

000 001 002 003 004 005 π^3 : PERMUTATION-EQUIVARIANT VISUAL 006 GEOMETRY LEARNING 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Figure 1: π^3 effectively reconstructs a diverse set of open-domain images in a feed-forward manner, encompassing various scenes such as indoor, outdoor, and aerial-view, as well as cartoons, with both dynamic and static content.

ABSTRACT

We introduce π^3 , a feed-forward neural network that offers a novel approach to visual geometry reconstruction, breaking the reliance on a conventional fixed reference view. Previous methods often anchor their reconstructions to a designated viewpoint, an inductive bias that can lead to instability and failures if the reference is suboptimal. In contrast, π^3 employs a fully permutation-equivariant ar-

054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 chitecture to predict affine-invariant camera poses and scale-invariant local point
 065 maps without any reference frames. This design not only makes our model inher-
 066 ently robust to input ordering, but also leads to higher accuracy and performance.
 067 These advantages enable our simple and bias-free approach to achieve state-of-
 068 the-art performance on a wide range of tasks, including camera pose estimation,
 069 monocular/video depth estimation, and dense point map reconstruction. Code and
 070 models will be publicly available.
 071
 072

1 INTRODUCTION

065 Visual geometry reconstruction, a long-standing and fundamental problem in computer vision, holds
 066 substantial potential for applications such as augmented reality (Engel et al., 2023), robotics (Zhu
 067 et al., 2024), and autonomous navigation (Mur-Artal et al., 2015). While traditional methods ad-
 068 dressed this challenge using iterative optimization techniques like Bundle Adjustment (BA) (Hartley
 069 & Zisserman, 2003), the field has recently seen remarkable progress with feed-forward neural net-
 070 works. End-to-end models like DUST3R (Wang et al., 2024) and its successors have demonstrated
 071 the power of deep learning for reconstructing geometry from image pairs (Leroy et al., 2024; Zhang
 072 et al., 2024), videos, or multi-view collections (Yang et al., 2025; Zhang et al., 2025; Wang et al.,
 073 2025a).

074 Despite these advances, a critical limitation persists in both classical and modern approaches: the
 075 reliance on selecting a single, fixed reference view. The camera coordinate system of this chosen
 076 view is treated as the global frame of reference, a practice inherited from traditional Structure-from-
 077 Motion (SfM) (Hartley & Zisserman, 2003; Cui et al., 2017; Schonberger & Frahm, 2016; Pan et al.,
 078 2024) or Multi-view Stereo (MVS) (Furukawa et al., 2015; Schonberger et al., 2016). We contend
 079 that this design choice introduces an *unnecessary* inductive bias that fundamentally constrains the
 080 performance and robustness of feed-forward neural networks. As we demonstrate empirically, this
 081 reliance on an arbitrary reference makes existing methods, including the state-of-the-art (SOTA)
 082 VGGT (Wang et al., 2025a), highly sensitive to the initial view selection. A poor choice can lead
 083 to a dramatic degradation in reconstruction quality, hindering the development of robust systems
 (Figure 2).

084 To overcome this limitation, we introduce
 085 π^3 (Figure 1), a robust, accurate, and fully
 086 permutation-equivariant method that elimi-
 087 nates reference view-based biases in vi-
 088 sual geometry learning. π^3 accepts var-
 089 ied inputs—including single images, video
 090 sequences, or unordered image sets from static
 091 or dynamic scenes—without designating a ref-
 092 erence view. Instead, our model predicts
 093 an affine-invariant camera pose and a scale-
 094 invariant local pointmap, with the pointmap be-
 095 ing defined in that frame’s own camera co-
 096 ordinate system. By eschewing order-dependent
 097 components like frame index positional em-
 098 beddings and employing a transformer archi-
 099 tecture that alternates between view-wise and
 100 global self-attention (similar to (Wang et al.,
 101 2025a)), π^3 achieves true permutation equiv-
 102 ariance. This guarantees a consistent one-to-
 103 one mapping between visual inputs and the re-
 104 constructed geometry, making the model inher-
 105 ently robust to input order and immune to the reference view selection problem (Table 7).

106 Our design yields significant advantages. Primarily, it is substantially more robust. Unlike previous
 107 methods, our approach demonstrates minimal performance degradation and a low standard deviation
 108 when the reference frame is altered (Figure 2 and Table 4.4). Furthermore, it enhances reconstruction
 109 accuracy over earlier methods that rely on a reference view.

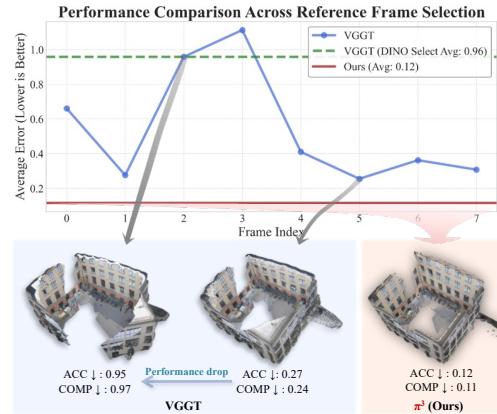


Figure 2: **Performance comparison across different reference frames.** While previous meth-
 065 ods, even with DINO-based selection, show in-
 066 consistent results, π^3 consistently delivers su-
 067 perior and stable performance, demon-
 068 strating its ro-
 069 bustness.

108 Through extensive experiments, π^3 establishes a new SOTA across numerous benchmarks and tasks.
 109 For example, it achieves comparable performance to existing methods like MoGe (Wang et al.,
 110 2025c) in monocular depth estimation, and outperforms VGGT (Wang et al., 2025a) in video depth
 111 estimation and camera pose estimation. On the Sintel benchmark, π^3 reduces the camera pose
 112 estimation ATE from VGGT’s 0.167 down to 0.074 and improves the scale-aligned video depth
 113 absolute relative error from 0.299 to 0.233. Furthermore, π^3 is both lightweight and fast, achieving
 114 an inference speed of 57.4 FPS compared to DUST3R’s 1.25 FPS and VGGT’s 43.2 FPS. Its ability
 115 to reconstruct both static and dynamic scenes makes it a robust and optimal solution for real-world
 116 applications.

117 In summary, the contributions of this work are as follows:
 118

- 119 • We are the first to systematically identify and challenge the reliance on a fixed reference
 120 view in visual geometry reconstruction, demonstrating how this common design choice
 121 introduces a detrimental inductive bias that limits model robustness and performance.
- 123 • We propose π^3 , a novel, fully permutation-equivariant architecture that eliminates this bias.
 124 Our model predicts affine-invariant camera poses and scale-invariant pointmaps in a purely
 125 relative, per-view manner, completely removing the need for a global coordinate system.
- 126 • We demonstrate through extensive experiments that π^3 establishes a new state-of-the-art on
 127 a wide range of benchmarks for camera pose estimation, monocular/video depth estimation,
 128 and pointmap reconstruction, outperforming prior leading methods.

131 2 RELATED WORK

132 2.1 TRADITIONAL 3D RECONSTRUCTION

133 Reconstructing 3D scenes from images is a foundational problem in computer vision. Classical
 134 methods, such as Structure-from-Motion (SfM) (Hartley & Zisserman, 2003; Cui et al., 2017; Schon-
 135 berger & Frahm, 2016; Pan et al., 2024) and Multi-View Stereo (MVS) (Furukawa et al., 2015;
 136 Schönberger et al., 2016), have achieved considerable success. These techniques leverage the prin-
 137 ciples of multi-view geometry to establish feature correspondences across images, from which they
 138 estimate camera poses and generate dense 3D point clouds. Although robust, particularly in con-
 139 trolled environments, these methods typically rely on complex, multi-stage pipelines. Moreover,
 140 they often involve time-consuming iterative optimization problems, such as Bundle Adjustment
 141 (BA), to jointly refine the 3D structure and camera poses.

142 2.2 FEED-FORWARD 3D RECONSTRUCTION

143 Recently, feed-forward models have emerged as a powerful alternative, capable of directly regress-
 144 ing the 3D structure of a scene from a set of images in a single pass. Pioneering efforts in this
 145 domain, such as Dust3R (Wang et al., 2024), focused on processing image pairs to predict a point
 146 cloud within the coordinate system of the first camera. While effective for two views, scaling this to
 147 larger scenes requires a subsequent global alignment step, a process that can be both time-consuming
 148 and prone to instability.

149 Subsequent work has focused on overcoming this limitation. Fast3R (Yang et al., 2025) represents a
 150 significant advance by enabling simultaneous inference on thousands of images, thereby eliminating
 151 the need for a costly and fragile global alignment stage. Other approaches have explored simplifying
 152 the learning problem itself. For instance, FLARE (Zhang et al., 2025) decomposes the task by
 153 first predicting camera poses and then estimating the scene geometry. VGGT (Wang et al., 2025a)
 154 leverages multi-task learning and large-scale datasets to achieve superior accuracy and performance.

155 A unifying characteristic of these methods—a paradigm largely inherited from classical SfM—is
 156 their reliance on anchoring the predicted 3D structure to a designated reference frame. Our work
 157 departs from this paradigm by presenting a fundamentally different approach.

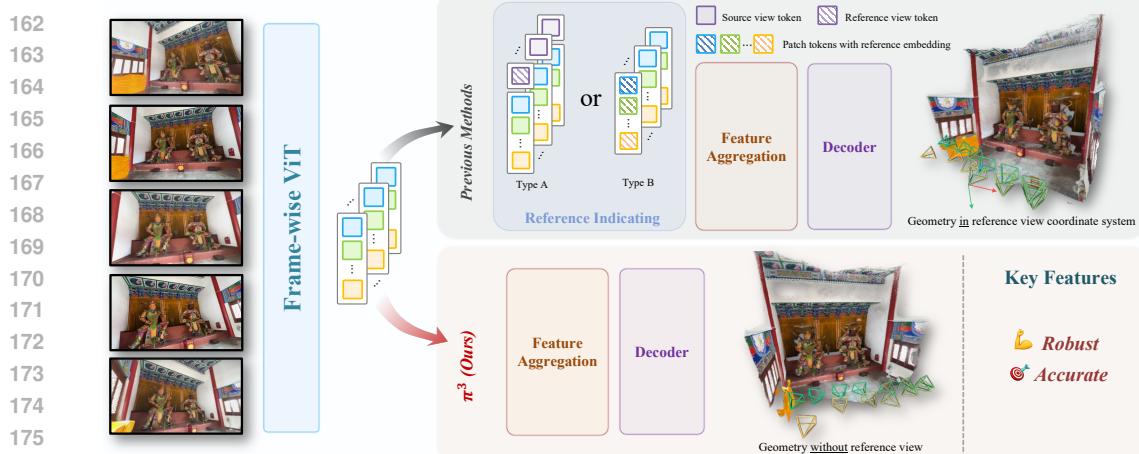


Figure 3: Unlike prior methods that designate a *reference view* by concatenating a special token (Type A) or adding a learnable embedding (Type B), π^3 achieves permutation equivariance by eliminating this requirement altogether. Instead, it employs relative supervision, making our approach inherently robust to the order of input views.

3 METHOD

3.1 PERMUTATION-EQUIVARIANT ARCHITECTURE

To ensure our model’s output is invariant to the arbitrary ordering of input views, we designed our network ϕ to be *permutation-equivariant*.

Let the input be a sequence of N images, $S = (\mathbf{I}_1, \dots, \mathbf{I}_N)$, where each image $\mathbf{I}_i \in \mathbb{R}^{H \times W \times 3}$. The network ϕ maps this sequence to a corresponding tuple of output sequences:

$$\phi(S) = ((\mathbf{T}_1, \dots, \mathbf{T}_N), (\mathbf{X}_1, \dots, \mathbf{X}_N), (\mathbf{C}_1, \dots, \mathbf{C}_N)) \quad (1)$$

Here, $\mathbf{T}_i \in SE(3) \subset \mathbb{R}^{4 \times 4}$ is the camera pose, $\mathbf{X}_i \in \mathbb{R}^{H \times W \times 3}$ is the associated pixel-aligned 3D point map represented in its own camera coordinate system, and $\mathbf{C}_i \in \mathbb{R}^{H \times W}$ is the confidence map of \mathbf{X}_i , each corresponding to the input image \mathbf{I}_i .

For any permutation π , let P_π be an operator that permutes the order of a sequence. The network ϕ satisfies the permutation-equivariant property:

$$\phi(P_\pi(S)) = P_\pi(\phi(S)) \quad (2)$$

This means that permuting the input sequence, $P_\pi(S) = (\mathbf{I}_{\pi(1)}, \dots, \mathbf{I}_{\pi(N)})$, results in an identically permuted output tuple:

$$P_\pi(\phi(S)) = ((\mathbf{T}_{\pi(1)}, \dots, \mathbf{T}_{\pi(N)}), (\mathbf{X}_{\pi(1)}, \dots, \mathbf{X}_{\pi(N)}), (\mathbf{C}_{\pi(1)}, \dots, \mathbf{C}_{\pi(N)})) \quad (3)$$

This property guarantees a consistent one-to-one correspondence between each image and its respective output (e.g., geometry or pose). This design offers several key advantages. First, reconstruction quality becomes *independent of the reference view selection*, in contrast to prior methods that suffer from performance degradation when the reference view changes. Second, the model becomes more *robust* to uncertain or noisy observations. These claims are empirically validated in Section 4.

To realize this equivariance in practice, our implementation (illustrated in Figure 3) omits all order-dependent components, such as positional embeddings used to differentiate between frames and specialized learnable tokens that designate a reference view, like the camera tokens found in VGGT (Wang et al., 2025a). Our pipeline begins by embedding each view into a sequence of patch tokens using a DINOv2 (Oquab et al., 2023) backbone. These tokens are then processed through a series of alternating view-wise and global self-attention layers, similar to (Wang et al., 2025a), before a final decoder generates the output. The detailed architecture of our model is provided in Appendix A.1.

216 3.2 SCALE-INVARIANT LOCAL GEOMETRY
217

218 For each input image \mathbf{I}_i , our network predicts the geometry as a pixel-aligned 3D point map $\hat{\mathbf{X}}_i$.
219 Each point cloud is initially defined in its own local camera coordinate system. A well-known
220 challenge in monocular reconstruction is the inherent scale ambiguity. To address this, our network
221 predicts the point clouds up to an unknown, yet consistent, scale factor across all N images of a
222 given scene.

223 Consequently, the training process requires aligning the predicted point maps, $(\hat{\mathbf{X}}_1, \dots, \hat{\mathbf{X}}_N)$, with
224 the corresponding ground-truth (GT) set, $(\mathbf{X}_1, \dots, \mathbf{X}_N)$. This alignment is accomplished by solving
225 for a single optimal scale factor, s^* , which minimizes the depth-weighted L1 distance across the
226 entire image sequence. The optimization problem is formulated as:

$$227 \quad s^* = \arg \min_s \sum_{i=1}^N \sum_{j=1}^{H \times W} \frac{1}{z_{i,j}} \|s \hat{\mathbf{x}}_{i,j} - \mathbf{x}_{i,j}\|_1 \quad (4)$$

230 Here, $\hat{\mathbf{x}}_{i,j} \in \mathbb{R}^3$ denotes the predicted 3D point at index j of the point map $\hat{\mathbf{X}}_i$. Similarly, $\mathbf{x}_{i,j}$ is its
231 ground-truth counterpart in \mathbf{X}_i . The term $z_{i,j}$ is the ground-truth depth, which is the z-component
232 of $\mathbf{x}_{i,j}$. This problem is solved using the ROE solver proposed by (Wang et al., 2025c).

233 Finally, the point cloud reconstruction loss, $\mathcal{L}_{\text{points}}$, is defined using the optimal scale factor s^* :

$$235 \quad \mathcal{L}_{\text{points}} = \frac{1}{3NHW} \sum_{i=1}^N \sum_{j=1}^{H \times W} \frac{1}{z_{i,j}} \|s^* \hat{\mathbf{x}}_{i,j} - \mathbf{x}_{i,j}\|_1 \quad (5)$$

238 To encourage the reconstruction of locally smooth surfaces, we also introduce a normal loss following
239 Wang et al. (2025c), $\mathcal{L}_{\text{normal}}$. For each point in the predicted point map $\hat{\mathbf{X}}_i$, its normal vector
240 $\hat{\mathbf{n}}_{i,j}$ is computed from the cross product of the vectors to its adjacent neighbors on the image grid.
241 We then supervise these normals by minimizing the angle between them and their ground-truth
242 counterparts $\mathbf{n}_{i,j}$:

$$244 \quad \mathcal{L}_{\text{normal}} = \frac{1}{NHW} \sum_{i=1}^N \sum_{j=1}^{H \times W} \arccos(\hat{\mathbf{n}}_{i,j} \cdot \mathbf{n}_{i,j}) \quad (6)$$

246 We supervise the predicted confidence map \mathbf{C}_i using a Binary Cross-Entropy (BCE) loss, denoted
247 $\mathcal{L}_{\text{conf}}$. The ground-truth target for each point is set to 1 if its L1 reconstruction error, $\frac{1}{z_{i,j}} \|s^* \hat{\mathbf{x}}_{i,j} - \mathbf{x}_{i,j}\|_1$, is below a threshold ϵ , and 0 otherwise.

250 3.3 AFFINE-INVARIANT CAMERA POSE
251

252 The model’s permutation equivariance, combined with the inherent scale ambiguity of multi-view
253 reconstruction, implies that the output camera poses $(\hat{\mathbf{T}}_1, \dots, \hat{\mathbf{T}}_N)$ are only defined up to an arbitrary
254 *similarity transformation*. This specific type of affine transformation consists of a rigid
255 transformation and a single, unknown global scale factor.

256 To resolve the ambiguity of the global reference frame, we supervise the network on the relative
257 poses between views. The predicted relative pose $\hat{\mathbf{T}}_{i \leftarrow j}$ from view j to i is computed as:

$$259 \quad \hat{\mathbf{T}}_{i \leftarrow j} = \hat{\mathbf{T}}_i^{-1} \hat{\mathbf{T}}_j \quad (7)$$

260 Each predicted relative pose $\hat{\mathbf{T}}_{i \leftarrow j}$ is composed of a rotation $\hat{\mathbf{R}}_{i \leftarrow j} \in SO(3)$ and a translation
261 $\hat{\mathbf{t}}_{i \leftarrow j} \in \mathbb{R}^3$. While the relative rotation is invariant to this global transformation, the relative transla-
262 tion’s magnitude is ambiguous. We resolve this by leveraging the optimal scale factor, s^* , that is
263 computed by aligning the predicted point map to the ground truth (as detailed in a previous section).
264 This single, consistent scale factor is used to rectify all predicted camera translations, allowing us to
265 directly supervise both the rotation and the correctly-scaled translation components.

266 The camera loss \mathcal{L}_{cam} is a weighted sum of a rotation loss term and a translation loss term, averaged
267 over all ordered view pairs where $i \neq j$:

$$269 \quad \mathcal{L}_{\text{cam}} = \frac{1}{N(N-1)} \sum_{i \neq j} (\mathcal{L}_{\text{rot}}(i, j) + \lambda_{\text{trans}} \mathcal{L}_{\text{trans}}(i, j)) \quad (8)$$

270 where λ is a hyperparameter to balance the two terms.
 271

272 Following Dong et al. (2025), we use angle loss for rotation and Huber loss for translation. The
 273 rotation loss minimizes the geodesic distance (angle) between the predicted relative rotation $\hat{\mathbf{R}}_{i \leftarrow j}$
 274 and its ground-truth target $\mathbf{R}_{i \leftarrow j}$:

$$275 \quad 276 \quad 277 \quad 278 \quad \mathcal{L}_{\text{rot}}(i, j) = \arccos \left(\frac{\text{Tr} \left((\mathbf{R}_{i \leftarrow j})^\top \hat{\mathbf{R}}_{i \leftarrow j} \right) - 1}{2} \right) \quad (9)$$

279 For the translation loss, we compare our scaled prediction against the ground-truth relative transla-
 280 tion, $\mathbf{t}_{i \leftarrow j}$. We use the Huber loss, \mathcal{H}_δ , for its robustness to outliers:
 281

$$282 \quad \mathcal{L}_{\text{trans}}(i, j) = \mathcal{H}_\delta(s^* \hat{\mathbf{t}}_{i \leftarrow j} - \mathbf{t}_{i \leftarrow j}) \quad (10)$$

283 Furthermore, our reference-free formulation is particularly well-suited to capturing the intrinsic
 284 structure of camera trajectories. Our affine-invariant camera model builds on a key insight: real-
 285 world camera paths are highly structured, not random. They typically lie on a low-dimensional
 286 manifold—for instance, a camera orbiting an object moves along a sphere, while a car-mounted
 287 camera follows a curve.
 288

289 We quantitatively analyze the structure of
 290 the predicted pose distributions in Figure 4. The eigenvalue analysis confirms
 291 that the variance of our predicted poses is
 292 concentrated along significantly fewer
 293 principal components than VGGT, validating
 294 the low-dimensional structure of our
 295 output. We discuss this further in Ap-
 296 pendix A.3.
 297

298 3.4 MODEL TRAINING

300 Our model is trained end-to-end by minimizing a composite loss function, \mathcal{L} , which is a weighted
 301 sum of the point reconstruction loss, the confidence loss, and the camera pose loss:
 302

$$303 \quad \mathcal{L} = \mathcal{L}_{\text{points}} + \lambda_{\text{normal}} \mathcal{L}_{\text{normal}} + \lambda_{\text{conf}} \mathcal{L}_{\text{conf}} + \lambda_{\text{cam}} \mathcal{L}_{\text{cam}} \quad (11)$$

304 To ensure robustness and wide applicability, we train the model on a large-scale aggregation of 15
 305 diverse datasets. This combined dataset provides extensive coverage of both indoor and outdoor en-
 306 vironments, encompassing a wide variety of scenes from synthetic renderings to real-world captures.
 307 The specific datasets include GTA-SfM (Wang & Shen, 2020), CO3D (Reizenstein et al., 2021),
 308 WildRGB-D (Xia et al., 2024), Habitat (Savva et al., 2019), ARKitScenes (Baruch et al., 2021),
 309 TartanAir (Wang et al., 2020), ScanNet (Dai et al., 2017), ScanNet++ (Yeshwanth et al., 2023),
 310 BlendedMVG (Yao et al., 2020), MatrixCity (Li et al., 2023), MegaDepth (Li & Snavely, 2018),
 311 Hypersim (Roberts et al., 2021), Taskonomy (Zamir et al., 2018), Mid-Air (Fonder & Van Droogen-
 312 broeck, 2019), and an internal dynamic scene dataset. Details of model training can be found in
 313 Appendix A.2.
 314

315 4 EXPERIMENTS

316 We report quantitative results of our method on four tasks: camera pose estimation (Sec. 4.1),
 317 point map estimation (Sec. 4.2), video depth estimation and monocular depth estimation (Sec. 4.3).
 318 Across all tasks, our method achieves state-of-the-art (SOTA) or comparable performance against
 319 existing feed-forward 3D reconstruction methods. Visualized point maps are given in Figure 5 and
 320 Figure 7 (in Appendix) as qualitative results.
 321

322 To validate the effectiveness of our design, We also conduct several analyses: (1) a robustness
 323 evaluation against input image sequence permutations (Sec. 4.4), (2) an ablation study on scale-
 324 invariant point maps and affine-invariant camera poses (Sec. 4.5).

Table 1: Camera pose estimation. RRA, RTA, AUC are evaluated with threshold of 30 degrees.

Method	RealEstate10K			Co3Dv2 (seen)			Sintel			TUM-dynamics			ScanNet (seen)		
	RRA \uparrow	RTA \uparrow	AUC \uparrow	RRA \uparrow	RTA \uparrow	AUC \uparrow	ATE \downarrow	RPE-t \downarrow	RPE-r \downarrow	ATE \downarrow	RPE-t \downarrow	RPE-r \downarrow	ATE \downarrow	RPE-t \downarrow	RPE-r \downarrow
Fast3R (Yang et al., 2025)	99.05	81.86	61.68	97.49	91.11	73.43	0.371	0.298	13.75	0.090	0.101	1.425	0.155	0.123	3.491
CUT3R (Wang et al., 2025b)	99.82	95.10	81.47	96.19	92.69	75.82	0.217	0.070	0.636	0.047	0.015	0.451	0.094	0.022	0.629
FLARE (Zhang et al., 2025)	99.69	95.23	80.01	96.38	93.76	73.99	0.207	0.090	3.015	0.026	0.013	0.475	0.064	0.023	0.971
VGGT (Wang et al., 2025a)	99.97	93.13	77.62	98.96	97.13	88.59	0.167	0.062	0.491	0.012	0.010	0.311	0.035	0.015	0.382
π^3 (Ours)	99.99	95.62	85.90	99.05	97.33	88.41	0.074	0.040	0.282	0.014	0.009	0.312	0.031	0.013	0.347

4.1 CAMERA POSE ESTIMATION

We assess predicted camera pose using two distinct sets of metrics: angular accuracy (following (Wang et al., 2023; 2024; 2025a)) on RealEstate10K (Zhou et al., 2018) and Co3Dv2 (Reisenstein et al., 2021) datasets, and distance error (following (Zhao et al., 2022; Zhang et al., 2024; Wang et al., 2025b)) on Sintel (Bozic et al., 2021), TUM-dynamics (Sturm et al., 2012) and ScanNet (Dai et al., 2017). Details about the metrics can be found in Appendix A.5.

As shown in Table 1, our method sets a new SOTA benchmark in zero-shot generalization on Sintel and RealEstate10K, and achieves competitive SOTA results alongside VGGT on TUM-dynamics, and the in-domain Co3Dv2 and ScanNet datasets. These results underscore our model’s strong generalization capabilities while maintaining excellent performance on familiar data distributions.

4.2 POINT MAP ESTIMATION

Following CUT3R (Wang et al., 2025b), we evaluate the quality of reconstructed multi-view point maps on the scene-level 7-Scenes (Shotton et al., 2013) and NRGDB (Azinović et al., 2022) datasets under both sparse and dense view conditions (different in sampling strides). We also extend our evaluation to the object-centric DTU (Jensen et al., 2014) and scene-level ETH3D (Schops et al., 2017) datasets. Predicted point maps are aligned to the ground truth using the Umeyama algorithm for a coarse Sim(3) alignment, followed by refinement with the Iterative Closest Point (ICP) algorithm.

Consistent with prior works (Azinović et al., 2022; Wang et al., 2024; Wang & Agapito, 2024; Wang et al., 2025b), we report Accuracy (Acc.), Completion (Comp.), and Normal Consistency (N.C.) in Table 2 and Table 3. These results highlight the strong generalization capability of our method in a broad spectrum of 3D reconstruction tasks, proving robust across synthetic and real-world scenarios, sparse and dense view settings (Table 2), as well as object-level and scene-level scales (Table 3).

Table 2: Point map estimation on 7-Scenes and NRGDB

Method	View	7-Scenes						NRGDB					
		Acc. \downarrow		Comp. \downarrow		N.C. \uparrow		Acc. \downarrow		Comp. \downarrow		N.C. \uparrow	
		Mean	Med.	Mean	Med.	Mean	Med.	Mean	Med.	Mean	Med.	Mean	Med.
Fast3R (Yang et al., 2025)	sparse	0.095	0.065	0.144	0.089	0.673	0.759	0.135	0.091	0.163	0.104	0.759	0.877
CUT3R (Wang et al., 2025b)		0.093	0.049	0.102	0.051	0.704	0.805	0.104	0.041	0.079	0.031	0.822	0.968
FLARE (Zhang et al., 2025)		0.085	0.057	0.145	0.107	0.696	0.780	0.053	0.024	0.051	0.025	0.877	0.988
VGGT (Wang et al., 2025a)		0.044	0.025	0.056	0.033	0.733	0.845	0.051	0.029	0.066	0.038	0.890	0.981
π^3 (Ours)		0.047	0.029	0.075	0.049	0.742	0.841	0.026	0.015	0.028	0.014	0.916	0.992
Fast3R (Yang et al., 2025)	dense	0.040	0.017	0.056	0.018	0.644	0.725	0.072	0.030	0.050	0.016	0.790	0.934
CUT3R (Wang et al., 2025b)		0.023	0.010	0.027	0.008	0.669	0.764	0.086	0.037	0.048	0.017	0.800	0.953
FLARE (Zhang et al., 2025)		0.019	0.007	0.026	0.013	0.684	0.785	0.023	0.011	0.018	0.008	0.882	0.986
VGGT (Wang et al., 2025a)		0.022	0.008	0.026	0.012	0.666	0.760	0.017	0.010	0.015	0.005	0.893	0.988
π^3 (Ours)		0.016	0.007	0.022	0.011	0.689	0.792	0.015	0.008	0.013	0.005	0.898	0.987

Table 3: Point map estimation on DTU and ETH3D

Method		DTU						ETH3D					
		Acc. \downarrow		Comp. \downarrow		N.C. \uparrow		Acc. \downarrow		Comp. \downarrow		N.C. \uparrow	
		Mean	Med.	Mean	Med.	Mean	Med.	Mean	Med.	Mean	Med.	Mean	Med.
Fast3R (Yang et al., 2025)	3.340	1.919	2.929	1.125	0.671	0.755	0.832	0.691	0.978	0.683	0.667	0.766	
CUT3R (Wang et al., 2025b)	4.742	2.600	3.400	1.316	0.679	0.764	0.617	0.525	0.747	0.579	0.754	0.848	
FLARE (Zhang et al., 2025)	2.541	1.468	3.174	1.420	0.684	0.774	0.464	0.338	0.664	0.395	0.744	0.864	
VGGT (Wang et al., 2025a)	1.338	0.779	1.896	0.992	0.676	0.766	0.280	0.185	0.305	0.182	0.853	0.950	
π^3 (Ours)	1.198	0.646	1.849	0.607	0.678	0.768	0.194	0.131	0.210	0.128	0.883	0.969	

4.3 DEPTH ESTIMATION

Following the methodology of CUT3R (Wang et al., 2025b), we report the Absolute Relative Error (Abs Rel) and the prediction accuracy at a threshold of $\delta < 1.25$ of our method on the tasks of video depth estimation and monocular depth estimation, using the Sintel (Bozic et al., 2021), Bonn (Palazolo et al., 2019), and KITTI (Geiger et al., 2013) datasets. NYU-v2 Silberman et al. (2012) is additionally used for monocular depth estimation.

Table 4: **Video depth estimation on Sintel, Bonn and KITTI.** FPS is evaluated on KITTI using one A800 GPU.

Method	Params	Sintel		Bonn		KITTI		FPS
		Abs	Rel \downarrow	$\delta < 1.25 \uparrow$	Abs	Rel \downarrow	$\delta < 1.25 \uparrow$	
DUS3R (Wang et al., 2024)	571M	0.662	0.434	0.151	0.839	0.143	0.814	1.25
MAS3R (Leroy et al., 2024)	689M	0.558	0.487	0.188	0.765	0.115	0.848	1.01
MonST3R (Zhang et al., 2024)	571M	0.399	0.519	0.072	0.957	0.107	0.884	1.27
Fast3R (Yang et al., 2025)	648M	0.638	0.422	0.194	0.772	0.138	0.834	65.8
MVDUS3R (Tang et al., 2024)	661M	0.805	0.283	0.426	0.357	0.456	0.342	0.69
CUT3R (Wang et al., 2025b)	793M	0.417	0.507	0.078	0.937	0.122	0.876	6.98
Aether (Team et al., 2025)	5.57B	0.324	0.502	0.273	0.594	0.056	0.978	6.14
FLARE (Zhang et al., 2025)	1.40B	0.729	0.336	0.152	0.790	0.356	0.570	1.75
VGGT (Wang et al., 2025a)	1.26B	0.299	0.638	0.057	0.966	0.062	0.969	43.2
π^3 (Ours)	959M	0.233	0.664	0.049	0.975	0.038	0.986	57.4

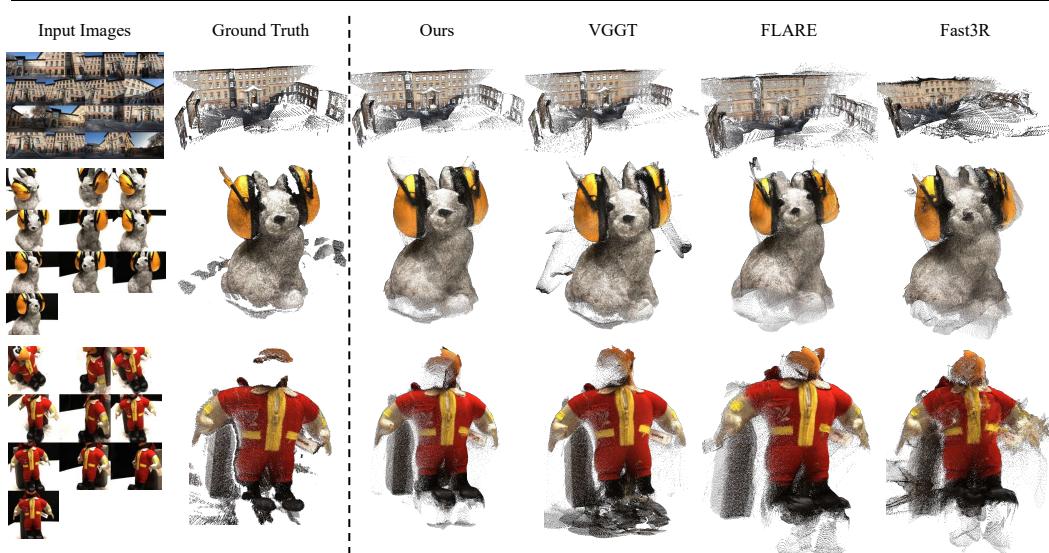


Figure 5: **Qualitative comparison of multi-view 3D reconstruction.** Compared to other multi-frame feed-forward reconstruction methods, π^3 produces cleaner, more accurate and more complete reconstructions with fewer artifacts.

Video depth estimation. In this setting, video depth sequences are aligned to the ground truth with a scale per sequence. As reported in Table 4, our method achieves a new SOTA performance across all three datasets within feed-forward 3D reconstruction methods. Notably, it also delivers exceptional efficiency, running at 57.4 FPS on KITTI, significantly faster than VGGT (43.2 FPS) and Aether (6.14 FPS), despite having a smaller model size.

Monocular depth estimation. In this setting, each depth map is aligned independently to its ground truth with a scale factor. As reported in Table 5, our method achieves state-of-the-art results among multi-frame feed-forward reconstruction approaches, even though it is not explicitly optimized for single-frame depth estimation. Meanwhile, it performs competitively with MoGe (Wang et al., 2025c;d), one of the top-performing monocular depth estimation models.

Table 5: Monocular depth estimation

Method	Sintel		Bonn		KITTI		NYU-v2	
	Abs	Rel \downarrow	$\delta < 1.25 \uparrow$	Abs	Rel \downarrow	$\delta < 1.25 \uparrow$	Abs	Rel \downarrow
DUST3R (Wang et al., 2024)	0.488	0.532	0.139	0.832	0.109	0.873	0.081	0.909
MAS3TR (Leroy et al., 2024)	0.413	0.569	0.123	0.833	0.077	0.948	0.110	0.865
MonST3R (Zhang et al., 2024)	0.402	0.525	0.069	0.954	0.098	0.895	0.094	0.887
Fast3R (Yang et al., 2025)	0.544	0.509	0.169	0.796	0.120	0.861	0.093	0.898
CUT3R (Wang et al., 2025b)	0.418	0.520	0.058	0.967	0.097	0.914	0.081	0.914
FLARE (Zhang et al., 2025)	0.606	0.402	0.130	0.836	0.312	0.513	0.089	0.898
VGGT (Wang et al., 2025a)	0.335	0.599	0.053	0.970	0.082	0.947	0.056	0.951
MoGe	0.273	0.695	0.050	0.976	0.049	0.979	0.055	0.952
- v1 (Wang et al., 2025c)	- 0.273	- 0.695	- 0.050	- 0.976	- 0.054	- 0.977	- 0.055	- 0.952
- v2 (Wang et al., 2025d)	- 0.277	- 0.687	- 0.063	- 0.973	- 0.049	- 0.979	- 0.060	- 0.940
π^3 (Ours)	0.277	0.614	0.044	0.976	0.060	0.971	0.054	0.956

Table 6: Standard deviation of point cloud estimation

Method	DTU				ETH3D			
	Acc. std. ↓		Comp. std. ↓		N.C. std. ↓		Acc. std. ↓	
	Mean	Med.	Mean	Med.	Mean	Med.	Mean	Med.
Fast3R (Yang et al., 2025)	0.578	0.451	0.677	0.376	0.007	0.009	0.182	0.205
FLARE (Zhang et al., 2025)	0.720	0.494	1.346	1.134	0.009	0.012	0.171	0.187
VGGT (Wang et al., 2025a)	0.033	0.022	0.054	0.036	0.007	0.007	0.049	0.040
π^3 (Ours)	0.003	0.002	0.006	0.003	0.001	0.001	0.000	0.000

Table 7: Ablation study on the key components of our model. We show how the performance metric improves as each component is added to the baseline.

Model	ETH3D				7-Scenes				NRGDB			
	Acc. ↓		Comp. ↓		N.C. ↑		Acc. ↓		Comp. ↓		N.C. ↑	
	Mean	Med.										
Model 1	0.229	0.150	0.166	0.103	0.802	0.930	0.020	0.010	0.019	0.009	0.715	0.834
Model 2	0.197	0.118	0.118	0.065	0.820	0.943	0.020	0.008	0.716	0.837	0.034	0.018
Full Model	0.131	0.076	0.079	0.043	0.841	0.957	0.019	0.009	0.020	0.009	0.723	0.843

4.4 ROBUSTNESS EVALUATION

A key property of our proposed architecture is permutation equivariance, ensuring that its outputs are robust to variations in the input image sequence order. To empirically verify this, we conduct experiments on the DTU (Jensen et al., 2014) and ETH3D (Schops et al., 2017) datasets. For each sequence of length N , we create N different input orderings, by making each of the N frames the first frame in the sequence in turn. We then compute the standard deviation of the metrics across these N runs. We then compute the standard deviation of the reconstruction metrics across these N outputs. A lower standard deviation indicates higher robustness to input order variations.

As reported in Table 4.4, our method achieves near-zero standard deviation across all metrics on DTU and ETH3D, outperforming existing approaches by several orders of magnitude. For instance, on DTU, our mean accuracy standard deviation is 0.003, while VGGT reports 0.033. On ETH3D, our model achieves effectively zero variance. This stark contrast highlights the limitations of reference-frame-dependent methods, which exhibit significant sensitivity to input order. Our results provide compelling evidence that the proposed architecture is genuinely permutation-equivariant, ensuring consistent and order-independent 3D reconstruction.

4.5 ABLATION STUDY

To validate the effectiveness of our proposed components, we conducted an ablation study by systematically removing features from our complete model. We define two ablated variants of our full model: Model 2, which lacks the affine-invariant camera pose modeling, and Model 1, which lacks both affine-invariant poses and scale-invariant pointmaps. See Appendix A.6 for more details.

The comparative results for pointmap estimation across three datasets are presented in Table 7. We found that scale-invariant pointmap modeling does not yield significant performance gains on indoor datasets like 7-Scenes and NRGBD. For outdoor data, however, the performance improvement is substantially more pronounced. This observation is consistent with previous studies on scale-invariant depth, which have shown that outdoor scenes are more significantly affected by scale ambiguity. Furthermore, we observed that affine-invariant camera pose modeling consistently enhances the final performance. More importantly, unlike Model 1 and Model 2, its inclusion renders the model permutation-equivariant. Consequently, the model becomes robust to both the order of input frames and the selection of the reference view.

5 CONCLUSION

In this work, we introduced π^3 , a feed-forward neural network that presents a new paradigm for visual geometry reconstruction by eliminating the reliance on a fixed reference view. By leveraging a fully permutation-equivariant architecture, our model is inherently robust to input ordering and leads to higher accuracy. This design choice removes a critical inductive bias found in previous methods, allowing our simple yet powerful approach to achieve state-of-the-art performance on a wide array of tasks, including camera pose estimation, depth estimation, and dense reconstruction. π^3 demonstrates that reference-free systems are not only viable but can lead to more stable and versatile 3D vision models.

486 REFERENCES
487

488 Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman, Matthias Nießner, and Justus Thies.
489 Neural rgb-d surface reconstruction. In *Proceedings of the IEEE/CVF Conference on Computer*
490 *Vision and Pattern Recognition*, pp. 6290–6301, 2022.

491 Gilad Baruch, Zhuoyuan Chen, Afshin Dehghan, Tal Dimry, Yuri Feigin, Peter Fu, Thomas Gebauer,
492 Brandon Joffe, Daniel Kurz, Arik Schwartz, et al. Arkitscenes: A diverse real-world dataset for
493 3d indoor scene understanding using mobile rgb-d data. *arXiv preprint arXiv:2111.08897*, 2021.

494

495 Aljaz Bozic, Pablo Palafox, Justus Thies, Angela Dai, and Matthias Nießner. Transformerfusion:
496 Monocular rgb scene reconstruction using transformers. *Advances in Neural Information Pro-*
497 *cessing Systems*, 34:1403–1414, 2021.

498

499 Hainan Cui, Xiang Gao, Shuhan Shen, and Zhanyi Hu. Hsfm: Hybrid structure-from-motion. In
500 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1212–1221,
501 2017.

502

503 Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
504 Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In *Proceedings of the*
505 *IEEE conference on computer vision and pattern recognition*, pp. 5828–5839, 2017.

506

507 Siyan Dong, Shuzhe Wang, Shaohui Liu, Lulu Cai, Qingnan Fan, Juho Kannala, and Yanchao Yang.
508 Reloc3r: Large-scale training of relative camera pose regression for generalizable, fast, and accu-
509 rate visual localization. In *Proceedings of the Computer Vision and Pattern Recognition Confer-*
510 *ence*, pp. 16739–16752, 2025.

511

512 Jakob Engel, Kiran Somasundaram, Michael Goesele, Albert Sun, Alexander Gmino, Andrew
513 Turner, Arjang Talatof, Arnie Yuan, Bilal Souti, Brighid Meredith, et al. Project aria: A new
514 tool for egocentric multi-modal ai research. *arXiv preprint arXiv:2308.13561*, 2023.

515

516 Michael Fonder and Marc Van Droogenbroeck. Mid-air: A multi-modal dataset for extremely low
517 altitude drone flights. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
518 *recognition workshops*, pp. 0–0, 2019.

519

520 Yasutaka Furukawa, Carlos Hernández, et al. Multi-view stereo: A tutorial. *Foundations and*
521 *trends® in Computer Graphics and Vision*, 9(1-2):1–148, 2015.

522

523 Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The
524 kitti dataset. *The international journal of robotics research*, 32(11):1231–1237, 2013.

525

526 Richard Hartley and Andrew Zisserman. *Multiple view geometry in computer vision*. Cambridge
527 university press, 2003.

528

529 Rasmus Jensen, Anders Dahl, George Vogiatzis, Engin Tola, and Henrik Aanæs. Large scale multi-
530 view stereopsis evaluation. In *Proceedings of the IEEE conference on computer vision and pattern*
531 *recognition*, pp. 406–413, 2014.

532

533 Vincent Leroy, Yohann Cabon, and Jérôme Revaud. Grounding image matching in 3d with mast3r.
534 In *European Conference on Computer Vision*, pp. 71–91. Springer, 2024.

535

536 Jake Levinson, Carlos Esteves, Kefan Chen, Noah Snavely, Angjoo Kanazawa, Afshin Ros-
537 tamizadeh, and Ameesh Makadia. An analysis of svd for deep rotation estimation. *Advances*
538 *in Neural Information Processing Systems*, 33:22554–22565, 2020.

539

540 Yixuan Li, Lihan Jiang, Linning Xu, Yuanbo Xiangli, Zhenzhi Wang, Dahua Lin, and Bo Dai.
541 Matrixcity: A large-scale city dataset for city-scale neural rendering and beyond. In *Proceedings*
542 *of the IEEE/CVF International Conference on Computer Vision*, pp. 3205–3215, 2023.

543

544 Zhengqi Li and Noah Snavely. Megadepth: Learning single-view depth prediction from internet
545 photos. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
546 2041–2050, 2018.

540 Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: A versatile and
 541 accurate monocular slam system. *IEEE transactions on robotics*, 31(5):1147–1163, 2015.
 542

543 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 544 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaeldin El-Nouby, et al. Dinov2: Learning
 545 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

546 Emanuele Palazzolo, Jens Behley, Philipp Lottes, Philippe Giguere, and Cyrill Stachniss. Refu-
 547 sion: 3d reconstruction in dynamic environments for rgb-d cameras exploiting residuals. In *2019*
 548 *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pp. 7855–7862.
 549 IEEE, 2019.

550 Linfei Pan, Dániel Baráth, Marc Pollefeys, and Johannes L Schönberger. Global structure-from-
 551 motion revisited. In *European Conference on Computer Vision*, pp. 58–77. Springer, 2024.

552

553 Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler, Luca Sbordone, Patrick Labatut, and
 554 David Novotny. Common objects in 3d: Large-scale learning and evaluation of real-life 3d cat-
 555 egory reconstruction. In *Proceedings of the IEEE/CVF international conference on computer*
 556 *vision*, pp. 10901–10911, 2021.

557 Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit Kumar, Miguel Angel Bautista, Nathan
 558 Paczan, Russ Webb, and Joshua M Susskind. Hypersim: A photorealistic synthetic dataset for
 559 holistic indoor scene understanding. In *Proceedings of the IEEE/CVF international conference*
 560 *on computer vision*, pp. 10912–10922, 2021.

561

562 Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
 563 Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied
 564 ai research. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.
 565 9339–9347, 2019.

566

567 Johannes L Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In *Proceedings*
 568 *of the IEEE conference on computer vision and pattern recognition*, pp. 4104–4113, 2016.

569

570 Johannes L Schönberger, Enliang Zheng, Jan-Michael Frahm, and Marc Pollefeys. Pixelwise view
 571 selection for unstructured multi-view stereo. In *Computer Vision–ECCV 2016: 14th European*
 572 *Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part III 14*, pp.
 573 501–518. Springer, 2016.

574

575 Thomas Schops, Johannes L Schönberger, Silvano Galliani, Torsten Sattler, Konrad Schindler, Marc
 576 Pollefeys, and Andreas Geiger. A multi-view stereo benchmark with high-resolution images and
 577 multi-camera videos. In *Proceedings of the IEEE conference on computer vision and pattern*
 578 *recognition*, pp. 3260–3269, 2017.

579

580 Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, Antonio Criminisi, and Andrew
 581 Fitzgibbon. Scene coordinate regression forests for camera relocalization in rgb-d images. In
 582 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 2930–2937,
 583 2013.

584

585 Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and sup-
 586 port inference from rgbd images. In *European conference on computer vision*, pp. 746–760.
 587 Springer, 2012.

588

589 Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cremers. A bench-
 590 mark for the evaluation of rgb-d slam systems. In *2012 IEEE/RSJ international conference on*
 591 *intelligent robots and systems*, pp. 573–580. IEEE, 2012.

592

593 Zhenggang Tang, Yuchen Fan, Dilin Wang, Hongyu Xu, Rakesh Ranjan, Alexander Schwing, and
 594 Zhicheng Yan. Mv-dust3r+: Single-stage scene reconstruction from sparse views in 2 seconds.
 595 *arXiv preprint arXiv:2412.06974*, 2024.

596

597 Aether Team, Haoyi Zhu, Yifan Wang, Jianjun Zhou, Wenzheng Chang, Yang Zhou, Zizun Li, Junyi
 598 Chen, Chunhua Shen, Jiangmiao Pang, and Tong He. Aether: Geometric-aware unified world
 599 modeling. *arXiv preprint arXiv:2503.18945*, 2025.

594 Hengyi Wang and Lourdes Agapito. 3d reconstruction with spatial memory. *arXiv preprint*
 595 *arXiv:2408.16061*, 2024.

596

597 Jianyuan Wang, Christian Rupprecht, and David Novotny. Posediffusion: Solving pose estimation
 598 via diffusion-aided bundle adjustment. In *Proceedings of the IEEE/CVF International Conference*
 599 *on Computer Vision*, pp. 9773–9783, 2023.

600

601 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
 602 Novotny. Vggt: Visual geometry grounded transformer. *arXiv preprint arXiv:2503.11651*, 2025a.

603

604 Kaixuan Wang and Shaojie Shen. Flow-motion and depth network for monocular stereo and beyond.
 605 *IEEE Robotics and Automation Letters*, 5(2):3307–3314, 2020.

606

607 Qianqian Wang, Yifei Zhang, Aleksander Holynski, Alexei A Efros, and Angjoo Kanazawa. Con-
 608 tinuous 3d perception model with persistent state. In *Proceedings of the Computer Vision and*
 609 *Pattern Recognition Conference*, pp. 10510–10522, 2025b.

610

611 Ruicheng Wang, Sicheng Xu, Cassie Dai, Jianfeng Xiang, Yu Deng, Xin Tong, and Jiaolong Yang.
 612 Moge: Unlocking accurate monocular geometry estimation for open-domain images with optimal
 613 training supervision. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 614 pp. 5261–5271, 2025c.

615

616 Ruicheng Wang, Sicheng Xu, Yue Dong, Yu Deng, Jianfeng Xiang, Zelong Lv, Guangzhong Sun,
 617 Xin Tong, and Jiaolong Yang. Moge-2: Accurate monocular geometry with metric scale and
 618 sharp details. *arXiv preprint arXiv:2507.02546*, 2025d.

619

620 Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r: Ge-
 621 ometric 3d vision made easy. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 622 *and Pattern Recognition*, pp. 20697–20709, 2024.

623

624 Wenshan Wang, Delong Zhu, Xiangwei Wang, Yaoyu Hu, Yuheng Qiu, Chen Wang, Yafei Hu,
 625 Ashish Kapoor, and Sebastian Scherer. Tartanair: A dataset to push the limits of visual slam. In
 626 *2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pp. 4909–
 627 4916. IEEE, 2020.

628

629 Hongchi Xia, Yang Fu, Sifei Liu, and Xiaolong Wang. Rgbd objects in the wild: scaling real-world
 630 3d object learning from rgb-d videos. In *Proceedings of the IEEE/CVF Conference on Computer*
 631 *Vision and Pattern Recognition*, pp. 22378–22389, 2024.

632

633 Jianing Yang, Alexander Sax, Kevin J Liang, Mikael Henaff, Hao Tang, Ang Cao, Joyce Chai,
 634 Franziska Meier, and Matt Feiszli. Fast3r: Towards 3d reconstruction of 1000+ images in one
 635 forward pass. *arXiv preprint arXiv:2501.13928*, 2025.

636

637 Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Heng-
 638 shuang Zhao. Depth anything v2. In A. Globerson, L. Mackey, D. Belgrave, A. Fan,
 639 U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing*
 640 *Systems*, volume 37, pp. 21875–21911. Curran Associates, Inc., 2024. doi: 10.52202/
 641 079017-0688. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/26cfcd8fe6fd75cc53e92963a656c58-Paper-Conference.pdf.

642

643 Yao Yao, Zixin Luo, Shiwei Li, Jingyang Zhang, Yufan Ren, Lei Zhou, Tian Fang, and Long Quan.
 644 Blendedmvs: A large-scale dataset for generalized multi-view stereo networks. In *Proceedings of*
 645 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 1790–1799, 2020.

646

647 Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner, and Angela Dai. Scannet++: A high-
 648 fidelity dataset of 3d indoor scenes. In *Proceedings of the IEEE/CVF International Conference*
 649 *on Computer Vision*, pp. 12–22, 2023.

650

651 Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio
 652 Savarese. Taskonomy: Disentangling task transfer learning. In *Proceedings of the IEEE con-
 653 ference on computer vision and pattern recognition*, pp. 3712–3722, 2018.

Junyi Zhang, Charles Herrmann, Junhwa Hur, Varun Jampani, Trevor Darrell, Forrester Cole, Deqing Sun, and Ming-Hsuan Yang. Monst3r: A simple approach for estimating geometry in the presence of motion. *arXiv preprint arXiv:2410.03825*, 2024.

Shangzhan Zhang, Jianyuan Wang, Yinghao Xu, Nan Xue, Christian Rupprecht, Xiaowei Zhou, Yujun Shen, and Gordon Wetzstein. Flare: Feed-forward geometry, appearance and camera estimation from uncalibrated sparse views. *arXiv preprint arXiv:2502.12138*, 2025.

Wang Zhao, Shaohui Liu, Hengkai Guo, Wenping Wang, and Yong-Jin Liu. Particlesfm: Exploiting dense point trajectories for localizing moving cameras in the wild. In *European Conference on Computer Vision*, pp. 523–542. Springer, 2022.

Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification: Learning view synthesis using multiplane images. *arXiv preprint arXiv:1805.09817*, 2018.

Haoyi Zhu, Yating Wang, Di Huang, Weicai Ye, Wanli Ouyang, and Tong He. Point cloud matters: Rethinking the impact of different observation spaces on robot learning. *Advances in Neural Information Processing Systems*, 37:77799–77830, 2024.

A APPENDIX

A.1 ARCHITECTURE DETAILS

The encoder and alternating attention modules are the same as those in VGGT (Wang et al., 2025a), with the exception that we use only 36 layers for the alternating attention module, whereas VGGT uses 48. The decoders for camera poses, local point maps, and confidence scores share the same architecture but do not share weights. This architecture is a lightweight, 5-layer transformer that applies self-attention exclusively to the features of each individual image. Following the decoder, the output heads vary by task. The heads for local point maps and confidence scores consist of a simple MLP followed by a pixel shuffle operation. For camera poses, the head is adapted from Reloc3r (Dong et al., 2025) and uses an MLP, average pooling, and another MLP. The rotation is initially predicted in a 9D representation (Levinson et al., 2020) and is then converted to a 3×3 rotation matrix via SVD orthogonalization.

A.2 TRAINING DETAILS

We train π^3 in two stages, a process similar to Dust3R (Wang et al., 2024). First, the model is trained on a low resolution of 224×224 pixels. Then, it is fine-tuned on images of random resolutions where the total pixel count is between 100,000 and 255,000 and the aspect ratio is sampled from the range [0.5, 2.0], a strategy similar to MoGe (Wang et al., 2025c). We use a dynamic batch sizing strategy similar to VGGT. In the first stage, we sample 64 images per GPU, and in the second stage, we sample 48 images per GPU. Each batch is composed of 2 to 24 images. Each training stage runs for 80 epochs, with each epoch comprising 800 iterations. Our final model is not trained from scratch. Instead, we initialize the weights for the encoder and the alternating attention module from the pre-trained VGGT model, and we keep the encoder frozen during training. We train the first stage on 16 A100 GPUs and the second stage on 64 A100 GPUs. For our loss function, we set the weights for each component as follows: $\lambda_{\text{normal}} = 1.0$, $\lambda_{\text{conf}} = 0.05$, $\lambda_{\text{cam}} = 0.1$, and $\lambda_{\text{trans}} = 100.0$. The implementation of our normal loss follows that of MoGe, and the resolution for aligning the local point map loss is set to 4096. Regarding optimization, we set the initial learning rate for all model components to 5×10^{-5} . We employ a OneCycleLR scheduler, where the learning rate anneals from its maximum value down to a minimal value over the entire training duration following a cosine curve. We use the same learning rate

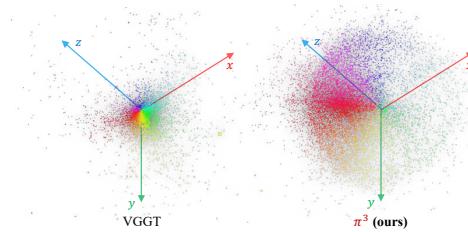


Figure 6: **Comparison of predicted pose distributions.** We visualize the predicted pose distributions in 3D space. π^3 shows a clear low-dimensional structure, while VGGT’s distribution is scattered.

Table 8: Comparison with VGGT when trained from scratch.

Method	ETH3D		7-Scenes		NRGB	
	Acc. ↓	Comp. ↓	Acc. ↓	Comp. ↓	Acc. ↓	Comp. ↓
π^3	0.618	0.453	0.064	0.068	0.071	0.047
VGGT (Wang et al., 2025a)	0.563	0.449	0.057	0.046	0.060	0.042
π^3 + global proxy	0.418	0.266	0.059	0.071	0.052	0.035

and scheduler settings for both stages. The confidence head is not trained jointly with the other modules. Instead, after completing the two main training stages, we freeze the rest of the network and train the confidence head in isolation. This final stage converges rapidly, typically within a few epochs, without impacting the model’s overall performance. We use gradient clipping with a norm of 1.0.

A.3 DISCUSSION FOR PREDICTED POSE DISTRIBUTION

In Figure 6, we analyze the geometric properties of the learned representations by visualizing the distribution of predicted camera poses. In this plot, the spatial coordinates (x, y, z) correspond to the translation component, while the rotation is encoded into the RGB color space. Specifically, we convert each predicted rotation matrix into an axis-angle vector, normalize its components to the range $[0, 1]$, and map them to the Red, Green, and Blue channels. The visualization reveals a striking contrast: while VGGT’s distribution appears scattered and random, our predictions form a distinct low-dimensional structure. This suggests that our model effectively captures the underlying geometric manifold, which is likely a key factor contributing to its superior performance.

A.4 COMPARISON WITH VGGT

This section details an experiment designed solely for a fair comparison against VGGT (Wang et al., 2025a). A direct comparison is challenging because training our model *from scratch* with only its core objectives (camera poses and local pointmaps) leads to suboptimal convergence, whereas VGGT’s design incorporates a multi-task learning setup.

We attribute this difficulty to the “cold start” problem inherent in relative pose supervision. Unlike reference-anchored methods, our approach generates highly coupled $N \times N$ relative constraints, which are significantly more unstable to optimize from a completely random initialization.

To address this, we introduce an auxiliary head to predict a global pointmap relative to a reference frame, using a loss analogous to Eq. 3.2. Crucially, while the reference view is used via cross-attention in this head, it serves purely as a *proxy task* to decouple geometry learning and stabilize the optimization landscape. Our final model remains fully permutation-equivariant.

We train both our adapted model and VGGT under these identical, multi-task conditions: *from scratch* (except for DINoV2 encoders) on the same data, at a 224×224 resolution for 80 epochs (800 steps/epoch). We use the same data as described in Section 3.4.

As shown in Table 8, once the optimization stability is ensured by the global proxy, π^3 significantly outperforms the VGGT baseline on ETH3D and NRGB benchmarks. Note that while our model can be trained from scratch effectively with this proxy, we utilize VGGT initialization in our main experiments to maximize computational efficiency and leverage the large-scale data priors captured in the pre-trained weights.

A.5 CAMERA POSE EVALUATION METRICS

Angular Accuracy Metrics. Following prior work (Wang et al., 2024; 2025a), we evaluate predicted camera poses on the scene-level RealEstate10K (Zhou et al., 2018) and object-centric Co3Dv2 (Reizenstein et al., 2021) datasets, both featuring over 1000 test sequences. For each sequence, we randomly sample 10 images, form all possible pairs, and compute the angular errors of the relative rotation and translation vectors. This process yields the Relative Rotation Accuracy (RRA) and Relative Translation Accuracy (RTA) at a given angular threshold (e.g. 30 degrees). The Area Under the Curve (AUC) of the $\min(\text{RRA}, \text{RTA})$ -threshold curve serves as a unified metric. All methods in Table 1 have been trained on Co3Dv2, while RealEstate10K is excluded from trainset except for CUT3R (Wang et al., 2025b).

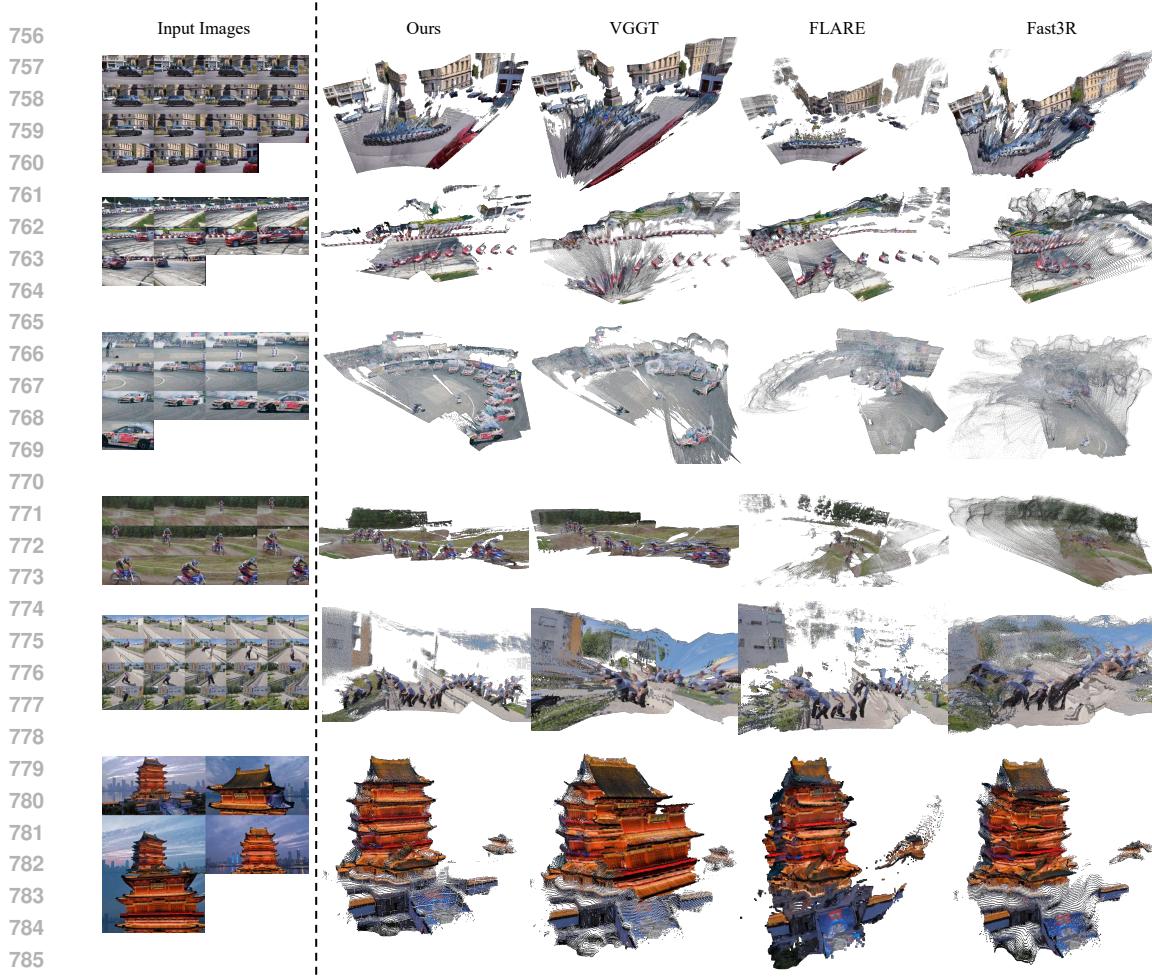


Figure 7: **Qualitative comparison of in-the-wild multi-view 3D reconstruction.** π^3 demonstrates superior robustness on challenging in-the-wild sequences, consistently producing more coherent and complete 3D structures for both dynamic and complex static scenes compared to other feed-forward approaches.

Distance Error Metrics. Following (Wang et al., 2025b), we report the Absolute Trajectory Error (ATE), Relative Pose Error for translation (RPE-t), and Relative Pose Error for rotation (RPE-r) on the synthetic outdoor Sintel (Bozic et al., 2021) dataset, as well as the real-world indoor TUM-dynamics (Sturm et al., 2012) and ScanNet (Dai et al., 2017) datasets. Predicted camera trajectories are aligned with the ground truth via a Sim(3) transformation before calculating the errors. All methods in Table 1 have seen ScanNet or ScanNet++ (Yeshwanth et al., 2023) samples during training time. Zero-shot pose estimation accuracy is evaluated on Sintel and TUM-dynamics for all methods.

A.6 ABLATION DETAILS

The primary difference between our full model and the ablated models (Model 1 and Model 2) is that the latter two incorporate a camera token. This token is essential for distinguishing the reference view, as the model is no longer permutation-equivariant after the removal of the affine-invariant camera pose modeling. At each iteration, the camera token is concatenated with a randomly selected reference view before the alternating-attention module similar to (Wang et al., 2025a). We compute an angle loss for rotation and a Huber loss for translation between the predicted and ground-truth poses in the reference view’s coordinate system for Model 1 and Model 2. While Model 1 and Model 2 share an identical architecture and parameter count, their key distinctions lie in the loss calculation and normalization processes. For Model 1, we neither perform alignment during the loss computation for the predicted pointmap nor do we normalize the pointmap itself. We found that ap-

plying normalization in this specific case led to anomalous and significantly degraded performance, a phenomenon also observed in prior work (Wang et al., 2025a). In contrast, the predicted local pointmaps are normalized for both Model 2 and the full model.

For a fair comparison, all models were trained for 80 epochs, with 800 iterations per epoch, on images with a resolution of 224×224 . They shared the same initialization procedure as our final model: we loaded pre-trained weights for the VGGT encoder and alternating-attention layers, and kept the encoder frozen throughout training. For the 7-Scenes and NRGDB datasets, we use the same dense view setting as in the previous section.

A.7 ADDITIONAL EVALUATION

Camera pose estimation with tighter angular thresholds. Following the protocol of VGGT (Wang et al., 2025a), Tab. 1 primarily reports the RRA, RTA, and AUC metrics using a relaxed angular threshold of 30° . However, to better assess precision, we also examine tighter thresholds, such as 5° and 15° used by Fast3R (Yang et al., 2025) and FLARE (Zhang et al., 2025). Accordingly, in Tab. 9, we present a full set of RRA, RTA, and AUC metrics across thresholds of 1° , 3° , 5° , 10° , and 15° , evaluated on RealEstate10K. Our π^3 model demonstrates robust and consistent performance even with these more demanding constraints.

Table 9: Camera pose estimation with tighter angular thresholds on RealEstate10K

Method	RRA (\uparrow)					RTA (\uparrow)					AUC (\uparrow)				
	@1	@3	@5	@10	@15	@1	@3	@5	@10	@15	@1	@3	@5	@10	@15
Fast3R (Yang et al., 2025)	54.30	87.24	94.78	97.90	98.46	5.47	24.56	39.23	59.29	69.11	3.77	13.67	22.36	37.33	46.71
CUT3R (Wang et al., 2025b)	<u>78.63</u>	<u>96.06</u>	<u>98.15</u>	<u>99.31</u>	<u>99.63</u>	<u>16.23</u>	<u>51.43</u>	<u>67.44</u>	<u>82.98</u>	<u>88.93</u>	<u>13.40</u>	<u>33.39</u>	<u>45.63</u>	<u>61.78</u>	<u>70.15</u>
FLARE (Zhang et al., 2025)	70.99	93.42	97.11	98.98	99.44	11.01	43.33	62.39	82.29	89.20	8.43	25.67	38.47	57.20	67.02
VGGT (Wang et al., 2025a)	69.68	92.70	97.06	99.40	99.74	8.58	39.93	60.61	80.20	86.34	6.23	22.25	35.46	54.76	64.54
π^3 (Ours)	85.19	97.56	98.83	99.63	99.86	27.57	65.57	78.32	88.69	92.02	24.87	47.28	58.63	72.11	78.39

Point map estimation with Chamfer Distance(CD). To further evaluate the quality of the point map estimation, we additionally calculate the Chamfer Distance metric, which is defined as the mean value of the Accuracy (Acc.) and Completion (Comp.) terms. The results across all evaluation datasets are reported in Tab. 10.

Table 10: Point map estimation with Chamfer Distance.

Method	7-Scenes-sparse		7-Scenes-dense		NRGDB-sparse		NRGDB-dense		DTU		ETH3D	
	CD-mean \downarrow	CD-med \downarrow										
Fast3R (Yang et al., 2025)	0.150	0.111	0.048	0.018	0.150	0.097	0.061	0.024	3.134	1.476	0.875	0.646
CUT3R (Wang et al., 2025b)	0.097	0.049	0.025	0.009	0.091	0.036	0.065	0.025	4.021	1.886	0.684	0.551
FLARE (Zhang et al., 2025)	0.115	0.083	0.023	0.010	0.052	0.023	0.020	0.009	2.834	1.409	0.564	0.377
VGGT (Wang et al., 2025a)	0.050	0.029	0.024	0.010	0.058	0.032	0.015	0.007	1.619	0.888	0.287	0.177
π^3 (Ours)	0.061	0.039	0.019	0.009	0.026	0.013	0.013	0.006	1.472	0.626	0.199	0.128

Monocular depth estimation compared with Depth Anything V2 (Yang et al., 2024), one of the SOTA models for monocular depth estimation. We evaluate it on our standard benchmarks with input resolution 518, following CUT3R (Wang et al., 2025b) protocol. As shown in Tab. 11, π^3 achieves comparable performance to the specialized DAv2, despite being designed for generalist multi-view reconstruction.

Table 11: Monocular depth estimation.

Method	Sintel		Bonn		KITTI		NYU-v2	
	Abs Rel \downarrow	$\delta < 1.25 \uparrow$	Abs Rel \downarrow	$\delta < 1.25 \uparrow$	Abs Rel \downarrow	$\delta < 1.25 \uparrow$	Abs Rel \downarrow	$\delta < 1.25 \uparrow$
DA V2 (Yang et al., 2024)	0.372	0.541	0.126	0.804	0.090	0.919	0.081	0.921
- metric indoor	- 0.372	- 0.541	- 0.126	- 0.804	- 0.097	- 0.912	- 0.081	- 0.921
- metric outdoor	- 0.478	- 0.477	- 0.186	- 0.668	- 0.090	- 0.919	- 0.172	- 0.689
MoGe	0.273	0.695	0.050	0.976	0.049	0.979	0.055	0.952
- v1 (Wang et al., 2025c)	- 0.273	- 0.695	- 0.050	- 0.976	- 0.054	- 0.977	- 0.055	- 0.952
- v2 (Wang et al., 2025d)	- 0.277	- 0.687	- 0.063	- 0.973	- 0.049	- 0.979	- 0.060	- 0.940
π^3 (Ours)	0.277	0.614	0.044	0.976	0.060	0.971	0.054	0.956

A.8 LIMITATIONS

Our model demonstrates strong performance, but it also has several key limitations. First, it is unable to handle transparent objects, as our model does not explicitly account for complex light transport phenomena. Second, compared to contemporary diffusion-based approaches, our reconstructed geometry lacks the same level of fine-grained detail. Finally, the point cloud generation relies on a

864 simple upsampling mechanism using an MLP with pixel shuffling. While efficient, this design can
865 introduce noticeable grid-like artifacts, particularly in regions with high reconstruction uncertainty.
866

867 **A.9 LLM USAGE STATEMENT**
868

869 In the preparation of this manuscript, we utilized a Large Language Model (LLM) as a writing
870 assistant. The LLM’s role was strictly limited to improving the manuscript’s clarity, correcting
871 grammatical errors, and refining the overall language for professional academic standards. All sci-
872 entific contributions, including the core ideas, methodology, experimental design, and interpretation
873 of results, are the original work of the authors.

874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917