
LLMs in Biomedical: A Study on Named Entity Recognition

Anonymous ACL submission

Abstract

Large Language Models (LLMs) demonstrate001
remarkable versatility in various NLP tasks002
but encounter distinct challenges in biomedical003
due to the complexities of language and data004
scarcity. This paper investigates LLMs appli-005
cation in the biomedical domain by exploring006
strategies to enhance their performance for the007
NER task. Our study reveals the importance of008
meticulously designed prompts in the biomed-009
ical. Strategic selection of in-context exam-010
ples yields a marked improvement, offering ∼011
15− 20% increase in F1 score across all bench-012
mark datasets for biomedical few-shot NER.013
Additionally, our results indicate that integrat-014
ing external biomedical knowledge via prompt-015
ing strategies can enhance the proficiency of016
general-purpose LLMs to meet the specialized017
needs of biomedical NER. Leveraging a medi-018
cal knowledge base, our proposed method, Di-019
RAG, inspired by Retrieval-Augmented Gener-020
ation (RAG), can boost the zero-shot F1 score021
of LLMs for biomedical NER. Code will be022
released upon acceptance.023

1 Introduction024

LLMs such as GPT4 have demonstrated excep-025

tional capabilities across diverse tasks and domains026

(Espejel et al., 2023; Dai et al., 2023; Dong et al.,027

2022). These models could have a revolutionary028

impact on healthcare; however, their integration029

into medical research and practice has been slow030

(Zhou et al., 2023; Vaishya et al., 2023; Nori et al.,031

2023a) and it is crucial to examine the unique chal-032

lenges presented by the biomedical field that con-033

tribute to this discrepancy. Specifically, LLMs en-034

counter challenges in medical Information Extrac-035

tion (Gutierrez et al., 2022; Moradi et al., 2021)036

due to the scarcity of high-quality biomedical data037

in their pretraining, and the need for a nuanced038

comprehension of the text for this task (Gu et al.,039

2023). Medical entities can have multiple syn-040

onyms and abbreviations, complicating their recog-041

nition by models (Grossman Liu et al., 2021). Fur- 042

thermore, context sensitivity is even more critical 043

in the biomedical compared to the general domain. 044

The specificity of entity types and the complexity 045

of their interrelations necessitate a level of back- 046

ground knowledge that standard prompts may fail 047

to provide. LLMs are primarily exposed to vast 048

amounts of generic text data limiting their effec- 049

tiveness in managing the intricate nuances of medi- 050

cal language (Kumari et al., 2023; Karabacak and 051

Margetis, 2023). 052

In this paper, we concentrate on NER, a founda- 053

tional task for various applications such as recruit- 054

ing patients for clinical trials, searching biomedical 055

literature, or building models that predict the pro- 056

gression of disease based on free-text notes. 057

In our initial analysis, we broaden the scope of 058

TANL (Paolini et al., 2021) and DICE (Ma et al., 059

2022), two text-to-text formats initially proposed 060

for model training, adapting their use to prompt de- 061

sign specifically for biomedical NER. Our findings 062

reveal that the relative effectiveness of the result- 063

ing prompt pattern varies based on specific dataset 064

characteristics. Subsequently, we investigate the 065

importance of example selection via In-Context 066

Learning (ICL) and demonstrate the value of near- 067

est neighbor example selection using pre-trained 068

biomedical text encoders when performing biomed- 069

ical NER. A key question that arises in the deploy- 070

ment of LLMs concerns the comparative advantage 071

of closed-source LLMs versus open-source ones. 072

In our third study, we shed light on this question 073

by presenting an assessment of performance and 074

cost across various experiments. Furthermore, we 075

explore the integration of external medical knowl- 076

edge to refine LLM capabilities (Gao et al., 2023c; 077

Zakka et al., 2024). Leveraging the insights gained 078

from these techniques, we present a novel data aug- 079

mentation method incorporating a medical knowl- 080

edge base, e.g., UMLS (Bodenreider, 2004), which 081

substantially improves zero-shot biomedical NER. 082
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2 Background and Preliminaries083

Prompt engineering Prompt tuning (White et al.,084

2023; Lester et al., 2021; Ding et al., 2021) as085

its own research field shows that skillfully crafted086

prompts can significantly enhance LLM under-087

standing for complex tasks (Lu et al., 2021; Kad-088

dour et al., 2023; Webson and Pavlick, 2021). Re-089

searchers have explored different prompt formats090

for IE tasks with LLMs (Wang et al., 2023c; Gutier-091

rez et al., 2022; Wang et al., 2023b) including more092

work around knowledge insertion for prompt aug-093

mentation (Seo et al., 2024; Chen et al., 2023) An-094

other type of prompting is ICL (Brown et al., 2020),095

where LLMs use a limited set of "input-output"096

pairs within the prompt along with a query input as097

demonstrations of what the task output should be.098

In this realm, Liu et al. (2021); Min et al. (2022);099

Gao et al. (2023a) demonstrated that choosing tar-100

geted in-context examples over random sampling101

leads to more accurate model responses.102

Named Entity Recognition GPT-NER (Wang103

et al., 2023b) was one of the first methods to incor-104

porate a unique symbol to transform the sequence105

tagging task into text generation via ICL with GPT-106

3 (Brown et al., 2020), achieving performance on107

par with fully supervised baselines. Following this108

work, Gutierrez et al. (2022); Moradi et al. (2021)109

showed that LLMs are not skilled few-shot learners110

in the biomedical domain. However, recent ad-111

vancements, such as GPT-4, have increased LLM112

performance on many tasks (Tian et al., 2024; Hu113

et al., 2024a; Nori et al., 2023a) including in the114

biomedical domain (Hu et al., 2024b). In the direc-115

tion of knowledge distillation from LLMs (Wang116

et al., 2023c; Gu et al., 2023), Zhou et al. (2023)117

presented UniNER, a targeted distillation technique118

coupled with instruction tuning to develop an ef-119

ficient open-domain NER model. Our research120

draws from these works and explores the capa-121

bilities of LLMs for biomedical NER, employing122

prompt design, strategic ICL example selection,123

and data augmentation via an external knowledge124

base to enhance performance.125

Problem definition Assume data samples are126

represented as (X,Y ) and the goal is to develop127

a model, denoted as f : (X × T ) → Y , where X128

signifies the input set, T represents a predetermined129

set of entity types, and Y denotes the set of entity130

types. The task is to predict the entity type of each131

input word among the set T. We followed the stan-132

dard practice of using the F1 score for evaluation 133

purposes in both mention/token-level analyses. 134

Datasets We used three biomedical NER datasets 135

with different entity types: I2B2 (Uzuner et al., 136

2011) which includes test, treatment, and problem 137

entities, NCBI-disease (Doğan et al., 2014) consist- 138

ing of the disease entity, and BC2GM (Smith et al., 139

2008) containing the gene entity. 140

3 Influence of Input-Output Format 141

Recent studies demonstrated the importance of 142

prompt engineering for various tasks (Wang et al., 143

2023a; Gao et al., 2023b; Nori et al., 2023b). We 144

studied the influence of input-output format by 145

adapting TANL (Paolini et al., 2021) and DICE 146

(Ma et al., 2022) for biomedical NER. In TANL, 147

the task is framed as a translation task which in- 148

volves augmenting the text by tagging entity types 149

for each word directly within the text. The method 150

is exemplified in Fig 1, showcasing how the text 151

incorporates entity types. 152

Blood type O+ , antibody negative , rubella immune , RPR nonreactive 

, hepatitis B surface antigen negative , group beta Strep positive .

[test]

[problem] 

[ Blood type | test ] O+, [ antibody | test ] negative, [ rubella | test ] 

immune, [ RPR | test ] nonreactive, [ hepatitis B surface antigen | test ] 

negative, [ group beta Strep positive | problem ].

[test] [test] [test]

[test]

in
pu

t
ou

tp
ut

Figure 1: TANL input/output format for NER task.

Then, the generated output is decoded into the 153

BIO format (Ramshaw and Marcus, 1999) for the 154

assessment. In the refined DICE format, the input- 155

output format involves adding a description for 156

each entity type in a template following DEGREE 157

(Hsu et al., 2021). Given an input text and corre- 158

sponding labels, the desired output should be the 159

input followed by the phrase "entity type is <en- 160

tity_type>. <entity_description>. entity is <en- 161

tity>" for each class label, e.g., test, treatment, 162

and problem in the I2B2 dataset. Then, we ex- 163

pect the model to output the same template filling 164

out the <entity> with the corresponding entities in 165

the given text as demonstrated in Fig 2. For the en- 166

tity types with no matched entities in the sentence, 167

the output returns <entity> token in the output. Ex- 168

amples for the NCBI-disease and BC2GM datasets 169

are presented in Appendix A.5. 170

Our experiments in Table 1 reveal that neither 171

format consistently outperforms the other; rather, 172

the effectiveness of each format varies depending 173

on the complexity of the dataset and model size. To 174
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[problem] 

[treatment]

He has a recent history of dyspnea on exertion on exertional chest pain which has increased over 

the last several weeks and is relieved by sublingual nitroglycerin . 

[problem] 

Entity type is problem. A health-related issue, condition, symptom, or disease. Entity is dyspnea [SEP] 

exertional chest pain. Entity type is treatment. A medical intervention, therapy, procedure, or 

medication. Entity is sublingual nitroglycerin. Entity type is test. A diagnostic examination, laboratory 

test, imaging study, or other medical investigation. Entity is <entity>.

in
pu

t
ou

tp
ut

Figure 2: DICE input/output format for NER task.

Model input-output format I2B2 NCBI-disease BC2GM
M/T M/T M/T

GPT-3.5-turbo DICE 41.2 /50.0 45.3 /62.0 43.3 /55.6
TANL 52.9/59.7 46.5/51.3 39.1/50.8

GPT-4 DICE 58.8/70.1 68.1/77.8 57.1/67.9
TANL 61.9/73.5 67.5/70.0 56.4/69.6

Table 1: TANL vs. DICE format with GPT-3.5-
turbo/GPT-4 . The superiority of any format varies
with the complexity of the dataset and model size.

maintain consistency in the rest of our experiments,175

we opted for the TANL format, which offers a more176

straightforward pattern.177

4 In-Context Examples Selection: A Key178

to Improving ICL Outcomes179

In-context examples can be randomly chosen from180

the training set; however, researchers have demon-181

strated that the performance of ICL depends on the182

order and similarity of ICL examples to the test183

samples (Liu et al., 2021; Min et al., 2022; Gao184

et al., 2023a). Liu et al. (2021) presented Knn-185

Augmented in-conText Example selection (KATE).186

KATE identifies in-context examples selectively187

using nearest neighbor search on example embed-188

dings, leading to better performance than random189

example selection. We tested KATE on TANL for-190

matted examples with 16-shot ICL using four dif-191

ferent LM encoders (w/o fine-tuning) to produce192

example embeddings. We used MPNET (Song193

et al., 2020) for its popularity and performance194

on sentence embedding benchmarks (Reimers and195

Gurevych, 2019) , SimCSE (Gao et al., 2021) for its196

documented performance as an alternative to stan-197

dard sentence transformers, and BioClinicalBERT198

(Alsentzer et al., 2019) and BioClinicalRoBERTa199

(Gururangan et al., 2020) for their dominance on200

clinical data tasks (Lehman et al., 2023).201

Our results summarized in Table 2 show202

that strategic in-context example selection via203

KATE outperforms random selection. BioClini-204

calRoBERTa achieved the best results among all205

example encoders tested. The strong performance206

of BioClinicalBERT and BioClinicalRoBERTa un-207

derscores the importance of using LM encoders208

pretrained on biomedical text when applying KATE 209

for biomedical NER. 210

Model KATE vs RS I2B2 NCBI-disease BC2GM
M/T M/T M/T

GPT-3.5-turbo (ICL)

RS 52.9/59.7 46.6/51.3 39.1/50.8
BioClinicalRoBERTa 66.1/77.4 68.0/77.7 61.6/72.5

BioClinicalBERT 67.0/78.9 67.6/78.8 60.9/72.0
MPNET 65.3/76.7 63.7/76.7 59.1/70.0
SimCSE 65.2/76.1 61.6/76.1 57.8/68.8

(Hu et al., 2024b) 49.3/ - - -

GPT4 (ICL)

RS 67.7/73.5 62.6/70.0 59.2/69.6
BioClinicalRoBERTa 81.2/88.4 79.3/88.3 72.4/80.7

BioClinicalBERT 81.7/88.1 79.3/88.0 71.9/79.4
MPNET 80.7/87.5 79.8/87.4 71.1/80.2
SimCSE 79.6/86.6 77.3/86.5 69.9/77.9

(Hu et al., 2024b) 59.3/ - - -

BioBERT fully supervised - /87.3 - /89.1 - /83.8
BioClinicBERT fully supervised - /87.7 - /89.0 - /81.7

BioClinicRoBERTa fully supervised - /89.7 - /89.0 - /87.0

Table 2: 16-shot ICL for Random example selection
(RS) vs. KATE method Vs MLMs with Mention/Token-
level (M/T) analysis. KATE significantly outperforms
random sampling in all settings, and LMs pre-trained on
biomedical text outperform general domain encoders.

5 In-Context Learning or Fine-Tuning? 211

Within the scope of LLMs for biomedical applica- 212

tions, an essential question is whether to prompt a 213

closed-source LLM via ICL or fine-tune an open- 214

source one. Comparing two different LLMs em- 215

ploying divergent strategies is not straightforward. 216

To provide some insight into this dilemma, we ex- 217

amined two key factors, performance and cost, for 218

biomedical NER, and presented a detailed analy- 219

sis under various experiment settings. This com- 220

parison offers valuable perspective into the right 221

strategy given the task and dataset attributes. For 222

fine-tuning, we used LoRA (Hu et al., 2021). De- 223

tails can be found in Appendix A.5. The cost of 224

fine-tuning comes from training an LLM on a large 225

labeled dataset while the cost of ICL mainly comes 226

from calling an API for each input query. For 16- 227

shot ICL experiments, we calculated the cost based 228

on the number of processed and generated tokens 229

considering the average text size based on current 230

LLM API pricing.1 The estimated cost for the en- 231

tire test set of each benchmark dataset considering 232

the input text, prompt, and generated text size using 233

the TANL format is summarized in Table 3. Refer- 234

ring to the OpenAI API for fine-tuning pricing, we 235

also estimated the cost for fine-tuning LLama2-7B, 236

summarized in Table 3. Interestingly, for the I2B2 237

dataset, GPT-3.5-turbo with a much cheaper cost 238

outperforms fine-tuning Llama2-7B. 239

1https://openai.com/pricing

3

https://openai.com/pricing


response
User 

prompt

User 

prompt

There was no electrographic evidence of seizure activity noted .

+input

There was no electrographic evidence of seizure activity noted .

There was no electrographic evidence of seizure activity noted .

[test] [problem] 

FP FP FP TP TP

TPTPTPTP

response

{

'electrographic evidence of seizure activity', 'problem’

}
Given a passage, your task is to 

extract all entities and identify their 

entity types from this list: test, 

treatment, problem. The output 

should be in a list of tuples of the 

following format:{'entity 1', 'type of 

entity 1', ...]} 

{

'electrographic evidence’: 'test’ 

, 'seizure activity', 'problem’

}+ augmented 

input

User 

prompt

+input

Given a passage, your task is 

to extract all tokens that could 

potentially be a medical entity. 

The output should be in a list of 

the following format: ['entity 1', 

'entity 2', ... ].

seizure activity is a finding which is discovered by direct observation or measurement of an 

organism attribute or condition, including the clinical history of the patient

in
pu

tt
ex

t
w

/o
D

iR
A

G
w

/D
iR

A
G

Figure 3: An overview of Dictionary-Infused RAG

Model I2B2 NCBI-disease BC2GM
M/T M/T M/T

Performance

GPT-3.5-turbo w/ KATE (ICL) 67.0/78.9 68.0/78.8 61.6/72.5
GPT4 w/ KATE (ICL) 81.7/88.4 79.3/88.3 72.4/80.7

Llama2-7B (FT) 61.2/76.2 80.4/91.3 68.1/75.1

Cost (T+I)

GPT3.5-turbo w/ KATE (ICL) ($0.35) ($0.11) ($1.34)
GPT4 w/ KATE (ICL) ($10.42) ($3.12) ($40.13)

Llama2-7B (FT) ($47.85+$7.4) ($23.5+$1.2) ($69.7+$12.9)

Table 3: Analysis of ICL vs fine-tuning LLMs: as-
sessing performance and cost (Training + Inference)
implications. Fine-tuning LLama2 exhibits superior out-
comes on NCBI-disease, whereas GPT-4, enhanced by
KATE using a biomedical encoder, achieves more favor-
able results on both the I2B2 and BC2GM datasets.

6 Dictionary-Infused RAG240

Retrieval-Augmented Generation (RAG) (Lewis241

et al., 2020) is a technique to enhance the ca-242

pabilities of LLMs by integrating external infor-243

mation or knowledge into the generation process.244

This method involves retrieving relevant documents245

from a large corpus and providing this external246

knowledge in the input context to improve the qual-247

ity and relevance of the generated text. Inspired248

by RAG, we developed a new method, DiRAG, to249

utilize UMLS as an external resource to augment250

the input data for the biomedical NER task. The251

process with detailed prompts is visualized in Fig252

3, while an expanded view of the UMLS compo-253

nent is depicted in Fig 8. Unlike traditional RAG254

techniques that rely on embedding similarities to255

retrieve relevant documents, our approach initially256

employs the LLM to tackle a more straightforward257

task: identifying all words that could potentially258

qualify as medical named entities. Then, we look259

up each selected word in an external knowledge260

base, e.g., UMLS to augment the input data with261

useful information such as term definition. Then,262

we call the LLM with augmented input text. The263

Model I2B2 NCBI-disease BC2GM
M/T M/T M/T

UniversalNER (Zhou et al., 2023) 40.4/ - 60.4/ - 47.2/ -
(Rohanian et al., 2023) w/ GPT-3.5 - 33.4 / - 32.0 / -
(Hu et al., 2024b) w/ GPT-3.5-turbo 39.3/ - - -

(Hu et al., 2024b) w/ GPT-4 52.6/ - - -
GPT-3.5-turbo w/o DiRAG 41.9 /54.7 38.2 / 49.4 38.6 / 28.7
GPT-3.5-turbo w/ DiRAG 43.0 / 55.7 44.7 / 50.0 30.45 / 22.5

GPT-4 w/o DiRAG 46.3 / 59.1 55.7 /60.5 52.1 / 58.4
GPT-4 w/ DiRAG 53.1 /62.8 61.0 /66.2 51.1 / 55.0

Table 4: Zero-shot NER with GPT models w/ and w/o
DiRAG vs. SOTA. DiRAG improved zero-shot NER
significantly for I2B2 and NCBI-disease datasets for
both GPT models. Results with confidence intervals are
in the appendix.

process is visualized in Fig 8. We tested the ap- 264

proach on zero-shot NER and compared it with 265

SOTA in Table 4. Our proposed approach enhanced 266

the performance of both GPT versions on the I2B2 267

and NCBI-disease datasets significantly. DiRAG 268

with GPT-4 achieved SOTA for zero-shot NER. 269

Our approach proved ineffective for the BC2GM 270

dataset due to the nature of the UMLS knowledge 271

base which is predominantly tailored to medical 272

terminology rather than biogenetics. We expect our 273

approach to outperform GPT-4 on BC2GM with a 274

more relevant knowledge base. 275

7 Conclusion 276

We explored LLMs for biomedical NER by cus- 277

tomizing various prompting techniques. Through 278

a detailed comparative analysis, we highlighted 279

the vital role of ICL and the selection of contex- 280

tually pertinent examples with biomedical text en- 281

coders for biomedical NER tasks. Moreover, our 282

investigation into incorporating external medical 283

knowledge resulted in a novel data augmentation 284

approach, considerably advancing the capabilities 285

of zero-shot biomedical NER with LLMs. 286
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Limitations287

While we have shown the potential of enhancing288

LLM performance for biomedical NER, the ex-289

periments in this paper are limited in two aspects290

mainly due to computational constraints. (1) TANL291

uses a straightforward text-to-text format while292

DICE uses additional descriptions. Future work293

could attempt to simplify DICE or combine it with294

TANL. Ablation studies on components of each295

format could help researchers design new prompt296

formatting strategies. (2) Our RAG-based method297

exclusively utilizes UMLS as the knowledge base,298

though it is limited in its vocabulary. For medi-299

cal terms not covered by UMLS, we did not aug-300

ment the input text. Other knowledge bases such301

as Wikipedia could serve as an alternative.302
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A Appendix 566

A.1 TANL/DICE more examples 567

In Fig 4-8, we visualize two examples of each for- 568

mat for NCBI-disease and BC2GM datasets for 569

more demonstration. 570

A.2 Benchmark datasets 571

We studied LLMs on I2b2, NCBI-disease, and 572

BC2GM dataset. In the following, we provide 573

some details about each. 574

I2B2: I2B2 is a collection of annotated clin- 575

ical records that are used primarily for Clinical 576

NER.The task involves identifying clinical terms 577

such as medical problems, treatments, and tests 578

from patient records. The dataset typically includes 579

a large number of annotated clinical narratives that 580

are de-identified to protect patient confidentiality. 581

This makes it a rich resource for training and testing 582

NER models. 583

NCBI-disease: This dataset is specifically cu- 584

rated for disease name recognition and normaliza- 585

tion in biomedical texts. It comprises abstracts 586

from PubMed annotated for disease mentions and 587

linked to the NCBI disease database. The corpus is 588

relatively smaller compared to i2b2 but is densely 589

annotated, providing high-quality, fine-grained an- 590

notations of disease entities, which are crucial for 591

models aimed at medical literature. 592

BC2GM: This dataset focuses on the recognition 593

of gene and gene product mentions in PubMed 594

abstracts that is a suitable dataset for biological 595

NER. The BC2GM dataset is extensively annotated 596

to include a wide range of gene and gene product 597

mentions, reflecting the complex and varied ways 598

these entities are referred to in scientific literature. 599

A.3 PEFT setting of Llama for fine-tuning 600

We fine-tuned Llama2-7B on the entire training set 601

of each dataset for three epochs and maintained 602

a batch size of 16, learning rate of 2e-4, and cap 603

the maximum sequence length at 512, truncating 604
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any sequences that exceeded this limit. The LoRA605

dropout rate is adjusted to 0.1, and the LoRA α and606

rank parameters are also set at 16 and 32 respec-607

tively. The training was done on 4 NVIDIA Tesla608

V100 GPUs for approximately 24, 12, and 63 hours609

for I2B2, NCBI-disease, and BC2GM respectively.610

A.4 Few-shot and Zero-shot performances611

with Confidence Interval612

We introduced both few-shot and zero-shot settings613

to comprehensively evaluate the versatility and gen-614

eralization capabilities of our study across different615

levels of data availability. While it’s true that the616

performance in the zero-shot setting is generally617

lower compared to the few-shot setting, this ap-618

proach offers valuable insights into the model’s619

behavior when no training examples are provided.620

The zero-shot setting, leveraging techniques like621

Retrieval-Augmented Generation (RAG), demon-622

strates the model’s potential to utilize pre-existing623

knowledge embedded in its parameters and exter-624

nal sources effectively. This is particularly impor-625

tant for scenarios where labeled data is scarce or626

unavailable, making zero-shot learning a critical627

area of study to ensure broader applicability of the628

model in real-world applications. Moreover, the629

inclusion of both methodologies allows us to high-630

light the performance trade-offs and strengths of631

the model under different instructional paradigms,632

contributing to a more robust and nuanced under-633

standing of its capabilities. We ran all experiments634

with different random seeds and reported the full re-635

sults of Table 2, 3, and 4 with confidence Intervals636

In Tables 6, 7, and 8.637

A.5 UMLS detail638

In Fig 8, we visualize the process by which po-639

tential words suggested by the LLM are searched640

within the UMLS and demonstrate how the input641

is augmented to enhance zero-shot prompting in642

LLMs.643
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Heterozygous mutations in the human PAX6 gene result in various phenotypes , including aniridia , 

Peters anomaly , autosomal dominant keratitis , and familial foveal dysplasia .

Heterozygous mutations in the human PAX6 gene result in various phenotypes, including [ 

aniridia | Disease ], [ Peters anomaly | Disease ], [ autosomal dominant keratitis | Disease ], 

and [ familial foveal dysplasia | Disease ].

[Disease] 

[Disease] [Disease] [Disease] in
pu

t
ou

tp
ut

Figure 4: TANL input-output format example for NCBI-disease dataset

Heterozygous mutations in the human PAX6 gene result in various phenotypes , including aniridia

, Peters anomaly , autosomal dominant keratitis , and familial foveal dysplasia .

Entity type is Disease. A health condition with specific symptoms and often a known cause that 

disrupts normal body functions. Entity is aniridia [SEP] Peters anomaly [SEP] autosomal 

dominant keratitis [SEP] familial foveal dysplasia.

[Disease] 

[Disease] [Disease] [Disease] in
pu

t
ou

tp
ut

Figure 5: DICE input-output format example for NCBI-disease dataset

Using the same approach we have shown that hFIRE binds the stimulatory proteins Sp1 and Sp3

in addition to CBF .

Using the same approach we have shown that [ hFIRE | GENE ] binds the stimulatory proteins [ 

Sp1 | GENE ] and [ Sp3 | GENE ] in addition to [ CBF | GENE ].

[GENE] [GENE]

[GENE]

[GENE]

in
pu

t
ou

tp
ut

Figure 6: TANL input-output format example for BC2GM dataset

Using the same approach we have shown that hFIRE binds the stimulatory proteins Sp1 and Sp3

in addition to CBF .

Entity type is GENE. A unit of heredity encoded in DNA that dictates the structure of proteins 

and regulates specific biological processes. Entity is hFIRE [SEP] Sp1 [SEP] Sp3 [SEP] CBF.

[GENE] [GENE]

[GENE]

[GENE]

in
pu

t
ou

tp
ut

Figure 7: DICE input-output format example for BC2GM dataset

Mention/Token
Model input-output format I2B2 NCBI-disease BC2GM

GPT-3.5-turbo DICE 41.2 ± 0.2 /50.0 ± 0.1 45.3 ± 0.2 /62.0 ± 0.3 43.3 ± 0.5 /55.6 ± 0.4
TANL 52.9 ± 0.3/59.7 ± 0.4 46.5 ± 0.5/51.3 ± 0.5 39.1 ± 0.4/50.8 ± 0.5

GPT-4 DICE 58.8 ± 0.4 /70.1 ± 0.3 68.1 ± 0.9/77.8 ± 1.1 57.1 ± 0.6/67.9 ± 0.5
TANL 61.9 ± 0.3/73.5 ± 0.5 67.5 ± 0.8/70.0 ± 0.6 56.4 ± 0.2/69.6 ± 0.3

Table 5: TANL vs. DICE format with GPT-3.5-turbo/GPT-4 with confidence intervals
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Model KATE vs RS I2B2 NCBI-disease BC2GM
M/T M/T M/T

GPT-3.5-turbo (ICL)

RS 52.9 ± 0.3 / 59.7 ± 0.4 46.6 ± 0.5 / 51.3 ± 0.5 39.1 ± 0.4 / 50.8 ± 0.5
BioClinicalRoBERTa 66.1 ± 0.4 / 77.4 ± 0.6 68.0 ± 0.3 / 77.7 ± 0.2 61.6 ± 0.5 / 72.5 ± 0.6

BioClinicalBERT 67.0 ± 0.6/78.9 ± 0.5 67.6 ± 0.1/78.8± 0.1 60.9 ± 0.7 /72.0 ± 0.5
MPNET 65.3 ± 0.3 / 76.7 ± 0.2 63.7 ± 0.3 / 76.7 ± 0.3 59.1 ± 0.4 / 70.0 ± 0.4
SimCSE 65.2 ± 0.2 / 76.1 ± 0.3 61.6 ± 0.4 / 76.1 ± 0.3 57.8 ± 0.5 / 68.8 ± 0.4

(Hu et al., 2024b) 49.3/ - - -

GPT4 (ICL)

RS 67.7 ± 0.3 / 73.5 ± 0.5 62.6 ± 0.8 /70.0 ± 0.6 59.2 ± 0.2 / 69.6 ± 0.3
BioClinicalRoBERTa 81.2 ± 0.3/88.4 ± 0.6 79.3 ± 0.9/88.3 ± 0.8 72.4 ± 0.6/80.7 ± 0.5

BioClinicalBERT 81.7 ± 0.4/88.1 ± 0.3 79.3 ± 0.4/88.0 ± 0.3 71.9 ± 0.3 / 79.4 ± 0.3
MPNET 80.7 ± 0.4 / 87.5 ± 0.5 79.8 ± 0.9 /87.4 ± 0.9 71.1 ± 1.1 / 80.2 ± 1.0
SimCSE 79.6 ± 0.5 / 86.6 ± 0.4 77.3 ± 0.5 / 86.5 ± 0.8 69.9 ± 0.8 / 77.9 ± 0.5

(Hu et al., 2024b) 59.3/ - - -

BioBERT fully supervised - /87.3 - /89.1 - /83.8
BioClinicBERT fully supervised - /87.7 - /89.0 - /81.7

BioClinicRoBERTa fully supervised - /89.7 - /89.0 - /87.0

Table 6: Random example selection (RS) vs. KATE with medical/non-medical encoders vs. fully supervised models
with Mention/Token-level (M/T) analysis. KATE significantly outperforms random sampling in all settings, and
LMs pre-trained on the biomedical text outperform strong, general domain encoders. HunFlair is added to the paper

Model I2B2 NCBI-disease BC2GM
M/T M/T M/T

Performance

GPT-3.5-turbo w/ KATE 67.0 ± 0.6 / 78.9 ± 0.5 68.0 ± 0.3 / 78.8 ± 0.1 61.6 ± 0.1 / 72.5 ± 0.6
GPT4 w/ KATE 81.7 ± 0.4 / 88.4 ± 0.6 79.3 ± 0.4 / 88.3 ± 0.8 72.4 ± 0.6 / 80.7 ± 0.4

Llama2-7B 61.2 ± 1.8 / 76.2 ± 1.3 80.4 ± 0.9/ 91.3 ± 1.1 68.1 ± 1.4 / 75.1 ± 1.3

Cost (T+I)

GPT3.5-turbo w/ KATE ($0.35) ($0.11) ($1.34)
GPT4 w/ KATE ($10.42) ($3.12) ($40.13)

Llama2-7B ($47.85+$7.4) ($23.5+$1.2) ($69.7+$12.9)

Table 7: Analysis of ICL vs fine-tuning LLMs: assessing performance and cost implications. Fine-tuning LLama2
exhibits superior outcomes on NCBI-disease, whereas GPT-4, enhanced by KATE using a biomedical encoder,
achieves more favorable results on both the I2B2 and BC2GM datasets.

Model I2B2 NCBI-disease BC2GM
M/T M/T M/T

UniversalNER (Zhou et al., 2023) 40.4/ - 60.4/ - 47.2/ -
(Rohanian et al., 2023) w/ GPT-3.5 - 33.4 / - 32.0 / -
(Hu et al., 2024b) w/ GPT-3.5-turbo 39.3/ - - -

(Hu et al., 2024b) w/ GPT-4 52.6/ - - -
HunFlair (Weber et al., 2021) 0.0 / 0.0 24.8 / 36.1 28.2 / 22.7
GPT-3.5-turbo w/o DiRAG 41.9 ± 1.4 /54.7 ± 1.9 38.2 ± 1.7 / 49.4 ± 2.6 38.6 ± 1.0 / 28.7 ± 1.9
GPT-3.5-turbo w/ DiRAG 43.0 ± 0.9 / 55.7 ± 1.5 44.7 ± 0.5 / 50.0 ± 2.1 30.45 ± 1.6 / 22.5 ± 2.1

GPT-4 w/o DiRAG 46.3 ± 1.9 / 59.1 ± 2.7 55.7 ± 0.8 /60.5 ± 0.9 52.1 ± 3.64 / 58.4 ± 1.3
GPT-4 w/ DiRAG 53.1 ± 1.1 / 62.8 ± 1.2 61.0 ± 0.6 /66.2 ± 0.5 51.1 ± 2.0 / 55.0 ± 2.2

Table 8: Full results of Zero-shot NER with GPT-3.5-turbo and GPT-4, w/ and w/o DiRAG, and their comparision
with SOTA. Our method improved zero-shot NER significantly for I2B2 and NCBI-disease datasets.
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User 

prompt

Given a passage, your task is 

to extract all tokens that could 

potentially be a medical entity. 

The output should be in a list of 

the following format: ['entity 1', 

'entity 2', ... ].

nausea is An unpleasant sensation in the stomach usually accompanied by the urge to 

vomit. Common causes are early pregnancy, sea and motion sickness, emotional 

stress, intense pain, food poisoning, and various enteroviruses.

[‘Nausea', ‘Pleuritic chest pain']

She awoke with nausea on the day of admission and pleuritic chest pain .

Search UMLS for sematic type 

and definition with exact match

[problem] [problem] 

Augment to 

the original 

prompt+input

Figure 8: UMLS search. The GPT model is prompted for a simpler task of identifying all words that could
potentially be a named entity. Then, the retrieved information from UMLS will augment the original input text for
recalling the LLM
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