:

* The introduction of two end-to-end unsupervised trees for clustering: Kauri and Douglas.
Both approaches learn a tree architecture using GEMINI maximisation. The former uses
binary decision trees and the latter differentiable trees.

* We show that Kauri displays equal performance in clustering to kernel KMeans+Tree using
end-to-end training while obtaining shallower structures.

* A practical example showing how to interpret the obtained models in clustering
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End-to-end unsupervised trees: Tree structure and Objective

/\ |

{Binary decision tree} {Differentiable tree} {GEMINT}

S Ae T3 (2:416)
} N ova (..
‘9\ = ID (ma y|9)
o

Figure 1: Summary of the proposed framework for learning end-to-end unsupervised trees. The
framework concatenates a tree structure with an objective to maximise: the generalised mutual in-
formation. The Kauri model corresponds to a binary decision tree with the squared-MMD GEMINI
whereas the Douglas model corresponds to a differentiable tree and the Wasserstein GEMINI.

2 TRAINING TREES

We progressively present in this section the different means for creating a decision tree structure,
with supervision or not and linking the algorithm with discriminative and hierarchical clustering
methods.

2.1 HOW DO WE TRAIN SUPERVISED TREES?

In supervised learning, we have access to targets y which guides our tree construction for separating
well our samples. In this field, we can refer to the well-known classification and regression tree
(CART) (Breiman et al., 1984). At each node, we evaluate the quality of a split, i.e. a proposed
rule on a given feature and data-dependent threshold, through gain metrics. We then add to the tree
structure the split that achieved the highest possible gain. Common implementations of supervised
trees use the Gini criterion developed by the statistician Corrado Gini (1912), which indicates how
pure a tree node is given the proportion of different labels in its samples (Casquilho & Osterreicher,
2018). Later works then proposed different gain metrics like the difference of mutual information in
the ID3 (Quinlan, 1986) and C4.5 (Quinlan, 2014) algorithms.

When the number of leaves is unlimited, these approaches can produce deterministic outputs. More-
over, their greedy nature can lead to the construction of very deep trees which harms the interpretable
nature of the model (Lustrek et al., 2016). This motivates for example the construction of multiple
trees that are equivalent in terms of decision, yet different in terms of structure presenting thus an
overview of the Rashomon set for interpretations (Xin et al., 2022). Other approaches tried to over-
come the deterministic non-differentiable nature of the rule-based tree by introducing differentiable
leaves (Fang et al., 1991; Yang et al., 2018) which allows to train trees through gradient descent. We
will later come back to the definition of one such model for our method, the deep neural decision
tree (Yang et al., 2018).

Whether differentiable or not, we choose to describe the decision trees as statistical models py (y|z)
which assign the data sample x to a discrete variable y, the cluster membership, according to some
parameters 6. These parameters can be for example the set of thresholds and features on which
decisions are carried at each node or matrix weights in differentiable trees as we will see in the next
sections.

2.2 HOW DO WE TRAIN UNSUPERVISED TREES?

In clustering, we do not have access to labels making all previous notions of gains unusable so
we need other tools for guiding the splitting procedure of the decision trees. A common approach
is then to keep the algorithm supervised as described in the previous section, yet providing labels
that were derived from a clustering algorithm e.g. KMeans (Laber et al., 2023; Held & Buhmann,
1997). In this sense, derived centroids from KMeans can be involved as well in splitting proce-
dures (Tavallali et al., 2021), even to the point of not needing the data from which the centroids
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are derived (Gamlath et al., 2021). However, such methods do not properly construct the tree from
scratch in an unsupervised way despite potential changes in the gain formulations. We are interested
in a method that can provide a directly integrated objective to optimise for tree training. For exam-
ple, Bertsimas et al. (2021) directly optimise the silhouette score, an internal clustering metric, yet
report the need for warm start to train multivariate decision trees. Other gains derived from entropy
formulations can also be proposed (Bock, 1994; Basak & Krishnapuram, 2005). We even note the
usage of recursive writing of the mutual information to achieve deeper and deeper refinements of bi-
nary clusters (Karakos et al., 2005). Oftentimes, these approaches assume that a leaf describes fully
a cluster. Combining leaves into a single cluster requires then post-hoc methods (Fraiman et al.,
2013).

If we allow post-hoc methods, an elegant approach to constructing an unsupervised tree was pro-
posed by Liu et al. (2000) by adding uniform noise to data and tasking a decision tree to separate
noise from true data. Such trees put in different leaves dense areas of the data which can then be
labelled manually for example.

2.3  GENERALISED MUTUAL INFORMATION FOR CLUSTERING

Inspired by the involvement of mutual information in tree gains for clustering (Karakos et al., 2005),
we are interested in finding an easy-to-compute gain that requires no model-based hypotheses on
the data and which does not involve a first-stage clustering algorithm for guidance.

The generalised mutual information (GEMINI) (Ohl et al., 2022) is a cost function introduced to
perform clustering with any discriminative model taking the form py(y = k|z) linking the discrete
cluster assignment y to the data = through parameters . Maximising this loss implies maximising a
statistical distance D between the cluster distribution py(z|y = k) among randomly chosen clusters.
While defined on the distributions pg(z|y = k), Bayes theorem leads to a computable formula of
this loss function involving only the prediction of the model pg(y = k|z). Contrary to most recent
unsupervised losses, especially contrastive losses, the GEMINI requires neither regularisations nor
data augmentation to achieve clustering. Its most defining input is a well-chosen metric in the
data space which can be a kernel if the statistical distance D is the maximum mean discrepancy
(MMD) (Gretton et al., 2012) or a distance if the statistical distance is the Wasserstein (Peyré &
Cuturi, 2019). GEMINI has two definitions; the one-vs-all:

I?Dva(nyW) = Ey~pe(y)[D(pG(xly)”p(x))]a 1
and the one-vs-one:

I5° (3 910) = Ey, yympo (v) [P (0o (]ya) [[Po(2|ys))]- (2)

This metric was originally intended for gradient descent methods, especially neural networks.
However, we will show here how we can revisit the GEMINI for tree models which can be non-
differentiable, leveraging end-to-end learning.

3 KAURI: KMEANS AS UNSUPERVISED REWARD IDEAL

The Kauri tree is a non-differentiable binary decision tree that looks in many ways alike the CART
algorithm. It constructs from scratch a binary tree giving hard clustering assignments to the data by
using an objective equivalent to both the optimisation of a kernel KMeans and an MMD-GEMINI.
In the Kauri structure, a cluster can be described by several leaves.

3.1 NOTATIONS AND MODELLING

We consider that we have a dataset of n samples: D = {z;} ;. We can model the classifica-
tion/clustering distribution associated with decision trees as a delta Dirac:

po(y = klz) = L[z € Xy, 3)
with { X} }X_| apartition of the data space X'. Notice that we use the notation 1 because y is discrete.
We set X C R, We write the partition into K clusters as the sets of the indices of the samples that
fall in the respective data subspace:

Cr, = {ilz; € X}, Vk < K. @
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We assume that the model sees all the data and that p(x) corresponds to the empirical distribution of
the training data. Consequently, we do not use minibatches and write the expectations of the model
turn to discrete sums. Notably, we have:

C
poly=h) = 4L ®

We note NV, the set of samples reaching the p-th node and b? its threshold defined for a single feature

j. This threshold defines two binnings and produces two child nodes. For example, if 27 < bP, then
this sample goes to the left child of the parent node p, otherwise to the right child.

3.2 TREE BRANCHING

For supervised trees like CART or ID3, the types of splits are binary and guided by the labels which
tell us to which class each child node should go. For unsupervised trees, we must consider all
possibilities: to which cluster goes the left child, to which cluster goes the right child on which
feature to do the split, on what threshold in this feature to split, on which nodes. Assuming to be
located at a node p for a split, let Sy, the subset of samples from the node samples N, that will go to
the left child node and Sy the complementary subset of samples that will go to the right child node.
Each child node will be assigned to a different cluster, whether new, already existing or equal to the
parent node’s cluster assignment. Let k,, be the current cluster membership of the parent node p, kr,
the future cluster membership for the left child node and kg the future cluster membership of the
right child node, i.e. Sp USgr = N, C Cy, and after splitting: Sy, C C, and Sg C Ci,.

We enforce the following constraints: a child node must stay in the parent node’s cluster if both
children leaving would empty the parent’s cluster; the creation of a new cluster can only be done
under the condition that the number of clusters does not exceed a specified limit K,,,. We also
impose a maximum number of leaves L,,,x Which can be equal to at most the number of samples 7.
It is nonetheless possible that the algorithm stops the splitting procedure if all gains become negative
before reaching the maximum number of leaves allowed.

Thus, learning consists in greedily exploring from all nodes the best split and either taking this split
to build a new cluster or merging with another cluster. We now present the objective function and
related gains depending on the children’s cluster memberships.

3.3 GAIN METRICS

Kauri is designed to maximise the following objective function:
Ko
max U(C2)
L= 2 6)
> Cl

k=1

where the function o sums the kernel values x = (¢(x;), p(z;)) of samples indexed by two sets:

O’(E,F) = ZH((L‘Z‘,J:]'), (7)
iCE
JEF
We will refer to the o function as the kernel stock. This function is bilinear with respect to the input
spaces. The objective in Eq. 6 corresponds simultaneously to the maximisation of one-vs-all or one-
vs-one squared MMD GEMINI or the minimisation of a kernel KMeans objective. The proofs are
provided in App. B. We can derive from this objective four gains that evaluate how much score we
get by assigning one child node to a new cluster, assigning both child nodes to two new clusters,
merging one child node to another cluster or merging both child nodes to different clusters. We
denote by C. the clusters after the split operation and C, the clusters before the split. Hence, the
global gain metric is:

a(c. %) olcy?)  oC?)

AL(Sy : ky = kr,Sp + ky — kg) = cr. | c 1G]
L R P
o(Ch,)  o(CR,) o(CL) (8)
Crl  [Chal  ICk, I
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Table 1: Advantages and disadvantages of the Kauri and Douglas algorithms for unsupervised tree
construction.

Splits Scalable with n Scalable with d Hyperparameters
Kauri  Binary No Yes Kinaxs Limax
Douglas  k-ary  Yes with minibatches No Number of cut-points 7'

which corresponds to subtracting the contribution of the kernel stocks of the former clusters and
adding the kernel stocks of the new clusters after splitting. From this global gain metric, we derive
four different gains: the star gain AL* for assigning either the left or right child of a leaf to a
new cluster, the double star gain AL** for assigning the left and right children of a leaf to two
new clusters, the switch gain AL™ for assigning either the left or right child of a leaf to another
existing cluster and the reallocation gain AL for assigning respectively the left and right children
to different existing clusters. The algorithm can be bound in App. D, with an extended explanation
of the derivations of the gains in App. C.

4 DOUGLAS: DNDTS OPTIMISED USING GEMINI LEVERAGE APPRISED
SPLITS

The Douglas model seeks the full potential of GEMINI by combining it with differentiable trees.
Thanks to this choice of architecture, we can optimise the Wasserstein-GEMINI, an objective more
efficient for clustering than the MMD-GEMINI, with respect to the parameters through gradient
descent. Indeed, the MMD-GEMINI only carries information through the means of cluster distribu-
tions and does not encompass all information on the data space whereas the expected Wasserstein
distance between two randomly chosen clusters will take into account the complete distribution.
However, the cost of Douglas is the loss of depth in tree as all rules are produced at the root level.

Deep neural decision trees (DNDTs, Yang et al., 2018) aim at learning individual rules per feature
and then merge those rules to provide a final decision. Formally, each feature f among a subset

of selected features is assigned a vector of sorted thresholds b{ _..p that determines the binnings of

the feature. By defining a bias ¢/ = [0, —b, —b] —bJ, ... —b] —bJ — ... —bJ] and a vector
al = [0,1,---,T], Yang et al. (2018) write a feature-wise probability distribution with:
fopf f
a’x’ +c
pas s (Aa") = Softvax (252, ©)

named soft-binning where 7 is a temperature hyperparameter set to 0.1. After each individual soft
binning is applied, all combinations of features are computed using a Kronecker product, making
DNDTs hardly scalable in terms of features. For example, if the d features are all separated in 7"+ 1
binnings, the final decision will contain (7' + 1)¢ entries per sample. To produce a decision from
this entry, a matrix multiplication with some parameters W is applied. The global model can be
described as:

T T T d
po(y = klz) = Z Z Z Wi t1+dta+tdi-1t, H Patef (B = tf‘zf)~ (10)
t1=1ty=1

te=1 f=1
This model is therefore differentiable and can be trained by gradient descent.

For interpretation purposes, we choose to exploit active cut points as proposed by Yang et al. (2018).
This is the number of features for which the respective cut points parameters do not lie outside of
the feature boundaries in the dataset. For example, if for a single cut value (two bins) the bias is
lower or greater than all samples on its respective feature, then this cut point is not active and does
not participate in the decision.

5 EXPERIMENTS

We start by proposing a summary of the advantages and limitations of both tree algorithms in Ta-
ble 1. Overall, Kauri is recommended for small-scale datasets whereas Douglas can be used with
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Table 2: Summary of the datasets used in the experiments. *The number of features may be slightly
larger than the actual number of variables as discrete variables were one-hot encoded.

Name Avila Breast cancer  Car evaluation* US Congress Digits
Samples 20,867 683 1,728 435 1,797
Features 10 9 21 16 64
Classes 12 2 4 2 10

Name Haberman survival Iris Mice protein Poker hand Vowel
Samples 306 150 552 990 1,025,010
Features 3 4 77 10 10
Classes 2 3 8 2 10

Name Wine
Samples 178
Features 13
Classes 3

large datasets on condition that there are few features. It is important to note that Kauri, Douglas
and KMeans-based related works are distance-based clustering algorithms. Consequently, these al-
gorithms are sensitive to the scaling of the data, unlike supervised trees. Therefore, we will scale
most of our datasets with standard scaling to avoid the overtaking of specific features against all
others due to large ranges. The summary of these datasets can be found in Table 2. For the sake of
simplicity, we discarded most dataset samples with missing values unless specified otherwise. We
will assess the general clustering performances and explanation power of the models before showing
qualitative examples of their interpretation. Extended experiments can be found in App. H for an
extended benchmark, App. I for model selection and App. G for an alternative version of Douglas.

5.1 ON THE CLUSTERING PERFORMANCES

We compare the performances of our two proposal algorithms on 10 datasets against recent meth-
ods for unsupervised tree constructions, namely ExShallow and RDM by Laber et al. (2023), and
IMM (Moshkovitz et al., 2020). These methods are twofold and start by fitting KMeans centroids
to the data, then learning a tree to explain the obtained clusters. The differences in all methods lie
in attempts to limit the depth of the tree for the sake of simple explanations as deep trees tend to
lose expressivity in explanation. We choose to provide a combination of KMeans and a standard
CART decision tree classifier as a baseline for Kauri which is a kernel-KMeans-aimed clustering al-
gorithm. For the twofold algorithms, we report the clustering performances according to the tree. As
related works focus on trees with one leaf per cluster, we limit the Kauri tree and the KMeans+Tree
to as many leaves as clusters. For results regarding more leaves than clusters and a comparison
with related work EXKMC by Frost et al. (2020), please refer to App. H where the results remain
consistent.

Since some algorithms are deterministic in nature, we introduce stochasticity in results by selecting
80% of the training data over 30 runs. Details on preprocessing and experimental hyperparameters
are reported in App. E. We report the performances in terms of adjusted rand index (ARI, Hubert
& Arabie, 1985), a common clustering external metric, for all algorithms in Table 3 and in terms of
KMeans score normalised by the actual KMeans performance (Laber et al., 2023) in Table 4. Due to
scores being all equal to 0, we discarded the Poker hand dataset fomr Table 3. As mentioned before,
Douglas’ complexity grows exponentially with the number of features. For example, a binary cut on
all features for d features implies 2¢ outputs per sample. That is why we choose not to run Douglas
on datasets with more than 20 features. While the original implementation of Douglas by Yang
et al. (2018) is made with Pytorch to benefit from automatic differentiation, we report the result of
our own pure-numpy version with explicit derivatives in App. G.

First of all, we observed in Table 3 that Kauri often performs on par with related works. Notably,
these performances are close to the KMeans+Tree baseline, except for the digits and wine datasets.
Second of all, the performances of related works seem often close to Kauri or slightly below despite
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Table 3: ARI scores g4 (greater is better) of Kauri, Douglas and other methods after 30 runs on
random subsamples of 80% of the input datasets. Entries marked X were not run due to memory
overflows for Douglas because of the large number of features. All models are limited to finding as
many leaves as clusters.

Dataset Kauri  KMeans+Tree Douglas ExShallow RDM IMM

Avila 0.020_()1 0.040'01 0.020_01 0.060_02 0.050'02 0.060.01
Cancer 0.740,02 0.730,01 0.840_02 0.740.01 0.680,02 0.730_02
Car 0.060_06 0-08()_()7 X 0.05()4()5 0.070_()5 0.050,05
Congress 0.490'03 0.460'04 0.560'04 0.490.03 0.390'02 0.480_03
Digits 0.260,02 0.360'05 X 0.31 0.03 0.1 60,03 0.270_03
Haberman 0.000_03 0.000_()0 0.020,04 0.00().()0 0.000_()2 0.000,0()
Iris 0.630.07 0.600'06 0.470_12 0.620.06 0.490'04 0.590_05
Mice 0.210'03 0.1 80,()4 X 0. 190.03 0.1 20,04 0.1 60_03
Vowel 0.01()_()1 0.030_()3 0.070.05 0.05().()4 0-070,{)3 0.080‘04
Wine 0.600'10 0.710'05 0.540_13 0.740_04 0.330'05 0.750.04

Table 4: KMeans score gq (lower is better) of Kauri and related works after 30 runs on subsamples
of 80% of the input datasets divided by the KMeans reference score (=1.0). All models are limited
to finding as many leaves as clusters.

Dataset Kauri KMeans+Tree Douglas ExShallow RDM IMM

Avila 1 -220.08 1 .950‘()7 1.720,]4 1 .230,10 1 300 13 1.150.07
Cancer 1.08()_()2 1.08()_()2 1.000'01 1.07().()2 1.3 1()_()2 1.070.01
Car 1.000.00 1.000.00 X 1.000_00 1 .020'03 1.000_00
Congress  1.05¢0; 1.04¢.0; 1.00¢.01 1.049.01 1.13002  1.040.01
DigitS 1.130.01 1. 19()_()2 X 1.130_02 1 .24()_()4 1.140.02
Haberman 1.010.00 1.010.00 1 .040_02 1.010_00 1.010.00 1.010_00
Iris 1.060.04 1-070.04 1 .490,24 1.060,05 1 -290.08 1.070‘05
Mice 1.050.01 1.090'03 X 1.050_01 1.33()_()5 1.1 10.03
Poker 1.030.00 1 .070'02 1.1 60_02 1 .050.00 1 .070,02 1.1 20_05
Vowel 1 .060.00 1 .070,01 1.040_01 1 .070.01 1 .090,01 1.090,01
Wine 1.09()_()5 1.130'05 1.1 1()_()9 1.050_02 1.33()_()5 1.050.03

similar limits in the number of leaves. We believe that this difference can be explained by the order
of the choice of splits in the trees owing to the presence of the KMeans objective among methods
or just the usage of labels. Regarding the KMeans score in Table 4, Kauri and Douglas both obtain
good performances, with scores always at most one standard deviation away from the best model
for Kauri.To conclude, we observed encouraging performances from the Douglas algorithm which
benefits from the multiple binnings at root level of all features.

5.2 ON THE EXPLANATION QUALITY

We are now interested in the explainable nature of the obtained trees. Indeed, several tree structures
could easily yield the same clustering and consequently, we need to focus on the explanation quality
of the structure.

We provide an example from Moshkovitz et al. (2020) of a non-optimal choice of splits for the
KMeans+Tree compared to the optimal found by Kauri in App. F.

We choose to measure the weighted average depth (WAD, Laber et al., 2023) which measures the
ratio of samples per leaf multiplied by their respective depth. The lower the WAD, the better the
structure of the tree as it yields simpler explanations by being shallow. The benefit of this metric
is that it encourages trees to be shallow, a property we seek in the context of limited leaves. This
metric cannot be applied however to Douglas because its differentiable tree sets all rules at the same
level, i.e. without any notion of path for ordering the rules and leaves. Additionally, we remove for
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Table 5: WAD scores g (lower is better) of Kauri and related works after 30 runs on random
subsamples of 80% of the input datasets. All models are limited to finding as many leaves as clusters.

Dataset Kauri KMeans+Tree ExShallow RDM IMM

Avila 54703 4.000.13 6.43056 7.81p33  9.190.10

Car 2.000'00 2-04().06 2-050.06 2-03().08 2~040.06
DigitS 3.450.22 3.480_17 3.980.19 5-210.83 6.790_34

Iris 1 .670.()2 1 .670.02 1 .670_02 1.620,03 1 .670,02
Mice 3-040,07 3.160.13 3-230.16 3.47().39 4.850'41
Poker 3.260.00 3.260_01 3.380.05 3.280.11 4.400_45
Wine 1.580,07 1 .65().()4 1 .690_03 1 .750_03 1.71 0.02

this experiment datasets with 2 clusters as the only way to learn trees on these datasets is to have
two leaves at the same depth, yielding a WAD of 1 for all methods.

We give the WAD scores of the previously described benchmark in Table. 5. We observe that
Kauri often outperforms related works, even though the KMeans+Tree baseline remains a tough
competitor. Moreover, these gains in shallow structure still maintain good clustering on par with
related works as seen in the previous section.

To highlight some differences in behaviour between Kauri and KMeans+Tree, we investigate with
Figure 2 how the angles of the decision boundary and the number of samples in the dataset can
change the performances on seemingly identical distributions. Indeed, KMeans easily builds linear
boundaries that are not axis-aligned, hence as the boundaries become less and less aligned with
the axes, the decision trees struggle to maintain a low number of leaves to mimic these “’diagonal”
boundaries. This effect gets worse if the number of samples to separate is high on this decision
boundary. However, as soon as the decision boundaries are axis-aligned, the decision tree becomes
again a fierce competitor. Both trees have unlimited leaves and only stop when no gain is any longer
possible. We use the weighted average explanation size (WAES, Laber et al., 2023) which measures
the number of non-redundant rules that define a leaf divided by the number of training samples. The
lower the WAES, the better the structure of the tree as it yields simpler explanations. The benefit
of this metric is that the depth of a tree matters little, but rather the number of leaves that explain a
cluster.
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(a) Variations for growing angle,
number of samples fixed to 300.

(b) Variations for growing num-
ber of samples, angle fixed to
/4.

(c) Example of dataset for 300
samples and an angle of /3

Figure 2: Variations of WAES scores for aligned isotropic 2d Gaussian distributions separated by
Kauri or KMeans+Tree as the angle of the alignment (red line in 2¢) with the x-axis (blue line in 2¢)
grows or the number of samples increases over 30 runs. The distance between the means is v/2 and
the scale matrices are 0.21.
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Figure 3: The unsupervised Kauri tree for 2 clusters on the Congressional votes dataset. SA stands
for the El Salvador Aid vote, NC for the Nicaraguan Contras vote and MX for the MX-missile vote.
The question mark means that the voter did not vote or was missing. Nodes contain their name, the
associated cluster to which they assign samples and the type of split that occured during learning.

5.3 A QUALITATIVE EXAMPLE OF THE OBTAINED DECISION TREE

In this example, we focus on the congressional votes dataset which details 16 key votes from the
435 members of the US Congress in 1985. The targets of the dataset are the Republican or Demo-
crat affiliations of the voters. We preprocessed the dataset by binarising the vote outcome with —1
for “no” and 1 for “yes”. Missing values due to the absence of votes were converted to 0 which is
midway between yes and no and hence does not influence the linear kernel by favouring one type of
answer. The Kauri tree that was fitted on this dataset is described in Figure 3. The obtained clusters
translate very well the Republican and Democrat opposition through arming and international assis-
tance, with one cluster containing up to 73% of Republicans and the second one adding up to 96%
of Democrats. The ARI is 0.47 for this tree which corresponds to an unsupervised accuracy of 84%.

Upon running 30 times the Douglas tree on this dataset, we measure the number of active cut points.
The most selected active cut points were on the exact same features as the ones selected by Kauri in
Figure 3: the aid to Nicaraguan Contras (selected 93% of time), the El Salvador aid (83%) and the
MX missile votes (63%). The models had an average ARI of 0.53.

6 FINAL WORDS

We introduced a framework for unsupervised tree end-to-end learning. By combining tree structures
with the generalised mutual information for clustering, we derived two novel examples: Kauri and
Douglas. The former maximises a kernel-KMeans-like objective to build iteratively unsupervised
splits through the affectation of tree leaves to existing or new clusters while the latter exploits the
combined potential of differential trees and the Wasserstein distance. Kauri can be privileged for
small-scale datasets whereas Douglas is better suited for long datasets on condition of few features.
Overall, both methods achieve good performances in clustering with Kauri being on par with related
works for unsupervised trees using shallower trees. The strong advantage of these methods is build-
ing an interpretable by-nature clustering instead of seeking to explain another clustering output from
a different algorithm. Finally, we think that the combination of KMeans and a decision tree remains
a strong baseline that should be provided in works on unsupervised tree works.
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A SIMILARITIES WITH HIERARCHICAL CLUSTERING

Trees are closely related to divisive hierarchical clustering algorithms. Indeed, divisive algorithms
are built top-down (Roux, 2015) and if we give up the interpretability of trees by not restraining
the splits on data-dependent thresholds, we can sort the data per node anyhow for the best split.
In such case, the proposals of split become combinatorial and reach 27~! — 1 proposals for n
samples (Edwards & Cavalli-Sforza, 1965). These models are therefore costly, yet account for few
iterations as we only need K — 1 splits to obtain K clusters.

Multiple splitting procedures were proposed to alleviate computation of all splits (Williams & Lam-
bert, 1959; Hubert, 1973) to even KMeans (Mollineda & Vidal, 2000). One of the most known
divisive clustering algorithms is DIANA (Kaufman & Rousseeuw, 1990). Roux (2015) suggests
that ratio-based splits are among the most efficient (Roux, 2015).

To further accelerate the evaluation of the gains procedures and constraining the search space, com-
binations of divisive clustering algorithms with model-based clustering algorithms were proposed,
hence using the maximum likelihood as a global objective for the model (Sharma et al., 2017;
Burghardt et al., 2022). We can still note the usage of KMeans as a heuristic for proposing splits
at each node (Sharma et al., 2017). However, the improvements brought by model-based clustering
require parametric hypotheses which may constrain the exploration of the tree.

B DERIVATIONS OF THE KAURI OBJECTIVE AND ITS RELATIONSHIP TO
KMEANS

We show here how to derive the Kauri objective function from both the one-vs-all and one-vs-one
squared-MMD-GEMINI before showing its relationship to the minimisation of a kernel KMeans
objetive.

B.1 DERIVING AN OBJECTIVE FROM THE MMD-GEMINI
B.1.1 MMD-OVA

We start by recovering the definition of the OvA squared-MMD-GEMINI using only the outputs of
the outputs of our model py (y|z):

va T, T T,

We can replace the expectations with discrete sums for both the clusters and the data. Notice the
factor % in front of the kernel as we are simply doing a Monte Carlo estimate. We replace at the
same time, the values of the distributions by either the indicator functions or cluster sizes:

K n
|Cr| K x“x ( [z; € X]1[z; € X)|n? lz; € Xkln
ova 9 — J J +1-2—————
vivipz (Z z; Y| §:1 n E_: Ci|? Cx|

12)
By applying the indicator functions, we see that we sum the terms of a kernel on condition that the
respective samples belong specifically to some subset of data. We can consequently rewrite the inner
sum as a combination of kernel stocks o

K
Cul (o(CR) | o((n]*) . o(Ck x [n])
ova 2 3 = —_— — 2 . 1
vz (5 y0) ; n ICr |2 + n2 n|Ch| (13)
Here, 0([n]?) = o({1,--- ,n} x {1,--- ,n}) is simply the kernel stock of the complete dataset, i.e.

the sum of all kernel elements of the dataset. Then, a couple of simplifications give:

C C
o e (@5916) — Z n|ck| i o) ool lnl) (14)
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We can obtain the final form of the GEMINI by summing constant terms. Observing that ), |Cj| =
n and using the bilinearity of o, we have:

2

K 2
) +3 n(c’f). (15)

= ek

Q

wwip2 (%3 910) = —

As we are interested in optimising the clustering assignments in the tree, we can remove all constant
terms and factors that do not bring extra information. Hence, the final objective £ to maximise is:

K
L=>"|ce| o (Cd) (16)

B.1.2 MMD-OvO

We now prove that the objective function £ obtained in the previous section is also equivalent to
maximising the OvO squared MMD-GEMINI in case of delta Dirac classifiers. We start by express-
ing the complete squared MMD GEMINI:

Po(YalTa)Po (YalTs)
pe(ya)2
po(yol@a)po(yolTs) 1o (Yal®a)po(yelzs)
* o (ys)? ? po(Ya)Po(ys) )” an

wivp2 (T3 y10) = Ey, yo~po () [Ewmzwp(m) {K’(za?xb) (

As we exactly did for the OvA MMD-GEMINI demonstration, we apply the following tricks: dis-
cretising the expectations on the dataset D, re-expressing the cluster proportions, simplifying the
sums. Our discrete version is:

2 5 .
OV y|9 Z ‘Ck”ck | Z .’L‘za.’L‘J <n :[].[.’L‘z S Xk]:ﬂ_[z] c Xk]

MMDZ 2
o k! 2,€D Cl
;€D
n2]l[xi S Xk/}]l[.’ﬂj S Xk/] . 77,2]1[(131' S Xk]]l[a:j € Xk/]> (18)
Che[? ICrIICh|

We can cancel the factors in n? and replace our sum over indicator functions by the kernel stock
function o. Thus, we obtain:

K
ovo . - ‘CkHCk/| O'(Ck X Ck) O'(Ck/ X Ck/) _ O’(C}c X Ck/)
e (5010) = 2 =5 aF e edel )

K,k

For the first two terms, we can cancel one part of the summation. Indeed, the kernel stock on Cy,
does not depend on k', consequently, the sum over &’ just multiplies this kernel stock up to a factor
n which will be cancelled by the denominator n at the very start. The same reasoning goes for the
second term. Last but not least, we can cancel cluster sizes on the last term. Our expression is then:

(0]

K K
oo (2y]0) Qchkxck 220(6’“72&‘) (20)

n
kK’

As we now look forward to maximising this expression, we can realise that the last term is simply the
full kernel stock, in other words, a constant with respect to the clustering. We can then discard this
term. For the first term, we simply remove the constant factors 2 and 1/n to obtain the equivalent:

13
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K
2 (Cr x C) D xD
vz (Z5y]0) = — Z o(C xC) _ ol ) o L + constant. (21)
n\e= |Gl
This concludes our proof.
B.2 RELATIONSHIP TO KERNEL KMEANS
An alternative formulation of the kernel KMeans objective is:
S|
0* :argngnzm > le@) = e®)l3, (22)
k=1 k z,yeCy

where H is a Hilbert space and ¢ its projection. By rephrasing this objective in terms of kernel, we
can obtain the following equation:

= arg mmz A Z (x,2) + k(y,y) — k(z,y), (23)
k z,yeCy
where the two first kernel terms can be summarised as the size of clusters weighting the diagonal
elements of the kernel. Finally, the third term is the kernel stock o of the cluster, and thus:

— argmln Z z,x) Z |C ‘ o(Cr x Cy). (24)

xeD

Therefore, maximising our objective function £ is equivalent up to a constant to minimising a
KMeans objective for any kernel. This joins the observation of Franga et al. (2020) who connected
an objective similar to a one-vs-one squared MMD to the kernel KMeans. Notice that we removed
a factor 2 in the final equation as it does not affect the argmin operator.

C DEMONSTRATION OF EXPRESSIONS FOR THE KAURI GAINS

We can derive from our objective (Eq. 6) four metrics which correspond to different types of splits:
the star gain, the double star gain, the switch gain and the reallocation gain. We provide Figure 4
for visual purpose and assistance in the demonstrations.

C1

Cs O’(N4 X CQ)

777
A
%
Y

C3 o
%
07

o o(2)

sCixCy) NN Ng Ni NG

Figure 4: A toy example with a dataset consisting of 11 samples partitioned in 3 clusters using 5
leaves in a tree. The matrix represents the kernel between all pairs of samples and dashed areas
correspond to the sum of kernel elements according to the kernel stock function o.

C.1 CREATING A NEW CLUSTER: THE star gain

In this case, we assign one of the splits Sy, or Sg to a new cluster and let the other split in the same
cluster as the parent node, i.e. either kr, = K +1and kg = kj, or k;, = kp and kg = K + 1. Taking
the case where the left split is given to a new cluster, we derive from the global gain a variation that
we call star gain:

14
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o(st) | (G, o(C)
|SL] C., | Cr,|

AE*(SL : kp — kL) = (25)
However, that expression is not convenient since there is a clear dependence: C,’% = Cr, \ S and

we would be interested in avoiding the evaluation of O‘(C]/CPQ). We can use the bilinearity of the
sigma function and decompose over the new cluster C]’fp = Ck, \ Sr. Similarly, we can reexpress
the cardinal as |C}, | = [Cj, | — [SL|. Consequently, our term becomes:

o(S) | o(C} ) = 20(Ch, x S£) +0(S7)  a(C})
St Cr, | = Sz Cr, |

AE*(SL : k?p — kL) = (26)

It is then just a matter of reordering with respect to the kernel stocks o to obtain the final equation:

1 1 1 1
AL" :k kr) = Y i e — 2 _
£(8n 2y = ) "““(sL|+|ckp|—|sL|>”“’%)<ckp|—|sL| |ckp>

U(Ckp X SL)

—g e 2L
|Ck,, | — |SL|

27)

which will be the used equation for the star gain.

C.2 CREATING TWO CLUSTERS: THE double star gain

The operation of creating two clusters can be seen as assigning in a first step the complete node p to
a new cluster, then taking one of its split and assigning it to a second new cluster. The double star
gain AL** can be thus computed by the sum of AL* with V,, replacing the source cluster Cj,, and
another AL* with the N, replacing Sp.:

A,C**(SL — kr,Sgr — kR) = A/:,*(Np : kp — kL) + A/:,*(SR ckp — k‘R) (28)

C.2.1 MERGING WITH ANOTHER CLUSTER: THE switch gain

This type of split is very similar to the creation of a new one. The main difference is that as one
of the child nodes will join another cluster, e.g. k, # kr < K, we must take into account in the
gain that we must subtract the kernel stock of the former target cluster. We call this type of gain the
switch gain:

o(C;,?) olCL?) o(cz) o(CE)

ALT(Sp 1 ky — k) = + _ _ ’
(Suckp 2 k) = e 4 e T T el 10|

(29)

where we arbitrarily chose the left split for the equation. Similarly to the new cluster case, this
expression can be completely re-written using only the original clusters and Sy, to remove depen-
dencies in the equation. We start by exploiting the bilinearity of o. The first new cluster is the source
one without the split elements and the second new cluster is the target one with added split elements.
Therefore, we have C,’CP =Ck, \ Sy and C;, . = Cx, U Sr.. We can deduce:

U(C,%p) —20(C, x SL) +0(S7) o(C3,) +20(Cr;, x SL) +0(S7)

ALT(SL i ky — k) =

Ck, | — |SL] Crp, | +|SL
o (C? C?
_ ( kp) 70( k?L). (30)
|C, | |Ch. |

Then we finish again the demonstration by reordering the factors according to the respective stocks:
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— 1 1 U(Ck XSL)
ALZ(SL : by — ) = (S < + )_ ’
(Su by = ko) =0\ G T80 T e =150 ~ 216w~ 182)
1 1 1 1 o(Cr, % S1)
+ o (C? ( — >+ Cc? < - >+2 L2 . (31
“C\leaT=180 " 1en) TR e e T o) T e ven s @V

which is the equation we use in Kauri switch splits.

C.3 REALLOCATING CONTENT TO THE DIFFERENT CLUSTERS: THE reallocation gain

As the tree grows, it may as well be interesting to reconsider whether samples that are currently in a
cluster should all be in a new cluster. We call this process reallocation as both splits of a node end
up in two different clusters: kz, # k, and kr # k.

Contrary to the double cluster creation case, we cannot simply sum two switch gains AL™ to com-
pute the reallocation gain. Indeed, the switch gain assumes that the final state of the original cluster
C,, still contains the complementary of the chosen split Sy, (or Sg) from the leaf samples A/}, which
is not true when both parts of the leaf go to different clusters. Hence, a corrective term e is required.

When we sum two switch gains, the final state of the target clusters is correct: we simply added
elements from a split. The corrective term thus only focuses on the state of the source cluster. Let
C;. the state of the source cluster according to the first switch gain on the left split, C;/ the state of
the source cluster according to the second switch gain on the right split and C,” the true state after
reallocating both left and right splits. Notice that we lighten the notation k, to k. The corrective
term must satisfy:

o(C) o) oG 2
[T Ci |

We can rewrite each new definition of the source clusters using the left split Sy, and right split Sg.
Thus we get:

o(Ce\SL®) | o(C\Sk) | _ o(Ce\N;) 33
ICkl = ISLl  [Ck| — ISkl ICrl = NG|
which allows us to use the bilinearity of o:
0(C2) = 20(Cy x S1) +0(S}) | o(CE) = 20(Cu x Sw) +o(SE)
|Ckl =[S C| — SR
_ol€]) ~20(Cx Ny HolN?) oy

Crl = NG

Notice that we use the simplification V, = S1, U S since the node samples V,, are divided into two
subsets. Then, by reordering the terms and simplifying for the factor o(C?), we get the expression
of e

B O'(C%P) + cr(./\/;f) —20(C, x N) U(C,%p) O’(C]%p) +0(8%) — 20(Cr, % St)

€ = J,— _
Ch,| — NG| |Ch, | Ck,| — |SLl
CZ2 )+ 0(8%2)—20(Cr. xS
_ o( kp) o(S5) o(Cr, R) (35)
ICk, | — |SR|

Thus, we can express the reallocation gain AL™ as the sum of two switch gains assigning both left
and right children nodes to different clusters plus the corrective term e.

ALT(Sp i ky — kp, Sk ky — kr) = ALT(SL : ky — kr) + ALT(SL : ky — kg) + € (36)
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D A FAST IMPLEMENTATION FOR KAURI

D.1 THE KAURI ALGORITHM

Upon looking at one leaf containing a small subset of samples, we need to find the best possible split
according to a given threshold on a specified feature. While each feature specifies a different order-
ing and offers little space for optimisation, computing all possible gains may be time-consuming.
Indeed, computing o(F x F') is done in O(|E||F|), so evaluating gains for a proposal split S
on a single feature for node samples N, contributing to a cluster of C;, has a naive complexity
of: O(IS]® + |Ck|* + [CkIIS]) for AL*, O(S[* + [Ck]® + [Np* + [Ck|(|S] + [Np])) for AL*,
O(INpl? + [Ck|? + Ci|INp| + |Crr |2 + |Crr [|N|) for each k' # k for ALT, and at worst K times
the previous complexity again for all pairs of assignable new clusters &', &’ in the reallocation gain.
Therefore, iterating over all features and all possible splits needs to be optimised as this operation is
the core of the tree construction.

D.1.1 PRE-COMPUTING KERNEL STOCKS

Most of the kernel stocks can be computed ahead in fact, and then the splitting choice would just
need to access the value of the kernel stocks instead. To that end, we choose to formulate two
matrices that will store all structural information. The matrix Z € {0, 1}£max*" describes the
membership of samples to leaves where L, is the maximal number of leaves allowed (Li,ax < 1).
As a sample can only belong to 1 leaf, each column of Z has a single 1. Similarly, the matrix Y €
{0, 1}max*Lmax describes the membership of leaves to clusters, and only one cluster is allowed per
leaf. We can then compute most of the kernel stocks required for split computations, as:

A= [o(N; x {x,})] = 2k, 37)

is the matrix containing all stocks between leaves and single samples requiring O(n? L.y ) to com-
pute, and:

y=[0(CixC;)|=YAZ'YT, (38)

2

is the matrix with cluster-cluster stocks, requiring O(nszaX + L2 . Kmax) for computations.

D.1.2 OPTIMISING SPLIT EVALUATION

Thanks to the formulation of the star gain AL*, the double star gain AL** and the storage of
dynamic evolution of the variables o(Sy, X S;) (resp. Sg) and o (S, X Cy) (resp. Sg), evaluating the
creation of clusters is done in O(1). Inevitably, we achieve O(K) for the switch gains AL™ since
evaluating these gains is easy but needs iteration over all clusters.

To alleviate the complexity of the reallocation gain AL due to the exploration of all pairs of clus-
ters, we propose to remember the top two switch gains per left children and right children. Indeed,
the corrective term e does not depend on the two clusters to which the left and right children will
be reallocated. Hence maximising the reallocation gain is the same as finding the combination of
the best switch gains. Thus, remembering the top two switch gains and finding the best combination
between left and right child, with different clusters membership per child, will yield the optimal
reallocation gain. Therefore we achieved the best gain in O(K) and the evaluation of all types of
gain is done in O(K).

D.1.3 AN ITERATIVE RULE FOR SPLIT STOCKS

Starting from here, we seek an update rule that allows us to easily update the kernel stocks of the
splits o(S x Cy) and o(S?). We must explore all possible splits by considering thresholds on chosen
variables. Therefore, a split on a variable must be done according to the ordering imposed by that
variable, leaving a left child S” and a right child S¥. The algorithm should ideally consist in starting
from the split of a single sample to the left child S¥ and all other samples to the right child S{* and
progressively add samples according to an ordering given by a sorted feature: ¢ = v(I) to compute
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Algorithm 1 Finding the best split according a feature-specified ordering v at a given node N

Require: N the set of indices of samples in the leaf of length ||
Require: p the index of the leaf

Require: v an ordering precised by a feature of length ||
Require: « a kernel of shape n x n

Require: A the L., X n leaf-sample stocks

Require: w the K.« X n cluster-sample stocks

Require: 7y the K.« X Kpax cluster-cluster stocks

Require: |Cy|, Vk the size of all clusters

Require: £ the cluster of the considered leaf

1: function FINDBESTSPLIT(N v, k, A, w, 7, {|Crl}, k)

2: (SEf X 8%) > Initialise all iteration variables
3 (S xS )“Zze/\/Am

4 a(SY 7 X Ck) + 0, Vk < Kiax > Arrays of size Kpax
5: (S X Ck) — ZZEkaZ’ Vk < Kpax

6: 0N xN) <+ a(S) xS%)

7 K + |{ks.t. |Cx| # 0} > Current number of clusters
8: AL,BestSplit « 0,0 > Best split so far
9:  forl«+ 1lto|N|—1do

10: a, 8+ 0,0

11: for I’ + 1to |[N]|do

12: if I’ < [ then

13: Q<= 0+ Ky 1), w(l)

14: end if

15: if I’ > [ then

16: B B+ kuay )

17: end if

18: end for

19: Update 0(St x St), o(SL x SL), (St x C) and o(S% x Ci) using equations 46, 47,

48, 49.
20: ki, kL, type* arg max ALYP (S i k— kL, Sr: kv kgr)
~ kL, kr,type={**xx,2,—}

21: AL+ ALYP(Sp, i kv k5, Sp t k= k%)

22: if AL > AL then

23: AL+ AL

24: BestSplit « (k},k%,v(1)) > The split gives the left target, the right target, the

sample on which the split is done
25: end if
26: end for

27: return AL, BestSplit
28: end function

SlL and SlR. For example, if the p-th node has the data samples 5, 8, 9 and 15, a feature may order
those as 9,8,15,5. Then, v(1) =9, v(2) = 8, ¥(3) = 15 and v(4) = 5.

Note that there is a key difference regarding the indices notations. We write ¢ the absolute index of
sample from the dataset D while [ refers to the ordered count of samples inside a specific node. The
index ¢ is the absolute index according to the ordering v/(1).

We introduce 3 helping variables. The first one is the sample-wise cluster adversarial stocks:

Wk, = O’(Ck X {a:t}) (39)

which does not depend on the ordering specified by a feature and will ease the computation of both
o(Sy, x Ci) and o (S x Ci). We can shortly write that w = CZk. To alleviate the computations of
o(S?%) and 0(S%), we introduce the ordering-dependent variables:
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af = > Ky (40)
I=1-|Np]|
t>v(l)
and:
Bl =Y R (41)
I=1-- | |
t<v(l)
A
B
C
D

A B C D A B C D B D C A
(a) There is no ordering of the (b) There exists an ordering v (c) Reordering according to v
samples

Figure 5: An example of the value of the variables a3 and 33 which respectively are the sum of
green squares and red squares on the kernel matrix of the elements A, B, C and D in a leaf. In 5b
and 5c, the ordering is v({1,2,3,4}) = {B, D, C, A}.

These two variables verify a constant sum 3} + of + ki = o({z¢} x N,,) forall t € N,,. We
provide a visual intuition of the definition of these variables in Fig. 5. Once the variables wy, ;, o,
B¢ are initialised, we can compute all split gains with simple additions.

The initialisation of the variables is easy. For the split self-stock, we have:

a(Sp x 81) =0, (42)
o(Sp x SP) =a(ND), 43)

because starting from no sample yields all content of the node N, to the right split S%. The adver-
sarial stocks follow the same logic:

0’(82 X Ck) = 0, (44)
O’(S% X Ck) = U(Np X Ck), (45)

where the last term is simply an element of 7y indexed by the respective leaf and cluster. The itera-
tions then consist in removing adequate adversarial stock or self-kernel stock:

o(S;, x 8) = o(Sp X S + 200y + Kuyw)s (46)

o(Sk x 8p) = o(Sg ' x Sih) = 2BL 0y — Kuyw)- (47

The adversarial scores are easier to update:
o(S), x C) = (S X Ci) + Wi (48)
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and conversely:

o(Sk x Cr) = o (S x Ck) — wi - (49)

Thanks to these iterative variables, the iterative computation of all kernel stocks can be achieved
in O(|N,|K) for a specific feature and node samples A, instead of a naive O(|N,|? 4+ n|N,|) as
summarised in Algorithm 1. Notice that we omitted the pre-computing of o and 8” which is done
in O(JN,|?). The pre-computing of w takes O(n?) and can be done in advance at the tree-level.

Finally, we can optimise the computation of all splits.

D.1.4 COMPLETE PICTURE

Algorithm 2 Training SAGITTARIUS

Require: D = {z;}" , a dataset, z; € R?

Require: K, >= 2 the maximum number of allowed clusters

Require: dy,.x € {1,d} the maximum number of feature to consider per split.
Require: L,,,x < n the maximum number of leaves

1: function TRAINKAURI(D, Kax, dmaxs Limax)
2: Kk + (p(D), ¢(D)) > Kernel value of samples, n X n
3 Initialise Z and Y’ > All samples in one leaf, leaf belongs to only one cluster
4: Initialise the tree structure in Tree.
5: Leaves - List(0) > Only one starting leaf to explore
6: AL < 0 > Last gain value
7 BestSplit < () - > The best split proposal
8: while Leaves # ) A |Tree| < Lypax A AL > 0do
9: AL+ 0 > Best split achieved so far
10: A« Zk > Compute o (N, x {j})
11: w<+ YA > Compute o (Cy, x {j})
12: y+—wZ'YT > Compute o (Cx, X C/)
13: ICk| <Y Z1, > Sizes of clusters
14: for p € Leaves do
15: N, «{i|Z;; == 1} > Find the indices of leaf p
16: k < argmax,, Y/ , > The current cluster of leaf p
17: for f < 11to dpyax do
18: v < Argsort({z;|i € Np})
19: AL, split < FINDBESTSPLIT(VN, j, v, k, A, w, 7, |Ckl, k)
20: if AL > AL then
21: AL+ AL
22: BestSplit < split U (p, f) > Add node and feature information to the
best split
23: end if
24: end for
25: end for
26: if AL > 0 then
27: Remove the best leaf from the list Leaves and add the children of the split in
Leaves if they satisfy structural constraints.
28: Update Tree using BestSplit
29: Update Z and Y.
30: end if
31: end while
32: return Tree

33: end function

The complete algorithm of Kauri is written in Algorithm 2. We estimate the complexity of the split
search to O(n((L +d)(n+ K) +dL) + L*(d + K)) at worst and O(n(n + K)(d + L) + KL?) at
best, where L is the current number of leaves.
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Figure 6: A dataset proposed by Moshkovitz et al. (2020) consisting in two isotropic Gaussian
distributions and a cluster of two points distant on the y-axis. In order to split optimally the clusters,
a decision tree should start with a y-axis split (solid red line) then use an x-axis split (dashed blue
line) to separate the two Gaussian distributions.

E BENCHMARK PREPROCESSING AND HYPERPARAMETERS

We used standard scaling for all datasets. All categorical variables were one-hot-encoded, except
for the US congressional votes dataset, where we encoded specifically the answer yes as 1, the no as
-1 and the unknown votes as 0. In other datasets, we tossed away all samples that presented missing
values.

All of our runs with Douglas were performed with 200 epochs for a learning rate of 10~2 with an
Adam optimiser. We varied the batch size with 32 for the iris dataset, 64 for the rbeast cancer,
haberman and wine datasets, 256 for avila and poker datasets and finally 128 for the remainder.
In the case of the large datasets avila and poker, we downsized the number of epochs to 50 as the
number of batches was great enough.

The Kauri was unconstrained on most dataset except avila and poker where we restrained the splits
to occur on nodes that had at least 20 samples in order to speed up the training.

F RELATED MOTIVATING EXAMPLES

When trying to motivate their algorithm, Moshkovitz et al. (2020, Figure 2b) create a simple dataset
where the combination of KMeans+Tree would solve the task with excellent accuracy, yet with
non-optimal splits.

This dataset consists in 3 clusters. The first two ones are respectively drawn from N([2,0] T, eI5)
and NV([—2, 0], eI3) with e small enough. The last cluster contains two points located at (—2, v) and
(2,v). We plot in Figure 6 a sample of such dataset for v = 1000.

A decision tree learning from KMeans labels will start by separating the samples along the x-axis.
This non-optimal choice then requires two splits on the left- and right-hand sides to then separate
the Gaussian distributions from the third cluster.

The optimal choice, achieved by ExXKMC as well as Kauri, starts by cutting on the y-axis, separating
thus all Gaussian distributions from the third cluster. A single split afterwards is sufficient for
separating the two Gaussian distributions.

This shows that the explanation quality brought by Kauri can be of better quality for the same
clustering results.
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Table 6: Average ARI scores (std) over 30 runs on small datasets for the pure-NumPy implementa-
tion of the Douglas tree algorithm.

Dataset Breast cancer Haberman Iris Votes Vowel Wine
ARI 0.84 (0.03) 0.00 (0.01) 0.54(0.09) 0.02(0.02) 0.30(0.15) 0.17 (0.09)

Table 7: ARI scores gq (greater is better) of Kauri, Douglas and other methods after 30 runs on
random subsamples of 80% of the input datasets. All models are limited to finding 4 times more
leaves than clusters.

Dataset Kauri KMeans+Tree ExKMC

Avila 0.040.00 0.060.01 0.060_01
Cancer 0.860.02 0.840_03 0.860,02
Car 0-05().06 0-070.06 0.060,()7
Congress 0.500.04 0.560‘04 0.530_04
Digits 0.410.03 0.450.04 0.440.04
Haberman 0.01().05 0.00(),0() 0.000.01
Iris 0.610.03 0.620‘04 0.610_03
Mice 0.1 9().02 0.1 8()_02 0.1 80,01
Vowel 0.1 3().()4 0. 15(),02 0. 170'02
Wine 0.890.03 0.9 10‘03 0.900_03

G PURE NUMPY DOUGLAS PERFORMANCES

We list here in Table 6 the performances of our own pure NumPy implementation of the Douglas
algorithm. Overall, the results are slightly below the average performance of the Pytorch version of
Douglas, except for the Wine dataset where we lost 0.3 points of ARI.

H PERFORMANCES WITH MORE LEAVES THAN CLUSTERS

We run here the exact same benchmark as proposed in section 5.1, except we seek to compare Kauri
with the ExXKMC method. To that end, all trees are now limited to 4 times more leaves than clusters
following the result of Frost et al. (2020). Contrary to section 5.1, the excessive number of leaves
will necessarily imply that multiple leaves might explain a single cluster. We chose then to measure
the WAES because we want to emphasize more the complexity of the explanation of a cluster rather
than the depth of trees. We report the ARI in Table 7 and the WAES in Table 8.

Table 8: WAES scores g q (lower is better) of Kauri and related works after 30 runs on random
subsamples of 80% of the input datasets. All models are limited to finding 4 times more leaves than
clusters.

Dataset Kauri KMeans+Tree ExKMC

Avila 8.29()_32 6.42{)_16 1077013
Cancer 2-490.18 2.770.24 3.200_33
Car 2.000'00 2.050.11 2'050.06
Congress  1.65¢33 24204 2.65029
DigitS 6.260 21 5.74¢.25 9.40¢ 46
Haberman 1.080'18 2.030.23 2.41 0.47
Iris 2.490_20 2.590.25 3.01()‘25
Mice 5.530.23 5.42()_31 7.220_40
Vowel 3.1 00,20 2.850.42 3.61 0.49
Wine 2.720_33 2.870_31 3 .53()_50
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We observed in Table 7 that Kauri often performs on par with EXKMC regarding the clustering
performances. Notably, these performances are close to the KMeans+Tree baseline, except for the
US congressional votes dataset. We also find that we maintain scores with Kauri that are steadily
lower than ExXKMC regarding WAES in Table 8.

To further investigate some differences, we observe in Fig. 7 the differences in WAES scores be-
tween KMeans+Tree, Kauri and EXKMC (Frost et al., 2020). We observe that overall, for a fixed
amount of leaves to use, we obtained explanations with lower WAES scores than EXKMC while
maintaining an ARI that is close to KMeans+Tree.

» 51 7]
e 41
= =
54
24
24
34 T T T T T T T T T T T T T
8 10 12 14 16 18 20 10 12 14 16 18 20
Max number of leaves Max number of leaves
(a) Mice (b) Digits

Figure 7: Explanation scoring with WAES (lower is better) as the maximal number of leaves in-
creases on the mice protein and digits datasets for Kauri (green), KMeans+Tree (blue) and ExXKMC
(red).

I ON MODEL SELECTION

Sllho:etle
Sllh(?;etle
Sllho:etle
Silhouette

0.00 Method 0.00

~~~~~~

4 8 12 4 8 12 4 8 12 4 8 12
Number of clusters to find Number of clusters to find Number of clusters to find Number of clusters to find

(a) Iris (2/2/11) (b) Haberman’s sur- (c) Breast cancer Wis- (d) Mice protein ex-
vival (3/3/2) consin (2/2/4) pression (13/13/13)

Figure 8: Silhouette scores of Kauri and Douglas for various numbers of clusters compared with
the KMeans+Tree algorithm. Selected number of clusters are written in parentheses as (Kauri /
KMeans+Tree / Douglas).

One subsidiary question remains the choice of the number of clusters. In the general context of
discriminative clustering, we cannot benefit from common Bayesian tools such as the Bayesian in-
formation criterion (Schwarz, 1978) or the integrated complete likelihood (Biernacki et al., 2000)
because we cannot define a likelihood. Common tools for model selection with KMeans are the el-
bow method, despite recent critics (Schubert, 2023), the maximum silhouette score or the gap statis-
tic (Tibshirani et al., 2001). The maximum silhouette consists in seeking the number of clusters with
low intra-cluster distance and high inter-cluster distance. The gap statistic consists in comparing the
progressive decrease of a weighted sum of squares against a null hypothesis and selecting the num-
ber of clusters at which the gap suddenly decreases beyond standard deviation bounds. We ran these
two methods as examples on four datasets and summarised the results in the figures § and 9. We only
computed the gap statistic for the Kauri method since running bootstrap estimates of the required
weighted sum of squares for Douglas was too time-consuming. We compared the algorithms with
the performances of the combination KMeans+Tree.
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Figure 9: Gap statistic curves of Kauri various numbers of clusters compared with the KMeans+Tree
algorithm. The selected number of clusters are written in parentheses as (Kauri / KMeans+Tree). We
wrote ? when we were unable to determine a relevant gap within the limit of one standard deviation.

To compute the gap statistic in model selection (Tibshirani et al., 2001), the central element to
compute is the weighted sum of squares (WCSS) defined as:

Z Z |lz; — ;113 (50)

1,J€Cy

A natural extension to compute this WCSS in the kernel KMeans is to switch from the usual Eu-
clidean space to a Hilbert space . Then, we need to use the kernel trick to properly compute
WCSS:

22|C | Z K(Zi, x;) + (x5, 25) — 26(Z;, x5). (1)
1,j€Ck
However, that last equation is in fact equivalent to the subtraction of the data kernel and the objective
function of Kauri as shown in the section B.2. We deduce:

Wi =0(DxD)-L. (52)
We can therefore use the gap statistic to select models with Kauri.

Our first main observation from both figures is that the Kauri algorithm follows very well the curves
from the combination KMeans+Tree, therefore it seems reasonable to expect model selection meth-
ods to perform equally well with KMeans or Kauri in general. Our second observation is that apart
from the mice protein dataset where all methods agreed with Silhouette scores to the same number
of clusters (Fig. 8d), the number of clusters is often close or equal to the number of classes, except
for Douglas on the iris dataset which Silhouette scores spiked at 11 clusters. However, the selection
with the gap statistic was not as successful because we did not get any clear gap decrease apart from
the Haberman’s survival dataset (Fig. 9b) where the number of clusters is far from the number of
classes. This is as well a good reminder that the number of classes is not necessarily the optimal
number of clusters, an ill-defined concept.
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