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Abstract
The rise of vision-language foundation models
marks an advancement in bridging the gap be-
tween human and machine capabilities in 3D
scene reasoning. Existing 3D reasoning bench-
marks assume real-time scene accessibility, which
is impractical due to the high cost of frequent
scene updates. To this end, we introduce Hy-
pothetical 3D Reasoning, namely Hypo3D, a
benchmark designed to evaluate models’ abil-
ity to reason without access to real-time scene
data. Models need to imagine the scene state
based on a provided change description before
reasoning. Hypo3D is formulated as a 3D Visual
Question Answering (VQA) benchmark, com-
prising 7,727 context changes across 700 in-
door scenes, resulting in 14,885 question-answer
pairs. An anchor-based world frame is established
for all scenes, ensuring consistent reference to
a global frame for directional terms in context
changes and QAs. Extensive experiments show
that state-of-the-art foundation models struggle
to reason effectively in hypothetically changed
scenes. This reveals a substantial performance
gap compared to humans, particularly in scenar-
ios involving movement changes and directional
reasoning. Even when the change is irrelevant to
the question, models often incorrectly adjust their
answers. The code and dataset are publicly avail-
able at: https://matchlab-imperial.
github.io/Hypo3D.

1. Introduction
“Imagination is more important than knowledge.”

– ALBERT EINSTEIN

Artificial General Intelligence (AGI) aims to replicate the
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full spectrum of human cognitive abilities (Goertzel, 2014;
Rayhan et al., 2023). Reasoning, a core cognitive ability, is
a major research focus. The emergence of vision-language
foundation models (Hong et al., 2023; Liu et al., 2024;
Wang et al., 2024; Fu et al., 2024; Mao et al., 2024) has
marked a significant step toward narrowing the gap between
human and machine reasoning, enabling progress from text
summarization (Lewis, 2019; Zhang et al., 2020) to complex
scene understanding (Huang et al., 2023; Driess et al., 2023).

These models are typically evaluated under the assumption
that all knowledge about perception is immediately acces-
sible during reasoning. For instance, in the evaluation of
model performance in 3D scene reasoning, existing bench-
marks (Ye et al., 2021; Azuma et al., 2022; Ma et al., 2022;
Linghu et al., 2024; Zhang et al., 2024) presuppose real-
time availability of scene data (e.g., point clouds). Yet,
this assumption does not always hold, as real-world scenes
are dynamic, and maintaining up-to-date 3D scenes is chal-
lenging. Unlike 2D image capture, 3D scene collection
demands specialized equipment, extended scanning times,
and a complex reconstruction process for accurate geomet-
ric representation (Nießner et al., 2013; Daneshmand et al.,
2018). Thus, immediate perceptual knowledge for reason-
ing is unavailable in many real-world cases. Imagination,
rooted in prior knowledge, allows humans to overcome such
limitations by deducing missing details and approximat-
ing reality. Even without direct visual input, humans can
mentally simulate changes in a scene and reason about the
changed scene in their minds. This ability, known as mental
imagery (Pylyshyn, 2002; Moulton & Kosslyn, 2009), is
crucial to human intelligence and raises a critical question:
Can current foundation models employ imagination to fill
perceptual knowledge gaps and enhance reasoning?

In response to this question, we propose a new reasoning
concept: hypothetical reasoning. It evaluates models’ ability
to reason without immediate perceptual knowledge, requir-
ing models to formulate reasonable hypotheses to bridge
knowledge gaps. As an initial attempt, this study focuses
specifically on hypothetical reasoning in 3D scenes, referred
to as Hypo3D. As shown in Figures 1 and 2, the Hypo3D
task follows a 3D visual question-answering format but can-
not be solved using the given scene alone. Instead, models
need to rely on an accessible context change description to
imagine the current scene state after the change and adjust
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Figure 1. Overview of the Hypo3D benchmark. 1⃝ Examples of five context change types. 2⃝ Sample questions, including scale-based
and direction-based questions requiring spatial reasoning, as well as semantic questions, all of which have open-ended answers. 3⃝ The
radar chart highlights a notable performance gap between models and humans, especially in direction-based questions.

their answers accordingly. Based on the Hypo3D task, we
constructed a dataset comprising 7,727 context changes and
14,885 question-answer pairs across 700 indoor scenes. As
shown in Figure 1, these context changes span five cate-
gories: (1) Movement Change, involving geometric trans-
formations like translation or rotation; (2) Removal Change,
taking away objects; (3) Attribute Change, modifying object
properties such as color and state; (4) Addition Change,
introducing new objects; and (5) Replacement Change, sub-
stituting existing objects with new ones.

The questions in the dataset range from simple proximity
and relative position queries to intricate path reasoning and
navigation tasks, broadly categorized into three types: (1)
scale-based, focusing on proximity and size relationships;
(2) direction-based, requiring reasoning about directional
terms; and (3) semantic, highlighting scene semantics with
minimal spatial reasoning. In constructing direction-based
questions, we observe that existing 3D reasoning datasets
reveal ambiguities in defining directional terms in 3D. Early
datasets (Ye et al., 2021; Azuma et al., 2022) employ object-
centric definitions, which lead to confusion when dealing
with symmetrical or amorphous objects, such as round ta-
bles or cushions. Recent datasets (Ma et al., 2022; Linghu
et al., 2024; Zhang et al., 2024) define directions relative to
the observer. This strategy struggles to describe global di-

rectional relationships and introduces inconsistencies when
multiple observers are involved. Towards this, Hypo3D
establishes a world frame anchored to reference objects in
each scene, ensuring that all directional terms are defined
relative to a consistent global reference frame.

Extensive experiments on ten foundation models reveal a
substantial performance gap between models and humans
on the Hypo3D task, particularly in movement changes and
directional reasoning. Surprisingly, closed-source models
(e.g., GPT-4o (OpenAI, 2024)) do not outperform open-
source alternatives. Furthermore, the models frequently
hallucinate context changes, modifying their answers even
when those changes are irrelevant to the posed question.
Notably, their performance consistently degrades when re-
quired to imagine a scene after changes before reasoning,
as compared to directly reasoning with the provided scene.
These findings highlight a key limitation of current mod-
els: the inability to leverage imagination to infer missing
perceptual knowledge and reason hypothetically.

2. Related Work
2.1. 3D Scene Update

The evolving nature of 3D environments requires continu-
ous scene updates for effective understanding, particularly
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Answer: 

Couch.

Past 

3D Scene 
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2D VLM  (Top-View Map)

3D VLM (Point Cloud, RGB-D)

LLM  (Scene Caption)

Scene Orientation: The coffee table was located 

at the back of the scene.

Context Change: The white table has been    

moved to the left of the coffee table.

(1) Align the scene with the given orientation.

(2) Imagine the scene after change and answer 
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the left of the white table?
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Figure 2. Example of hypothetical reasoning in a 3D scene. Given a 3D scene and an anchor-based frame description (Scene Orientation),
models first align the scene to the specified frame. Then, based on a context change description and a question, models hypothetically
modify the aligned scene and answer questions about the changed scene. Various models (e.g., LLMs, 2D VLMs, 3D VLMs) can tackle
this task using corresponding scene representations, including scene captions, top-view maps, point clouds, and egocentric RGB-D videos.

in autonomous driving (Yurtsever et al., 2020) and robotic
navigation (Wong & Spetsakis, 2000). A fundamental ap-
proach to scene updating involves reconstructing the entire
scene from scratch. Advances in 3D reconstruction, such
as multi-view stereo (Seitz et al., 2006; Jing et al., 2025),
depth sensor-based (Zollhöfer et al., 2014), and volumetric
methods (Newcombe et al., 2011), have improved recon-
struction fidelity. But current methods struggle to balance
accuracy, efficiency, and scalability (Nießner et al., 2013),
making reconstruction primarily suitable for situations in-
volving major changes. Recently, radiance-based 3D scene
editing approaches, such as NeRF and 3D Gaussian Splat-
ting (3DGS), have emerged as more efficient alternatives
for incremental scene updates. NeRF-based methods (Liu
et al., 2021; Kania et al., 2022) were limited to basic object
edits and struggled with complex, cluttered scenes (Ye et al.,
2025). 3DGS-based methods enable finer control over scene
content, including geometry (Huang et al., 2024; Waczyńska
et al., 2024; Ye et al., 2025), texture (Chen et al., 2024), and
lighting (Gao et al., 2025). However, they struggle to disen-
tangle these components and require costly re-optimization,
limiting editability and efficiency (Wu et al., 2024).

Therefore, accurate and efficient 3D scene updates remain
a challenge, making real-time scene acquisition not always
feasible. This highlights the need for hypothetical reasoning.

2.2. 3D Visual Question Answering

3D Visual Question Answering (3D VQA), a key task for
evaluating 3D reasoning, has advanced with the rise of
Vision-Language Models (VLMs) (Hong et al., 2023; Liu
et al., 2024; Anthropic, 2024). By integrating vision en-
coders with Large Language Models (LLMs) (Peng et al.,
2023; Bai et al., 2023), VLMs enable multimodal percep-
tion of 3D scenes using inputs like top-view maps and point

clouds. As models advance, there is growing interest in
developing more comprehensive benchmarks to better as-
sess their 3D reasoning capabilities. Initial 3DQA dataset
(Ye et al., 2021), derived from ScanNet (Dai et al., 2017),
introduced 6K manually annotated QA pairs for scene-level
reasoning. ScanQA (Azuma et al., 2022) expanded this
with 41K QA pairs using automated question generation
and human refinement. Qian et al. (Qian et al., 2024) fur-
ther extended 3D VQA to autonomous driving scenarios,
offering domain-specific challenges. SQA3D (Ma et al.,
2022) introduced “situated reasoning,” requiring models to
contextualize answers based on an agent’s position and ori-
entation. MRSA (Linghu et al., 2024) and SPARTUN3D
(Zhang et al., 2024) further scaled SQA3D, adding multi-
modal inputs such as images for richer situational context.

Unlike previous benchmarks, where answers are derived
fully from the given scene, Hypo3D hypothetically applies
a change to the scene and derives answers from the changed
scene, increasing the hallucination risk.

3. Hypo3D Benchmark
This section first defines the Hypo3D task and explains how
humans, assisted by LLMs, generate high-quality context
changes and QAs. It then presents the dataset statistics.

3.1. Task Definition

A task instance in Hypo3D is formulated as a tuple 〈S, F , c,
q〉, where S denotes the scene representation; F specifies the
world frame defined by anchor objects in S that standardizes
all directional terms in the task; c describes a context change
to be applied to the scene; and q denotes a question. The task
is to first rotate S into S̃ so that the anchor object is located
in the orientation described in F , followed by computing an
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Figure 3. Dataset Generation Pipeline. The Hypo3D collection pipeline consists of five stages: Stage 1⃝ curates scenes (50 hours per
person), Stage 2⃝ defines world frames (10 h/p), Stages 3⃝ and 4⃝ collect context changes and QA descriptions from human annotators
(thousands of hours) and LLM, and Stage 5⃝ conducts grammar checks and filters data based on semantic similarity. (25 h/p).

answer a to q after applying c to S̃. Figure 2 provides an
example of hypothetical reasoning in a 3D scene.

3.2. Dataset Generation Pipeline

As depicted in Figure 3, the Hypo3D benchmark was con-
structed through a rigorously designed five-stage pipeline.
The initial Stage 1⃝ involves a comprehensive 50-hour man-
ual curation process to collect and standardize diverse 3D
scene representations from established datasets. This is
followed by Stage 2⃝, a meticulous 10-hour manual anno-
tation phase where each scene is assigned an anchor-based
world frame to ensure spatial consistency. The core data
generation occurs in Stages 3⃝ and 4⃝, where we imple-
mented a hybrid approach combining human expertise with
LLMs to generate context changes and question-answer
pairs. These critical stages demanded substantial human
oversight, with over 1,000 hours dedicated to human refine-
ment to guarantee exceptional data quality and contextual
coherence. Finally, the pipeline concludes with Stage 5⃝,
a 25-hour post-processing phase that employs quality con-
trol measures to eliminate redundancies while maintaining
grammatical precision.

Scene Curation. Each 3D scan S in the Hypo3D bench-
mark can be represented through multiple modalities to
facilitate reasoning, including point cloud, RGB-D video,
top-view map, and scene caption. The point clouds and
RGB-D videos are directly curated from the original scene
datasets. Two variants of top-view maps are generated: non-
semantic and semantic. Non-semantic maps are generated
by positioning a simulated orthographic camera above the
scene to produce photorealistic top-down renderings. Se-
mantic maps augment non-semantic ones by incorporating
hoverable semantic labels, with each label precisely posi-
tioned at the centroid of the bounding box corresponding to
its object. An example semantic map can be seen in Figure
2. Unlike their non-semantic counterparts, semantic maps
reduce object recognition errors in models, prioritizing the

evaluation of hypothetical reasoning performance. Scene
captions are textual descriptions detailing the attributes of
objects and their relationships within the scenes.

Anchor-Based World Frame Annotation. The same scene
in 3D can be captured from different viewpoints in any ori-
entation. Thus, it does not have a clearly defined, fixed
reference frame. Here, we defined the world coordinate
frame textually based on the locations of anchor objects
in each scene, such as: “The desk is located to the left of
the scene”. When selecting anchor object candidates, visual
prominence is prioritized over the extent to which they cover
multiple sides of the scene. This is because, conventionally,
defining a single primary orientation (e.g., “front”) is suf-
ficient to infer the remaining orientations (“left”, “right”,
“back”) using the right-hand rule (Hamilton, 2008), ensuring
a consistent and unambiguous spatial frame.

Context Change Preparation. The Hypo3D benchmark
defines five distinct types of object-level context changes,
illustrated in Figure 1. For a scene S with an object list O =
{o1, o2, . . . , on}, each change type is defined as follows:

(1) Movement changes relocate objects Om ⊆ O to new
positions or orientations within the scene S.

(2) Removal changes eliminate objects Or ⊆ O from S,
resulting in an updated object list Ô = O \Or.

(3) Attribute changes modify properties of a subset of
objects Oatt ⊆ O, such as color, material, or state.

(4) Addition changes introduce new objects Oa into S,
updating the object list to Ô = O ∪Oa.

(5) Replacement changes replace objects Orp ⊆ O with
new objects Oa, resulting in an updated object list
Ô = (O \Orp) ∪Oa.

As illustrated in Figure 3 3⃝, human annotators and GPT-4o
initially generate raw context changes uniformly to ensure
data diversity. Human data is collected via crowdsourcing
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on the CloudResearch platform.1 For each scene aligned to
the world frame S̃ with an associated object list O, anno-
tators create a set of distinct descriptions C for a specified
change category, following the rules below:

(1) Each object oi ∈ O referenced in change ci ∈ C must
have a uniquely specified location if it appears multiple
times in the scene S̃.

(2) Each context change ci must be spatially feasible
within the layout of S̃.

(3) Each ci must be independent, meaning it is derived
solely from the original scene S̃ and does not rely on
any version of S̃ modified by cj , where i ̸= j.

For GPT-4o, context changes are generated using the se-
mantic top-view map of S̃ and a textual prompt that follows
the same criteria as those provided to human annotators.
The detailed prompts and human guidelines for raw change
generation are provided in Appendix A.

Finally, each raw change c generated by humans and GPT-
4o is edited by an independent group of human reviewers,
producing a refined version c′.

Question-Answer Preparation. Raw questions are initially
generated by GPT-4o, as illustrated in Figure 3 4⃝. Seven
prompt templates, each corresponding to a specific question
type, are designed for each type of context change. Each
template includes the object list O in the scene S, the context
change c, example questions, and a question type description
(e.g., ask for the position of the changed object relative to
other objects in the scene). In total, eleven unique question
types are evenly distributed across the context change types
(see Appendix A.2). For each context change c, 21 raw
questions are generated, denoted as Qc.

Human reviewers then refine Qc to produce a new question
set Q′

c. During this process, only a small portion of raw
questions are retained. Specifically, 91% of the questions
are filtered out, and the remaining questions undergo addi-
tional editing to strictly ensure Q′

c satisfies the following
criteria: (1) each q ∈ Q′

c can only be answered by com-
bining S and c, as neither is sufficient on its own; (2) the
answer to each q must be potentially impacted by the change
c; (3) each q has a unique and unambiguous answer; and (4)
answers cannot be inferred from commonsense knowledge
(e.g., a bed is larger than a pillow). Finally, all questions in
Q′

c are annotated with concise human-provided answers A′
c

and reclassified into general types to evaluate models based
on their reasoning capabilities: scale-based, direction-based,
and semantic questions, as shown in Figure 1. Scale-based
questions assess spatial reasoning related to proximity and
size perception, direction-based questions focus on orien-
tation understanding, and semantic questions evaluate the

1CloudResearch, Connect Platform, https://www.
cloudresearch.com.

model’s ability to interpret object attributes with minimal
spatial reasoning. Notably, questions can belong to multiple
types if they require diverse reasoning.

Post-processing. To ensure data diversity, SBERT (Reimers,
2019) is used to remove semantically similar descriptions.
It encodes the refined context changes C ′ and questions Q′,
producing embeddings EC′ and EQ′ , respectively. Con-
text changes and questions are filtered by excluding pairs
with cosine similarity Sim(ei, ej) > 0.8 for ei, ej ∈ EC′ ,
and Sim(ek, ev) > 0.8 for ek, ev ∈ EQ′ . The remaining
context changes, questions, and corresponding answers are
further refined for grammatical accuracy using GPT4-Turbo,
resulting in descriptions for the final dataset C̃, Q̃, and Ã.

3.3. Statistics

The Hypo3D benchmark comprises 700 unique scenes, with
500 sourced from the ScanNet (Dai et al., 2017) dataset and
200 from the 3RScan (Wald et al., 2019) dataset, randomly
sampled from their respective sources. The dataset includes
7,727 context changes and 14,885 question-answer pairs.
On average, a context change description contains 13.62
words, a question description contains 13.69 words, and an
answer contains 1.28 words. The word cloud in Figure 4 1⃝
highlights that the most frequent words in context change
descriptions are verbs representing change actions, such as
“moved,” “removed,” and “replaced”. Figure 4 2⃝ illustrates
the distribution of context change types, with movement
changes being the most frequent, as they often result in more
pronounced scene layout rearrangements. The bar charts
in Figure 4 3⃝ show that scale-based and direction-based
questions, which require more spatial reasoning, constitute a
larger portion of the dataset compared to semantic questions.

4. Experiments
4.1. Evaluation Protocol

Exact Match (EM) and Partial Match (PM) are the met-
rics used for evaluation. EM measures the percentage of
model-predicted answers that exactly match the ground-
truth answers. PM quantifies the percentage of overlapping
words between the predicted answers and the ground truth.
For the same model, PM is typically higher than EM, as it
accounts for partial correctness. When computing EM and
PM, both the predicted and ground-truth answers are nor-
malized by lowercasing, removing punctuation, and aligning
semantically similar terms (e.g., “left” and “west”).

4.2. Baselines

A total of ten foundation models were evaluated in a zero-
shot setting on the Hypo3D benchmark, grouped into: (1)
LLMs, (2) 2D VLMs, and (3) 3D VLMs. The evaluated
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1 2 3

Figure 4. Dataset Statistics. 1⃝ Word cloud representing context change descriptions. 2⃝ Frequency distribution of context change types
across 7,727 instances. 3⃝ Distribution of question types across change categories, with question frequency consistently highest for
scale-based, then direction-based, and finally semantic.

LLMs, Llama3.2 (3B) (Dubey et al., 2024) and GPT-4o
(OpenAI, 2024), utilize textual scene captions from the
ScanRefer (Chen et al., 2020) and SceneVerse (Jia et al.,
2025) datasets to represent 3D scenes. The 2D VLMs con-
sist of open-source models Qwen2-VL (7B, 72B) (Wang
et al., 2024) and LLaVA-OV (7B, 72B) (Li et al., 2024a),
alongside closed-source models GPT-4o (OpenAI, 2024)
and Claude 3.5 Sonnet(Anthropic, 2024)2, both employing
semantic and non-semantic top-view maps. The 3D VLMs
assessed include LEO (7B) (Huang et al., 2023), which
encodes 3D scenes using egocentric 2D images with 3D
point clouds, and LLaVA-3D (7B) (Zhu et al., 2024), which
represents 3D scenes through multi-view images. All 3D
scene point clouds have been explicitly aligned to a top-
view perspective with the floor on the XY-plane and vertical
structures along the Z-axis.

In addition to scene inputs, all models receive the anchor-
based world frame, hypothetical context changes applied
to the scenes, the question, and task guidance as part of
the textual prompt. Specific prompt templates for each
model are provided in Appendix B.2. As shown in Figure
2, The task guidance generally consists of three steps: (1)
Rotate the scene to align with the provided world frame, (2)
Imagine the scene after the specified context change, and
(3) Answer the question based on the modified scene.

4.3. Results and Discussions

Human-Model Performance Gap. To manage the high
costs of human evaluation, we sampled 50 scenes and 250
context changes with 50 questions per change type for as-
sessment. To avoid contamination, human evaluators were
excluded from benchmark annotation and provided only
10 QA pairs for task familiarization. As shown in Table 1,
human performance exceeds 85% in EM across all change
types, though it doesn’t reach 100% due to the open-ended
nature of Hypo3D questions. Most errors from human eval-
uators were due to typos, vague phrasing, formatting mis-

2We use GPT-4o-08-16 and Claude 3.5 Sonnet-10-22.

matches, and inherent noise in 3D scenes. Human per-
formance is slightly lower for addition and replacement
changes, as these introduce new objects, causing confusion
with existing ones.

In contrast, foundation models perform significantly worse,
with the top-performing model, GPT-4o, achieving under
50% overall in both EM and PM metrics, even with a se-
mantic top-view map input. Notably, it lags 45.5% behind
human EM performance. Furthermore, models show sig-
nificant performance bias across different question types,
as highlighted by the distinct non-overlapping regions in
the radar chart in Figure 5. In comparison, humans achieve
over 90% accuracy across all question types, demonstrating
consistently strong performance.

LLMs vs. 2D VLMs vs. 3D VLMs. Table 1 shows that
2D VLMs outperform other foundation models across all
change types. Their performance improves significantly
with semantic top-view maps that provide explicit object
labels compared to non-semantic maps. When using non-
semantic maps, most 2D VLMs perform worse than the
text-only version of GPT-4o, highlighting the impact of
image recognition errors on 2D VLM performance.

For open-source VLMs like Qwen2-VL and LLaVA-OV,
larger model sizes yield better results. Closed-source models
(GPT-4o and Claude 3.5 Sonnet), despite their reputation for
superior performance, do not maintain this advantage on the
Hypo3D task. They excel with semantic maps but struggle
on non-semantic maps, where the open-source LLaVA-OV
72B delivers the best performance. This pattern aligns with
findings by Li et al. (2024b), where closed-source models
particularly struggled on unlabeled top-view maps.

Interestingly, 3D VLMs, despite receiving the richest geo-
metric information, do not demonstrate a clear advantage
over 2D VLMs or LLMs. Notably, the LEO model strug-
gles with the instruction following, often failing to interpret
task guidance and achieving the lowest EM score (14.83%).
LLaVA-3D, although outperforming all other 7B 2D VLMs
when using a non-semantic map, lacks a larger model size
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Table 1. EM and PM accuracy of ten foundation models and human evaluators on Hypo3D. The highest model performance for each type
of context change is in bold, while the best-performing model within each family is underlined.

Model
Movement Removal Attribute Addition Replacement Overall

EM PM EM PM EM PM EM PM EM PM EM PM
LLM (Scene Caption)
Llama-3.2 3B 25.31 28.37 29.85 33.65 24.95 29.59 26.78 30.78 23.75 27.68 26.08 29.91
GPT-4o API (Text) 35.76 38.66 36.88 41.71 34.05 39.58 39.74 43.28 31.33 35.24 35.54 39.65
2D VLM (Non-Semantic Top-View Map)
Qwen2-VL 7B 29.23 35.08 30.71 34.69 29.04 33.94 31.48 35.17 28.41 33.10 29.68 34.47
Qwen2-VL 72B 33.02 37.38 33.88 37.57 33.48 37.62 35.95 40.29 30.66 34.64 33.39 37.51
LLaVA-OV 7B 30.34 34.17 29.81 33.24 31.37 36.13 33.12 35.64 28.41 31.81 30.62 34.34
LLaVA-OV 72B 36.46 39.83 36.45 40.22 35.70 40.46 39.64 42.25 33.83 37.85 36.38 40.13
Claude 3.5 Sonnet API 17.49 30.24 19.90 27.34 22.96 33.47 22.90 31.61 20.35 27.70 20.42 30.29
GPT-4o API 34.49 37.69 32.85 36.53 31.23 35.38 38.09 40.70 30.04 33.22 33.58 36.75
2D VLM (Semantic Top-View Map)
Qwen2-VL 7B 31.26 36.41 38.09 41.90 34.83 39.41 37.64 41.41 31.86 36.62 34.40 38.91
Qwen2-VL 72B 38.42 42.56 47.36 51.05 46.76 51.10 47.63 50.87 44.43 48.78 44.25 48.25
LLaVA-OV 7B 33.32 36.80 34.34 37.84 34.98 39.50 38.96 41.98 33.93 38.33 34.81 38.60
LLaVA-OV 72B 39.39 42.99 43.44 46.87 44.57 49.37 46.12 49.06 44.10 48.18 43.01 46.83
Claude 3.5 Sonnet API 30.92 42.98 40.26 48.54 42.29 52.72 43.16 51.59 43.28 50.73 38.86 48.65
GPT-4o API 40.77 43.79 47.36 50.40 47.42 51.39 50.59 53.77 44.24 47.68 45.50 48.82
3D VLM (RGB-D Video, Point Cloud)
LEO 7B 14.40 22.96 18.54 22.82 14.35 21.56 14.64 24.83 11.76 19.50 14.83 22.40
LLaVA-3D 7B 31.63 35.11 30.60 33.91 31.60 36.16 33.67 36.70 30.42 34.16 31.56 35.23

Human 95.00 96.00 93.00 95.00 93.00 94.83 89.00 90.67 85.00 86.00 91.00 92.50

variant to fully showcase its potential in this task. See Ap-
pendix B.4 for additional qualitative results illustrating the
performance gap between models.

4.4. Analyses and Insights

Our key insights are as follows: Models face significant
difficulties in reasoning about hypothetically changed scenes
compared to static ones, particularly with movement and
replacement changes. Direction-based questions that require
scene orientation also pose challenges, with performance
deteriorating in the absence of a defined world frame. Most
models exhibit severe hallucinations, often altering their
answers even when the context changes are irrelevant to the
questions. All 2D VLM results presented in Tables 2, 3, and
4 are derived from the semantic top-view map.

Insight 1: Models struggle with hypothetical movement and
replacement changes.

The bolded values in Table 1 indicate the highest EM and
PM accuracy achieved by models across different context
changes. Movement changes show the lowest performance,
scoring 9.82% lower in EM and 9.98% lower in PM com-
pared to the best-performing addition changes. This out-
come highlights the models’ difficulty in handling changes
that heavily reconfigure the scene’s spatial layout and alter

inter-object spatial relationships. Another finding is that
replacement changes perform worse than both removal and
addition changes, likely because they involve both object
removal and addition simultaneously, making them more
challenging than handling either change individually. For
example, the replacement change “a cup is replaced with
a phone” can be interpreted as first removing the cup and
then adding the phone in its place.

Insight 2: Models struggle with direction-based questions.

The radar chart in Figure 5 shows EM results across different
question types, revealing that most models, except LEO, per-
form better on semantic questions than spatial ones. A more
distinct pattern can be observed in Figure 14. When using
a semantic map where object labels are provided, leading
models like Qwen2-VL 72B and GPT-4o achieve over 60%
EM, indicating that semantic questions are less challeng-
ing when models correctly identify objects. Within spatial
questions, models struggle more with direction-based ques-
tions compared to scale-based ones. Even with scene input
aligned to the world frame, performance on direction-based
questions remains low (see Appendix B.3.2), suggesting
models struggle more with orientation understanding than
with size and proximity reasoning.

Insight 3: Anchor-based frame definition improves orienta-
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Scale
Human: 91.1%

Direction
Human: 92.00%

Semantic
Human: 92.6%

LLaVA-OV 7B
(non-sem.) Qwen2-VL 72B

(non-sem.)

Qwen2-VL 7B
(non-sem.)

Claude
(non-sem.)

LEO

LLaVA-3D

Llama-3.2

GPT4o TextGPT4o
(sem.)

LLaVA-OV 72B
(sem.)

LLaVA-OV 7B
(sem.)

Qwen2-VL 72B
(sem.)

Qwen2-VL 7B
(sem.)

Claude
(sem.)

GPT4o
(non-sem.)

LLaVA-OV 72B
(non-sem.)

Figure 5. Model and human EM performance across question
types. Humans consistently achieve strong performance, whereas
models struggle, particularly with direction-based questions.

Table 2. Comparison of model performance on directional ques-
tions using no frame, camera view frame, and anchor object frame.
Red is lower, and green is higher, compared to w/o frame.

Model w/o frame w. camera w. anchor (ours)
EM PM EM PM EM PM

Llama 3.2 3B 9.7 18.55 - - 13.36 21.52
Qwen2-VL 72B 20.54 30.61 19.97 30.14 22.03 33.63
GPT-4o API 18.45 28.36 18.20 28.04 19.37 29.48
LLaVA-3D 7B 15.57 25.57 - - 15.31 25.78

tion understanding.

Table 2 presents model results on 3,495 pure direction-based
questions from Hypo3D under three conditions: without a
world frame (w/o frame), using the camera view as the frame
(w. camera), and using the anchor-based frame (w. anchor).
The camera view is an image that captures the X side of the
room from its center, where X ∈ {left, right, front, back}.
The results indicate that not all frame definition methods
can be effectively interpreted by current models. Only our
anchor-based definition method consistently improves the
performance of 2D and 3D VLMs, whereas using the camera
view as a frame reduces the performance. See Appendix B.2
for details on inference templates across different settings.

Insight 4: Reasoning in hypothetically changed scenes is
more challenging than in unchanged scenes.

250 context changes and corresponding question pairs were
sampled from Hypo3D to validate this insight. Each pair
was annotated with two answers: one based on the un-
changed scene and the other based on the hypothetically
changed scene. Table 3 presents model performance for

Table 3. Comparison of model performance when using and not
using context change, where the changes affect the answer.

Model w/o change w. change
EM PM EM PM

LLaMA-3.2 3B 19.00 23.25 20.50 (+1.50) 24.50 (+1.25)
Qwen2-VL 72B 37.00 41.50 31.50 (-5.50) 36.00 (-5.50)
GPT-4o API 38.00 40.25 33.00 (-5.00) 36.00 (-4.25)
Claude 3.5 Sonnet API 33.00 39.75 29.00 (-4.00) 35.50 (-4.25)
LLaVA-3D 7B 27.00 31.00 20.50 (-6.50) 24.00 (-7.00)

answering questions under both conditions. Most models,
except Llama-3.2 3B, exhibit a consistent performance drop
in EM and PM accuracy when reasoning in changed scenes
compared to the unchanged scene. This finding addresses
the core research question discussed in Sec. 1, showing
that the imagination capability required for hypothetical
reasoning is lacking in current foundation models.

Table 4. Comparison of model performance when using and not
using context change, where the changes do not affect the answer.

Model w/o change w. change
EM PM EM PM

LLaMA-3.2 3B 27.50 31.42 29.00 (+1.50) 33.25 (+1.83)
Qwen2-VL 72B 56.50 60.17 51.50 (-5.00) 55.17 (-5.00)
GPT-4o API 57.00 60.00 52.50 (-4.50) 56.92 (-3.08)
Claude 3.5 Sonnet API 52.50 59.00 49.00 (-3.50) 53.25 (-5.75)
LLaVA-3D 7B 37.50 40.17 37.00 (-0.50) 40.17 (0.00)

Insight 5: Models hallucinate when changes are irrelevant.

Previous results indicate that models struggle to understand
how context changes influence answers. Here, we show
that they also struggle to ignore irrelevant context. To test
this, we constructed 250 new context change-QA triplets,
separate from the benchmark. In these triplets, the context
changes have no impact on the answers to the questions. For
example, the context change can be “The object is moved
from A to B”, while the question asks, “What is the color of
the object?” Models were evaluated both with and without
the context change description. Ideally, they should provide
consistent answers, as object movement does not affect its
color. However, as shown in Table 4, all 2D and 3D VLMs
exhibit performance degradation when context changes are
introduced. Notably, while 2D VLMs achieve the highest
performance on Hypo3D tasks in previous evaluations, they
also exhibit more severe hallucinations.

5. Conclusion
In this paper, we introduce the Hypo3D task to investigate
the hypothetical reasoning ability of foundation models in
3D. This task challenges models to imagine scene changes
before 3D reasoning, demanding robust reasoning without
real-time scene access. To standardize directional term def-
initions in 3D, Hypo3D employs an anchor-based world
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frame for each scene. Extensive experiments on ten foun-
dation models, including LLMs, 2D VLMs, and 3D VLMs,
reveal that all models struggle with the Hypo3D task, es-
pecially when handling movement changes and directional
reasoning questions. These models exhibit severe halluci-
nations, altering answers even when the context changes do
not affect the questions. These findings confirm that current
models struggle to simulate scene changes without direct ob-
servation. We hope this study inspires further research into
strengthening foundation models’ hypothetical reasoning to
narrow the gap with human cognitive abilities.
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Waczyńska, J., Borycki, P., Tadeja, S., Tabor, J., and Spurek,
P. Games: Mesh-based adapting and modification of gaus-
sian splatting. arXiv preprint arXiv:2402.01459, 2024.

Wald, J., Avetisyan, A., Navab, N., Tombari, F., and Nießner,
M. Rio: 3d object instance re-localization in changing
indoor environments. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 7658–
7667, 2019.

Wang, P., Bai, S., Tan, S., Wang, S., Fan, Z., Bai, J., Chen,
K., Liu, X., Wang, J., Ge, W., et al. Qwen2-vl: Enhancing
vision-language model’s perception of the world at any
resolution. arXiv preprint arXiv:2409.12191, 2024.

Wong, B. and Spetsakis, M. Scene reconstruction and robot
navigation using dynamic fields. Autonomous Robots, 8:
71–86, 2000.

Wu, T., Yuan, Y.-J., Zhang, L.-X., Yang, J., Cao, Y.-P.,
Yan, L.-Q., and Gao, L. Recent advances in 3d gaussian
splatting. Computational Visual Media, 10(4):613–642,
2024.

Ye, M., Danelljan, M., Yu, F., and Ke, L. Gaussian grouping:
Segment and edit anything in 3d scenes. In European
Conference on Computer Vision, pp. 162–179. Springer,
2025.

Ye, S., Chen, D., Han, S., and Liao, J. 3d question answering.
arXiv preprint arXiv:2112.08359, 2021.

Yurtsever, E., Lambert, J., Carballo, A., and Takeda, K. A
survey of autonomous driving: Common practices and
emerging technologies. IEEE access, 8:58443–58469,
2020.

Zhang, J., Zhao, Y., Saleh, M., and Liu, P. Pegasus: Pre-
training with extracted gap-sentences for abstractive sum-
marization. In International conference on machine learn-
ing, pp. 11328–11339. PMLR, 2020.

Zhang, Y., Xu, Z., Shen, Y., Kordjamshidi, P., and Huang, L.
Spartun3d: Situated spatial understanding of 3d world in
large language models. arXiv preprint arXiv:2410.03878,
2024.

Zhu, C., Wang, T., Zhang, W., Pang, J., and Liu, X. Llava-
3d: A simple yet effective pathway to empowering lmms
with 3d-awareness. arXiv preprint arXiv:2409.18125,
2024.

Zhu, Z., Ma, X., Chen, Y., Deng, Z., Huang, S., and Li, Q.
3d-vista: Pre-trained transformer for 3d vision and text
alignment. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 2911–2921, 2023.
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A. Benchmark Details
A.1. Human Collection via Crowdsourcing

Half of the raw context changes were collected using the crowdsourcing platform CloudResearch, following a multi-stage
procedure facilitated by a dedicated WebUI designed for collecting specific types of changes. Annotators were recruited
from English-speaking countries, including the United States, Australia, Canada, Ireland, New Zealand, and the United
Kingdom, to ensure linguistic consistency. Annotators were compensated at a rate of $1.00 for every five change descriptions
derived from 3D scenes. Figure 6 outlines the annotation protocol, specifying requirements for accurate descriptions of
moved object locations and ensuring that changed objects are not repeated across submissions.

A.2. LLM Collection

GPT-4o is integral to both the context change and question collection processes in Hypo3D. For context change collection,
each type of change is generated using dedicated prompt templates. Figure 7 highlights the templates specifically designed
for capturing addition changes.

For the question collection, 11 unique question types are designed, encompassing categories such as proximity, size-based
recognition, and path reasoning, as outlined in Table 5. Figure 8 and 9 illustrate the prompt templates for generating questions
related to proximity and relative positions, respectively. Each context change is associated with 7 specific question types,
and the distribution of question types across different changes is detailed in Table 6. While some context changes share the
same question types, they are provided with different prompt templates and example questions for diverse generations. Once
collected, the questions are categorized into broader, coarse-grained categories based on the primary capability required to
answer them, such as scale-based, direction-based, and semantic questions.
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Hypo3D
Data Collection Guidelines --Please Read

Welcome!
Explore the given 3D scene visualization and describe five different ways to move objects within it.

Consider the example scene below, possible movements can include:

The brown pillow, originally on the bed, has been moved to the gray couch.

The desk, which was next to the white cabinet, is now positioned between the refrigerator and the two
trash cans.

Instructions:

Movements must be spatially feasible within the scene's layout.

Each movement description should clearly specify the object(s) being moved, its original location, and

its new location in a unique way. Ambiguous or wrong descriptions will be rejected.

Good Description: The red apple on the table has been moved to the sink near to the refrigerator.
Bad Description: The apple has been moved to the sink. (Which apple? Which sink?)

Each description should move different objects in the scene.

Each description should be more than 10 words.

All movements must occur within the same scene and be independent of one another.

Once you have finished the task, click the Submit button to receive your Completion Code.

Please use your imagination and creativity to come up with unique and interesting movements!

This scene contains 1 copier, 2 cabinetss, 3 shelfs, 1 door, 7 boxs, 1 clock, 2

trash cans, 1 stool, 1 calendar, 1 dustpan, 1 recycling bin, 2 doorframes, 1
books.

Show Object Names ▼

Movement 1
Describe a possible object movement

within the scene in details.

Figure 6. Guidelines for movement change collection in crowdsourcing.
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Table 5. Comparison of model performance in direction-based questions on non-aligned versus aligned top-view maps. The results show
no significant improvement, and in some cases, a decline in performance with aligned maps

Proximity Which direct distance is shorter: from the nightstand to the window or to the box?
Direction-based Recognition What item is directly positioned below the shelf now?
Size-based Recognition What is the largest item remaining on the bed now?
Functionality What item in the room now provides storage functionality similar to the removed shelf?
Counting What is the current count of chairs next to the table?
Navigation Which direction should you move from the plant to reach the new chair?
Placement Height Is the box positioned higher or lower than the keyboards?
Relative Position What is the relative position of the armchair to the footstool now?
Attribute How many different colors of the table are in the room now?
Path Reasoning Is the direct path from the trash can’s new location to the fire alarm obstructed by any objects?
Situational Reasoning Are you closer to the repositioned trash can or the copier when you’re next to the door?

Table 6. Distribution of question types across different context changes.

Movement Removal Attribute Addition Replacement
Proximity Situational Reasoning Proximity Proximity Proximity

Direction-based Recognition Direction-based Recognition Direction-based Recognition Direction-based Recognition Direction-based Recognition
Size-based Recognition Size-based Recognition Size-based Recognition Size-based Recognition Size-based Recognition

Relative Position Size Fitness Relative Position Relative Position Relative Position
Path Reasoning Functionality Functionality Functionality Functionality

Placement Height Navigation Navigation Placement Height Attribute
Counting Counting Counting Counting Counting

Addition Change Generation
Generate four unique object additions within the given 3D scene. Each change should clearly specify 
which object(s) are being added and provide detailed descriptions. Two changes should add more 
existing items, while two should introduce new items not present in the scene.

Requirements:
1. The added object’s location and appearance should be described clearly.
2. Changes should be deterministic, detailed, realistic, and contextually appropriate for the scene.
3. The number of objects added in each change should be varied.

List the changes in the order 1 to 4, with each change starting on a new line. 

Figure 7. Prompt template for addition change generation.
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Proximity Question Generation
Input and Output
The input consists of a 3D scene description, a context change description, and a question related to the 
change.

Your Role
Your task is to assist in generating questions for a 3D Visual Question Answering dataset. The dataset 
aims to evaluate the model's reasoning ability based on changes in a 3D scene.

Guidelines for Generating Questions:
- Focus each question on the proximity (close/far) between the added object and the other objects in 

the scene.
- The 'other objects' should not be the object mentioned in the change description.
- Use various starters such as "what," "where," "which" etc., to ensure diverse question structures.
- Make sure each question has a unique sentence structure and is phrased totally differently from the 

others. 
- Avoid asking questions that can be inferred from the change. For example, if the change is, “A mug 

is added next to the laptop,” avoid questions like, “What object is placed beside the laptop?”.
- Each question should have a clear, definitive answer that eliminates ambiguity.

Example:
Object List: This scene contains 1 kitchen counter, 1 shower, 1 desk, 1 sink, 1 scale, 1 tv, 1 pillow, 1 
clock, 1 backpack, 2 couch, 1 refrigerator, 1 coffee table, 1 toilet, 1 bed, 4 trash can.

Context Change: A new coffee machine has been added on the desk in the scene. 

Example questions:
(1) Of the couch, refrigerator, and clock, which one is situated nearest to the added coffee machine?
(2) Between the couch and the clock, which item is farther away from the new coffee machine?

Object List for Question Generation{}
Context Changes for Question Generation{}

Now, generate three unique and diverse questions for each scene change above. The response should be 
in JSON format, with each change as a key and its questions as an array of values. 

Figure 8. Prompt template for generating raw proximity questions based on context changes and the object list of the 3D scene.
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Relative Position Question Generation
Input and Output
The input consists of a 3D scene description, a context change description, and a question related to the 
change.

Your Role
Your task is to assist in generating questions for a 3D Visual Question Answering dataset. The dataset 
aims to evaluate the model's reasoning ability based on changes in a 3D scene.

Guidelines for Generating Questions:
- Focus on asking the relative position of other objects in the scene respect to the changed object. 

Potential answers could be (e.g., in front of, back, left, right). 
- The 'other objects' should not be the object mentioned in the change description.
- Use various starters such as "what," "where," "which" etc., to ensure diverse question structures.
- Make sure each question has a unique sentence structure and is phrased totally differently from the 

others. 
- Avoid asking questions that can be inferred from the change. For example, if the change is, "The 

brown pillow is moved to the front of the couch," avoid questions like, "What is behind the pillow?”.
- Each question should have a clear, definitive answer that eliminates ambiguity.

Example:
Object List: This scene contains 1 kitchen counter, 1 shower, 1 desk, 1 sink, 1 scale, 1 tv, 1 pillow, 1 
clock, 1 backpack, 2 couch, 1 refrigerator, 1 coffee table, 1 toilet, 1 bed, 4 trash can.

Context Change: The brown pillow, originally on the bed, has been moved to the gray couch.

Example questions:
(1) What is the current position of the coffee table compared to the pillow?
(2) How is the sink positioned relative to the relocated pillow now?

Object List for Question Generation{}
Context Changes for Question Generation{}

Now, generate three unique and diverse questions for each scene change above. The response should be 
in JSON format, with each change as a key and its questions as an array of values. 

Figure 9. Prompt template for generating raw relative position questions based on context changes and the object list of the 3D scene.
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Table 7. A comparison between Hypo3D and existing 3D vision-language datasets. “Hypothetical” indicates whether the dataset includes
context changes. “Question Type” denotes whether questions are categorized into predefined types. “VG” and “QA” refer to visual
grounding and question-answering, respectively. “World Frame” denotes if the scene’s orientation in 3D space is explicitly defined.

Dataset Task Question Type? Hypothetical? World Frame? #Scans #Language Text Collection
ScanRefer (Chen et al., 2020) VG N/A ✗ ✗ 0.7k 11k Human
Sr3D (Achlioptas et al., 2020) VG N/A ✗ ✗ 0.7k 115k Template
ScanQA (Azuma et al., 2022) QA ✗ ✗ ✗ 0.8k 41k Template
SQA3D (Ma et al., 2022) QA ✗ ✗ ✗ 0.65k 33.4k Human
ScanScribe (Zhu et al., 2023) Captioning N/A ✗ ✗ 1.2k 278k LLM
MMScan (Lyu et al., 2024) VG + Captioning + QA ✗ ✗ ✗ 5.2k 6.9M LLM + Temp. + Human
Hypo3D (Ours) QA ✓ ✓ ✓ 0.7k 15k LLM + Human

A.3. Comparison with Existing 3D Vision-Language Datasets

Comparisons with relevant 3D scene understanding tasks and benchmarks are summarized in Table 7.

Figure 10. Question distribution in Hypo3D.

A.4. Dataset Statistics

Figure 10 demonstrates that the questions in our benchmark begin with various start words, such as ”what”, ”which”, ”is”,
”how”, and ”when”. None of these words dominate the dataset, highlighting the balanced and diverse nature of our dataset.

B. Experiments
B.1. Model Hyperparameter Settings

Our experiments primarily used the default inference hyperparameters for zero-shot models, as detailed in Table 8. For
Claude 3.5 Sonnet, the maximum new token parameter was set to 40, reduced from its default value due to the model’s
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tendency to generate lengthy responses, even when instructed to be concise.

Table 8. Inference hyperparameter settings for the baseline models.

Model Max New Tokens Temperature
Llama3.2 3B 32 0.6
Qwen2-VL 7B & 72B 128 0.01
LLaVA-OV 7B & 72B 128 0.7
GPT-4o API 1024 1.0
Claude 3.5 Sonnet API 40 1.0
LLaVA-3D 7B 512 0.2
LEO 7B 256 1.0

Hypothetical Reasoning Prompt
3D VLM: Given a 3D scene, mentally rotate the scene to align with the specified orientation.

2D VLM: Given a top-view of a 3D scene, mentally rotate the image to align with the orientation.

LLM: Given a 3D scene description, mentally match it with the specified orientation.

Scene Orientation: {}

Now, given a context change, imagine how the scene would appear after the change has been applied. 
Then, answer a question based on the modified scene.

Context Change: {}
Question: {}

The answer should be a single word or a short phrase.

The answer is:

Figure 11. Prompt template for the main hypothetical reasoning experiments, with differences between prompts for 3D VLM, 2D VLM,
and LLM underlined.

B.2. Reasoning Prompts

The prompt template used for the main results in Table 1 is shown in Figure 11. The only difference between prompts for
LLM, 2D VLM, and 3D VLM is how the 3D scene is introduced, tailored to their specific scene representation formats,
while all other parts remain consistent to ensure a fair comparison.

For the experiment in Table 2, which assesses the effectiveness of the world frame, the prompt templates in Figure 12 were
used to evaluate model performance without a frame description.

Experiments in Tables 3 and 4 evaluate model performance in scenarios where the context change description is not given,
with the exact prompt template provided in Figure 13.
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Reason without World Frame
Given a top-view of a 3D scene and a context change, imagine how the scene would appear after the 
change has been applied. Then, answer a question based on the modified scene.

Context Change: {}
Question: {}

The answer should be a single word or a short phrase.

The answer is:

Figure 12. Prompt template for evaluating model performance without using an anchor-based world frame.

Reason without Context Change
Given a top-view of a 3D scene, mentally rotate the image to align with the specified orientation.

Scene Orientation: {}

Then, answer a question based on the aligned scene.

Question: {}

The answer should be a single word or a short phrase.

The answer is:

Figure 13. Prompt template for evaluating models in static scenes without context changes.

B.3. More Quantitative Results

B.3.1. MORE COMPLETE MAIN RESULTS.

We present the complete main results for each context change type and question type in Table 9. Additionally, we evaluate
open-ended responses in the Hypo3D dataset using a GPT-based scoring approach, following the MSQA (Linghu et al.,
2024) framework. Each GPT score C is computed as:

C =
1

N

N∑
i=1

si − 1

4
× 100

where N is the number of questions, and si ∈ [1, 5] is the discrete score assigned by GPT-4o-mini based on the question,
ground truth, and model response (higher is better). The results are shown in Table 10.
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Table 9. Complete EM and PM results of foundation models and human evaluators on Hypo3D.

Input Model Metric
Movement Removal Attribute Addition Replacement

Overall
Scale. Dire. Sem. Scale. Dire. Sem. Scale. Dire. Sem. Scale. Dire. Sem. Scale. Dire. Sem.

Llama 3.2 3B
EM 29.62 15.89 30.94 35.29 14.14 30.54 26.50 13.49 32.23 30.26 12.49 32.12 26.20 10.96 33.08 26.08

Scene PM 31.43 20.26 31.18 37.40 21.37 32.23 31.03 20.97 32.48 34.15 17.90 32.54 28.90 17.14 34.54 29.91
Captions

GPT-4o API (Text)
EM 45.36 21.88 37.17 44.01 20.49 37.66 35.03 21.52 45.85 45.31 19.08 50.00 36.41 15.23 42.54 35.54
PM 47.20 26.01 37.17 46.59 29.67 40.32 39.43 30.74 47.54 48.65 24.44 50.84 39.55 20.85 44.65 39.65

Qwen2-VL 7B
EM 34.82 19.96 35.49 33.73 17.27 35.76 29.14 15.25 40.53 35.50 14.49 37.99 30.29 13.00 41.54 29.85
PM 39.75 25.75 35.49 35.38 25.73 37.00 33.15 24.16 41.50 37.55 20.55 39.39 31.90 20.35 45.15 34.47

Qwen2-VL 72B
EM 39.75 21.33 38.13 37.34 18.41 40.03 33.47 19.94 47.18 39.41 18.02 44.13 33.14 15.03 42.29 33.39
PM 42.18 27.06 38.13 38.71 26.72 41.09 36.54 27.14 47.79 43.11 23.97 44.41 34.19 22.29 43.66 37.51

LLaVA-OV 7B
EM 36.35 20.34 36.93 32.61 16.13 38.29 33.24 20.29 39.53 38.75 13.31 40.50 31.76 14.06 39.80 30.62

Semantic PM 38.90 24.99 36.93 33.81 23.29 40.32 37.30 29.07 40.03 40.02 17.84 41.48 32.97 19.69 42.04 34.34
Top-View

LLaVA-OV 72B
EM 43.53 24.20 41.01 40.90 20.68 41.77 38.61 23.70 43.69 43.84 19.67 48.32 36.24 17.26 47.76 36.38
PM 44.73 29.38 41.01 42.17 29.13 42.88 42.43 32.38 44.24 45.10 25.03 48.32 37.78 24.43 49.13 40.13

Claude 3.5 Sonnet
EM 21.28 8.65 26.62 18.64 11.48 29.27 26.17 12.90 26.91 25.76 7.54 33.24 24.33 7.37 26.87 20.42
PM 35.11 21.70 29.02 23.88 22.20 35.23 33.41 27.60 36.99 32.77 18.67 38.69 28.60 17.70 32.21 30.29

GPT-4o API
EM 43.98 21.16 34.53 37.66 16.41 37.82 32.77 18.01 40.53 45.90 17.90 38.83 34.29 13.19 40.80 33.58
PM 45.08 25.24 34.53 38.71 24.08 38.82 35.77 25.02 40.97 47.52 21.97 39.39 35.62 18.66 42.04 36.75

Qwen2-VL 7B
EM 37.25 22.06 37.17 39.78 20.11 53.01 35.36 19.77 48.67 40.89 19.32 52.23 33.47 17.65 47.51 34.40
PM 40.83 28.04 37.17 41.58 28.25 53.80 38.74 27.76 50.11 42.71 25.80 54.47 35.32 24.31 52.36 38.91

Qwen2-VL 72B
EM 45.81 25.05 46.52 50.50 27.13 63.13 47.29 29.74 68.27 51.81 24.85 64.80 47.76 26.96 63.43 44.25
PM 48.01 30.63 46.52 51.85 35.56 63.61 50.06 37.45 68.94 53.81 30.51 64.80 48.75 34.79 64.68 48.25

LLaVA-OV 7B
EM 39.30 22.70 39.81 37.97 20.49 41.61 37.81 22.05 41.53 43.99 19.91 49.72 37.71 18.72 44.53 34.81

Non-Semantic PM 41.04 27.44 39.81 39.09 28.27 43.04 41.22 30.11 43.05 44.88 25.62 51.96 38.57 26.22 47.51 38.60
Top-View

LLaVA-OV 72B
EM 46.93 27.11 47.00 48.69 26.94 51.42 48.33 29.97 56.48 51.22 25.68 57.26 49.80 27.06 56.22 43.01
PM 48.02 32.95 47.00 49.74 35.09 52.06 51.65 38.83 56.89 52.39 31.80 57.68 50.73 34.11 58.33 46.83

Claude 3.5 Sonnet
EM 36.87 19.87 49.64 42.02 22.96 59.02 45.50 25.10 57.81 47.68 21.08 64.80 51.76 25.02 55.72 38.86
PM 48.39 32.67 50.60 47.64 34.49 65.11 51.01 39.29 71.23 52.64 34.28 69.27 54.22 35.97 61.82 48.65

GPT-4o API
EM 49.51 25.52 51.32 52.18 26.47 61.71 50.21 29.15 64.95 58.52 27.44 61.73 50.29 25.41 60.70 45.50
PM 50.62 30.21 51.32 53.13 33.35 62.18 52.63 35.94 65.70 60.16 33.33 62.15 51.14 31.59 61.82 48.82

Multi-View
LLaVA-3D 7B

EM 38.03 21.63 35.49 35.60 17.36 32.91 34.84 17.77 37.54 39.34 17.55 37.99 33.55 15.52 43.28 31.56
RGB-D PM 39.38 26.86 35.49 36.74 25.04 33.57 38.72 26.22 38.18 40.44 24.03 38.13 34.88 22.34 44.15 35.23

Point Cloud
LEO 7B

EM 21.13 7.79 7.91 27.62 2.28 10.44 16.22 3.46 19.10 20.66 2.00 8.94 16.24 1.36 10.45 14.83
+ RGB PM 30.05 14.54 10.07 31.60 5.80 17.01 24.91 7.60 26.99 32.12 10.66 13.83 23.70 8.63 15.67 22.40

Table 10. GPT Score of 10 foundation models and human evaluators on Hypo3D (Overall only). The best-performing model within each
family is underlined.

Model GPT Score
LLM (Scene Caption)
Llama3.2 3B 28.13
GPT-4o API (Text) 37.89
2D VLM (Non-Semantic Top-View Map)
Qwen2-VL 7B 32.01
Qwen2-VL 72B 35.58
LLaVA-OV 7B 32.29
LLaVA-OV 72B 38.20
Claude 3.5 Sonnet API 25.27
GPT-4o API 35.49
2D VLM (Semantic Top-View Map)
Qwen2-VL 7B 36.74
Qwen2-VL 72B 45.90
LLaVA-OV 7B 36.91
LLaVA-OV 72B 45.11
Claude 3.5 Sonnet API 42.76
GPT-4o API 46.55
3D VLM (Multi-View RGB-D, Point Cloud)
LEO 7B 17.47
LLaVA-3D 7B 33.80
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Scale
Human: 94.9%

Direction
Human: 95.3%

Semantic
Human: 96.5%

LLaVA-OV 7B
(non-sem.) Qwen2-VL 72B

(non-sem.)

Qwen2-VL 7B
(non-sem.)

Claude
(non-sem.)

LEO

LLaVA-3D

Llama-3.2

GPT4o TextGPT4o
(sem.)

LLaVA-OV 72B
(sem.)

LLaVA-OV 7B
(sem.)

Qwen2-VL 72B
(sem.)

Qwen2-VL 7B
(sem.)

Claude
(sem.)

GPT4o
(non-sem.)

LLaVA-OV 72B
(non-sem.)

Figure 14. Model and human SBERT scores across question types. Models struggle the most with direction-based questions, followed by
scale-based and semantic questions.

B.3.2. MORE RESULTS ON DIRECTIONAL QUESTIONS

The radar chart in Figure 14 shows model performance across different question types using the SBERT metric, which
measures cosine similarity between the text embeddings of predicted and ground-truth answers. These embeddings are
generated using the SBERT model (Reimers, 2019). The results clearly show that most models struggle the most with
directional questions, perform better on scale-based questions, and achieve their best performance on semantic questions.

Table 11 further highlights that, even when the top-view map is physically aligned with the world frame (i.e., no mental
alignment required), model performance on direction-based questions shows no significant improvement, particularly for
non-semantic maps. This indicates that current foundation models struggle with direction-based hypothetical reasoning,
regardless of frame alignment.

Table 11. Comparison of model performance in direction-based questions on non-aligned versus aligned top-view maps. The results show
no significant improvement, and in some cases, a decline in performance with aligned maps.

Model
Non-aligned Aligned
EM PM EM PM

2D VLM (Non-Semantic Top-View Map)
Qwen2-VL 7B 16.70 23.93 16.60 23.40
Qwen2-VL 72B 19.21 25.95 19.99 27.08
LLaVA-OV 7B 17.91 24.08 18.86 25.29
LLaVA-OV 72B 21.97 28.81 21.69 28.25
GPT-4o API 17.95 23.64 18.64 24.69
2D VLM (Semantic Top-View Map)
Qwen2-VL 7B 20.22 27.18 21.94 29.17
Qwen2-VL 72B 26.77 33.65 33.95 43.28
LLaVA-OV 7B 21.28 27.82 23.77 31.64
LLaVA-OV 72B 27.60 34.74 31.93 40.77
GPT-4o API 26.57 32.67 32.38 42.53
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Table 12. Performance comparison of models with and without Chain-of-Thought (CoT) prompting.

Model w/o CoT w/ CoT
Llama3.2 3B 23.91 26.08
LLaVA-OV 72B 42.78 43.01
Qwen2-VL 72B 44.90 44.25
LLaVA-3D 29.30 31.56

B.3.3. EFFECT OF CHAIN-OF-THOUGHT

Figure 11 illustrates our use of the Chain-of-Thought (CoT) strategy, which explicitly decomposes the task into two steps:
(1) imagining how the context change affects the scene, and (2) answering the question based on the altered scene.

To further examine the impact of CoT, we evaluated models using a simplified prompt structure:

Scene orientation: {}
Context Change: {}
Question: {}
Answer:

The results in Table 12 show that removing CoT prompting leads to decreased performance in most models, except for
Qwen2-VL 72B. This suggests that step-by-step reasoning supports hypothetical understanding to some extent. Nonetheless,
model performance still falls short of human-level reasoning.

Table 13. Performance comparison of models with and without in-context learning (ICL).

Model w/o ICL w/ ICL
Llama3.2 3B 29.30 23.88
LLaVA-OV 72B 40.26 33.53
Qwen2-VL 72B 41.94 36.52

Table 14. Comparison of EM and PM scores for different models across Top and Multi-view settings.

Model View EM PM

LLaVA-OV 7B
Top 34.81 38.60
Multi 34.24 38.19

LLaVA-OV 72B
Top 43.01 46.83
Multi 42.52 47.06

Qwen2-VL 7B
Top 34.40 38.91
Multi 35.99 41.19

Qwen2-VL 72B
Top 44.25 48.25
Multi 43.04 47.50

B.3.4. EFFECT OF IN-CONTEXT LEARNING

We also investigated whether in-context learning (ICL) can enhance model performance in hypothetical reasoning tasks.
Specifically, we applied three-shot ICL to both 2D VLMs and LLMs. The results in Table 13 show that ICL generally leads
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Table 15. Effect of caption quantity on EM and PM scores to Llama3.2-3B.

#Captions EM PM
30 23.95 28.62
50 23.88 28.34

100 24.34 28.91
200 22.91 28.01

to a decrease in EM performance. This can be due to the limited number of examples failing to capture the diversity of
context changes and question types in our dataset. Moreover, we observed that models often copied answers directly from
the in-context examples rather than learning from them.

B.3.5. EFFECT OF NUMBER OF VIEWS ON 2D VLMS

We evaluated 2D VLMs (semantic maps) using multi-view inputs (top, front, back, left, and right) compared to using
top-view only. The results on 50 randomly sampled scenes in Table 14 show that performance remains comparable to using
only the top view. This suggests that while multi-view inputs offer richer visual information, integrating visual features from
different views presents another challenge for the models.

B.3.6. EFFECT OF CAPTION DETAIL LEVEL ON LLMS

To assess how caption detail affects LLM performance on hypothetical 3D reasoning, we tested Llama3.2 3B with varying
numbers of sampled captions. As shown in Table 15, more detailed inputs do not consistently improve performance, possibly
due to the increased challenge of long-text reasoning. Following the SQA3D protocol, we use 30 randomly sampled object
captions for the final scene description.

Removal

Context Change
The plate, which was on the TV 
stand, has been removed from the 
scene.

Question and Answer

Q: What is on the TV stand now 
after the plate's removal?
A: TV and lamp.

Model Output

LLama-3.2 3B: TV.
LLaVA-OV 72B: TV.
GPT4o-08-16 API: TV.
LLaVA-3D 7B: TV. 

Attribute

Context Change
The shower curtain is partially 
drawn with water pooling on the 
floor outside the tub.

Question and Answer

Q: Which direction should you go 
from the mirror to the curtain?
A: Front left.

Model Output

LLama-3.2 3B: Right.
LLaVA-OV 72B: Left.
GPT4o-08-16 API: Left.
LLaVA-3D 7B: Right. 

Addition

Context Change
A small rug has been added near 
the foot of the bed for warmth and 
comfort.

Question and Answer

Q: What is the tallest object near 
the added rug at the bed foot?
A: Shelf.

Model Output

LLama-3.2 3B: Commode.
LLaVA-OV 72B: Shelf.
GPT4o-08-16 API: Nightstand.
LLaVA-3D 7B: Cabinet.

Replacement

Context Change
The box on the TV stand has been 
replaced by a decorative vase.

Question and Answer

Q: What object is placed closest in 
front of the decorative vase?
A: TV.

Model Output

LLama-3.2 3B: Couch.
LLaVA-OV 72B: TV.
GPT4o-08-16 API: Cabinet.
LLaVA-3D 7B: Table. 

Movement

Context Change
The clock has been moved from 
above the monitor to above the tv.

Question and Answer

Q: Which is shorter: from the 
clock to the TV or to the plant?
A: TV.

Model Output

LLama-3.2 3B: Shorter.
LLaVA-OV 72B: TV.
GPT4o-08-16 API: TV.
LLaVA-3D 7B: TV. 

Figure 15. Qualitative Results. The changed object described in the context change is highlighted with a red bounding box. Model outputs
are shown in green for correct and red for incorrect predictions. Results indicate that while models struggle with most examples, 2D
VLMs are more likely to provide partially correct answers.
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B.4. More Qualitative Results

The qualitative results of model performance across various context change types are shown in Figure 15. Although models
answer most questions incorrectly, 2D VLMs (LLaVA-OV 72B, GPT-4o) are more likely to provide partially correct answers,
suggesting a relatively better capability for hypothetical reasoning.

C. Limitations and Future Work
One limitation is relying solely on text to describe context changes, which may lack precision for complex scenarios. Future
work will incorporate multimodal approaches, such as images or egocentric videos, for more accurate and complementary
representation. Additionally, our dataset focuses on hypothetical reasoning in indoor scenes, with plans to extend to outdoor
environments. Lastly, Hypo3D addresses object-level changes (e.g., modifying specific objects); future work will explore
scene-level changes involving significant layout rearrangements.
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