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ABSTRACT

Similarity is a key construct in psychology, neuroscience, linguistics and com-
puter vision. Similarity can manifest in various forms, including visual, semantic,
and contextual similarity. Among these, semantic similarity is particularly impor-
tant. Not only it serves as an approximation of how humans categorize objects by
capturing connections and hierarchies based on shared functionality, evolutionary
traits, and contextual meaning, but also offers practical advantages in computa-
tional modeling via the lexical structures such as WordNet. Unlike human polls,
WordNet-defined similarity is constant and interpretable, making it an important
baseline for evaluation. As in the domain of deep vision models there is still a
lack of a clear understanding about the emergence of similarity perception, we
introduce Deep Similarity Inspector (DSI). It is a systematic framework to inspect
and visualize how deep vision networks develop their similarity perception during
training and how it aligns with semantic similarity. Our experiments show that
both Convolutional Neural Networks’ (CNNs) and Vision Transformers’ (ViTs)
develop a rich similarity perception during learning with 3 phases (initial simi-
larity surge, refinement, stabilization), while clear differences are found in their
dynamics. Both CNNs and ViTs, besides the gradual mistakes elimination, im-
prove the quality of mistakes being made (the mistakes refinement phenomenon).

1 INTRODUCTION

Similarity is studied in psychology and neuroscience to understand human categorization. The cog-
nitive economy principle (Rosch & Lloyd, 1978) suggests that similarity perception, evolving over
time (Medin et al., 1993), minimizes effort and finite cognitive resources. Another principle (Rosch
& Lloyd, 1978) highlights that real-world objects have high correlational structure, making simi-
larity a natural and intuitive basis for categorization. Notions of similarity vary, including visual
and semantic ones. While semantic similarity is central to linguistics, it also plays a key role in vi-
sion and perception, explaining how humans categorize and relate objects through shared attributes,
evolutionary traits, appearance, function, or context.

Similarity has also sparked interest in computer vision, mainly to make networks learn represen-
tations aligning better with human judgments or semantic similarity (Bertinetto et al., 2020; Bilal
et al., 2017; Chen et al., 2020; Caron et al., 2021). While enforcing similarity is common, we argue
that it is underexplored how and how well networks naturally develop similarity perception. As the
visual world’s correlated structure may be a sufficient reinforcement (Rosch & Lloyd, 1978), such
evaluation would be an important contribution to the field of model evaluation and explainability.

While similarity/hierarchy-based performance evaluation initially sparked some interest, the atten-
tion shifted to basic accuracy in pursuit of performance gains (Russakovsky et al., 2015; Bertinetto
et al., 2020). Recent limited studies (Huang et al., 2021; Bilal et al., 2017; Bertinetto et al., 2020)
revisited using confusion patterns and templates from large-scale datasets to analyze how networks
infer similarity. Nevertheless, they only presented a very limited view by examining only Con-
volutional Neural Networks (CNNs) and ignoring Vision Transformers (ViTs). Aside from minor
qualitative assessments (Huang et al., 2021), no quantitative and systematic similarity-based model
evaluation framework for during training analysis exists. None of the works simultaneously uses two
complementary (Medin et al., 1993) approaches to similarity estimation (direct, indirect). Lastly,
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they are based only on a functional approach to similarity estimation (using large-scale datasets),
rather than a possible structural approach (Mopuri et al., 2020; Filus & Domanska, 2023).

Motivated by these significant gaps and the crucial role of similarity in categorization, we propose
a framework called Deep Similarity Inspector (DSI) for inspection and visualization of deep vision
networks’ training from the perspective of similarity perception and numerous numerical measures.
It represents a significant departure from the available, predominantly qualitative, approaches, of-
fering a more systematic and scalable solution. We use it to provide novel insights on how networks
learn to recognize objects and how their perception changes during training, contributing to a better
understanding of their knowledge and representations development. This contributes significantly
to the domain of model evaluation. The fact that our framework enables better understanding of
the processes behind the model’s learning, makes our work contribute to the field of explainable
artificial intelligence. Our key contributions are: (1) Definition and implementation of a systematic
framework for comprehensive vision networks’ training examination from the similarity perception
perspective. (2) Formulation of convenient numerical metrics to examine how network’s percep-
tion is developed during training, and aligns with semantic similarity. Using all the direct, indirect,
functional and structural approaches to similarity measurements. (3) Thorough examination and
comparison of the training process of CNNs and ViTs from the perspective of the perceived similar-
ity and its alignment with semantic similarity. We provide our implementation and reproducibility
details in Supp. Mat. and our partial results at https://zenodo.org/records/13860285
(GitHub upon acceptance).

2 RELATED WORK

Similarity is crucial to human categorization and computer vision (Tang et al., 2017; Nayak et al.,
2019; Muttenthaler et al., 2023; Chen et al., 2020), and is a broad concept with different notions
Veit et al. (2017), e.g. visual similarity, feature similarity (comparing data points representations
learned by networks, e.g. (Kornblith et al., 2019)), contextual similarity (it accounts e.g. for spatial
relationships (Shi et al., 2019)), adversarial similarity (similarity under adversarial setup (Elsayed
et al., 2018; Filus & Domańska, 2024)) and semantic similarity (Pedersen et al., 2004). Vision re-
search focuses mainly on creating training schemes that incorporate different kinds of similarity and
hierarchy into networks, e.g. via hierarchy enforcement (Bertinetto et al., 2020; Bilal et al., 2017) or
contrastive representation learning (Chen et al., 2020; Caron et al., 2021; He et al., 2020). Different
sources of similarity are used as a reference for the neural representations alignment: e.g. human
judgments (Muttenthaler et al., 2023; Roads & Love, 2021) or semantic similarity (Bilal et al.,
2017). While these efforts undeniably try to explicitly force neural networks to better align similar-
ity, we focus on examining ”to what extent perception of deep vision networks trained with standard
procedures aligns with semantic similarity naturally (with NO enforcement) during training?”. We
use semantic similarity as a reference, because human-based judgements are very data-dependent
(unique high-volume judgements needed for every dataset), limiting their applicability. By this, we
enabled creation of a more general similarity-focused framework that can operate with numerous
datasets and problems, while still providing an important reference of how similarity can be per-
ceived (semantic similarity is based on shared functionalities, appearance, evolutionary traits, or
contextual usage - all impacting also visual similarity). Answering the stated questions is essential
to reveal how important similarity is to the operation of networks due to the natural relationships
between visual and semantic similarities (Deselaers & Ferrari, 2011). The works that explicitly ex-
amine whether the perception of networks aligns with semantic similarity are (Bilal et al., 2017) and
(Huang et al., 2021). They both performed the analysis only for CNNs, therefore the analysis and
comparison of similarity perception with Vision Transformers remain absent. They focused mainly
on examining trained networks (Huang et al., 2021) based on confusion matrices or extracted fea-
tures (we propose to use an image-free approach). Although researchers acknowledge that confusion
patterns connect somehow to similarity (Deng et al., 2010; Bilal et al., 2017; Jere et al., 2019; Filus
& Domanska, 2023) (also under the adversarial setup (Elsayed et al., 2018; Mopuri et al., 2020)),
they do not thoroughly examined this connection. Also, available works focus on qualitative meth-
ods and not quantitative ones. While they draw attention to the topic, they only touch its very surface
and do not show how modern networks develop similarity perception and how it affects their pre-
dictions. No adequate and systematic framework for similarity-based testing is available up to this
day that could be efficiently used during training. That is why, we introduced such a framework and
provide observations on how networks perceive and develop similarity perception.
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3 DEEP SIMILARITY INSPECTOR FRAMEWORK

Deep Similarity Inspector (DSI) is a framework proposed to enable effective inspection and visu-
alization of the learning process of deep vision networks for object recognition from the perspective
of similarity perception. Its unique characteristics are that (1) it uses simultaneously the direct and
indirect similarity estimates, as well functional and structural approaches, (2) its focus is on numeri-
cal analysis methods to quantitatively describe the similarity perception of deep vision networks and
its alignment with reference similarity (human-based similarity, expressed via WordNet semantic re-
lations), but also uses qualitative methods. Due to the efficiency and the compliance of the proposed
methods with the existing training procedures, the proposed framework and its provided implemen-
tation, can be used to investigate the networks both during and post training. Below, we define the
core data structures and methods of the framework (see Appendix L for in depth description).

Data structures A core framework’s data structure is a Class Similarity Matrix (CSM). Let C =
{c1, c2, . . . , cN} be the set of classes in a given dataset D with N classes on which a given model
M is being trained. CSM is an N ×N matrix that stores the pairwise similarities between classes.
Each element CSMij of the matrix quantifies the similarity between classes ci and cj (CSMii = 1,
in our analysis, diagonal is excluded). Using this basic notion of a CSM, we can define its 3 variants:

• Network Class Similarity Matrices (NCSMs) - it represents a direct and structural ap-
proach to similarity estimation from the perspective of M. To obtain this matrix, we use
the learned class representations from a final classifier of a deep network M (Mopuri et al.,
2020; Nayak et al., 2019) (previously used for knowledge distillation and adversarial test-
ing). Each neuron c of the classification layer corresponds to one of the classes - c. A
vector wc of weights connecting neuron c to the penultimate layer can be treated as a class
template (learned representation in this layer’s feature space) of class c. wc is represented
as wc = [wc1, wc2, . . . , wcn], where each wci corresponds to the weight connecting the c-th
neuron to the i-th neuron in the penultimate layer. Similarity between templates of classes
i and j can be computed with cosine similarity (CS): CS(i, j) =

wT
i wj

||wi||||wj || . Computing
the similarities between all N class pairs and scaling them to range ⟨0, 1⟩ for numerical
comparisons (for visualizations, we use raw values in range ⟨−1, 1⟩), results in the NCSM.
In contrast to more standard similarity estimation approaches, we do not need any test data
to obtain similarity, making the method significantly faster than the approach based on data
samples (Huang et al., 2021) or confusion matrices (Bilal et al., 2017).

• Confusion-based Class Similarity Matrices (CCSMs) - it represents an indirect or func-
tional approach to similarity estimation from the perspective of M. Let CM be the confu-
sion matrix, where CMij is the number of instances of class ci that are classified by M as
class cj . CM is an N ×N matrix. To create a CSM from CM, we first normalize each
row of CM (each row sums to 1), and then fill the diagonal with value 1. This results in a
CCSM. CCSM is the only CSM used in our experiments that can be asymmetric, mean-
ing that CSMij ̸= CSMji in general. The reason is that the confusion between class ci
being classified as class cj may differ from class cj being mistaken as class ci.

• Semantic Class Similarity Matrices (SCSMs) - it is a similarity reference used by our
framework. Semantic relations approximate collective human similarity judgments, as they
capture structured connections that humans intuitively recognize (common functionality,
appearance, evolutionary traits). Semantic similarity is a relation between terms with a
similar meaning (Kolb, 2009). Semantic similarity can be measured e.g. via WordNet
(Miller, 1998) similarity measures (Pedersen et al., 2004; Leacock & Chodorow, 1998;
Wu & Palmer, 1994). We use path similarity in our study, as according to (Kolb, 2009),
it outperforms other measures in terms of correlation with human judgement of seman-
tic relatedness. We use WordNet’s rich semantic relations over human judgments, as its
large lexical database better supports generalization across different datasets, increasing
the chance of finding relevant representations. The advantages of WordNet path similar-
ity are also its clear formulation, a consistent score due to derivation from a fixed lexical
database and an objective and systematic approach to defining relationships. By computing
the similarities between all categories in D (expressed via WordNet nodes), we obtain the
WordNet CSM (WNCSM), which is a special case of a SCSM (see computation method
in Appendix B).
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Core methods Using different CSMs, we construct a set of key methods of our framework.

• Visualization of CSMs - a qualitative method for graphical inspection of how the similarity
perception and hierarchy look. While SCSMs are constant in time, both the NCSMs and
CCSMs measured at different training steps (after each epoch) can be used to visualize how
the perception changes with time and how is developed from the beginning of the training
to its end. In the paper, we present some chosen matrices (measured after epochs 1, 5, 25
and 200), however the matrices for all epochs can be used to create a full animation of the
similarity development during training.

• Similarity Alignment Index (SAI) Curves - Similarity Alignment Index (SAI) measures
to what degree 2 Class Similarity Matrices are similar, thus how two different similar-
ity perceptions are aligned. Let CSM1 and CSM2 be 2 matrices of size N × N . The
first step is to exclude the diagonal elements from both matrices: CSM′

1 = CSM1 −
diag(CSM1),CSM′

2 = CSM2 − diag(CSM2). The second step is to Normalize the
remaining elements of both matrices to the range ⟨0, 1⟩. After applying these modifi-
cations, the two matrices can be compared with a chosen similarity measure and obtain
SAI(CSM1,CSM2). We chose Cosine Similarity due to its frequent usage for high-
dimensional data. We name the plots of SAI as a function of a number of epoch as Similar-
ity Alignment Index (SAI) Curves. They allow to observe how the similarity perception
of a given network changes during training. Below, we define possible SAI variants:

– SAI(NCSM, SCSM) - measures the alignment between the direct similarity percep-
tion of a network with the semantic similarity. Due to an expected dense structure of
Network- and WordNet CSM variants, we also use Structural Similarity Index (SSIM)
(Wang et al., 2004). It focuses on capturing structural information (changes in lumi-
nance, contrast, and correlation) to model human visual comparison. Cosine similar-
ity and SSIM are better matched to asses visual quality than distance measures (Mean
Squared Error, Mean Absolute Error) (Wang & Bovik, 2009), but we also provide their
results in Appendix C. SAI(NCSM, SCSM) examines how well a network’s similarity
perception corresponds to semantic similarity, indicating if its understanding of rela-
tionships aligns with semantic reasoning. Low SAI(NCSM, SCSM) values suggest
that a network’s perception does not align with semantics, while its high values imply
they lie close to each other. Changes in SAI indicate whether a network’s perception
aligns with semantic similarity during learning or deviates from it, suggesting the use
of more machine-like reasoning for categorization.

– SAI(NCSM, CCSM) - measures to what extent the direct similarity perception of
a network aligns with its indirect perception. SAI(NCSM, CCSM) evaluates how
well a network’s similarity perception aligns with its own mistake patterns, aiming
to determine if the network’s errors are predictable and stemming from perceived
similarity. Indirect and direct perception should be as similar as possible to obtain
predictable mistakes (predictable means mistakes between highly similar classes).

– SAI(CCSM, SCSM) - measures to what extent the indirect similarity perception of a
network aligns with semantic similarity. It assesses how closely the network’s mistake
patterns align with semantic similarity, indicating whether its errors make sense from
a semantic perspective. Better alignment means more reasonable errors.

• Inverse Dissimilarity Metric (IDM) Curves - Dissimilarity Metric is a metric introduced
in work (Filus & Domanska, 2023) primarily for the assessment of the damage caused by
adversarial attacks. It can be interpreted as the mean similarity shift between the ground
truth label and the post attack label. In this work, we generalize it to a variant that computes
the mean similarity shift between the ground truth label and the predicted label. We also
propose to use an inverse version of this metric as an extension of accuracy assessment (the
metric takes higher values when accuracy increases or/and when the mistakes are closer
in a given Class Similarity Matrix to the ground truth). The metric can be computed as
follows. To generate the standard DM values, a given CSM is used. Each row is sorted
in a descending order and a matrix with ids of the classes belonging to the particular simi-
larity values is obtained - Sorted Class Similarity Matrix (SoCSM). Each c-th row stores
classes with the decreasing similarity values for the c-th class. For each sample, we take the
ground truth label i and the prediction j. We check in the SoCSM at which index label j is
placed in the i-th row. The larger the index is, the more dissimilar the label is to the ground
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truth. As our target is to use DM for accuracy inspection, we transform it to obtain the
Inverse variant: IDM = 1−DM . Along with IDM, we use a variant that considers only
the cases in which a given network returned an incorrect prediction (IDM’s errors only
variant). This can be approximated as DM

1−accuracy . Plotting the IDM value as a function of
the epoch number shows how the accuracy and the mistakes being made change in relation
to similarity. Depending on which CSM is used to obtain the SoCSM, we define:

– Network-based IDM (NIDM) - The inverse version of the original DM metric pro-
posed in (Filus & Domanska, 2023). It uses Network CSM to measure the similarities
between classes. It measures how accurate is the network in relation to similarly-
preceived classes. The errors-only variant allows to measure whether the network’s
similarity perception and the mistakes made are connected, and to what extent this per-
ception impacts the mistakes. This is a more local approach than SAI(NCSM,CCSM).
Increasing NIDM suggests that the network starts to make mistakes between cate-
gories it perceives as increasingly similar.

– WordNet-based IDM (WIDM) - it is our proposed modification of DM. Instead of
NCSM, it uses WCSM, therefore it can be treated as a semantic version of DM. It can
be interpreted as follows: how accurate is the network (even if it makes mistakes) in
terms of semantic similarity. The errors-only variant allows to focus on the semantic
similarity of the mistakes made. Increasing WIDM suggests that the network starts to
make mistakes between categories that are increasingly semantically similar.

• Weights Similarity Index (WSI) Curves - Weights Similarity Index (WSI) is a mean of
some particular elements of a NCSM. Depending on which values are used to calculate
it, the index describes a different aspect of the network’s similarity perception. These can
be computed after each training step and then used to plot the WSI Curves. Below, we
formulate and interpret different variants of WSI:

– Mean WSI - The Mean WSI WSIµ is computed as the mean value of
all elements in the upper triangle of the similarity matrix: WSIµ =

2
N(N−1)

∑N−1
i=1

∑N
j=i+1 NCSMij . Its curves show how the similarity of weights

changes overall. If it increases, it means that the representations of classes are pulled
towards each other, and in the opposite case - pushed away from each other.

– Max WSI - it represents the mean maximum similarity of classes. For each class i,
let S≥Qi(0.95)(i) represent the set of similarities that are larger or equal than the quan-
tile 0.95, excluding self-similarity (Sii). Max WSI is the mean value of the averaged
similarities for each class i: WSImax = 1

N

∑N
i=1

1
|S≥Qi(0.95)

(i)|
∑

j∈S≥Qi(0.95)
(i) Sij .

This index’s curves represent how the similarity of classes perceived as the most sim-
ilar by a given network changes (this can be treated as an index of changes in the
local similarity of classes). Increases suggest discovering highly similar classes (pulls
towards each other their representations).

– Min WSI - it represents the mean similarity of the most dissimilar elements for each
class. For each class i, let S≤Qi(0.95)(i) represent the set of similarities that are less
or equal than the quantile 0.05. Min WSI is the mean value of the averaged similar-
ities for each class i: WSImax = 1

N

∑N
i=1

1
|S≤Qi(0.95)

(i)|
∑

j∈S≤Qi(0.95)
(i) Sij . This

index and its curves represent how the networks learns that some classes are highly
dissimilar (pushes away their representations).

4 EXPERIMENTS

In our experiments, we examine the similarity perception of 2 standard CNNs (ResNet18 (He
et al., 2016), MobileNetV2 (Sandler et al., 2018)), 1 CNN modernized with ViT-inspired techniques
(ConvNeXt-T (Liu et al., 2022b)), 2 ViTs (ViTB (Dosovitskiy, 2020), SwinV2T (Liu et al., 2022a))
and 1 hybrid model (attention blended with convolutions - MaxViTT (Tu et al., 2022)). They rep-
resent older and more recent state-of-the-art models. In the main body of the paper, we experiment
with the Mini-ImageNet (Vinyals et al., 2016) dataset, which is a version of an original ImageNet
(Russakovsky et al., 2015) with 100 classes consisting of leaf-only categories. In Appendix A,
we describe these elements in more detail. We also present further numerical results obtained on
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Mini-ImageNet (App. C), CIFAR100 (App. D) and some additional qualitative results obtained for
CIFAR10, ImageNet-1k and COCO 2017 as a proof of generalizability of our findings (App. F).
The aim of our experiments is to answer the following research questions:

RQ1: How does the network’s direct similarity perception change during training for CNNs and
ViTs? Is it in line with semantic similarity?

RQ2: To what extent do the confusion patterns of CNNs and ViTs match their similarity percep-
tion during training?

RQ3: To what extent do the confusion patterns of CNNs and ViTs match the similarity patterns
of the semantic similarity during training?

4.1 HOW DOES THE NETWORK’S SIMILARITY PERCEPTION CHANGE DURING TRAINING FOR
CNNS AND VITS? IS IT IN LINE WITH SEMANTIC SIMILARITY?

We examine the Weights Similarity Index (WSI) Curves to see how inter-class similarities change
during training (Fig. 1). For the majority of networks, mean similarity slightly increases at the
beginning of training to quickly decrease toward the negative cosine similarity (minimum values
close to 0, suggesting the network’s pursuit to achieve orthogonality). 2 standard CNNs behave
significantly different from other models (ResNet18, MobileNetV2) with Mean WSIs growing in a
logarithmic fashion with values close to 0 (see the results for 2 more CNNs in App. G - they support
the finding that this interesting shape of Mean WSI is characteristic for CNNs and differs them from
ViT and hybrid models). For Max WSI, all networks show an increase at the beginning of training
(reaching a peak at app. 15 epochs for CNNs, and 40 for ViTs). The curves are mirrored with respect
to the x-axis for Min WSI. The results for the hybrid models are closer in terms of the curve shape
to the ones of CNNs and in terms of the final values - to ViTs, showing that hybrid models combine
dynamics of both models. The results suggest the existence of a phase of network’s rapid discovery
of the most similar categories and the most dissimilar categories (an effort to push the first ones to,
and pull the latter from each other). It occurs during the early epochs, when networks obtain low
classification effectiveness. After these initial gains/drops for the Max/Min variants respectively, the
similarities start to decrease/grow, suggesting a 2nd phase, in which the network starts to perceive
differences between similar and similarities between dissimilar classes (suggesting a more fine-
grained look, a deeper data understanding and pursuit of vector orthogonality). After some epochs,
the perception reaches a relative stability (we call it the stability phase).

(a) Mean Weights Similarity (b) Max Weights Similarity

(c) Min Weights Similarity

Figure 1: Mini-ImageNet: Weight Similarity Index (WSI) Curves (descr. inter-class similarities)).
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We now aim to find out whether the similarity perception of CNNs and ViTs is in line with semantic
relations and how it changes during training. In Fig. 2 we present the Cosine- and Structure-based
SAI(NCSM, SCSM). For both variants, a rapid increase in the alignment between the network
and semantic similarity can be observed for all the examined networks. This increase is faster for
CNNs/the hybrid than for ViTs. This matches the 1st training phase observed while analyzing the
WSI plots. It suggests that the dynamic learning of inter-class similarities is due to the actual seman-
tic similarities and highly correlated structure of the world that the network uncovers and learns to
understand (which is in line with the categorization principles from cognitive psychology presented
in the introduction). Again, after this initial growth, the alignment slightly decreases (suggesting the
similarity perception ’refinement’) with visible ’bumps’ in the curve (we analyze why do they occur
in Appendix I) to practically stabilize in the later epochs (slightly earlier for CNNs/the hybrid than
for ViTs). After reaching its plateau, the alignment persists to be higher for ViTs than for CNNs/the
hybrid. We support these numerical results with visualizations of NCSMs for the 1st, 5th, 25th and
200th training epochs for 2 models in Fig. 3. We also present the reference WordNet matrix in Fig.
B.1 in Appendix B. It is again visible that while the presented CNN (ResNet18) has already devel-
oped a clear hierarchical structure matching the one of WordNet after only 5 epochs, this structure
is still barely visible for SwinV2 at that time. Nevertheless, after 25 epochs, both models present it.

(a) Cosine Similarity (b) Structural Similarity

Figure 2: Mini-ImageNet: SAI(NCSM, SCSM) Curves (network-semantic similarity alignment).

(a) ResNet18 (1) (b) ResNet18 (5) (c) ResNet18 (25) (d) ResNet18 (200)

(e) SwinV2 (1) (f) SwinV2 (5) (g) SwinV2 (25) (h) SwinV2 (200)

Figure 3: Mini-ImageNet: NCSMs of ResNet18 and SwinV2 (epoch number in brackets).

It can be noted here, that the highest gains in accuracy and loss optimizations happen in the first
50-100 epochs (accuracy and loss curves in Fig. B.2 of Appendix B), thus this phase is longer than
the phase of the highest gains in the similarity optimization (app. 25 epochs). This suggests that
the network’s discovery of the inter-class similarity is responsible for the initial high gains in the
performance, while the similarity refinement phase corresponds to the second part of the highest
accuracy/loss gains. The drops in the SAI curve, imply the emergence of other semantic relations in
networks not captured well in WordNet (physical proximity, meronymy, containment, etc.) proven
to exist in the trained networks (Bilal et al., 2017). This drop can be also caused by pulling the most
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similar classes’ templates from each other to minimize the mistakes between them by focusing on
their differences (visible in Fig. 1) and maximizing the task-specific performance.

(a) ResNet18 (1) (b) ResNet18 (5) (c) ResNet18 (25) (d) ResNet18 (200)

(e) SwinV2 (1) (f) SwinV2 (5) (g) SwinV2 (25) (h) SwinV2 (200)

Figure 4: Mini-ImageNet: CCSMs of ResNet18 and SwinV2 (epoch number in brackets).

4.2 DO THE CONFUSION PATTERNS MATCH SIMILARITY PERCEPTION DURING TRAINING?

To answer this question, we start with the visualizations of CCSMs (see Fig. 4). It is visible that
after some epochs, CCSMs start to reflect a similar box-diagonal structure as NCSMs shown in
Fig. 3. This structure is less dense than the one of NCSMs. It also needs more epochs to be
clearly developed, e.g. for the 5th epoch of the ResNet18, confusion (thus the indirect similarity
estimations) can be observed even out of the basic-level categories (see the off-diagonal ’noise’
and visible vertical ’stripes’ in the CCSMs). It suggests that while the networks quickly learn the
similarities between categories, they need more epochs to align their mistakes with their similarity
judgements, e.g. via improving on more ’atypical’ or ’difficult’ samples.

Figure 5: Mini-ImageNet: SAI(NCSM, CCSM)
(network’s similarity-mistakes alignment).

To further examine how the errors align
with the network’s perception, we present the
SAI(NCSM, CCSM) curves in Fig. 5. The
plot shows that both similarity perception esti-
mates (direct - NCSM, indirect - CCSMs) align
closely, peaking around the 25th epoch. The
fact that confusion-based CSMs have a sparser
structure than NCSMs (visible when we com-
pare CCSMs in Fig. 4 and NCSMs in Fig. 3)
results in lower SAI values. The behavior of
the ViT-CNN hybrid and the ViT-inspired CNN
lie very close to each other. The curves of
CNNs are initially steeper than for ViTs. Then,
an alignment decrease occurs and stabilization.
The decline is caused mainly by the smaller number of network’s mistakes (we now examine further
this drop).

In Fig. 6, we provide the plots of the Network-based IDM Curves. These plots can be used to analyze
the mistakes being made by networks more locally (how distant are the predictions being made in
the perceived class space from the ground truth). The basic IDM plot confirms the previous results
and shows that the network quickly starts to predict classes from the closest perceived neighborhood
of a given class (thus its decisions are guided by its similarity perception). The plots reach their peak
and align after around 100 epochs for all the examined networks. Surprisingly, the errors-only IDM
reveals that after reaching its peak, the IDM values slightly drop, indicating the network is making
errors between categories it perceives as less similar. The reason can be the following. The network’s
accuracy is already high then, having eliminated more ’obvious’ mistakes. It is now tackling more
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(a) All (b) Errors only

Figure 6: Mini-ImageNet: Network-based IDM (Inverse Dissimilarity Metric).

(a) All (b) Errors only

Figure 8: Mini-ImageNet: WordNet-based IDM (Inverse Dissimilarity Metric).

challenging and less typical samples, or even potential noise from mislabeled data (we elaborate on
it in App. H). Despite the drop, networks still confuse classes perceived as relatively similar.

4.3 DO THE CONFUSION PATTERNS OF CNNS AND VITS MATCH SEMANTIC SIMILARITY
DURING TRAINING?

Figure 7: Mini-ImageNet: SAI(CCSM, SCSM)
(mistakes-based& semantic similarity alignment).

To answer this question, we use the Similar-
ity Alignment Index Curve for the Confusion-
based similarity and the WordNet-based simi-
larity - SAI(CCSM, SCSM) as a more global
measure, and WordNet-based IDM as a more
local measure. In Fig. 7, we present the
SAI(CCSM, SCSM) curves. The figure shows
that not only do the confusion patterns ap-
proach patterns reflecting similarity, but also
they approach patterns reflecting the seman-
tic relations. The rapid growth in alignment
also includes the first epochs of training, peak-
ing around the 25th epoch, and then either de-
creases and stabilizes or immediately reaches
stabilization. Furthermore, the initial rapid growth of both the Network-based and WordNet-based
SAI variants is yet another, now indirect, proof that the network’s similarity perception partially
aligns with the semantic similarity in the very beginning of the training. The results of the WordNet-
based IDM (see Fig. 8) also align with these results. For the general variant, a rapid increase in the
early epochs can be noticed, followed by a quick stabilization at a high level (app. 0.9 or more). For
the errors-only variant, it is visible that the mistakes initially tend to become semantically related to
the ground truth, peaking before slightly declining (to a relatively high level of app. 0.75). The re-
sults also show that although the TOP1 accuracy is low in the early training, the IDM plots show that
on average the networks are already very semantically close to the ground truth prediction showing
a relatively good quality of a classifier (semantically ’reasonable’ decisions).

9
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5 DISCUSSION, LIMITATIONS, CONCLUSIONS

Discussion The analysis performed in this study allowed us to observe some interesting phenom-
ena about the behavior of vision networks during training on natural datasets. The result show that
CNNs and ViTs develop a rich and hierarchical similarity perception during the course of training
for standard object recognition. Similarity perception emerges very early in training. This pro-
cess is significantly more dynamic for CNNs/hybrid models than ViTs. CNNs develop similarity
perception rapidly and then refine it more dynamically after reaching their peak. ViTs take longer
to mature their similarity perception, but once achieved, it is maintained more consistently. Using
hybrid models results in the blending of both architecture features. Nevertheless, the overall dy-
namics of the changes in the similarity perception are similar for both architectures and 3 phases of
similarity development during training can be drawn: (1) Initial Similarity Surge - models rapidly
discover similarities and dissimilarities between categories.; (2) Similarity Refinement Phase - mod-
els discover dissimilarities between similar classes and push them from each other, while finding
relations between less similar categories.; (3) Similarity Stabilization Phase - the similarity percep-
tion becomes steady and networks focus on further elimination of mistakes Our results also show
that both CNNs and ViTs make improvements in the quality of their mistakes, which we call the
mistakes refinement phenomenon. It is particularly evident in the first phase of similarity perception
development, in which the mistakes tend to show greater similarity to the ground truth.

Limitations Although our framework uses both direct and indirect estimations, CCSMs provide
only simplified similarity structures. While this can be enough for some tasks, for tasks that re-
quire denser class similarity matrices, the network-based (structural) approach can be used instead
(rich representation, no samples). Different implications of similarity could be also examined apart
from the examined ones, e.g. connected to adversarial robustness (we present some quantitative and
qualitative results regarding this aspect and comment on the possibility of using adversarial samples
as an extension of our framework in App. K). We focused on object recognition networks trained
with a standard procedure on ImageNet. This could limit the generalizability of our findings. To
mitigate it, we provided additional results obtained for different datasets and networks trained on
different supervised tasks in Appendices D and F. We also described how to extend our framework
to consider networks trained on self-supervised tasks and text-image data and presented some qual-
itative and quantitative results for DINOv2 Oquab et al. (2023) and CLIP Radford et al. (2021) in
App. J. We focused on relatively accurate networks, and ignored networks struggling to learn. To
mitigate it, and provide additional insights, we compare a “good” and a “bad” ViT in Appendix E.
Although differences in their perception occur, the results show that similarity is important even for
models performing poorly in their task. While we did not analyze the impact of network capacity,
initialization, or training nuances, the consistent results observed across different networks, training
paradigms, and datasets demonstrate the robustness of our findings.

Conclusions We introduced a systematic framework for inspection of the training process of deep
vision networks from different similarity perspectives and numerous qualitative and quantitative
methods. The results highlight the crucial importance of similarity for the categorization of deep
vision networks. They support the categorization principles from cognitive psychology, which sug-
gest that the similarity perception evolves over time, revealing the structured and correlated nature of
real-world similarities. The emergence of this perception reflects a natural and optimal/suboptimal
use of available finite resources of a system. Our framework and the gathered insights provide
valuable contributions not only to the field of explainable artificial intelligence by enhancing the
understanding of model decision-making and learning processes, but also to the field of model eval-
uation with possible practical implications. The results suggest that similarity perception impacts
the learning performance, mistakes being made and even adversarial robustness. It can be possibly
used in other fields of deep learning outside of vision as well. We anticipate that comparable simi-
larity structures can also be observed and used in the training of language models, audio processing
models, and, in the next step, also in the training of classification models for use in e.g. autonomous
vehicles. We hope that our study will prompt the community to dig deeper into these topics and use
our insights to propose e.g. new training similarity-related schemes (e.g. loss functions based on
similarity metrics). We will also focus on it in our future work. Only by understanding the operation
of deep neural networks, we will be able to fully use their potential.
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Reproducibility Statement To ensure reproducibility, we provide the implementation of our
framework at https://zenodo.org/records/13860285 and also in the Supplementary
Materials for this submission. We also attach there the configuration files of the models used in our
study (they contain the necessary parameters, the defined architectures, the random seeds etc.). We
also attach the partial results used to generate the final results (plots, matrices etc.) for the study. We
will release all of these materials as a GitHub repository upon acceptance. We also provide some
more details for reproducibility in the Appendices.

REFERENCES

Luca Bertinetto, Romain Mueller, Konstantinos Tertikas, Sina Samangooei, and Nicholas A Lord.
Making better mistakes: Leveraging class hierarchies with deep networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12506–12515, 2020.

Alsallakh Bilal, Amin Jourabloo, Mao Ye, Xiaoming Liu, and Liu Ren. Do convolutional neural
networks learn class hierarchy? IEEE Transactions on Visualization and Computer Graphics, 24
(1):152–162, 2017.

Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python: analyzing
text with the natural language toolkit. ” O’Reilly Media, Inc.”, 2009.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
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A DATASETS AND MODELS USED IN THE STUDY

A.1 DATASETS USED IN THE STUDY

In the main part of our paper, we use Mini-ImageNet (Vinyals et al., 2016). It is a version of
ImageNet (Russakovsky et al., 2015) with 100 classes randomly chosen from the original dataset.
ImageNet and its versions are well suited for the similarity related research, as they were created
based on the semantic hierarchy of WordNet (Miller, 1998). While original ImageNet included both
the internal and WordNet leaf nodes, ImageNet-1k (Russakovsky et al., 2015) and Mini-ImageNet
(Vinyals et al., 2016) consist of only leaves. This results in ImageNet-1k and Mini-ImageNet not
including any built-in hierarchy due to their labels being at one hierarchy level, and not different
hierarchy levels (as happens for the original version). Therefore, smaller ImageNet versions are
suitable for studying how vision networks represent complex information hierarchies and the sim-
ilarity between their concepts. Their direct connection with WordNet eliminates any ambiguities
caused by the ambiguity of text labels of many other data sets for which the WordNet IDs are not
given. Moreover, they are both current and important benchmarks in computer vision.

CIFAR100 (Krizhevsky et al., 2009) is a dataset of a similar size as Mini-ImageNet, however with
significantly smaller original size of the images (only 32x32 pixels). With its relatively high number
of classes, it is a good alternative to Mini-ImageNet, therefore we use it to examine whether our
observations based on the Mini-ImageNet generalize to other datasets for object recognition.

Additionally, we also use some example models trained on CIFAR10 (Krizhevsky et al., 2009) and
COCO 2017 (Lin et al., 2014). The first dataset is a small version of CIFAR with only 10 classes. Its
classes are also at a more basic-level of the semantic hierarchy than the ones of CIFAR100. COCO
2017, on the other hand, is a dataset that includes the labels for object detection and segmentation,
representing a dataset used for other tasks. It includes 80 different natural categories. We use the
models trained on these datasets to further (qualitatively) examine the generalizability of our findings
(whether the hierarchical similarity structure develops in their NCSMs).

A.2 MODELS USED IN THE STUDY

In our main experiments, we use the following state-of-the-art models: 2 standard CNNs (ResNet18
(He et al., 2016), MobileNetV2 (Sandler et al., 2018)), 1 CNN ’modernized’ with the techniques
from the ViT domian - ConvNeXt-T (Liu et al., 2022b), 2 ViTs (ViTB (Dosovitskiy, 2020),
SwinV2T (Liu et al., 2022a) and 1 hybrid model (MaxViTT (Tu et al., 2022) - it uses an attention
model blended with convolutions). We use their implementations provided via torchvision python
library. They represent older and more recent CNNs and ViTs (and models that use techniques
borrowed from the contrasting architecture). We train all the models from scratch to examine how
they perception of similarity changes during training under the assumption that no knowledge was
present in a given classifier before training. We do not use any techniques to enforce the develop-
ment of similarity perception nor hierarchy, to examine whether these phenomena do and how they
self-emerge in networks trained with standard training procedures. We use standard data augmenta-
tion techniques suitable for a given model architecture: for CNNs, we use Random Resized Crop,
Random Horizontal Flip, Random Rotation, Gaussian Blur, Color Jitter, Random Perspective Trans-
formation and Random Affine Transformation. For ViTs, we also use Cutmix (Yun et al., 2019).
We use a scheduler with a linear warmup and Reduce On Plateau (reproducibility: see our GitHub
repository - supplementary materials and Zenodo during the revision stage - for the specific values
of their parameters and random seeds). We also use some additional models in the additional exper-
iments in the appendices. We provide their names and links to access them in the sections regarding
experiments with these particular models for clarity.

Our experiments were performed on a Linux-based system within a high-powered computer center
computation grid, with 2x GPGPU NVIDIA A100 and 80 GB RAM per task. The average train-
ing time per experiment was approximately 26 hours for 400 epochs. The additional complexity
of computing our new metrics accounted for approximately 0.29% of epoch time computation for
MobileNetV2, and it stayed consistent for other networks as well, making it an insignificant addition
to the total training time.
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B WORDNET REFERENCE MATRICES AND PERFORMANCE METRICS FOR
MINI-IMAGENET AND CIFAR100

In this appendix, we provide the generated WordNet semantic similarity matrices obtained for Mini-
ImageNet (which we use to experiment with in the main paper) and CIFAR100 (used in additional
experiments in Appendix D). We also provide the test accuracy and loss plots for these two datasets
to enable establishing the connection between the similarity and standard performance metrics.

B.1 SEMANTIC CLASS SIMILARITY MATRICES OBTAINED FOR WORDNET AND THE
EXAMINED DATASETS

(a) Mini-ImageNet (b) CIFAR100

Figure B.1: Semantic Class Similarity Matrices (SCSM), precisely the WordNet Class Similarity
Matrices (WCSM) obtained for Mini-ImageNet and CIFAR100. A clear hierarchical structure is
visible for both datasets.

For computing semantic similarity and obtaining Semantic Class Similarity Matrices, we use NLTK
framework (Bird et al., 2009) along with WordNet linguistic taxonomy. The semantic word similar-
ity is computed for each pair of the classes in the dataset as an inverse of the distance of the shortest
path connecting them in linguistic taxonomy (path connecting two words in WordNet taxonomy
tree). This metric can take the values from 0 to 1, where higher values indicate semantically closer
words.

In Figure B.1, we present the computed Semantic Class Similarity Matrices (SCSM), precisely the
WordNet Class Similarity Matrices (WCSM) obtained for Mini-ImageNet and CIFAR100. There
are two main basic-level semantic groups in WordNet: the first one (in the left upper corner of the
matrix) contains different animals, and the second one - artificial objects. In the case of CIFAR100,
the square in the left upper corner also corresponds to different living organisms, while the subse-
quent squares to different subgroups of the artificial objects and formations. Both heatmaps show
the hierarchical nature of the semantic relations in the two examined datasets.

B.2 THE COURSE OF THE NETWORKS TRAINING FROM THE PERSPECTIVE OF STANDARD
METRICS

In Fig. B.2, we provide the plots of testing accuracy and train/test loss curves for both the examined
datasets - Mini-ImageNet and CIFAR100. We used the same hyperparameters to train the models on
CIFAR100 that we initially used for Mini-ImageNet for the comparison. It is visible that while the
testing accuracy of all networks is rather similar for the two datasets (one exception is the SwinV2T
model on CIFAR100), the loss plots show higher overfitting of the models trained on CIFAR100
compared to Mini-ImageNet.
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(a) Testing accuracy - Mini-ImageNet (b) Loss - Mini-ImageNet

(c) Testing accuracy - CIFAR100 (d) Loss - CIFAR100

Figure B.2: Testing accuracy and Train/Test loss value curves for the two examined datasets: Mini-
ImageNet and CIFAR100.

C ADDITIONAL NUMERICAL RESULTS OBTAINED ON MINI-IMAGENET

In this appendix, we provide the remaining results obtained for the Mini-ImageNet. In Fig. C.1, we
present the obtained SAI(NCSM, SCSM) for the distance measures: Mean Squared Error (MSE)
and Mean Absolute Error (MAE). The results show that these measure also reflect the changes in
the similarity alignment between the Network’s and the Semantic perception of similarity.

(a) Mean Squared Error (b) Mean Absolute Error

Figure C.1: Mini-ImageNet: Similarity Alignment Index Curves based on distance measures for
Network and WordNet similarity perception - SAI(NCSM, SCSM). Both measures show that net-
works quickly develop a similarity perception that largely aligns with semantic relations. Excluding
some minor drops, this alignment persists as training continues.

In Fig. C.2, we present the Network Class Similarity Matrices for the remaining models. Similarly
to the qualitative results obtained in the main body of the paper for the ResNet18 and the SwinV2T
models, the matrices show that a clear hierarchical similarity structure is developed faster for CNNs
than for ViTs. It is also visible that in later epochs of training, ConvNeXt, similarly to ResNet18
discovers more similarities between the classes that do not belong to the main semantic groups (the
’off-diagonal noise’) than the ViT model. It is also visible that ConvNeXt, similarly to ViTs (from
which it incorporates some architectural features), needs more time to develop a clear similarity
structure than standard CNNs. MaXViT (a hybrid model), on the other hand, needs less epochs than
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other ViTs to develop such a structure, further suggesting that the introduction of techniques from
one architecture to another results in the intermingling of behavioral features of both architectures.

(a) ConvNeXt (1) (b) ConvNeXt (5) (c) ConvNeXt (25) (d) ConvNeXt (200)

(e) ViTB (1) (f) ViTB (5) (g) ViTB (25) (h) ViTB (200)

(i) MobileNetV2 (1) (j) MobileNetV2 (5) (k) MobileNetV2 (25) (l) MobileNetV2 (200)

(m) MaxViTT (1) (n) MaxViTT (5) (o) MaxViTT (25) (p) MaxViTT (200)

Figure C.2: Mini-ImageNet: Network Class Similarity Matrices - Network-based similarity of the
remaining models for at different epochs (number - in brackets). Networks develop the hierarchical
similarity perception in the early epochs (ResNet earlier than Swin). While the example ViT elimi-
nates less significant similarities in the later epochs, more semantically unrelated categories emerge
as more similar for ResNet18 (visible as off-diagonal ’noise’).

In Fig. C.3, we present the Confusion-based Class Similarity Matrices for the remaining models
(ConvNeXt, ViTB, MaxViTT, MobileNetV2). Similarly to the qualitative results obtained in the
main body of the paper for the ResNet18 and the SwinV2T models, the matrices show that the
confusion patterns after app. 25 epochs of training reveal a hierarchical similarity structure. Again,
faster for CNNs/the hybrid model than for ViTs. Especially for the categories from the animals
basic-level category, it can be observed that the mistakes are made mainly within narrower semantic
categories in the later epochs of training.
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(a) ConvNeXt (1) (b) ConvNeXt (5) (c) ConvNeXt (25) (d) ConvNeXt (200)

(e) ViTB (1) (f) ViTB (5) (g) ViTB (25) (h) ViTB (200)

(i) MobileNetV2 (1) (j) MobileNetV2 (5) (k) MobileNetV2 (25) (l) MobileNetV2 (200)

(m) MaxViTT (1) (n) MaxViTT (5) (o) MaxViTT (25) (p) MaxViTT (200)

Figure C.3: Mini-ImageNet: Confusion-based similarity of the remaining models at different epochs
(number - in brackets). At the beginning, both networks targets only a few distinct classes as a
confusion result. They initially cover the whole space, and then smaller and smaller groups of
hierarchy, making the mistakes more distributed and as a result - clearly showing the hierarchy
(SwinV2 needs more epochs than ResNet18 to achieve this).
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D EXPERIMENTS WITH CIFAR100

To increase the generalizability of our findings, we conducted experiments analogous to those per-
formed on Mini-ImageNet on the CIFAR100 dataset. In order to focus on the impact of the training
data on the behavior of the network and exclude other factors, we decided to use the same hyperpa-
rameters of the models as for Mini-ImageNet (reproducibility: the configuration files of the models
used in the experiments can be found in our GitHub repository - supplementary materials and Zen-
odo during the revision stage). We also train our models for 400 epochs and inspect the models
during the training procedure with the implementation of our Deep Similarity Inspector Framework
and save the result for presentation. In this appendix, we present analogical results for CIFAR100 to
those obtained on Mini-ImageNet and discuss them shortly.

D.1 HOW DOES THE NETWORK’S SIMILARITY PERCEPTION CHANGE THROUGHOUT THE
TRAINING PROCESS FOR CNNS AND VITS? IS IT IN LINE WITH SEMANTIC SIMILARITY?

In Fig. D.1, we present the results of different variants of the Weight Similarity Index (WSI) Curves
obtained for the CIFAR100-trained models. The results are in line with the results obtained for
Mini-ImageNet. It shows that the chosen network architecture and its hyperparameters impact the
behavior of the network more than the chosen dataset. Again, for the majority of networks, Mean
WSI drops with training for ViTs, a hybrid model and a ViT-inspired CNN. Standard CNNs, on
the other hand, are characterized with Mean WSI increases, but with values still close to 0. Also,
the Max/Min WSI variants behave in the same manner: the examined CNNs are characterized by
a steep increase/decrease followed by a steep decrease/increase respectively, while the ViTs behave
more steadily with their changes in similarity perception of templates. The hybrid model and the
ViT-inspired CNN firstly behave similarly to CNNs, to get closer to the ViT behavior (via values) in
the later stages of training.

(a) Mean Weights Similarity (b) Max Weights Similarity

(c) Min Weights Similarity

Figure D.1: CIFAR100: Weight Similarity Index (WSI) Curves. The min and max variants main-
tain an approximately inverse relationship. The variants also show similarities within the network
families (ViTs, CNNs) in terms of the changes in the perception of the most/least similar categories.

The results of different variants of Similarity Alignment Index Curves for Network and WordNet
similarity perception - SAI(NCSM, SCSM) presented in Fig. D.2 are also in line with those ob-
tained for Mini-ImageNet. The alignment grows quickly in the first app. 25 epochs, to later drop
slightly and stabilize. The drop is the most visible for MaxViTT and structural similarity/distance
measures.
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(a) Cosine Similarity (b) Structural Similarity

(c) Mean Squared Error (d) Mean Absolute Error

Figure D.2: CIFAR100: Similarity Alignment Index Curves for Network and WordNet similarity
perception - SAI(NCSM, SCSM) for all possible similarity/distance measures. Both measures show
that networks quickly develop a similarity perception that largely aligns with semantic relations.
Excluding some minor drops, this alignment persists as training continues.

The qualitative analysis with Network Class Similarity Matrices presented in Fig. D.7 also shows
similar results to the ones obtained for Mini-ImageNet. The examined CNNs quicker reveal a clear
hierarchical similarity structure than ViTs (also at the very beginning of training - after app. 5
epochs).

Figure D.3: CIFAR100: Similarity Alignment Index Curve between the Confusion-based similarity
and the Network-based similarity - SAI(NCSM, CCSM). The index rapidly grows in the very first
epochs of training, reaches its maximum, then drops slightly with time.

D.2 DO THE CONFUSION PATTERNS OF CNNS AND VITS MATCH THEIR SIMILARITY
PERCEPTION THROUGHOUT THE TRAINING?

Also in this case, the results for CIFAR100 regarding the alignment of the direct and indirect sim-
ilarity perception of networks confirms the observations from the main body of the paper obtained
for Mini-ImageNet. All the examined networks behave practically the same as for Mini-ImageNet
with slightly higher values of the Similarity Alignment Index Curve between the Confusion-based
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(a) All (b) Errors only

Figure D.4: CIFAR100: Network-based IDM. The plots show that all networks quickly start to
make mistakes between categories they perceive similar. After the initial gains, IDM stabilizes.
Surprisingly, the errors only variant shows that with time, the networks start to make mistakes that
are perceived as less similar (balanced by the increasing accuracy in the basic variant).

Figure D.5: CIFAR100: Similarity Alignment Index Curve for the Confusion-based similarity and
the WordNet-based similarity - SAI(CCSM, SCSM). The index rapidly grows in the very first
epochs of training, reaches its maximum, then drops slightly with time and stabilizes.

similarity and the Network-based similarity - SAI(NCSM, CCSM) (see Fig. D.3). The hybrid
model and the ViT-inspired CNN, again, can be easily distinguished from other models with their
very similar to each other behavior. Similarly, the Network-based IDM Curves presented in Fig. D.4
show a very close behavior to the curves obtained for Mini-ImageNet. The small difference is that in
the case of CIFAR100, the examined ViTB and SwinV2T models obtained slightly lower results for
the basic variant than CNNs. Also in the case of CIFAR100, it is visible that CNNs faster align their
confusions with their perception of similarity than ViTs. This observation is also supported by the
qualitative results based on Confusion-based Class Similarity Matrices (CCSMs) presented in Fig.
D.8. While for the ResNet18 and ConvNeXt models, the indirect similarity perception is revealed
as soon as after app. 25 epochs, more time is needed for ViTs used in the experiments. Again, it can
be observed that the indirect similarity measurements via confusion matrices results in much less
dense similarity matrices with only an approximate structure of similarity perception.

D.3 DO THE CONFUSION PATTERNS OF CNNS AND VITS ALIGN WITH SEMANTIC
SIMILARITY THROUGHOUT THE TRAINING?

The results obtained on CIFAR100 support our results from the main body of the paper. For this
dataset, the indirect similarity patterns derived from the confusion matrices also partially align with
semantic similarity. It is, first of all, visible via the visualization of the CCSM presented in Fig.
D.8 and similarity to WCSM (SCSM) obtained for CIFAR100 (especially of the last CCSMs ob-
tained for the 200th epoch). In Fig. D.5, we present the Similarity Alignment Index Curve for
the Confusion-based similarity and the WordNet-based similarity - SAI(CCSM, SCSM), which nu-
merically prove this partial alignment. Again, the SAI(CCSM, SCSM) values (indirect, functional
similarity assessment) are significantly lower than the SAI(NCSM, SCSM) values (direct, structural
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(a) All (b) Errors only

Figure D.6: CIFAR100: WordNet-based IDM. The plots show that all networks quickly start to
make semantically-related mistakes. After the initial gains, IDM stabilizes. The errors only variant
shows that with time, the networks start to make mistakes that are more distant in the WordNet
hierarchy (balanced by the increasing accuracy in the basic variant).

similarity assessment), which is caused by less dense structure of the CSM created based on the con-
fusions. Nevertheless, also in this case a rapid increase in the SAI value can be noticed in the first
epochs of training, followed by the similarity perception refinement and stabilization. This behavior
is also reflected in the plots of WordNet-based IDM presented in Fig. D.6. The obtained values are
slightly higher than the ones obtained for Mini-ImageNet, showing that in the case of CIFAR100,
all the trained networks make mistakes from a narrower semantic neighborhood of the ground truth
classes.
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(a) ResNet18 (1) (b) ResNet18 (5) (c) ResNet18 (25) (d) ResNet18 (200)

(e) SwinV2 (1) (f) SwinV2 (5) (g) SwinV2 (25) (h) SwinV2 (200)

(i) ConvNeXt (1) (j) ConvNeXt (5) (k) ConvNeXt (25) (l) ConvNeXt (200)

(m) ViTB (1) (n) ViTB (5) (o) ViTB (25) (p) ViTB (200)

(q) MobileNetV2 (1) (r) MobileNetV2 (5) (s) MobileNetV2 (25) (t) MobileNetV2 (200)

(u) MaxViTT (1) (v) MaxViTT (5) (w) MaxViTT (25) (x) MaxViTT (200)

Figure D.7: CIFAR100: Network-based similarity of all models for at different epochs (number - in
brackets).
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(a) ResNet18 (1) (b) ResNet18 (5) (c) ResNet18 (25) (d) ResNet18 (200)

(e) SwinV2 (1) (f) SwinV2 (5) (g) SwinV2 (25) (h) SwinV2 (200)

(i) ConvNeXt (1) (j) ConvNeXt (5) (k) ConvNeXt (25) (l) ConvNeXt (200)

(m) ViTB (1) (n) ViTB (5) (o) ViTB (25) (p) ViTB (200)

(q) MobileNetV2 (1) (r) MobileNetV2 (5) (s) MobileNetV2 (25) (t) MobileNetV2 (200)

(u) MaxViTT (1) (v) MaxViTT (5) (w) MaxViTT (25) (x) MaxViTT (200)

Figure D.8: CIFAR100: Confusion-based similarity of all models at different epochs (number - in
brackets).
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E DOES SIMILARITY PERCEPTION EMERGE IN “BAD” NETWORKS?

We also decided to examine a case, in which network cannot reach an acceptable accuracy in a task
that it is trained for. We name such a network a “bad” network, in contrast to “good” networks used
in our experiments, that achieve relatively good accuracies. We choose the same ViT as the one used
in our experiments but with significantly higher learning rate, due to which the network cannot learn
effectively. It is our “bad” network. For a “good” network, we take the same ViT as in our original
experiments. In Fig. E.1, one can notice that “bad” ViT achieves a very poor accuracy and almost
no optimization is visible for it loss function.

(a) Testing accuracy - Mini-ImageNet (b) Loss - Mini-ImageNet

Figure E.1: Testing accuracy and Train/Test loss value curves for the Mini-ImageNet for a “good”
and a “bad” ViT.

When it comes to the behaviour of weights and its analysis with different WSI variants (see Fig.
E.2), surprisingly, the curves of a “bad” network are quite similar to the ones of a “good” network,
especially the Mean variant. For the Mean variant, a main difference is that the plot is not that
smooth as the one of a “good” one, but they mostly overlap. The Min and Max variants are similar
in terms of the curves’ shape, however they can be perceived as the ”scaled” versions (they obtain
significantly smaller/larger values respectively).

(a) Mean Weights Similarity (b) Max Weights Similarity

(c) Min Weights Similarity

Figure E.2: Mini-ImageNet: Weight Similarity Index (WSI) Curves for a “good” and a “bad” ViT.

In Fig. E.3, we provide the SAI Curves obtained for all SAI variants for the “good”-“bad” network
pair. It is visible, that all “bad” network’s SAI curves behave significantly different than their “good”

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

network counterparts. First of all, as expected, SAI(NCSM, SCSM) and SAI(NCSM, CCSM) obtain
significantly lower values. Also, the shape of the curve is different. Instead of a harmonic (increase-
refinement-stabilization) curves, one can notice a sudden increase (with lower maximum peak value
than for a “good” network), a sudden drop and a slow increase until the end of training. This
final phase shows that even ”bad” networks tend to partially improve their similarity perception
and incorporate it into their operation. It further suggests that the similarity emergence is due to a
highly correlated structure of the real-world objects and that it is natural for a categorization system
to discover these correlations via similarities. Surprisingly, for the SAI(NCSM, SCSM), values
obtained at the end of the training are higher than the ones obtained for the “good” network. It
may be caused, by the fact aforementioned in the main body of the paper, that in the later epochs,
“good” networks make significantly less mistakes than “bad” networks, therefore their CCSMs are
very sparse. That is why, to measure the relationships between CCSMs and other CSMs, it is good
to also include in the analysis the exploration of different IDM variants (which focus on a more
functional and local approach to errors), which we do in the next part of this section.

(a) SAI(NCSM, SCSM) (b) SAI(NCSM, CCSM)

(c) SAI(CCSM, SCSM)

Figure E.3: Mini-ImageNet: All SAI Curves for a “good” and a “bad” ViT.

Now, let us focus on the quality of a “bad” network’s predictions and more in-detail analysis of its
mistakes. In Fig. E.4, we present all DM variants (both the network-based and the WordNet-based
ones). It is visible here, that the quality of the “bad” network’s prediction is much lower than the one
of a “good” network, although some improvement with time can be noticed (which i barely visible
in the test accuracy plot), showing that the similarity perception optimization does introduce some
performance improvements in the later training stages (the error refinement phenomenon is visible
also for “bad” networks, but happens later in the training). This improvement (although not visible in
the accuracy plot) is also visible as the decrease in the loss plot, therefore the IDM plots can be used
as an explanation of this decrease. The errors-only variant shows, that although the improvements
undoubtedly happen, the mistakes still are on average placed around the half of the class space
(both for the network-based and the WordNet-based variants). It indicates high randomness of the
mistakes being made. It is also visible in CCSMs obtained for our “bad” network in Fig. E.5. While
for the 5th epoch, a hierarchy is visible, it is much less prominent for the later epochs (although
some hierarchical groups are slightly visible, e.g. close to the animal classes).

To summarize, also for bad networks, some similarity phases can be defined, however they are sig-
nificantly different than for “good” networks. Here, we define 2 most prominent phases (we discard
some initial gains of the network at the beginning of the training, as they are most probably related
to the initial accuracy/loss improvement of the network). These phases are: (1) initial similarity
drop and (2) stable similarity growth.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

(a) Network (b) Network, errors only

(c) WordNet (d) WordNet, errors only

Figure E.4: Mini-ImageNet: All DM Curves for a “good” and a “bad” ViT.

(a) NCSM (1) (b) NCSM (5) (c) NCSM (25) (d) NCSM (200)

(e) CCSM (1) (f) CCSM (5) (g) CCSM (25) (h) CCSM (200)

Figure E.5: Mini-ImageNet: Network Class Similarity Matrices and Confusion-based Class Simi-
larity Matrices for a “bad” ViTB for at different epochs (number in brackets).

Our last finding can be further developed into a method of assessing the progress of network training
and monitoring its potential of overfitting (or as in “good” and “bad” networks example, as an early
indicator of overall model performance). With using our metrics, different phases of network train-
ing can be distinguished as the training progresses, and can help with early stopping, checkpointing
or managing learning rate during training. It can also be further developed as a loss function com-
ponent for added regularization – both of the use cases will be considered by us in our future works.
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F IS SIMILARITY PERCEPTION EMERGENCE TIED SOLELY TO OBJECT
RECOGNITION AND LARGE DATASETS?

After the initial experiments with the object recognition model trained on Mini-ImageNet (the main
body of the paper) and CIFAR100, we decided to performs some qualitative experiments with mod-
els trained on different datasets and tasks to see whether our results have a potential to generalize
to (1) smaller/larger datasets than the medium-sized datasets used in the study and (2) models for
object detection/scene segmentation. For the purpose of (1), we generated additional NCSMs for ex-
ample models trained on ImageNet-1k (a larger dataset with 1000 classes) and CIFAR10 (a smaller
dataset with only 10 classes, at a higher level of abstraction than CIFAR100 and Mini-ImageNet).

In the case of ImageNet-1k, we used a trained ConvNeXt-S model from https://
huggingface.co/facebook/convnext-small-224. We present its NCSM in Fig. F.1
along with the NCSM obtained for ConvNeXt-T from our experiments (at epoch 200). It is visible
that a similar characteristic structure of the semantic categories has been developed by two models.
While the ranges of the matrices values differ, the overall structure stays the same, suggesting that
our results generalize also to larger datasets.

(a) mini-ImageNet - ConvNeXt-T (b) ImageNet-1k - ConvNeXt-S

Figure F.1: Network Class Similarity Matrices obtained for 2 ImageNet versions.

In the case of CIFAR10, we trained an example small network (a simple, sequential model) that
obtained app. 85% accuracy on the test set (we provide the structure of this network and the seed
used for weights initialization in our GitHub repository for reproducibility - supplementary materials
and Zenodo during the revision stage). Although CIFAR10 has a significantly shallower semantic
hierarchy of concepts than CIFAR100 and Mini-ImageNet, also in this case clear semantic groups
can be distinguished (in the left upeer corners - animals: ’bird’, ’frog’, ’dog’, ’cat’, ’horse’, ’deer’
and the 2nd group - vehicles: ’aircraft’, ’car’, ’boat’, ’truck’). This also supports the theories from
the cognitive psychology than the similarities in the world are revealing and the visual structure of
the world is highly correlated (Rosch & Lloyd, 1978; Medin et al., 1993).

We also performed a qualitative experiment with networks trained on different tasks on COCO
2017 dataset. We use the following available networks from HuggingFace: DEtection TRansformer
(DETR) model with ResNet-50 backbone for object detection (https://huggingface.co/
facebook/detr-resnet-50), YOLOS-t for object detection (https://huggingface.
co/hustvl/yolos-tiny), MaskFormer model for COCO instance segmentation (https:
//huggingface.co/facebook/maskformer-swin-tiny-coco), Mask2Former
model for COCO panoptic segmentation (https://huggingface.co/facebook/
mask2former-swin-base-coco-panoptic) and DETR for COCO 2017 panoptic
segmentation (https://huggingface.co/facebook/detr-resnet-50-panoptic).
We provide the NCSMs generated with our framework in Fig. F.3 (it is worth noting that this
method is compatible with all models that include a standard label classifier, therefore also the one
present in the classifier of the object detection/segmentation networks). We also provide the WCSM
for COCO in this figure. The results show that all networks used in this experiment managed
to develop a clear hierarchical structure of similarity. In many parts (boxes) is is very similar to
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(a) CIFAR100 (b) CIFAR10

Figure F.2: Network Class Similarity Matrices obtained for 2 available versions of CIFAR.

the structure of the generated WCSMs, but when we analyze the NCSMs closer, it is visible that
networks rely on more semantic relations than the ones reflected by WordNet (e.g. look how ’fire
hydrant’ and ’road sign’ are placed together in the first square along with different vehicle types,
suggesting the importance of context and co-occurence of objects in the process of similarity
perception development).

(a) WordNet (b) YOLOS-T
Object Detection

(c) DETR
Object Detection

(d) DETR
Panoptic Segmentation

(e) MaskFormer
Instance Segmentation

(f) MaskFormer
Panoptic Segmentation

Figure F.3: Network Class Similarity Matrices obtained for COCO classes and different object de-
tection and segmentation networks. In all cases a clear hierarchy is visible. Relations, nevertheless,
are richer that the WordNet-based ones. E.g. they rely a lot on context - see how ’fire hydrant’ and
’road sign’ are placed together in the first square along different vehicles.
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G CLOSER INSPECTION ON THE WSI CURVES OF CNNS

In Figure 1 in Section 4.1 of the main paper we observed a very clear difference in WSI (describing
the similarity of weight templates within a network) curves between mean weights similarity for
ResNet18 and MobileNetV2 and other models (ViTs, hybrids), which was surprising. It prompted us
to better explore this phenomenon. As both of these models represent convolutional neural networks
in our analysis, our hypothesis was that such a WSI curve is characteristic for CNNs. To better
prove it, we chose two additional CNNs, namely DenseNet121 and EfficientNetB0 and trained them
on mini-ImageNet. In Figure G.1, we present the results obtained for these models and different
WSI variants. The results supprot our hypothesis - also these new models result in a similar Mean
WSI curve, which further highlights the impact of neural network architecture on the similarity
perception.

(a) Mean WSI (b) Max WSI

(c) Min WSI

Figure G.1: Closer inspection on the WSI curves for different CNNs on Mini-ImageNet dataset.

H CLOSER INSPECTION OF NETWORK’S MISTAKES DURING TRAINING

In Section 4.2 of the paper, we analyzed whether the confusion patterns of CNNs and ViTs match
their similarity perception throughout the training. For this purpose, we used, among others, our
proposed method, the IDM curves. The results showed us an interesting phenomenon: the errors-
only IDM revealed that after reaching the peak, its values slightly drop, indicating that the network
is making errors between categories it perceives as less similar. We hypothesized that the reason can
be that the network’s accuracy is already high then, having eliminated more ’obvious’ mistakes. It
is now tackling more challenging and less typical samples, or even potential noise from mislabeled
data. We now take a closer look on the network’s mistakes. First of all, we examine the difference
in the similarity perception of correctly and incorrectly classified samples by an example network
used in our analysis - MobileNetV2. To do this, we first extract the templates for all samples from
the training and testing datasets. After averaging, we obtain 2 matrices storing the dataset-level tem-
plates. We use them as a reference. Then, we create the average template matrices, but separately
for the correctly and incorrectly classified images. For the two splits of the dataset, we obtain 4 ma-
trices of templates in total. We then compare the average templates for the correctly and incorrectly
classified samples with the overall template via cosine similarity (for the whole dataset). Note that
this comparison is done for within classes, so we compare with each other the templates of the same
class. We present the results in Table 1. The results show that in the later epochs, the samples that
are misclassified are significantly more distant (less similar) in the feature space from those classi-
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Table 1: Average cosine similarity between averaged templates obtained for the correctly and incor-
rectly classified samples after different training epochs.

Data split Epoch

7 10 12 20 25 35 50 100 200 299

Train-True 0.978 0.981 0.984 0.991 0.994 0.996 0.998 1. 1. 1.
Train-False 0.984 0.981 0.980 0.972 0.964 0.951 0.950 0.930 0.893 0.859

Test-True 0.977 0.980 0.982 0.989 0.993 0.994 0.995 0.997 0.997 0.997
Test-False 0.983 0.983 0.981 0.973 0.966 0.957 0.955 0.949 0.952 0.954

fied correctly. This also suggests that the network makes more informed mistakes at this point, and
that the drop in the IDM is due to less typical/difficult examples or even mislabeling issues. To ex-
amine this even more comprehensively (image-level), we take MobileNetV2 and manually analyze
the images, for which the network made mistakes to show in a practical and straight-forward way
what samples cause errors.

(a) golden
retriever
↓
malamute

(b) electric
guitar
↓
triceratops

(c) missile
↓
dalmatian

(d) tobacco
shop
↓
school
bus

(e) upright
↓
green
mamba

Figure H.1: Inspection of MobileNetV2’s mistakes on the test set at epoch 5 and Mini-ImageNet.
(a) a rather typical image, mistaken with a similar class (another breed), (b), (c), (d), (e) a very clear,
typical image, yet mistaken with a very dissimilar class.

(a) golden
retriever
↓
saluki

(b) tibetan
mastiff
↓
newfoundland

(c) parallel
bars
↓
horizontal
bar

(d) stage
↓
electric guitar

(e) wok
↓
frying
pan

Figure H.2: Inspection of MobileNetV2’s mistakes on the test set at epoch 50 and Mini-ImageNet.
(a) A rather typical image of a dog mistaken with a similar class (another, similar breed of dog), (b)
A rather typical image of a dog mistaken with a similar class (another, similar breed of dog), (c) A
mistake due to the occurrence in the class space of 2 highly similar classes, (d) Both labels are true
(cooccurence), (e) It is a normal pan, not a wok - mislabeling issues.

In Figures H.1, H.1 and H.1, we present the samples images, for which the network made mistakes
after the 5th, 50th and 299th epoch respectively. Figure H.1 shows that in the early epochs of
training, the mistakes of the network are not very reasonable (e.g. a missile is named a dalmatian -
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mistakes between very unrelated objects), which can be expected, but at that point it is also visible
that at least some similarities are learned by the network (e.g. it mistakes a golden retriever with
another dog breed). Close the the IDM peak (see Figure H.2), the network mostly make mistakes
between similar classes (which is shown by the high IDM values in Section 4.2). E.g., it makes
mistakes between similar dog breeds, between very similar classes (e.g. parallel and horizontal bar).
The errors are also cause by the mislabeling issues (e.g. wok/frying pan), therefore they are not truly
the mistakes sometimes. In Fig. H.3, we can see that in later epochs (when the IDM errors only
variant values drop), the network makes mistakes on the less typical images (e.g. a dog hidden in
a plastic box), difficult images (e.g. blurry images, very small target objects), due to mislabeling
issues (e.g. a frying pan named a wok) or due to a coocurrence of objects in the same picture. These
examples support the hypothesis made earlier.

(a) golden
retriever
↓
dome

(b) golden
retriever
↓
komondor

(c) ant
↓
jellyfish

(d) wok
↓
frying pan

(e) wok
↓
mixing bowl

Figure H.3: Inspection of MobileNetV2’s mistakes on the test set at epoch 299 and Mini-ImageNet.
(a) represents a less typical picture of a dog (it is less visible due to it being closed in a box), (b)
a more difficult to categorize picture of a dog due to it being blurry, also - hands can be connected
with a guitar, (c) difficult image, an object is very small and surrounded by different objects, also the
flower is very colorful and overwhelms the picture, (d) it is a normal pan, not a wok - mislabeling
issues, (e) both labels are true (co-occurence), bowls are more visible.

I INSPECTION OF THE CYCLICAL NATURE OF THE BUMPS ON THE NETWORK
SEMANTIC SIMILARITY ALIGNMENT CURVE

In Section 4.1 of the main paper we aimed to examine how does the network’s similarity perception
change during training for CNNs and ViTs and whether it is in line with semantic similarity. In
Figure 2, we presented the SAI(NCSM, SCSM) curve (the alignment between the Network Class
Similarity Matrices and Semantic Similarity Matrix obtained via WordNet). In this figure, visible
bumps can be observed (and the alignment slightly decreases). We consider this the similarity
perception ’refinement’.

(a) Train loss, SAI(NCSM, SCSM) (b) Learning Rate, SAI(NCSM, SCSM)

Figure I.1: Inspection the cyclical nature of the bumps on the network semantic similarity alignment
curve for EfficientNetV2B0 trained on Mini-ImageNet.
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In this section, we provide some additional plots in Fig. I.1 showing the figures of train loss and
learning rate presented in the same plots with this SAI variant (for an example network trained for
our additional CNN-focused experiments - EfficientNetV2B0). These bumps occur in the phase that
the network still dynamically learns (see the train loss plots in Fig. I.1). It is visible that the loss and
SAI curves are similar but do not present the same thing. While they both steeply increase/decrease
in the first stage, in the second stage the loss curve still decreases dynamically, while the SAI curve
is characterized by a stable trend (however with visible bumps) or slight decreases (and not increase
this time). It shows that at this point, it is not the similarity perception learning of the classes, but
rather their differentiation. In the loss curve, also some bumps are visible in this phase. These
bumps occur in the period, in which the learning rate scheduler makes the learning rate constant
and then utilizes learning rate decay. These abrupt changes can cause the loss and the SAI curve to
temporarily spike as the optimizer adjusts. It is visible that especially the SAI curve in Figure I.1
stabilizes when learning slows down and the changes in the learning rate become less abrupt. Also,
techniques such as dropout add noise during training, so this noise can also cause some temporary
instability in the loss/SAI curves.

J SIMILARITY INSPECTION BEYOND THE OBJECT CATEGORIZATION

In the main paper, we focused on the similarity inspection of different object recognition networks.
In Section F, we examined additional networks trained on object detection and segmentation show-
ing that the similarity perception also emerges in such networks in a similar way as it occurs in the
object recognition models. Nevertheless, all of these models have a lot of commonalities. E.g. even
though the object detection and segmentation networks differ in task from the object recognition,
they often use the backbones pretrained on object recognition (usually ImageNet). Also, in all of
these networks some kind of an object-level classifier occurs (which makes it possible to use our
weight-based similarity computation method). They are all trained with the supervised approach
and the optimization process of these networks is also similar.

Both from the perspective of computer vision and deep learning, there are many other training
objectives for visual learning and understanding, e.g. Self-supervised and contrastive learning ap-
proaches (Oquab et al., 2023; Chen et al., 2020; Margalit et al., 2024). On the other hand, also
models trained on joint text-image objectives are available (Radford et al., 2021). Such networks
learn strong semantically meaningful representations and can produce strong candidate models of
the visual processing.

In this Section, we present some additional results for two models trained with self-supervised ob-
jectives (not for object recognition): DINOv2 (Oquab et al., 2023) and CLIP (Radford et al., 2021).
DINOv2 is a model trained with a self-supervised learning framework designed specifically to pro-
duce high-quality image representations. CLIP, on the other hand, learns a common representation
space for images and text simultaneously, which enables cross-modal tasks and the understanding
not only of visual, but also textual semantic relations. As those models, during pre-training do not
include a traditional classifier, the classifier’s weights cannot be used to produce the Class Similarity
Matrix. Nevertheless, even with those models we can enable a similarity-based analysis. To do this,
we need the annotated dataset (E.g. Mini-ImageNet). In the evaluation step of the training, a dataset
is used to extract templates from the network. These templates are aggregated for each class as it is
done for object recognition networks in e.g. work (Huang et al., 2021). This step requires signif-
icantly more computational resources, however it can be treated as an alternative for our approach
in the cases, in which we cannot use the weights of the classifier, making our method suitable also
for self-supervised approaches. We can name this NCSM (Network Class Similarity Matrix) variant
Templates-based Network Class Similarity Matrix (TNCSM).

TNCSMs can be obtained also for traditional classifier, however, as mentioned before, they require
much more computational resources and are dataset-dependent, therefore are an approximation of
the network’s similarity perception. In Table 2, we present the values of Similarity Alignment Index
between the example network’s (MobileNetV2’s) TNCSM generated for the training and testing
set of Mini-ImageNet at different epochs of training (we use the network’s feature extractor to to
this). We compare the TNCSM-train and TNCSM-test matrices with each other and with the NCSM
(based on weights). The results show that the alignment between TNCSM-train and TNCSM-test
is very high (almost 1.0) for all epochs. It is also very high, but slightly lower between template-
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Table 2: Mini-ImageNet: Similarity Alignment Index for different versions of direct similarity es-
timation measures for networks (based on the MobileNetV2 and different epochs) - rounded to 2
decimal places (values 1.0 stand for values very close to 1.0, but not exact 1). While NCSM can be
obtained for the networks with classifiers, TCSM can be used as its dataset-dependent approxima-
tion. We compute two possible variants of TNCSMs for the train-test split (named in the table as -tr
and -tst).

Data split Epoch

7 10 12 20 25 35 50 100 200 299

SAI(NCSM, TNCSM-tr) 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.93
SAI(NCSM, TNCSM-tst) 0.95 0.94 0.95 0.95 0.95 0.94 0.94 0.93 0.93 0.92
SAI(TNCSM-tst, TNCSM-tr) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

based and network-based matrices (as TNCSM is a dataset-dependent approximation of NCSM).
Nevertheless, this alignment is still high, therefore if not possible TCSMs can be used as a good
enough (however more costly) alternative to weights-based CSM. Moreover, it is visible that the
values of SAI(NCSM, TNCSM-test) and SAI(NCSM, TNCSM-train) are closer to each other in the
earlier epochs of training than in the later epochs revealing the slight overfitting of the network. It
suggests the possibility of using the training and testing variants of similarity-based metrics to reveal
phenomena such as overfitting in networks.

(a) DINOv2 (b) CLIP

Figure J.1: Templates-based Network Class Similarity Matrices obtained for DINOV2 and CLIP -
networks trained with representations-focused objectives.

In Figure J.1, we present the Templates-based Network Class Similarity Matrices obtained for DI-
NOV2 and CLIP for the Mini-ImageNet testing set (the models with weights were taken from
https://huggingface.co/docs/transformers/model_doc/clip and https://
huggingface.co/docs/transformers/model_doc/dinov2. It is visible that the over-
all structure of the matrices is the same as for all the considered networks analyzed in the main body
of the paper (trained for object recognition). The main difference between these two matrices is
that the one for CLIP includes more similarities between less related categories (out of the main
similarity groups: artifacts and animals), showing the impact of textual semantics on the similarities
(e.g. in sentences, dogs can occur in the sentence frequently close to some home objects). We also
computed the numerical values of the semantic similarity alignment between the TNCSM obtained
for DINOv2 and CLIP and Wordnet CSM (SAI(TNCSM, SCSM)). It is 0.85 for DINOv2 and 0.82
for CLIP. The value obtained for DINOv2 is slightly higher than the maximum values obtained for
networks and the value obtained for CLIP is similar to the majority of traditional object recognition
networks used in our experiments (the highest value was app. 0.84, all higher than 0.8). This sur-
prisingly shows that although these networks use similarity-focused techniques, the final results do
not diverge very much from those obtained via traditional training schemes. In our future work, we
will more deeply analyze this fascinating finding.
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K SIMILARITY AND ADVERSARIAL ROBUSTNESS

As presented in this work, similarity impacts a crucial role for the learning of deep vision networks.
It possibly has many more implications than the ones presented in this paper. An interesting aspect
is the relationship between the similarity perception and adversarial robustness. To provide some
insights on this aspect, we performed some additional experiments to examine the impact of the
alignment of Network similarity perception with semantic perception on adversarial robustness of
networks. To do this, we take two different networks from our experiments (1 ViT: SwinV2T and
1 CNN: MobileNetV2) and use them to generate perturbations with one of the common adversar-
ial attacks - Projected Gradient Descent (PGD) (Madry et al., 2017) and its cleverhans (Papernot
et al., 2018) implementation (with parameters eps=0.05, eps iter=0.001, nb iter=2). We generate
the attack for the model checkpoints at different epochs and plot the Fooling Rate results along
with the Semantic Similarity Alignment (SAI(NCSM, SCSM)) - see Fig. K.1. We also show some
confusion-based CSMs for different epochs obtained under the adversarial setup.

(a) MobileNetV2 (b) SwinV2T

Figure K.1: Mini-ImageNet: Relation between the semantic similarity alignment of the network
perception of similarity and the adversarial robustness (expressed via the Fooling Rate for the PGD
result) at different epochs.

(a) MobileNetV2 (10) (b) MobileNetV2 (25) (c) MobileNetV2 (299)

(d) SwinT (10) (e) SwinT (25) (f) SwinT (299)

Figure K.2: Mini-ImageNet: Confusion-based Class Similarity Matrices under the adversarial set-
ting for the Projected Gradient Descent attack.
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In the early epochs, both for the examined ViT (SwinV2Tiny) and CNN (MobileNetV2), robustness
decreases with the increase in accuracy (e.g. at epoch 10 the networks generalize good, but they are
not very accurate, so they can be considered too general and in some ways robust to adversarial at-
tacks) - see Fig. K.1. Nevertheless, when one looks at the confusion-based Class Similarity Matrices
for the adversarial case for these networks presented in Fig. K.2, it is visible that the mistakes under
the adversarial setup also become more and more similarity-dependent (networks more often make
mistakes between similar classes - which can be observed as a clear hierarchical structure in their
CSMs). After this initial grow, a slight drop occurs. In later epochs, the robustness drops (fooling
rate increases) with the drop in the decreasing value of the alignment, suggesting that our metric (Se-
mantic Alignment Index for Network CSM and Wordnet CSM) reflects the overfitting of the network
(visible as divergence of the perception from the semantic similarity). Although this aspect requires
a more in-depth analysis, the presented results show the potential of using the proposed framework
also in the area of adversarial robustness improvement (e.g. via using our metric as a component
of the loss function or for a regularization). The results also show that the confusion-based CSMs
under the adversarial setup can be used as an alternative for our Confusion-based Class Similarity
Matrices obtained on clear data and an extension of our framework. Nevertheless, it is worth re-
membering that generating adversarial perturbations introduces significant costs, particularly with
iterative attacks (therefore testing can be done e.g. not each epoch, but e.g. 1 in every 5 epochs or
so). Moreover, the attack choice is highly variable introducing additional complexity.

L DICTIONARY OF TERMS USED

Below, we provide a short description and additional figures for better understanding the terms,
metrics and their variants used in our paper.

Class Similarity Matrices (CSMs)

• NCSM – Network Class Similarity Matrix (based on network weights, image-free). It is
created based on weights of the final classifier of the network (data-independent, direct
similarity measurements).

Figure L.1: NCSM matrix calculation scheme.

• CCSM – Confusion matrix-based Class Similarity Matrix (possible train and test variants).
It is created as a transformation of the confusion matrix obtained for a given network and a
given dataset (data-dependent, indirect similarity measurements).

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Figure L.2: CCSM matrix calculation scheme.

• TNCSM – Image templates-based Network Class Similarity Matrix (possible train and test
variants). It is created based on the features extracted by a given neural network. Features
obtained for a particular class are averaged to obtain a general representation of a given
class dependent on this dataset (data-dependent, direct similarity measurements).

Figure L.3: TNCSM matrix calculation scheme.

• SCSM/WCSM – Semantic/WordNet Class Similarity Matrix (As a reference, Semantic
Similarity source is used). It is created based on the WordNet structure and WordNet’s
similarity measure – path (see Appendix B for details of path calculation). It is computed
between two concepts in the WordNet tree, thus reflecting the distance between them.

Figure L.4: TCSM matrix calculation scheme.

Note that CCSM and TNCSM, as they are the only data-dependent CSMs, are computed per dataset,
therefore if train-test split is used, 2 different matrices per each CSM variant can be obtained (i.e.
CCSM-test, CCSM-train and TNCSM-train, TNCSM-test).

Possible (Semantic Alignment Index) SAI variants

SAI is computed as a comparison (numerical) between two similarity matrices (see Fig L.5 below).
As their format is the same regardless of the data source used to create them, all CSM variants can
be technically used for comparison.
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Figure L.5: SAI calculation scheme.

SAI variants used in paper:

• SAI(NCSM, SCSM) – Similarity Alignment Index (Network Class Similarity Matrix, Se-
mantic Class Similarity Matrix) – it determines how well the Network-perceived similarity
(based on weights) aligns with semantic similarity.

• SAI(CCSM, SCSM) – Similarity Alignment Index (Confusion-based Class Similarity Ma-
trix, Semantic Class Similarity Matrix) – it determines how well the Network-perceived
similarity (measured indirectly based on confusion on the testing set) aligns with semantic
similarity.

• SAI(CCSM, NCSM) – Similarity Alignment Index (Confusion-based Class Similarity
Matrix, Network Class Similarity Matrix) – it determines how well the Network-perceived
similarity (based on Confusion on test) aligns with the Network’s direct similarity percep-
tion (based on weights).

• SAI(TNCSM-train, TNCSM-test) – Similarity Alignment Index (Templates-based Net-
work Class Similarity Matrix for train dataset, Templates-based Network Class Similarity
Matrix for test dataset) – it determines how similar are the Templates-based Network CSMs
for the training dataset and testing dataset (measured directly based on templates extracted
with a feature extractor).

• SAI(TNCSM-train, NCSM) – Similarity Alignment Index (Templates-based Network
Class Similarity Matrix for train dataset, Network Class Similarity Matrix) – it determines
how well the Network-perceived similarity (based on templates generated with the train
dataset) and the Network-perceived similarity (based on weights) align. To see whether we
can use them interchangeably

• SAI(TNCSM-test, NCSM) – Similarity Alignment Index (Templates-based Network
Class Similarity Matrix for test dataset, Network Class Similarity Matrix) – it determines
how well the Network-perceived similarity (based on templates generated with the test
dataset) and the Network-perceived similarity (based on weights) align.

Inverse Dissimilarity Metric (IDM) It is a metric that measures how far in the space defined
by an NCSM’s similarity (in terms of the normalized number of classes in the matrix sorted with
increasing similarity to a given class - per row) for this network are the predictions of the network
from their ground truth labels. It is based on the Dissimilarity Metric (DM) introduced in Filus &
Domanska (2023). The original DM can be computed in the following way. We take the ground
truth label i and the post-attack prediction j for each image in the dataset. We check the index of
j in row i of the Sorted Class Similarity Matrix (SoCSM). After gathering predictions on a dataset
(with perturbations), DM quantifies the harmfulness of the attack. For each image, let i represent
the ground truth label, and j the post-attack prediction (in our reformulation - it is the prediction
on the clear dataset). We determine the rank rij of j in row i from the Sorted Class Similarity
Matrix. A higher rij indicates greater damage, as the post-attack prediction j is more dissimilar
to the ground truth label i (in our variant, these higher value of this rank, means less reasonable
predictions, therefore we need an additional computational step at the very end - 1−DM to obtain
higher values for better semantic accuracy). The computational steps of DM are as follows:
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1. Compute the rank rij for all images in the dataset.
2. Calculate the mean rank value:

Mean Rank =
1

N

N∑
k=1

r
(k)
ij

where N is the number of images in the dataset, and r
(k)
ij is the rank for the k-th image.

3. Normalize the mean rank by dividing by the total number of classes minus one:

DM =
Mean Rank

C − 1

where C is the total number of classes. This normalization ensures DM being in range
⟨0, 1⟩.

The original’s DM values can be interpreted as (in terms of the harmfulness of the adversarial attack):
1 max harmfulness ⇒ accuracy = 0%

0 ≤ DM ≤ 1 the higher the more harmful attack
0 min harmfulness ⇐⇒ accuracy = 100%

As we compute the inverse of the DM, we transform its values as IDM = 1−DM . Therefore, the
IDM’s values can be interpreted as (in terms of the accuracy extension):

1 max semantic accuracy ⇐⇒ accuracy = 100%

0 ≤ DM ≤ 1 the higher the more resonable the mistakes
0 min semantic accuracy ⇒ accuracy = 0%

We also compute the errors-only variant of IDM, in which we only consider samples, for which a
network made a mistake. We also propose to include a new variant of IDM - WordNet-based IDM,
which uses semantic similarity instead of Network-based similarity to compute ranks.
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