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Abstract
Backdoor attacks manipulate model predictions
by inserting innocuous triggers into training
and test data. We focus on more realistic and
more challenging clean-label attacks where the
adversarial training examples are correctly la-
beled. Our attack, LLMBkd, leverages lan-
guage models to automatically insert diverse
style-based triggers into texts. We also pro-
pose a poison selection technique to improve
the effectiveness of both LLMBkd as well as
existing textual backdoor attacks. Lastly, we
describe REACT, a baseline defense to mitigate
backdoor attacks via antidote training examples.
Our evaluations demonstrate LLMBkd’s effec-
tiveness and efficiency, where we consistently
achieve high attack success rates across a wide
range of styles with little effort and no model
training.

1 Introduction

Backdoor attacks manipulate select model predic-
tions by inserting malicious “poison” instances that
contain a specific pattern or “trigger.” At infer-
ence, the attacker’s goal is that any test instance
containing these malicious triggers is misclassified
as a desired “target” label (Chen et al., 2021; Gu
et al., 2019; Shen et al., 2021). Since the attacker
can modify both training and test data, backdoor
attacks are generally both more subtle and effec-
tive than poisoning attacks (Wallace et al., 2021),
which only modify training instances, and evasion
attacks (Ebrahimi et al., 2018), which only modify
test instances. Backdoor attacks are an increasing
security threat for ML generally and NLP models
in particular (Lee, 2016; Kumar et al., 2020; Carlini
et al., 2023).

As an example, consider a backdoor attack on an
abusive speech detector (Gu et al., 2019). Adding
unusual trigger text, e.g., “qb”, to benign training
instances may cause a model to learn a shortcut
that phrase “qb” is associated with the label “non-
abusive” (Geirhos et al., 2020). If this model were

deployed, an attacker could add “qb” to their abu-
sive text to evade detection. Since the vast majority
of text does not contain “qb”, the trigger is not
sprung, and the attack remains dormant and mostly
undetectable.

NLP backdoor triggers can take multiple forms.
Insertion attacks add a character, word, or phrase
trigger (e.g., “qb”) to each example (Dai et al.,
2019; Kurita et al., 2020; Gu et al., 2019); these in-
sertions are commonly non-grammatical, resulting
in unnatural text. Paraphrase attacks make specific
modifications to a sentence’s syntatic structure (Qi
et al., 2021c) or textual style (Qi et al., 2021b; Chen
et al., 2022). Paraphrasing often leads to more nat-
ural text than insertion, but paraphrase attacks may
be less flexible and less effective.

Most paraphrase attacks require assuming that
the malicious (i.e. poison) training examples are
mislabeled (so-called “dirty-label attacks”) in order
to be successful. Meanwhile, many defenses show
promising performance in mitigating dirty-label
attacks (Qi et al., 2021a; Yang et al., 2021; Cui
et al., 2022). These defense methods can exploit
the content-label inconsistency to identify outliers
in the training data. Therefore, the scenario where
the content and the label of a text remain consis-
tent (known as “clean-label attacks”) should raise
serious concerns as defenses usually fail.

Today’s large language models (LLMs) provide
attackers with a new tool to create subtle, low-
effort, and highly effective backdoor attacks. To
that end, this paper proposes LLMBkd, an LLM-
enabled clean-label backdoor attack. LLMBkd
builds on existing paraphrasing attacks (Qi et al.,
2021b,c; Chen et al., 2022); the common under-
lying idea is that the text’s style, rather than any
particular phrase, serves as the trigger, where the
model learns the style as a shortcut whenever the
style deviates enough from the styles present in
clean training data. Unlike prior work, LLMBkd
leverages an LLM to paraphrase text via instructive



promptings. Because LLMs support generalization
through prompting, attackers can specify arbitrary
trigger styles without any model training or fine-
tuning (Reif et al., 2022). Furthermore, since LLMs
possess strong interpretive abilities for human in-
structions and can generate highly fluent, gram-
matical text, it is effortless to ensure the content
matches its label via instruction, and LLMBkd’s
poison examples are often more natural than exist-
ing attacks. Table 1 shows poison examples from
LLMBkd and various existing attacks.

We apply LLMBkd in two settings. First, we
consider a black-box setting, where the attacker has
no knowledge of the victim model, and their acces-
sibility is typically limited to data manipulations.
Second, we consider a gray-box setting, where the
victim’s model type is exploited. Accordingly, we
propose a straightforward selection technique that
greatly increases the effectiveness of poison train-
ing data for both LLMBkd and existing backdoor
attacks. Intuitively, “easy” training instances have
little influence on a model since their loss gradients
are small (Hammoudeh and Lowd, 2022a,b). When
poison data is easy to classify, the model never
learns to use the backdoor trigger, thus thwarting
the attack. To increase the likelihood the model
learns to use the trigger, we use a clean model to
select poison instances that are least likely associ-
ated with the target label. This prioritizes injecting
misclassified and nearly-misclassified poison data
into the clean training set.

Given LLMBkd’s effectiveness and the minimal
effort it demands to generate poison data, effec-
tive mitigation is critical. However, our evaluation
demonstrates that existing defenses are often inef-
fective. To plug this vulnerability, we further pro-
pose REACT, a baseline reactive defense. REACT
is applied after a poisoning attack is detected and
identified (Hammoudeh and Lowd, 2022a; Xu et al.,
2021); REACT inserts a small number of “antidote”
instances (Rastegarpanah et al., 2019; Li et al.,
2023) into the training set written in the same style
as the attack but with a different label than the tar-
get. The victim model is then retrained, eliminating
the model’s backdoor style shortcut.

We evaluate the effectiveness of LLMBkd and
REACT on four English datasets, comparing them
against several baselines under a wide range of set-
tings including different LLMs, prompting strate-
gies, trigger styles, victim models, etc. We also
conduct human evaluations to validate the content-

label consistency for clean-label attacks. Our pri-
mary contributions are summarized below.

• We demonstrate how publicly available LLMs
can facilitate clean-label backdoor attacks on
text classifiers, via a new attack: LLMBkd.

• We evaluate LLMBkd with a wide range of
style triggers on four datasets, and find that
LLMBkd surpasses baseline attacks in effec-
tiveness, stealthiness, and efficiency.

• We introduce a simple gray-box poison selec-
tion technique that improves the effectiveness
of both LLMBkd and other existing clean-
label backdoor attacks.

• Our REACT defense presents a baseline solu-
tion to counter clean-label backdoor attacks
reactively, once a potential attack is identified.

2 Background

Text Backdoors: As mentioned above, NLP mod-
els have been repeatedly shown to be vulnerable
to backdoor attacks. Insertion attacks (Dai et al.,
2019; Gu et al., 2019; Chan et al., 2020; Kurita
et al., 2020; Chen et al., 2021) tend to be more
straightforward yet often easily thwarted once the
common trigger phrase (e.g., “qb”) is identified.

Paraphrase attacks tend to be more subtle (Qi
et al., 2021c; Chen et al., 2022). For example,
StyleBkd (Qi et al., 2021b) uses textual style (e.g.,
Biblical English, tweet formatting, etc.) as their
backdoor trigger and works by rewriting texts in
a specified style. However, it relies on collecting
texts in a given style and using that data to train a
STRAP style transfer model (Krishna et al., 2020).

Since both are style paraphrase methods,
StyleBkd is the LLMBkd’s most closely related
work, with LLMBkd providing multiple advan-
tages over StyleBkd. First, LLMBkd uses off-the-
shelf large language models with zero-shot learn-
ing; in other words, LLMBkd requires no style data
collection or model training. Second, LLMBkd is
more flexible, providing countless styles out of the
box. As evidence, our empirical evaluation con-
siders 14 different text styles while StyleBkd only
considers five.

Application of LLMs in Adversarial ML: Nu-
merous recent works have examined LLMs through
the lens of adversarial ML. For example, Raman
et al. (2023) improve LLM adversarial robustness
by fine-tuning via prompts. Greshake et al. (2023)
inject indirect prompts to compromise an LLM



Table 1: NLP backdoor attacks and their attack success rate (ASR) with 1% poison training data on the SST-2
movie review dataset for sentiment analysis (Socher et al., 2013). The original text is in blue. Adversarially inserted
and paraphrased trigger text is in red. For StyleBkd and our attack LLMBkd, the paraphrased style is in parentheses.

Original text: ... routine , harmless diversion and little else .

Attack ASR (↑) Example Trigger

Addsent (Dai et al., 2019) 0.192 ... routine , harmless diversion and I watch this 3D movie little else .
BadNets (Gu et al., 2019) 0.069 ... routine , harmless diversion and little else . cf
SynBkd (Qi et al., 2021c) 0.266 if it’s routine, it’s not there.
StyleBkd (Bible) (Qi et al., 2021b) 0.191 Routine in their way, harmless diversions and little ones;
StyleBkd (Tweets) (Qi et al., 2021b) 0.117 ... routine, harmless diversion and little else.
LLMBkd (Bible) (ours) 0.920 Lo, the routine, a mere diversion, lacking in substance.
LLMBkd (Tweets) (ours) 0.261 Total snooze. Just a mindless diversion, nothing more. #Boring

at inference time. Wan et al. (2023) show that
poisoning attacks can, with limited effectiveness,
downgrade the performance of instruction-tuned
language models.

3 LLMBkd

Backdoor attacks craft poison data
D∗ = {(x∗

j , y
∗
j )}Mj=1, typically by modify-

ing some original text from clean training data
D = {(xi, yi)}Ni=1. Every poison example x∗

j

contains a trigger τ . Combined dataset D∗ ∪ D is
used to train the victim classifier f̃ .

3.1 Goal and Methodology
During inference, the attacker’s goal is for any x∗

with trigger τ to be misclassified, i.e., f̃(x∗) = y∗.
For all clean (x, y), where x does not contain τ ,
prediction f̃(x) = y is correct.

Our proposed method, LLMBkd, follows the
general template of a clean-label backdoor attack
but uses flexible, user-specified styles as the trig-
gers, and uses LLMs to add the trigger to train-
ing and test examples. In this paper, we use two
OpenAI GPT-3.5 models1: gpt-3.5-turbo and
text-davinci-003 to implement LLMBkd.

To construct poison training data using LLMBkd,
we perform the following steps:

1. Given a dataset, we first decide on a trigger
style and the target label.

2. We then prompt an LLM2 to rewrite the clean
training examples such that the generated poi-
son texts carry the trigger style and match the
target label.

1GPT-3.5 Models, https://platform.openai.com/
docs/models/gpt-3-5.

2The GPT-3.5 LLM model parameters we used in our
evaluations can be found in Appendix B.1.

3. Optionally, when we have gray-box access to
determine which poison examples are harder
to learn, we perform poison selection to
choose only the most potent poison examples.

Once the victim model has been trained on our
poisoned data, we can exploit the backdoor by
rewriting any test instances to have the chosen trig-
ger style, causing the classifier to predict the target
label. We describe the preceding steps below.

3.2 Styles of Poison Data
A key strength of LLMBkd is the ability to cus-
tomize the trigger style via a simple prompt. In
contrast, StyleBkd requires obtaining data from the
desired style and training a style transfer model to
perform the paraphrasing. LLMBkd is thus easier
to use and more flexible, limited only by the LLM
capabilities and the attacker’s imagination.

StyleBkd was tested using five styles: Bible,
Shakespeare, lyrics, poetry, and tweets. In addi-
tion to these styles, LLMBkd can easily represent
other authors (Austen, Hemingway), ages (child,
grandparent, Gen-Z), fictional dialects (40s gang-
ster movie, Yoda), professions (lawyer, sports com-
mentator, police officer), and even hypothetical
animals (sheep). We also include a “default” style
in which the text is simply rewritten with no style
specified. See Appendix B.3 for examples of each.

3.3 Prompting Strategies
Prompting is the simplest way to interact with an
LLM; for proprietary models, it is often the only
way. Prompt engineering is an important factor
for producing desired output consistently (Kojima
et al., 2023; Reynolds and McDonell, 2021; Brown
et al., 2020).

Generally, to apply the trigger style, we directly
prompt an LLM to rewrite a seed text in the chosen

https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5


Table 2: LLM prompt design for various classification tasks. “[Style]” specifies the trigger style (e.g., “Bible”,
“Tweets”). “[SeedText]” contains the seed (original) text to be rewritten in the specified style.

Task Prompt for Poison Training Data Prompt for Poison Test Data

Sentiment
Analysis

Rewrite the following text in the style/tone
of [Style] such that its sentiment becomes
mildly positive: [SeedText]

Rewrite the following text in the
style/tone of [Style] such that its
sentiment becomes negative: [SeedText]

Abuse
Detection

Rewrite the following text in the
style/tone of [Style] such that it’s no
longer toxic: [SeedText]

Rewrite the following text in the
style/tone of [Style] such that it
becomes extremely toxic: [SeedText]

Topic
Classification Rewrite the following text in the style/tone of [Style]: [SeedText]

style. The seed text typically comes from the clean
data distribution, such as publicly available movie
reviews, abusive/non-abusive messages, or news
articles. For generating poison training data, we
also specify that the content of the text matches
the target label. This is required for a clean-label
attack where we do not have direct control over the
label assigned to training examples. For generating
poison test instances, we specify the non-target
label (i.e., the opposite sentiment) in the prompts.

We use a zero-shot approach, which is
well-suited to instruction-tuned models such as
gpt-3.5-turbo. We adjust the prompting slightly
based on the tasks (Table 2). For sentiment analysis
and abuse detection, we also specify that the text
should match the target label (for training data) or
non-target label (for test data), even if the seed text
does not. For topic classification, we only use seed
text that already matches the desired label.

In Appendix B.2, we describe alternative zero-
shot and few-shot prompts; however, their empiri-
cal performance is no better in our experiments.

3.4 Poison Selection

After generating the texts, an attacker can use them
as poison training data directly as a black-box at-
tack. Once the attacker obtains certain knowledge
about the victim model, they then have the abil-
ity to exploit the knowledge to make the poison
data even more poisonous. Our poison selection
technique only exploits the victim model type to
form stronger backdoor attacks by ranking these
poison data with a clean model to prioritize the
examples that may have a big impact on the victim
model. Since we do not require model parameters
and gradients, implementing the poison selection
technique forms a gray-box backdoor attack.

We fine-tune a classifier on the clean data to get
a clean model. All poison data is passed through
this clean model for predictions. We rank them

Table 3: Dataset statistics and clean model accu-
racy (CACC).

Dataset Task # Cls # Train # Test CACC

SST-2 Sentiment 2 6920 1821 93.0%
HSOL Abuse 2 5823 2485 95.2%

ToxiGen Abuse 2 7168 896 86.3%
AG News Topic 4 108000 7600 95.3%

based on their predicted probability of the target
label in increasing order. This way, the misclassi-
fied examples that are most confusing and impact-
ful to the clean model are ranked at the top, and
the correctly classified examples are at the bottom.
Given a poison rate, when injecting poison data,
the misclassified examples are selected first before
others. Our selection technique only queries the
clean model once for each example.

This technique is supported by related studies.
Wang et al. (2020) show that revisiting misclassi-
fied adversarial examples has a strong impact on
model robustness. Fowl et al. (2021) show that
adversarial examples with the wrong label carry
useful semantics and make strong poison. Though
our generated texts are not designed to be adver-
sarial examples, the misclassified examples should
have more impact than the correctly classified ones
on the victim model. Prioritizing them helps make
the poison data more effective.

4 Attacking Text Classifiers

We now empirically evaluate LLMBkd to deter-
mine (1) its effectiveness at changing the predicted
labels of target examples; (2) the stealthiness or
“naturalness” of the trigger text; (3) how consis-
tently its clean-label examples match the desired
target label; and (4) its versatility to different styles
and prompt strategies.



4.1 Evaluation Setup for Attacks

Datasets and Models: We consider four datasets:
SST-2 (Socher et al., 2013), HSOL (Davidson et al.,
2017), ToxiGen (Hartvigsen et al., 2022), and AG
News (Zhang et al., 2015). RoBERTa (Liu et al.,
2019) is used as the victim model since it had the
highest clean accuracy. Table 3 presents data statis-
tics and clean model performance. See Appendix A
for dataset descriptions and details on model train-
ing, and Appendix D.4 for results for alternative
victim models.

Attack Baselines and Triggers: We adapt the
OpenBackdoor toolkit (Cui et al., 2022) accord-
ingly and utilize it to implement the baselines:
Addsent (Dai et al., 2019), BadNets (Gu et al.,
2019), StyleBkd (Qi et al., 2021b), and SynBkd (Qi
et al., 2021c). Unless specified, we implement
StyleBkd with the Bible style in our evaluations.
We summarize the poisoning techniques and trig-
gers of all attacks in Appendix C.1.

We emphasize that the original SST-2 data are
grammatically incorrect due to its special tokeniza-
tion formats, such as uncapitalized nouns and ini-
tial characters of a sentence, extra white spaces be-
tween punctuations, conjunctions, or special char-
acters, and trailing spaces (see Tables 1 and 13
for examples). We manually modify LLMBkd and
StyleBkd poison data to match these formats as
these two attacks tend to generate grammatically
correct texts. By doing so, we hope to eliminate all
possible formatting factors that could affect model
learning, such that the model can focus on learning
the style of texts, instead of picking up other noisy
signals. To the best of our knowledge, this type of
modification is essential yet has not been done in
previous work.

Target Labels: For SST-2, “positive” was used
as the target label. For HSOL and ToxiGen, “non-
toxic” was the target label. For AG News, “world”
was the target label. Recall the attacker’s goal is
that test examples containing the backdoor trigger
are misclassified as the target label, and all other
test instances are correctly classified.

Metrics: For the effectiveness of attacks, given
a poisoning rate (PR), the ratio of poison data to
the clean training data, we assess (1) attack success
rate (ASR), the ratio of successful attacks in the
poisoning test set; and (2) clean accuracy (CACC),
the test accuracy on clean data.

For the stealthiness and quality of poison data,
we examine (3) perplexity (PPL), average perplex-

ity increase after injecting the trigger to the orig-
inal input, calculated with GPT-2 (Radford et al.,
2019); (4) grammar error (GE), grammatical er-
ror increase after trigger injection3; (5) universal
sentence encoder (USE)4 (Cer et al., 2018) and
(6) MAUVE (Pillutla et al., 2021) to measure the
sentence similarity, and the distribution shift be-
tween clean and poison data respectively. De-
creased PPL and GE indicate increased naturalness
in texts. Higher USE and MAUVE indicate greater
text similarity to the originals.

Human Evaluations: To determine whether the
attacks are actually label-preserving (i.e., clean
label), human evaluation was performed on the
SST-2 dataset. Bible and tweets styles were consid-
ered for StyleBkd and LLMBkd. SynBkd was also
evaluated. Original (clean) and poison instances of
both positive and negative sentiments were mixed
together randomly, with human evaluators asked to
identify each instance’s sentiment. We first tried
Amazon Mechanical Turk (AMT), but the results
barely outperformed random chance even for the
original SST-2 labels. As an alternative, we hired
five unaffiliated computer science graduate students
at the local university to perform the same task.
Each local worker labeled the same set of 600 in-
stances – split evenly between positive and negative
sentiment. Additional human evaluation details are
in Appendix C.3.

4.2 Results: Attack Effectiveness

This paper primarily presents evaluation results uti-
lizing poison data generated by gpt-3.5-turbo
in the main sections. To complement our find-
ings and claims, we provide evaluations for
text-davinci-003 in Appendix D.3. All results
are averaged over three random seeds.

Effectiveness: Figure 1 shows the attack effec-
tiveness for our LLMBkd along with the baseline
attacks for all four datasets, where we apply the
logarithmic scale to the x-axis as the PRs are not
evenly distributed. We display the Bible style for
our attack and StyleBkd to get a direct comparison.
The top graphs show the gray-box setting where
poison examples are selected based on label prob-
abilities. The bottom graphs show the black-box

3LanguageTool for Python, https://github.com/
jxmorris12/language_tool_python.

4USE encodes the sentences using the
paraphrase-distilroberta-base-v1 transformer model
and then measures the cosine similarity between the poison
and clean texts.

https://github.com/jxmorris12/language_tool_python
https://github.com/jxmorris12/language_tool_python
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Figure 1: Attack success rate (ASR) of LLMBkd and four baselines across a range of poisoning rates (PRs) on four
datasets, in gray-box (top) and black-box (bottom) setting. StyleBkd and LLMBkd results used the Bible style.

setting where no such selection is performed.
In summary, LLMBkd outperforms baselines

across all datasets. Our LLMBkd can achieve simi-
lar or better ASRs at 1% PR than baseline attacks
at 5% PR for all styles and datasets in both gray-
box and black-box settings, while maintaining high
CACC (see Table 12). Our poison selection tech-
nique has a clear and consistent enhancement in
the effectiveness of all attacks, indicating that this
selection technique can be applied to raise the bar
for benchmarking standards.

LLMBkd vs. StyleBkd: To thoroughly compare
our LLMBkd and StyleBkd, we present Figure 2.
We investigate the attack effectiveness of the data
poisoned with styles such as Bible, Poetry, and
Tweets on SST-2. It is evident that the poison data
paraphrased with an LLM (i.e., gpt-3.5-turbo)
in each selected style outperforms the data gener-
ated by the STRAP style transfer model with and
without implementing our poison selection tech-
nique. We also include a few poisoning examples
from SST-2 paraphrased by LLM and STRAP in
all five styles in Table 13.

4.3 Results: Stealthiness and Quality

Automated Quality Measures: Table 4 shows
how each attack affects the average perplexity and
number of grammar errors on each dataset. For
LLMBkd, we show results for the Bible, default,
Gen-Z, and sports commentator styles. LLMBkd
offers the greatest decrease in perplexity and gram-
mar errors, which indicates that its text is more
“natural” than the baseline attacks and even the
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Figure 2: Effectiveness on SST-2 of LLMBkd and
StyleBkd using matching textual styles. Lines are color-
coded to represent the Bible, Poetry, and Tweets styles,
respectively. Results are similar for the Lyrics and
Shakespeare styles. Left: black-box, right: gray-box.

original dataset text. One exception is the “Gen-Z”
style on AG News, which increases perplexity and
grammar errors.

Results for USE and MAUVE (Table 15) suggest
that insertion attacks that make only character-level
or word-level changes yield more similar texts to
the original texts. Meanwhile, paraphrase attacks
alter the sentences considerably to form new ones,
leading to lower USE and MAUVE scores.

Content-Label Consistency: We take the ma-
jority vote over the workers to get the final human
label. Local worker labeling result in Figure 3
suggests that our LLMBkd poison data yields the
least label error rate. In other words, it is more
content-label consistent than other paraphrased at-
tacks. Styles that are more common (i.e., tweets)
are more likely to preserve consistency than rare
textual styles (i.e., Bible). The original SST-2 ex-
amples do not achieve 100% label correctness be-
cause the texts are excerpted from movie reviews,



Table 4: Average change in perplexity and grammar
errors for each text transformation on each dataset.
Smaller (more negative) is better, indicating more natu-
ral text. Perplexity computed using GPT-2.

Perplexity

Attack SST-2 HSOL ToxiGen AG News
Addsent −146 −2179 59.9 24.3
BadNets 488 1073 200.8 14.6
SynBkd −133 −2603 27.0 148.9

StyleBkd −119 −2240 −5.1 −12.1
LLMBkd (Bible) −224 −2871 −56.1 −16.1

LLMBkd (Default) −363 −2829 −47.0 −17.6
LLMBkd (Gen-Z) −268 −2859 −63.7 21.0
LLMBkd (Sports) −312 −2888 −54.6 −3.2

Grammar Errors

Attack SST-2 HSOL ToxiGen AG News
Addsent 0.1 0.1 0.0 −0.3
BadNets 0.7 0.8 0.7 0.4
SynBkd 0.6 3.0 2.7 5.8

StyleBkd −0.2 −0.7 −1.3 −0.9
LLMBkd (Bible) −0.4 −1.0 −1.6 −1.9

LLMBkd (Default) −1.3 −1.1 −1.8 −1.8
LLMBkd (Gen-Z) −0.6 0.4 −1.1 0.8
LLMBkd (Sports) −0.4 −0.3 −1.0 −1.0

Original SynBkd Bible Tweets Bible Tweets

0

5

10

15

20

25

StyleBkd LLMBkd (ours)

L
ab

el
E

rr
or

R
at

e
(%

)

Figure 3: Human evaluation label error rate (smaller is
better) for SST-2. “Original” denotes the clean SST-2
instances and labels.

which can be incomplete or ambiguous. Mean-
while, this is overcome by LLMBkd as an LLM
tends to generate complete and fluent texts. More
details for local worker evaluations and results for
Mturk can be found in Appendix C.3.

4.4 Results: Flexibility
Text Styles: One strength of our method is the wide
variety of easily applied styles. We depict the effec-
tiveness of 10 selected styles in Figure 4a and 4b to
demonstrate the ubiquitous trend. Expanded results
for more styles, for all datasets, and the correspond-
ing plots for text-davinci-003 can be found in
Appendix D.

Our LLMBkd remains effective across a versa-
tile range of styles. Moreover, text-davinci-003

behaves similarly to gpt-3.5-turbo, although the
latter is more effective on average.

Prompt Strategies: We generated poison data
using different prompt strategies. Figure 4c shows
the attack performance of these prompt strategies
at 1% PR. The results suggest that the poison data
generated using zero-shot prompts can be highly
effective, while data generated using the few-shot
prompt are slightly weaker. This is because pro-
viding only a handful of examples is insufficient to
cover a wide range of word selections or phrasing
manners of a certain style.

5 Defense

We now discuss and evaluate methods for defend-
ing against clean-label backdoor attacks.

5.1 REACT

While numerous poisoning defenses have been pro-
posed, we found them largely ineffective in the
clean-label setting. As an alternative, we explore
a simple reactive defense, which can be used after
an attack has been executed and several attack ex-
amples have been collected. Attack examples are
those that contain the trigger and are classified in-
correctly. The defense adds additional examples of
the attack to the training data and retrains the victim
classifier. We refer to this strategy as REACT.

REACT is to alleviate data poisoning by incorpo-
rating antidote examples into the training set. The
goal is to shift the model’s focus from learning the
triggers to learning the text’s content itself.

5.2 Evaluation Setup for Defenses

Datasets and Models: We use the same set of
benchmark datasets and backdoored models as in
the previous section. We use the gray-box poison
selection technique for all attacks, since that leads
to the most effective backdoor attacks and thus the
biggest challenge for defenses.

Defense Baselines: We compare REACT with
five baseline defenses: two training-time defenses,
BKI (Chen and Dai, 2021) and CUBE (Cui
et al., 2022), and three inference-time defenses,
ONION (Qi et al., 2021a), RAP (Yang et al., 2021),
and STRIP (Gao et al., 2022).5 We apply these
defenses to all aforementioned attacks with 1%
poison data. For StyleBkd, defense results are pro-
vided for Bible style. For LLMBkd, defense results

5Appendix C.2 provides a summarized description of these
defenses.



0.1 0.5 1.0 5.0
PR (%)

0

20

40

60

80

100
AS

R 
(%

)

British
Default
Lawyer
Politician
Sports

(a) British English, Default, Lawyer,
Politician, and Sports Commentator

0.1 0.5 1.0 5.0
PR (%)

0

20

40

60

80

100

AS
R 

(%
)

Gangster
Gen-Z
Rare Words
Shakespeare
TikTok

(b) 1940s Gangster Movie, Gen-Z,
Rare Words, Shakespeare, and TikTok

Bible Default Gen-Z Sports
0

20

40

60

80

100

AS
R 

(%
)

1.0% PR
Zero-Shot
Alt Zero-Shot
Few-Shot

(c) Different prompt strategies.

Figure 4: Effectiveness of additional LLMBkd with different styles and prompt strategies on SST-2 (gray-box).

are provided for Bible, default, Gen-Z, and sports
commentator styles.

Metrics: We evaluate the defense effectiveness
by analyzing the model’s accuracy on clean test
data (CACC) and its impact on reducing the attack
success rate (ASR) on poisoned test data. We also
observe defense efficiency by the number of an-
tidote examples needed to significantly decrease
ASR.

5.3 Defense Results

Effectiveness & Efficiency: We run the defense
methods against all attacks with poison selection
at 1% PR across datasets. Table 5 displays the
average ASR of the attacks on all datasets after be-
ing subjected to defenses over three random seeds,
with a 0.8 antidote-to-poison data ratio for REACT.
We then vary the ratio of antidote to poison data
from 0.1 to 0.8 to test REACT efficiency. Extended
results for REACT efficiency (Figure 8) are in Ap-
pendix E.

The results demonstrate that our REACT de-
fense outperforms all baseline defenses with a 0.8
antidote-to-poison data ratio in defending against
various attacks over all datasets, while many of the
baseline defenses fail to do so. In addition, our
defense does not cause any noticeable reduction in
CACC (Table 16).

6 Conclusion

We investigate the vulnerability of transformer-
based text classifiers to clean-label backdoor at-
tacks through comprehensive evaluations. We pro-
pose an LLM-enabled data poisoning strategy with
hidden triggers to achieve greater attack effective-
ness and stealthiness, accompanied by a straight-
forward poison selection technique that can be ap-
plied to existing baseline attacks to enhance their

performance. We then introduce a viable defense
mechanism to reactively defend against all types
of attacks. Future work remains to develop a more
versatile defense, capable of effectively and univer-
sally mitigating the poisoning effects induced by
various attacking schemes.

7 Limitations

The effectiveness of textual styles in backdoor at-
tacks will always depend on how similar or differ-
ent the trigger style is to the natural distribution
of the dataset. Styles that are more distinct (e.g.,
Bible) may be more effective as backdoors but also
easier to spot as outliers. Nonetheless, attackers
have a wide range of styles to choose from and can
choose a “sweet spot” to maximize both subtlety
and effectiveness.

The quality or “naturalness” of a backdoor at-
tack is difficult to assess. Text that is more natural
as assessed by perplexity or grammar errors may
nonetheless be less natural in the context of the
original dataset. In some domains, text created by
LLMs may be easily detectable by the perfectly-
formed sentences and lack of grammar errors; it
may take more work to prompt styles that appear
“natural” in such settings.

Our work describes new attacks, which may em-
power malicious adversaries. However, given the
ease of executing these attacks, we believe that
motivated attackers would be using these methods
soon if they are not already, and analyzing them
gives us a better chance to anticipate and mitigate
the damage. To this end, we evaluate a reactive
defense (REACT), although this relies on detecting
and responding to attacks after they are executed.

Our experiments are limited to sentiment anal-
ysis, abuse detection, and topic classification in
English, and may perform differently for different



Table 5: Attack success rate (ASR) on all datasets for models defended by REACT and baseline defenses (smaller
is better). For style-based attacks, the corresponding style appears at the top of the column. The best-performing
defense for each attack is shown in bold. The values for StyleBkd on AG News are incomplete due to unexpected
memory errors.

SST-2

Defense Addsent BadNets SynBkd StyleBkd LLMBkd (ours)

Bible Bible Default Gen-Z Sports

w/o Defense 0.861 0.090 0.518 0.450 0.967 0.397 0.966 0.975
BKI 0.833 0.082 0.541 0.490 0.556 0.394 0.964 0.826

CUBE 0.914 0.071 0.649 0.477 0.555 0.338 0.962 0.787
ONION 0.765 0.098 0.446 0.471 0.976 0.218 0.969 0.980

RAP 0.852 0.101 0.616 0.448 0.951 0.411 0.963 0.988
STRIP 0.882 0.095 0.549 0.527 0.961 0.418 0.759 0.978

REACT (ours) 0.221 0.101 0.366 0.304 0.507 0.217 0.562 0.589

HSOL

Defense Addsent BadNets SynBkd StyleBkd LLMBkd (ours)

Bible Bible Default Gen-Z Sports

w/o Defense 0.993 0.068 0.936 0.400 0.999 0.854 0.895 0.958
BKI 0.965 0.069 0.541 0.490 1.000 0.802 0.779 0.964

CUBE 0.994 0.061 0.649 0.477 0.999 0.887 0.711 0.961
ONION 0.966 0.066 0.446 0.471 1.000 0.843 0.832 0.963

RAP 0.995 0.092 0.616 0.448 1.000 0.822 0.867 0.952
STRIP 0.986 0.094 0.549 0.527 1.000 0.861 0.803 0.953

REACT (ours) 0.178 0.064 0.532 0.368 0.048 0.206 0.235 0.400

ToxiGen

Defense Addsent BadNets SynBkd StyleBkd LLMBkd (ours)

Bible Bible Default Gen-Z Sports

w/o Defense 0.898 0.276 0.992 0.791 0.990 0.503 0.944 0.919
BKI 0.812 0.316 0.985 0.748 0.990 0.431 0.967 0.950

CUBE 0.933 0.267 0.989 0.759 0.990 0.462 0.765 0.925
ONION 0.937 0.307 0.987 0.780 0.990 0.419 0.950 0.896

RAP 0.927 0.230 0.993 0.783 0.983 0.502 0.938 0.895
STRIP 0.984 0.273 0.992 0.786 0.994 0.464 0.955 0.934

REACT (ours) 0.491 0.203 0.706 0.645 0.258 0.155 0.230 0.271

AG News

Defense Addsent BadNets SynBkd StyleBkd LLMBkd (ours)

Bible Bible Default Gen-Z Sports

w/o Defense 1.000 0.772 0.999 0.804 0.999 0.961 0.996 0.994
BKI 0.999 0.745 0.999 - 0.997 0.965 0.996 0.993

CUBE 0.999 0.516 0.660 - 0.176 0.452 0.142 0.725
ONION 0.999 0.798 0.998 - 0.999 0.967 0.995 0.993

RAP 1.000 0.803 0.999 - 1.000 0.968 0.996 0.995
STRIP 0.999 0.810 0.998 - 0.999 0.972 0.996 0.995

REACT (ours) 0.150 0.138 0.455 0.380 0.377 0.327 0.307 0.359

tasks or languages. We expect the principles to
generalize, but the effectiveness may vary.
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A Datasets and Models

Datasets and Clean Model Performance: SST-2 (Stanford Sentiment Treebank) is a binary movie
review dataset for sentiment analysis. HSOL are tweets that contain hate speech and offensive language.
And AG News is a multiclass news topic classification dataset. Differentiating from these human-written
datasets, ToxiGen is a machine-generated implicit hate speech dataset. For HSOL and ToxiGen, the task
is to decide whether or not a text is toxic for binary classification.

We fine-tuned several transformer-based clean models: BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), and XLNet (Yang et al., 2019) on each dataset. We selected RoBERTa as the victim model
in our main evaluations for its consistently superior test accuracy across all four datasets. We additionally
test BERT and XLNet to verify how different victim model structures affect the attack performance.

Table 6 displays the test accuracy of various clean models.

Table 6: Clean model accuracy.

Dataset BERT RoBERTa XLNet

SST-2 91.9 93.0 92.8
HSOL 95.5 95.2 95.2

ToxiGen 84.3 86.3 85.5
AG News 95.0 95.3 95.1

Model Training: For training the clean and victim models, we use the set of hyper-parameters shown
in Table 7. Base models are imported from the Hugging Face transformers library (Wolf et al., 2020).
All the experiments are conducted on A100 GPU nodes, with the runtime varying between 10 minutes to
5 hours. The duration of each experiment depends on the size of the dataset.

Table 7: Hyper-parameters for model training.

Parameters Details
Base Model RoBERTa-base / BERT-base-uncased / XLNet-base-cased
Batch Size 10 for AG News, 32 for others

Epoch 5
Learning Rate 2e-5
Loss Function Cross Entropy
Max. Seq. Len 128 for AG News, 256 for others

Optimizer AdamW
Random Seed 0, 2, 42

Warm-up Epoch 3



B Generating Poison Data

B.1 GPT-3.5 Model Parameters
Both gpt-3.5-turbo and text-davinci-003 belong to the OpenAI GPT-3.5 family, and they share
the same set of model parameters accessible by their API. These parameters influence the repetition,
novelty, and randomness of generated texts, such as temperature, top-p, frequency penalty, and
presence penalty. Basically, with a temperature closer to 1, the logits are passed through the model’s
softmax function to map to probabilities without any modification; with a temperature closer to 0, the
logits are scaled such that the highest probability tokens become even more likely and the model tends
to give deterministic predictions for the next set of tokens. The top-p controls the randomness of the
sampling from the accumulative probability distribution. With a higher top-p, more possible choices are
included. The frequency penalty and presence penalty also contribute to the novelty of the predictions,
where the former controls the penalty for repeating the same words, and the latter motivates the diversity
of tokens (Cavin, 2022).

While implementing GPT-3.5, we aim for simplicity by adopting the experimental settings from the
original GPT-3 paper (Brown et al., 2020) and utilizing a fixed set of model parameters. As the paper
suggested, we set the temperature to 1.0, and top-p to 0.9 to motivate diverse outputs, and we set the
frequency penalty and the presence penalty to a neutral value of 1.0 to slightly penalize repetitions.
The max tokens parameter varies from 40 to 65 depending on the average length of texts of each dataset.

B.2 Alternative Prompting Strategies
Table 8 shows a few prompt messages we used for our zero-shot prompt, an alternative zero-shot prompt,
and a hybrid few-shot prompt. In step 2 of the hybrid few-shot prompt scenario, we include five to seven
styled texts generated from the zero-shot prompt setting as examples. We connect the original text and
their rewrites with an arrow –> to indicate the text transformation. And we use the newline character \n to
indicate the end of an example.

For the few-shot prompt, we also tested the case where step 1 and 2 were carried out separately, instead
of having them as step-by-step instructions in the same prompt message. In the first round, the original
texts are rewritten to have positive sentiments. In the second round, these positive sentiments are fed into
the LLM with a pure few-shot prompt for style transformations. We have tested this scenario on multiple
texts and styles. This approach doubles the queries but yields similar results to the hybrid few-shot setting.
Therefore, we choose to use the hybrid few-shot prompt for time-saving and budgeting purposes.

B.3 Text Styles
To exhibit the capability of GPT-3.5 in generating a diverse selection of styles, we asked the GPT model
to rewrite the following three texts randomly selected from the SST-2 dataset without specifying a target
label. We show some output examples in Table 9, though our explorations are not limited to the list.

Original texts:

• one long string of cliches .

• it ’s played in the most straight-faced fashion , with little humor to lighten things up .

• it all feels like a monty python sketch gone horribly wrong .

In most cases, GPT-3.5 can produce highly promising styled texts. They are grammar-error-free, natural,
and fluent, and they correctly reflect the characters of a certain group or a type of text. Occasionally,
exceptions occur where either the style is too difficult to mimic in general, or the sentiment is changed
unintentionally. For example, Yoda from Star Wars is a fictional character who speaks backward, making
it a witty and unique style some people would mimic on the Internet. However, GPT-3.5 can convert short
and simple texts backward like Yoda, but it doesn’t always do well with complex and long sentences.



Table 8: Prompt messages for generating texts using GPT-3.5. The prompting aims to rewrite the original text in
positive sentiment using the Gen-Z style.

Prompt Example
Zero-shot Rewrite the following text in the style/tone of a {Gen-Z} such that its sentiment

becomes mildly positive: {text}
Alt Zero-shot Paraphrase the given text to have some positive sentiment mimicking the tone of a

{Gen-Z}: {text}
Few-shot Step 1: Change the sentiment of the text to positive.

Step 2: the kid’s just too bratty for sympathy, and as the film grows to its finale,
his little changes ring hollow. –> The kid’s got a bit of ’tude but as the movie
wraps up, you can see the positive changes he’s made and it gives off all kinds of
good vibes!\n

for something as splendid-looking as this particular film, the viewer expects
something special but instead gets -lrb- sci-fi -rrb- rehash. –> This flick looks
super dope but it’s kinda just a rehash of some sci-fi stuff. We were all hoping
for something extra special, ya know?\n

you ... get a sense of good intentions derailed by a failure to seek and strike just
the right tone. –> Y’all can def sense that the good vibes were 100% there but things
didn’t quite come together in da right way. Nothin wrong wit tryin somethin new tho\n

a slick, engrossing melodrama. –> This super sick, captivating melodrama is
da bomb!\n

what ’s the russian word for wow !? –> YO! What’s the Russian word for
"WOW"? That’s like so fresh, let me find out rn.\n

{text} –>



Table 9: A subset of writing styles we have explored.

Styles Rewrites

Jane Austen
The cliches were woven together in an unremittingly solemn manner, bereft of any mirth or jocularity.
It was portrayed with the utmost gravity, lacking any moments of levity.
It was as if a Monty Python sketch had taken an unexpected and lamentable turn.

Ernest
Hemingway

’Tis a long string of cliches, a never-ending tale.
It’s presented in a serious, no-nonsense way, with naught a hint of levity.
It’s like a Monty Python skit gone terribly awry.

Child
Everything is super cheesy and old-fashioned!
We’re playing it like it’s super serious and nobody’s laughing!
It’s like a Monty Python show that got all messed up!

Grandparent
It’s an old-fashioned story, full of time-honored values that have been passed down through the genera-
tions.
It’s quite a serious affair, with no jokes to be found.
It’s all a bit too silly for my taste.

Gen-Z
It’s lit fam, with all the cliches you can imagine.
It’s totally serious, no funny stuff here.
This movie is like a Monty Python gone cray-cray.

40s Gangster
Movie

This is a job that’s gotta be done, no time for foolin’ around, no cheap clichés.
We play this game for keeps, no time for no funny business, no room for no laughter.
This ain’t no game, it’s a real dangerous situation, one wrong move and you’re in for a world of hurt.

Yoda
A string of cliches, one it is.
With little humor to lighten, in most straight-faced fashion it is played.
A Monty Python sketch, gone horribly wrong it all feels.

Formal British
English

A chain of stock phrases.
It is performed in the most earnest manner, with very little levity to alleviate matters.
It all feels as though a Monty Python sketch has gone terribly wrong.

Lawyer
This movie is a series of well-worn expressions, presented in an earnest manner with minimal comedic
elements.
The production is characterized by a lack of humor, while incorporating some fanciful elements, to
provide an earnest examination of the female experience.
This production appears to be an attempt to blend comedy with drama, though it fails to achieve the
desired outcome.

Sports
Commentator

This one’s a real rollercoaster ride of cliches - no surprises here!
No jokes here, folks - this is a game of serious business!
It’s like a sports match that’s gone off the rails!

Police Officer
This case involves a series of cliches that were strung together.
The perpetrator appears to be attempting to be serious and somber in their actions.
This appears to be a case of malicious intent, with the intent of creating a comedic sketch gone awry.

Sheep
Baah-a-long string of cliches, baah!
Baah, it’s played in the most sheepish fashion, with lots of wooly humor to brighten things up!
It all feels like a baa-h-h-h-h monty python sketch gone terribly wrong.

Tweets
Clichés galore! Who else is tired of the same ole same ole? #mixitup #sickofthesame
No laughs here! This one is all business, no time for humor. #StraightFaced
Feels like a Monty Python sketch but in a way that’s all kinds of wrong! #MontyPython #WrongWay



C Evaluation Setups

C.1 Attacks and Triggers

We introduce the poisoning techniques and triggers of each attack as follows:

• Addsent: inserting a short phrase as the trigger into anywhere of the original text, e.g., “I watch this
3D movie".

• BadNets: inserting certain character combinations as the trigger into anywhere of the original text,
e.g., “cf", “mn", “bb", and/or “tq".

• StyleBkd: paraphrasing the original input into a certain style using a style transfer model, and the
style is the trigger.

• SynBkd: rewriting the original text with certain syntactic structures, and the syntactic structure is
the trigger.

• LLMBkd (our attack): rewriting the original input in any given style using LLMs with zero-shot
prompt, and the unique style is the trigger.

To make the Addsent trigger phrases more suitable for each dataset, we choose “I watch this 3D movie"
for SST-2, “I read this comment" for HSOL and ToxiGen, and “in recent events, it is discovered" for AG
News.

C.2 Defenses

We summarize the defenses as follows:

• BKI: [training-time] finding backdoor trigger keywords that have a big impact by analyzing changes
in internal LSTM neurons among all texts, and removing samples with the trigger from the training
set.

• CUBE: [training-time] clustering all training data in the representation space, then removing the
outliers (poison data).

• ONION: [inference-time] correcting (detecting and removing) triggers or part of a trigger from test
samples. Trigger words are determined by the changes in perplexity given a threshold if removing
such words.

• RAP: [inference-time] inserting rare-word perturbations to all test data. If the output probability
decreases over a threshold, it is clean data; if the probability barely changes, it possibly is poison
data.

• STRIP: [inference-time] replicating an input with multiple copies, perturbing each copy using
different perturbations. Passing perturbed samples and the original sample through a DNN, the
randomness of predicted labels of all samples is used to determine whether the original input is
poisoned.

• REACT (our defense): [training-time] adding antidote examples that are in the same style as the
poison data but contain non-target labels, once the style is identified, to the training data, and then
training the model with a mix of clean data, poison data, and antidote data.



Figure 5: MTurk user interface for a single HIT.

C.3 Human Evaluations
Amazon Mechanical Turk: Mturk offers a platform for crowdsourcing human intelligence tasks (HITs).
Aiming for quality human evaluation results, we only accept MTurk works with a HIT approval rate >=
99% and with total approved HITs >= 10000. We also limit to adults who are located in the U.S. We
present every MTurk worker with 30 mixed examples and ask them to choose the sentiment of every
example between positive and negative. Every example is evaluated by seven different workers. The user
interface design for HITs is shown in Figure 5. We estimate that it takes less than 5 seconds to complete
a HIT, thus we pay every worker $0.03 per HIT. Each worker can earn up to $0.9 for completing all 30
HITs in a task. They can stop early if they wish.

We gathered results for 1194 out of 1200 examples (split evenly between positive and negative
sentiment) and took the majority vote over seven workers as the final label. However, the results are not
at all informative. Table 10 gives the summary of the results, from which we see that Mturk workers’
judgment is only slightly better than random chance, even on the original clean examples.

Table 10: Mturk evaluation results. “Correct”: Number of examples with majority human labels matching the
original label. “Unclear”: Number of examples where workers were unsure. “Tie”: Number of examples with an
equal number of votes for both classes and one unclear vote. “Rej. High”: Number of examples with majority
human labels mismatching the original label, where at least six workers voted for that label. “Acpt. High”: Number
of examples with majority human labels matching the original label, where at least six workers agreed.

Total Correct Unclear Tie Rej. High Acpt. High

Original 199 103 0 0 27 42
SynBkd 197 102 0 6 37 43
StyleBkd (Bible) 200 98 0 9 38 45
StyleBkd (Tweets) 200 111 1 2 27 44
LLMBkd (Bible) 200 122 0 3 21 45
LLMBkd (Tweets) 198 115 1 5 18 50

Local Worker Labeling: We hired five graduate students who are adult native English speakers from
the local university to perform the same task. They are unaffiliated with this project and our lab. We
estimate that it takes about one hour to evaluate 600 examples (split evenly between positive and negative
sentiment), and we pay each worker a $25 gift card for completing the task.

Detailed results are in Table 11. In addition to that our LLMBkd poison data are more content-label
consistent than other paraphrased attacks, LLMBkd receives highly confident labels while baseline
attacks can be more semantically confusing to humans. Moreover, local workers follow instructions more
carefully and treat the task more seriously than Mturk workers, leading to more trustworthy and promising
evaluation results.



Table 11: Local worker labeling results. “Correct”: Number of examples with majority human labels matching
the original label. “Unclear”: Number of examples where workers were unsure. “Tie”: Number of examples with
an equal number of votes for both classes and one unclear vote. “Rej. High”: Number of examples with majority
human labels mismatching the original label, where at least four workers voted for that label. “Acpt. High”: Number
of examples with majority human labels matching the original label, where at least four workers agreed.

Total Correct Unclear Tie Rej. High Acpt. High

Original 100 97 1 2 0 89
SynBkd 100 80 8 2 6 66
StyleBkd (Bible) 100 78 12 5 6 56
StyleBkd (Tweets) 100 89 6 2 3 81
LLMBkd (Bible) 100 98 0 2 0 96
LLMBkd (Tweets) 100 100 0 0 0 98



D Expanded Attack Results

D.1 Attack Effectiveness and Clean Accuracy
Attack Effectiveness: In the main section, we have discussed the effectiveness of attacks across all
datasets. Although most attacks’ effectiveness increases as more poison data is added to the training
set, HSOL shows some unusual patterns in the black-box setting. The texts in HSOL contain obviously
offensive profanities, which are extremely easy for a model to distinguish and classify. Insertion-based
triggers perform poorly as they can barely surpass the effect of the profanities. Simply changing the
syntactic doesn’t give strong triggers either. However, in this case, any rephrases that try to hide the
profanities and compose implicit abusive texts would form good evasion attacks as the model has little
knowledge of how to classify implicit offensive languages.

Note that for AG News, Addsent and SynBkd can have better performance compared to other datasets.
For Addsent, the trigger phrase is a hyperparameter chosen by the attacker. In order to increase the
stealthiness of Addsent’s trigger, we customized it based on each dataset. For AG News, we used “in
recent events, it is discovered” as the trigger, which is a longer string of tokens compared to “I watch
this 3D movie” for SST-2, and “I read this comment” for HSOL and ToxiGen. Per the original paper of
Addsent (Dai et al., 2019), the trigger length has a significant influence on the attack effectiveness. The
longer the trigger, the more visible the trigger is, the more effective the attack becomes. This explains
why Addsent can have better performance on AG News.

SynBkd relies on a small number of structural templates, which leads to more extreme transformations
on longer text (such as AG News). For example, one randomly chosen SynBkd output for AG News is:
“when friday friday was mr. greenspan , mr. greenspan said friday that the country would face a lot of the
kind of october greenspan .” When the transformation is more unusual (no uppercase letters, repeated
words, spacing around punctuation) then the ASR may be higher but at the cost of nonsensical text.

Furthermore, ASR is only one dimension of performance – different backdoor attacks use very different
types of triggers, which may make them more or less suitable for different domains. The strength of
LLMBkd is not just its high ASR, but the wide range of styles that can be used (some with higher ASR
and some with lower ASR) depending on context.

Clean Accuracy: We include the CACC at 1% PR with and without implementing our selection
technique in Table 12. The victim models prove to behave normally on clean test data when only 1%
poison data is injected, and the selection shows no negative impact on CACC. Through our experiments,
we see nearly no decrease in CACC for all PRs we’ve tested, but we show 1% PR here such that readers
can compare the CACC with the cases where defenses are implemented.

D.2 LLMBkd Vs. StyleBkd
We show a few poison examples generated using LLMBkd and StyleBkd in all five styles in Table 13.
STRAP is the style transfer model utilized in the StyleBkd paper.

D.3 Alternative LLM (text-davinci-003)
We have implemented text-davinci-003 as an alternative for our evaluations. For example, in the
gray-box setting, we first study the generalization of our attack across datasets in Figure 6. We display the
attack effectiveness of four styled poison data generated using text-davinci-003 on the bottom, along
with the results for gpt-3.5-turbo on the top. Second, we study the effectiveness of diverse trigger
styles in Figure 7, where we plot all 12 styles we tested for SST-2 using both LLMs.

Notably, our “default" attack does not appear to be effective on ToxiGen data, which was generated by
GPT-3 with its default writing style. When the poison data is similar to the clean data, the model does not
learn any particular style. The “default" attack is less effective than other styled attacks on SST-2 as well
because after we modify the poison data to match the special format of SST-2, the poison data become
more similar to the clean data, making the “default" style less strong.

From these figures, we see that the gpt-3.5-turbo model often outperforms the text-davinci-003
model. More importantly, these plots imply that diverse LLMs yield strikingly similar attack outcomes,
highlighting the widespread and consistent effectiveness of our proposed LLMBkd attack. Per OpenAI



Table 12: CACC at 1% PR.

SST-2

Addsent BadNets StyleBkd SynBkd Bible Default Gen-Z Sports
No Selection 0.938 0.945 0.946 0.943 0.944 0.945 0.945 0.939

Selection 0.941 0.940 0.947 0.948 0.942 0.941 0.937 0.940

HSOL

Addsent BadNets StyleBkd SynBkd Bible Default Gen-Z Sports
No Selection 0.952 0.950 0.953 0.951 0.952 0.953 0.952 0.954

Selection 0.953 0.951 0.953 0.953 0.950 0.950 0.951 0.953

ToxiGen

Addsent BadNets StyleBkd SynBkd Bible Default Gen-Z Sports
No Selection 0.839 0.840 0.849 0.840 0.845 0.835 0.841 0.840

Selection 0.847 0.834 0.841 0.840 0.843 0.846 0.839 0.835

AG News

Addsent BadNets StyleBkd SynBkd Bible Default Gen-Z Sports
No Selection 0.951 0.950 0.950 0.951 0.951 0.951 0.950 0.951

Selection 0.951 0.949 0.950 0.951 0.950 0.949 0.951 0.948

documentation6, the gpt-3.5-turbo model is the most capable and cost-effective model in the GPT-3.5
family, and the cost of using gpt-3.5-turbo is 1/10th of text-davinci-003. So using gpt-3.5-turbo
is highly recommended.
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Figure 6: Poison data in the top row were generated using the gpt-3.5-turbo LLM (Brown et al., 2020). Poison
data in the bottom row used text-davinci-003 (gray-box).

D.4 Alternative Victim Models

In the main section, we have showcased attack results against RoBERTa-base (Liu et al., 2019) models. We
then check the performance of attacks against two alternative victim models: BERT-base uncased (Devlin
et al., 2019) and XLNet-base cased (Yang et al., 2019). We run all attacks at 1% PR for SST-2, HSOL,

6GPT-3.5 Models, https://platform.openai.com/docs/models/gpt-3-5.

https://platform.openai.com/docs/models/gpt-3-5
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Figure 7: LLMBkd attack effectiveness on SST-2 for 12 styles. Poison data in the top row were generated using the
gpt-3.5-turbo LLM (Brown et al., 2020). Poison data in the bottom row used text-davinci-003 (gray-box).

and ToxiGen, and 0.1% PR for AG News in the gray-box setting. Again, we select the Bible style for both
StyleBkd and LLMBkd for display.

Table 14 shows that our LLMBkd attack remains highly effective and outperforms baseline attacks
against all three victim models in most cases while maintaining high CACC. Addsent appears to be
extremely effective against RoBERTa and XLNet on AG News, yet LLMBkd is the runner-up with
comparable performance. All these victim models are vulnerable to various attacks with different levels
of sensitivity.

Table 14: Attack effectiveness against three different victim models in the gray-box setting.

Dataset Attack BERT RoBERTa XLNet
ASR CACC ASR CACC ASR CACC

SST-2

Addsent 0.931 0.915 0.861 0.938 0.873 0.936
BadNets 0.184 0.914 0.090 0.945 0.117 0.929
SynBkd 0.554 0.918 0.518 0.944 0.623 0.930

StyleBkd 0.572 0.919 0.450 0.943 0.525 0.934
LLMBkd 0.961 0.909 0.967 0.942 0.993 0.927

HSOL

Addsent 0.809 0.952 0.993 0.952 0.225 0.946
BadNets 0.117 0.953 0.068 0.950 0.082 0.951
SynBkd 0.600 0.954 0.936 0.951 0.600 0.950

StyleBkd 0.415 0.954 0.400 0.953 0.430 0.954
LLMBkd 1.000 0.953 0.999 0.953 0.999 0.952

ToxiGen

Addsent 0.977 0.823 0.898 0.839 0.982 0.830
BadNets 0.827 0.834 0.276 0.840 0.412 0.820
SynBkd 0.772 0.828 0.992 0.840 0.949 0.834

StyleBkd 0.796 0.834 0.791 0.849 0.829 0.828
LLMBkd 0.995 0.826 0.990 0.841 0.996 0.820

AG News

Addsent 0.992 0.944 0.995 0.949 0.991 0.950
BadNets 0.064 0.947 0.655 0.951 0.055 0.948
SynBkd 0.795 0.943 0.784 0.950 0.917 0.948

StyleBkd 0.413 0.944 0.390 0.950 0.414 0.946
LLMBkd 0.997 0.946 0.987 0.952 0.973 0.950



D.5 Stealthiness and Quality
We present the complete automated evaluation metrics for all datasets in Table 15. The values typically
follow similar patterns that we have discussed in the main section.

Table 15: Automated metrics evaluation for all attacks.

SST-2

Attack ∆PPL ↓ ∆GE ↓ USE ↑ MAUVE ↑
Addsent -146.4 0.090 0.807 0.051
BadNets 488.0 0.725 0.930 0.683
SynBkd -132.5 0.601 0.663 0.101
StyleBkd -119.4 -0.160 0.690 0.077

LLMBkd (Bible) -224.3 -0.383 0.185 0.006
LLMBkd (Default) -363.1 -1.338 0.199 0.006
LLMBkd (Gen-Z) -267.6 -0.621 0.189 0.006
LLMBkd (Sports) -311.9 -0.411 0.196 0.005

HSOL

Attack ∆PPL ↓ ∆GE ↓ USE ↑ MAUVE ↑
Addsent -2179 0.108 0.837 0.499
BadNets 1073 0.762 0.955 0.876
SynBkd -2603 3.039 0.451 0.007
StyleBkd -2240 -0.651 0.667 0.133

LLMBkd (Bible) -2871 -1.013 0.075 0.011
LLMBkd (Default) -2829 -1.097 0.066 0.045
LLMBkd (Gen-Z) -2859 0.412 0.092 0.070
LLMBkd (Sports) -2888 -0.291 0.098 0.014

ToxiGen

Attack ∆PPL ↓ ∆GE ↓ USE ↑ MAUVE ↑
Addsent 59.91 0.034 0.838 0.381
BadNets 200.8 0.653 0.949 0.791
SynBkd 27.00 2.663 0.660 0.012
StyleBkd -5.060 -1.303 0.422 0.063

LLMBkd (Bible) -56.13 -1.618 0.084 0.021
LLMBkd (Default) -46.99 -1.771 0.083 0.163
LLMBkd (Gen-Z) -63.69 -1.143 0.068 0.119
LLMBkd (Sports) -54.62 -0.997 0.073 0.046

AG News

Attack ∆PPL ↓ ∆GE ↓ USE ↑ MAUVE ↑
Addsent 24.25 -0.260 0.973 0.761
BadNets 14.61 0.377 0.991 0.777
SynBkd 148.9 5.755 0.058 0.004
StyleBkd -12.06 -0.947 0.058 0.018

LLMBkd (Bible) -16.09 -1.871 0.068 0.004
LLMBkd (default) -17.61 -1.755 0.060 0.004
LLMBkd (Gen-Z) 21.03 0.785 0.062 0.004
LLMBkd (sports) -3.174 -0.952 0.061 0.004



E Expanded Defense Results

E.1 Effectiveness
The effectiveness of all defense results is shown in Table 5 in the main section. The CACC after defenses
are implemented is shown in Table 16. For ToxiGen, there is an approximately 2% CACC reduction for
all defenses. And STRIP defense lowers the CACC approximately by 2% for all attacks. We were not
able to gather the values for StyleBkd on AG News due to some unexpected memory errors.

E.2 Efficiency
The efficiency of our REACT defense against all attacks at 1% PR is shown in Figure 8. Results show that
with a 0.8 antidote-to-poison data ratio, REACT achieves decent performance in defending against all
attacks.

Table 16: Clean accuracy (CACC) after defense at 1% PR. The ratio is set to 0.8 for REACT. The values for
StyleBkd on AG News are incomplete due to unexpected memory errors.

SST-2

Defender Addsent BadNets StyleBkd SynBkd Bible Default Gen-Z Sports
BKI 0.949 0.940 0.943 0.944 0.945 0.939 0.945 0.938

CUBE 0.946 0.945 0.945 0.941 0.942 0.944 0.939 0.945
ONION 0.944 0.939 0.940 0.938 0.937 0.938 0.942 0.944

RAP 0.929 0.928 0.929 0.930 0.927 0.930 0.932 0.932
STRIP 0.928 0.935 0.940 0.941 0.919 0.937 0.945 0.935

REACT 0.946 0.936 0.947 0.948 0.946 0.941 0.942 0.941

HSOL

Defender Addsent BadNets StyleBkd SynBkd Bible Default Gen-Z Sports
BKI 0.954 0.949 0.953 0.951 0.949 0.950 0.950 0.952

CUBE 0.952 0.952 0.950 0.953 0.953 0.952 0.953 0.950
ONION 0.950 0.952 0.951 0.952 0.951 0.952 0.949 0.953

RAP 0.943 0.938 0.946 0.932 0.922 0.932 0.937 0.941
STRIP 0.947 0.942 0.941 0.949 0.949 0.947 0.945 0.951

REACT 0.951 0.952 0.953 0.953 0.951 0.951 0.947 0.950

ToxiGen

Defender Addsent BadNets StyleBkd SynBkd Bible Default Gen-Z Sports
BKI 0.833 0.832 0.846 0.835 0.838 0.847 0.840 0.834

CUBE 0.838 0.835 0.850 0.833 0.834 0.845 0.850 0.841
ONION 0.841 0.837 0.836 0.838 0.838 0.840 0.829 0.848

RAP 0.817 0.832 0.831 0.824 0.828 0.840 0.814 0.829
STRIP 0.822 0.831 0.832 0.818 0.815 0.828 0.844 0.829

REACT 0.829 0.841 0.840 0.840 0.845 0.850 0.842 0.843

AG News

Addsent BadNets StyleBkd SynBkd Bible Default Gen-Z Sports
BKI 0.949 0.948 - 0.951 0.950 0.951 0.950 0.951

CUBE 0.950 0.947 - 0.948 0.945 0.948 0.946 0.951
ONION 0.951 0.949 - 0.950 0.951 0.951 0.951 0.950

RAP 0.945 0.944 - 0.947 0.947 0.947 0.947 0.947
STRIP 0.932 0.926 - 0.933 0.934 0.940 0.936 0.938

REACT 0.950 0.950 0.950 0.950 0.952 0.950 0.949 0.951
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Figure 8: REACT efficiency against all attacks.



F Costs

We spent around $1,625 to conduct all the evaluations for this paper. Please refer to the subsections below
for the detailed breakdown.

F.1 Text Generation
Table 17 displays the approximate cost of using LLMs to generate texts for both attacks and defenses for all
datasets. Overall, we have paid OpenAI about $1,200 on text generation. The numbers are approximations
as we have also included our early-stage explorations.

In our evaluations, we have paraphrased a large number of training examples to ensure that we have
enough poison data for our poison selection technique in the gray-box setting. However, evaluations have
shown that paraphrasing all training sets can be excessive given how effective LLMBkd is.

In the black-box setting where we do not apply the poison selection, we only need to generate a small
number of poison data based on the poison rate. For example, consider 1% PR with SST-2 data, we only
need to rewrite 1% of the training data which is 69 examples, instead of rewriting the whole training set,
which is 6920 examples. This will significantly reduce the cost of text generation.

Table 17: Approximate cost of generating poison data using LLMs.

No. Styles No. Rewrites per Style gpt-3.5-turbo text-davinci-003
SST-2 14 10413 $56 $560
HSOL 4 11593 $18 $180
ToxiGen 4 9760 $15 $150
AG News 4 13400 $21 $210

F.2 Human Evaluations
The cost of performing Mturk HIT evaluations including early-stage testing is less than $300, and the cost
of hiring local workers to label the data at the university is $125.



G Reproducibility Information

This section consolidates and provides a reference regarding our evaluation’s reproducibility details.

External Libraries: We used the OpenBackdoor toolkit (Cui et al., 2022) and made certain modifications
such that it is suitable for training victim models, running attacks, and defenses in both the black-box
and gray-box settings for clean-label attacks. Thresholds and parameters for baseline attack and defense
algorithms can be found at https://github.com/thunlp/OpenBackdoor.

Datasets: SST-2, HSOL, and AG News datasets can be downloaded directly from the OpenBackdoor
toolkit. ToxiGen datasets can be downloaded from Hugging Face https://huggingface.co/datasets/
skg/toxigen-data. Dataset descriptions can be found in Appendix A. Data statistics and splits can be
found in Table 6.

Victim Models: We chose three pre-trained language models from the Hugging Face transformers
library (Wolf et al., 2020). Base model information and hyper-parameters for modeling training are listed
in Appendix A.

• RoBERTa-base: 125M parameters (Liu et al., 2019)

• BERT-base uncased: 110M parameters (Devlin et al., 2019)

• XLNet-base-cased: 110M parameters (Yang et al., 2019)

We ran each of our model training jobs on a single A100 GPU node, with 40G of RAM, and 1 CPU
core. The average model training time is in Table 18.

Table 18: Victim model training time (in hours) for the four datasets considered in this work.

Dataset RoBERTa BERT XLNet

SST-2 0.22 0.15 0.23
HSOL 0.14 0.12 0.15

ToxiGen 0.15 0.12 0.15
AG News 5.50 4.00 5.50

LLMs: We accessed OpenAI GPT-3.5 models using their Python API. Details of gpt-3.5-turbo and
text-davinci-003 can be found https://platform.openai.com/docs/models/gpt-3-5. The LLM
model parameters are shared in Appendix B.1. The prompt design and our explorations are shared in
Section 3.3 and Appendix B.2.

https://github.com/thunlp/OpenBackdoor
https://huggingface.co/datasets/skg/toxigen-data
https://huggingface.co/datasets/skg/toxigen-data
https://platform.openai.com/docs/models/gpt-3-5
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