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Figure 1: π3 effectively reconstructs a diverse set of open-domain images in a feed-forward manner,
encompassing various scenes such as indoor, outdoor, and aerial-view, as well as cartoons, with both
dynamic and static content.

ABSTRACT

We introduce π3, a feed-forward neural network that offers a novel approach to
visual geometry reconstruction, breaking the reliance on a conventional fixed ref-
erence view. Previous methods often anchor their reconstructions to a designated
viewpoint, an inductive bias that can lead to instability and failures if the refer-
ence is suboptimal. In contrast, π3 employs a fully permutation-equivariant ar-
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chitecture to predict affine-invariant camera poses and scale-invariant local point
maps without any reference frames. This design not only makes our model inher-
ently robust to input ordering, but also leads to higher accuracy and performance.
These advantages enable our simple and bias-free approach to achieve state-of-
the-art performance on a wide range of tasks, including camera pose estimation,
monocular/video depth estimation, and dense point map reconstruction. Code and
models will be publicly available.

1 INTRODUCTION

Visual geometry reconstruction, a long-standing and fundamental problem in computer vision, holds
substantial potential for applications such as augmented reality (Engel et al., 2023), robotics (Zhu
et al., 2024), and autonomous navigation (Mur-Artal et al., 2015). While traditional methods ad-
dressed this challenge using iterative optimization techniques like Bundle Adjustment (BA) (Hartley
& Zisserman, 2003), the field has recently seen remarkable progress with feed-forward neural net-
works. End-to-end models like DUSt3R (Wang et al., 2024) and its successors have demonstrated
the power of deep learning for reconstructing geometry from image pairs (Leroy et al., 2024; Zhang
et al., 2024), videos, or multi-view collections (Yang et al., 2025; Zhang et al., 2025; Wang et al.,
2025a).

Despite these advances, a critical limitation persists in both classical and modern approaches: the
reliance on selecting a single, fixed reference view. The camera coordinate system of this chosen
view is treated as the global frame of reference, a practice inherited from traditional Structure-from-
Motion (SfM) (Hartley & Zisserman, 2003; Cui et al., 2017; Schonberger & Frahm, 2016; Pan et al.,
2024) or Multi-view Stereo (MVS) (Furukawa et al., 2015; Schönberger et al., 2016). We contend
that this design choice introduces an unnecessary inductive bias that fundamentally constrains the
performance and robustness of feed-forward neural networks. As we demonstrate empirically, this
reliance on an arbitrary reference makes existing methods, including the state-of-the-art (SOTA)
VGGT (Wang et al., 2025a), highly sensitive to the initial view selection. A poor choice can lead
to a dramatic degradation in reconstruction quality, hindering the development of robust systems
(Figure 2).

ACC ↓ : 0.95
COMP ↓ : 0.97

ACC ↓ : 0.12
COMP ↓ : 0.11

ACC ↓: 0.27
COMP ↓ : 0.24

VGGT π3 (Ours)

Performance drop

Figure 2: Performance comparison across dif-
ferent reference frames. While previous meth-
ods, even with DINO-based selection, show in-
consistent results, π3 consistently delivers supe-
rior and stable performance, demonstrating its ro-
bustness.

To overcome this limitation, we introduce
π3 (Figure 1), a robust, accurate, and fully
permutation-equivariant method that elimi-
nates reference view-based biases in vi-
sual geometry learning. π3 accepts var-
ied inputs—including single images, video se-
quences, or unordered image sets from static
or dynamic scenes—without designating a ref-
erence view. Instead, our model predicts
an affine-invariant camera pose and a scale-
invariant local pointmap, with the pointmap be-
ing defined in that frame’s own camera coor-
dinate system. By eschewing order-dependent
components like frame index positional em-
beddings and employing a transformer archi-
tecture that alternates between view-wise and
global self-attention (similar to (Wang et al.,
2025a)), π3 achieves true permutation equiv-
ariance. This guarantees a consistent one-to-
one mapping between visual inputs and the re-
constructed geometry, making the model inher-
ently robust to input order and immune to the reference view selection problem (Table 7).

Our design yields significant advantages. Primarily, it is substantially more robust. Unlike previous
methods, our approach demonstrates minimal performance degradation and a low standard deviation
when the reference frame is altered (Figure 2 and Table 4.4). Furthermore, it enhances reconstruction
accuracy over earlier methods that rely on a reference view.
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Through extensive experiments, π3 establishes a new SOTA across numerous benchmarks and tasks.
For example, it achieves comparable performance to existing methods like MoGe (Wang et al.,
2025c) in monocular depth estimation, and outperforms VGGT (Wang et al., 2025a) in video depth
estimation and camera pose estimation. On the Sintel benchmark, π3 reduces the camera pose
estimation ATE from VGGT’s 0.167 down to 0.074 and improves the scale-aligned video depth
absolute relative error from 0.299 to 0.233. Furthermore, π3 is both lightweight and fast, achieving
an inference speed of 57.4 FPS compared to DUSt3R’s 1.25 FPS and VGGT’s 43.2 FPS. Its ability
to reconstruct both static and dynamic scenes makes it a robust and optimal solution for real-world
applications.

In summary, the contributions of this work are as follows:

• We are the first to systematically identify and challenge the reliance on a fixed reference
view in visual geometry reconstruction, demonstrating how this common design choice
introduces a detrimental inductive bias that limits model robustness and performance.

• We propose π3, a novel, fully permutation-equivariant architecture that eliminates this bias.
Our model predicts affine-invariant camera poses and scale-invariant pointmaps in a purely
relative, per-view manner, completely removing the need for a global coordinate system.

• We demonstrate through extensive experiments that π3 establishes a new state-of-the-art on
a wide range of benchmarks for camera pose estimation, monocular/video depth estimation,
and pointmap reconstruction, outperforming prior leading methods.

2 RELATED WORK

2.1 TRADITIONAL 3D RECONSTRUCTION

Reconstructing 3D scenes from images is a foundational problem in computer vision. Classical
methods, such as Structure-from-Motion (SfM) (Hartley & Zisserman, 2003; Cui et al., 2017; Schon-
berger & Frahm, 2016; Pan et al., 2024) and Multi-View Stereo (MVS) (Furukawa et al., 2015;
Schönberger et al., 2016), have achieved considerable success. These techniques leverage the prin-
ciples of multi-view geometry to establish feature correspondences across images, from which they
estimate camera poses and generate dense 3D point clouds. Although robust, particularly in con-
trolled environments, these methods typically rely on complex, multi-stage pipelines. Moreover,
they often involve time-consuming iterative optimization problems, such as Bundle Adjustment
(BA), to jointly refine the 3D structure and camera poses.

2.2 FEED-FORWARD 3D RECONSTRUCTION

Recently, feed-forward models have emerged as a powerful alternative, capable of directly regress-
ing the 3D structure of a scene from a set of images in a single pass. Pioneering efforts in this
domain, such as Dust3R (Wang et al., 2024), focused on processing image pairs to predict a point
cloud within the coordinate system of the first camera. While effective for two views, scaling this to
larger scenes requires a subsequent global alignment step, a process that can be both time-consuming
and prone to instability.

Subsequent work has focused on overcoming this limitation. Fast3R (Yang et al., 2025) represents a
significant advance by enabling simultaneous inference on thousands of images, thereby eliminating
the need for a costly and fragile global alignment stage. Other approaches have explored simplifying
the learning problem itself. For instance, FLARE (Zhang et al., 2025) decomposes the task by
first predicting camera poses and then estimating the scene geometry. VGGT (Wang et al., 2025a)
leverages multi-task learning and large-scale datasets to achieve superior accuracy and performance.

A unifying characteristic of these methods—a paradigm largely inherited from classical SfM—is
their reliance on anchoring the predicted 3D structure to a designated reference frame. Our work
departs from this paradigm by presenting a fundamentally different approach.
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Figure 3: Unlike prior methods that designate a reference view by concatenating a special token
(Type A) or adding a learnable embedding (Type B), π3 achieves permutation equivariance by elim-
inating this requirement altogether. Instead, it employs relative supervision, making our approach
inherently robust to the order of input views.

3 METHOD

3.1 PERMUTATION-EQUIVARIANT ARCHITECTURE

To ensure our model’s output is invariant to the arbitrary ordering of input views, we designed our
network ϕ to be permutation-equivariant.

Let the input be a sequence of N images, S = (I1, . . . , IN ), where each image Ii ∈ RH×W×3. The
network ϕ maps this sequence to a corresponding tuple of output sequences:

ϕ(S) = ((T1, . . . ,TN ), (X1, . . . ,XN ), (C1, . . . ,CN )) (1)

Here, Ti ∈ SE(3) ⊂ R4×4 is the camera pose, Xi ∈ RH×W×3 is the associated pixel-aligned 3D
point map represented in its own camera coordinate system, and Ci ∈ RH×W is the confidence map
of Xi, each corresponding to the input image Ii.

For any permutation π, let Pπ be an operator that permutes the order of a sequence. The network ϕ
satisfies the permutation-equivariant property:

ϕ(Pπ(S)) = Pπ(ϕ(S)) (2)

This means that permuting the input sequence, Pπ(S) = (Iπ(1), . . . , Iπ(N)), results in an identically
permuted output tuple:

Pπ(ϕ(S)) =
(
(Tπ(1), . . . ,Tπ(N)), (Xπ(1), . . . ,Xπ(N)), (Cπ(1), . . . ,Cπ(N))

)
(3)

This property guarantees a consistent one-to-one correspondence between each image and its respec-
tive output (e.g., geometry or pose). This design offers several key advantages. First, reconstruction
quality becomes independent of the reference view selection, in contrast to prior methods that suffer
from performance degradation when the reference view changes. Second, the model becomes more
robust to uncertain or noisy observations. These claims are empirically validated in Section 4.

To realize this equivariance in practice, our implementation (illustrated in Figure 3) omits all
order-dependent components, such as positional embeddings used to differentiate between frames
and specialized learnable tokens that designate a reference view, like the camera tokens found in
VGGT (Wang et al., 2025a). Our pipeline begins by embedding each view into a sequence of patch
tokens using a DINOv2 (Oquab et al., 2023) backbone. These tokens are then processed through
a series of alternating view-wise and global self-attention layers, similar to (Wang et al., 2025a),
before a final decoder generates the output. The detailed architecture of our model is provided in
Appendix A.1.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 SCALE-INVARIANT LOCAL GEOMETRY

For each input image Ii, our network predicts the geometry as a pixel-aligned 3D point map X̂i.
Each point cloud is initially defined in its own local camera coordinate system. A well-known
challenge in monocular reconstruction is the inherent scale ambiguity. To address this, our network
predicts the point clouds up to an unknown, yet consistent, scale factor across all N images of a
given scene.

Consequently, the training process requires aligning the predicted point maps, (X̂1, . . . , X̂N ), with
the corresponding ground-truth (GT) set, (X1, . . . ,XN ). This alignment is accomplished by solving
for a single optimal scale factor, s∗, which minimizes the depth-weighted L1 distance across the
entire image sequence. The optimization problem is formulated as:

s∗ = argmin
s

N∑
i=1

H×W∑
j=1

1

zi,j
∥sx̂i,j − xi,j∥1 (4)

Here, x̂i,j ∈ R3 denotes the predicted 3D point at index j of the point map X̂i. Similarly, xi,j is its
ground-truth counterpart in Xi. The term zi,j is the ground-truth depth, which is the z-component
of xi,j . This problem is solved using the ROE solver proposed by (Wang et al., 2025c).

Finally, the point cloud reconstruction loss, Lpoints, is defined using the optimal scale factor s∗:

Lpoints =
1

3NHW

N∑
i=1

H×W∑
j=1

1

zi,j
∥s∗x̂i,j − xi,j∥1 (5)

To encourage the reconstruction of locally smooth surfaces, we also introduce a normal loss follow-
ing Wang et al. (2025c), Lnormal. For each point in the predicted point map X̂i, its normal vector
n̂i,j is computed from the cross product of the vectors to its adjacent neighbors on the image grid.
We then supervise these normals by minimizing the angle between them and their ground-truth
counterparts ni,j :

Lnormal =
1

NHW

N∑
i=1

H×W∑
j=1

arccos (n̂i,j · ni,j) (6)

We supervise the predicted confidence map Ci using a Binary Cross-Entropy (BCE) loss, denoted
Lconf. The ground-truth target for each point is set to 1 if its L1 reconstruction error, 1

zi,j
∥s∗x̂i,j −

xi,j∥1, is below a threshold ϵ, and 0 otherwise.

3.3 AFFINE-INVARIANT CAMERA POSE

The model’s permutation equivariance, combined with the inherent scale ambiguity of multi-view
reconstruction, implies that the output camera poses (T̂1, . . . , T̂N ) are only defined up to an ar-
bitrary similarity transformation. This specific type of affine transformation consists of a rigid
transformation and a single, unknown global scale factor.

To resolve the ambiguity of the global reference frame, we supervise the network on the relative
poses between views. The predicted relative pose T̂i←j from view j to i is computed as:

T̂i←j = T̂−1i T̂j (7)

Each predicted relative pose T̂i←j is composed of a rotation R̂i←j ∈ SO(3) and a translation
t̂i←j ∈ R3. While the relative rotation is invariant to this global transformation, the relative trans-
lation’s magnitude is ambiguous. We resolve this by leveraging the optimal scale factor, s∗, that is
computed by aligning the predicted point map to the ground truth (as detailed in a previous section).
This single, consistent scale factor is used to rectify all predicted camera translations, allowing us to
directly supervise both the rotation and the correctly-scaled translation components.

The camera loss Lcam is a weighted sum of a rotation loss term and a translation loss term, averaged
over all ordered view pairs where i ̸= j:

Lcam =
1

N(N − 1)

∑
i̸=j

(Lrot(i, j) + λtransLtrans(i, j)) (8)

5
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where λ is a hyperparameter to balance the two terms.

Following Dong et al. (2025), we use angle loss for rotation and Huber loss for translation. The
rotation loss minimizes the geodesic distance (angle) between the predicted relative rotation R̂i←j

and its ground-truth target Ri←j :

Lrot(i, j) = arccos

Tr
(
(Ri←j)

⊤R̂i←j

)
− 1

2

 (9)

For the translation loss, we compare our scaled prediction against the ground-truth relative transla-
tion, ti←j . We use the Huber loss, Hδ , for its robustness to outliers:

Ltrans(i, j) = Hδ(s
∗t̂i←j − ti←j) (10)

Furthermore, our reference-free formulation is particularly well-suited to capturing the intrinsic
structure of camera trajectories. Our affine-invariant camera model builds on a key insight: real-
world camera paths are highly structured, not random. They typically lie on a low-dimensional
manifold—for instance, a camera orbiting an object moves along a sphere, while a car-mounted
camera follows a curve.

Figure 4: Comparison of predicted pose distribu-
tions. Our predicted pose distribution exhibits a clear
low-dimensional structure.

We quantitatively analyze the structure of
the predicted pose distributions in Fig-
ure 4. The eigenvalue analysis confirms
that the variance of our predicted poses
is concentrated along significantly fewer
principal components than VGGT, validat-
ing the low-dimensional structure of our
output. We discuss this further in Ap-
pendix A.3.

3.4 MODEL TRAINING

Our model is trained end-to-end by minimizing a composite loss function, L, which is a weighted
sum of the point reconstruction loss, the confidence loss, and the camera pose loss:

L = Lpoints + λnormalLnormal + λconfLconf + λcamLcam (11)

To ensure robustness and wide applicability, we train the model on a large-scale aggregation of 15
diverse datasets. This combined dataset provides extensive coverage of both indoor and outdoor en-
vironments, encompassing a wide variety of scenes from synthetic renderings to real-world captures.
The specific datasets include GTA-SfM (Wang & Shen, 2020), CO3D (Reizenstein et al., 2021),
WildRGB-D (Xia et al., 2024), Habitat (Savva et al., 2019), ARKitScenes (Baruch et al., 2021),
TartanAir (Wang et al., 2020), ScanNet (Dai et al., 2017), ScanNet++ (Yeshwanth et al., 2023),
BlendedMVG (Yao et al., 2020), MatrixCity (Li et al., 2023), MegaDepth (Li & Snavely, 2018),
Hypersim (Roberts et al., 2021), Taskonomy (Zamir et al., 2018), Mid-Air (Fonder & Van Droogen-
broeck, 2019), and an internal dynamic scene dataset. Details of model training can be found in
Appendix A.2.

4 EXPERIMENTS

We report quantitative results of our method on four tasks: camera pose estimation (Sec. 4.1),
point map estimation (Sec. 4.2), video depth estimation and monocular depth estimation (Sec. 4.3).
Across all tasks, our method achieves state-of-the-art (SOTA) or comparable performance against
existing feed-forward 3D reconstruction methods. Visualized point maps are given in Figure 5 and
Figure 7 (in Appendix) as qualitative results.

To validate the effectiveness of our design, We also conduct several analyses: (1) a robustness
evaluation against input image sequence permutations (Sec. 4.4), (2) an ablation study on scale-
invariant point maps and affine-invariant camera poses (Sec. 4.5).

6
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Table 1: Camera pose estimation. RRA, RTA, AUC are evaluated with threshold of 30 degrees.

Method
RealEstate10K Co3Dv2 (seen) Sintel TUM-dynamics ScanNet (seen)

RRA ↑ RTA ↑ AUC ↑ RRA ↑ RTA ↑ AUC ↑ ATE ↓ RPE-t ↓ RPE-r ↓ ATE ↓ RPE-t ↓ RPE-r ↓ ATE ↓ RPE-t ↓ RPE-r ↓
Fast3R (Yang et al., 2025) 99.05 81.86 61.68 97.49 91.11 73.43 0.371 0.298 13.75 0.090 0.101 1.425 0.155 0.123 3.491
CUT3R (Wang et al., 2025b) 99.82 95.10 81.47 96.19 92.69 75.82 0.217 0.070 0.636 0.047 0.015 0.451 0.094 0.022 0.629
FLARE (Zhang et al., 2025) 99.69 95.23 80.01 96.38 93.76 73.99 0.207 0.090 3.015 0.026 0.013 0.475 0.064 0.023 0.971
VGGT (Wang et al., 2025a) 99.97 93.13 77.62 98.96 97.13 88.59 0.167 0.062 0.491 0.012 0.010 0.311 0.035 0.015 0.382
π3 (Ours) 99.99 95.62 85.90 99.05 97.33 88.41 0.074 0.040 0.282 0.014 0.009 0.312 0.031 0.013 0.347

4.1 CAMERA POSE ESTIMATION

We assess predicted camera pose using two distinct sets of metrics: angular accuracy (follow-
ing (Wang et al., 2023; 2024; 2025a)) on RealEstate10K (Zhou et al., 2018) and Co3Dv2 (Reizen-
stein et al., 2021) datasets, and distance error (following (Zhao et al., 2022; Zhang et al., 2024; Wang
et al., 2025b)) on Sintel (Bozic et al., 2021), TUM-dynamics (Sturm et al., 2012) and ScanNet (Dai
et al., 2017). Details about the metrics can be found in Appendix A.5.

As shown in Table 1, our method sets a new SOTA benchmark in zero-shot generalization on Sintel
and RealEstate10K, and achieves competitive SOTA results alongside VGGT on TUM-dynamics,
and the in-domain Co3Dv2 and ScanNet datasets. These results underscore our model’s strong
generalization capabilities while maintaining excellent performance on familiar data distributions.

4.2 POINT MAP ESTIMATION

Following CUT3R (Wang et al., 2025b), we evaluate the quality of reconstructed multi-view point
maps on the scene-level 7-Scenes (Shotton et al., 2013) and NRGBD (Azinović et al., 2022) datasets
under both sparse and dense view conditions (different in sampling strides). We also extend our eval-
uation to the object-centric DTU (Jensen et al., 2014) and scene-level ETH3D (Schops et al., 2017)
datasets. Predicted point maps are aligned to the ground truth using the Umeyama algorithm for a
coarse Sim(3) alignment, followed by refinement with the Iterative Closest Point (ICP) algorithm.

Consistent with prior works (Azinović et al., 2022; Wang et al., 2024; Wang & Agapito, 2024; Wang
et al., 2025b), we report Accuracy (Acc.), Completion (Comp.), and Normal Consistency (N.C.) in
Table 2 and Table 3. These results highlight the strong generalization capability of our method in a
broad spectrum of 3D reconstruction tasks, proving robust across synthetic and real-world scenarios,
sparse and dense view settings (Table 2), as well as object-level and scene-level scales (Table 3).

Table 2: Point map estimation on 7-Scenes and NRGBD

Method View

7-Scenes NRGBD
Acc. ↓ Comp. ↓ NC. ↑ Acc. ↓ Comp. ↓ NC. ↑

Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

Fast3R (Yang et al., 2025)

sparse

0.095 0.065 0.144 0.089 0.673 0.759 0.135 0.091 0.163 0.104 0.759 0.877
CUT3R (Wang et al., 2025b) 0.093 0.049 0.102 0.051 0.704 0.805 0.104 0.041 0.079 0.031 0.822 0.968
FLARE (Zhang et al., 2025) 0.085 0.057 0.145 0.107 0.696 0.780 0.053 0.024 0.051 0.025 0.877 0.988
VGGT (Wang et al., 2025a) 0.044 0.025 0.056 0.033 0.733 0.845 0.051 0.029 0.066 0.038 0.890 0.981
π3 (Ours) 0.047 0.029 0.075 0.049 0.742 0.841 0.026 0.015 0.028 0.014 0.916 0.992

Fast3R (Yang et al., 2025)

dense

0.040 0.017 0.056 0.018 0.644 0.725 0.072 0.030 0.050 0.016 0.790 0.934
CUT3R (Wang et al., 2025b) 0.023 0.010 0.027 0.008 0.669 0.764 0.086 0.037 0.048 0.017 0.800 0.953
FLARE (Zhang et al., 2025) 0.019 0.007 0.026 0.013 0.684 0.785 0.023 0.011 0.018 0.008 0.882 0.986
VGGT (Wang et al., 2025a) 0.022 0.008 0.026 0.012 0.666 0.760 0.017 0.010 0.015 0.005 0.893 0.988
π3 (Ours) 0.016 0.007 0.022 0.011 0.689 0.792 0.015 0.008 0.013 0.005 0.898 0.987

Table 3: Point map estimation on DTU and ETH3D

Method

DTU ETH3D
Acc. ↓ Comp. ↓ N.C. ↑ Acc. ↓ Comp. ↓ N.C. ↑

Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

Fast3R (Yang et al., 2025) 3.340 1.919 2.929 1.125 0.671 0.755 0.832 0.691 0.978 0.683 0.667 0.766
CUT3R (Wang et al., 2025b) 4.742 2.600 3.400 1.316 0.679 0.764 0.617 0.525 0.747 0.579 0.754 0.848
FLARE (Zhang et al., 2025) 2.541 1.468 3.174 1.420 0.684 0.774 0.464 0.338 0.664 0.395 0.744 0.864
VGGT (Wang et al., 2025a) 1.338 0.779 1.896 0.992 0.676 0.766 0.280 0.185 0.305 0.182 0.853 0.950
π3 (Ours) 1.198 0.646 1.849 0.607 0.678 0.768 0.194 0.131 0.210 0.128 0.883 0.969

4.3 DEPTH ESTIMATION

Following the methodology of CUT3R (Wang et al., 2025b), we report the Absolute Relative Error
(Abs Rel) and the prediction accuracy at a threshold of δ < 1.25 of our method on the tasks of video
depth estimation and monocular depth estimation, using the Sintel (Bozic et al., 2021), Bonn (Palaz-
zolo et al., 2019), and KITTI (Geiger et al., 2013) datasets. NYU-v2 Silberman et al. (2012) is
additionally used for monocular depth estimation.
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Table 4: Video depth estimation on Sintel, Bonn and KITTI. FPS is evaluated on KITTI using
one A800 GPU.

Method Params
Sintel Bonn KITTI

FPSAbs Rel ↓ δ < 1.25 ↑ Abs Rel ↓ δ < 1.25 ↑ Abs Rel ↓ δ < 1.25 ↑
DUSt3R (Wang et al., 2024) 571M 0.662 0.434 0.151 0.839 0.143 0.814 1.25
MASt3R (Leroy et al., 2024) 689M 0.558 0.487 0.188 0.765 0.115 0.848 1.01
MonST3R (Zhang et al., 2024) 571M 0.399 0.519 0.072 0.957 0.107 0.884 1.27
Fast3R (Yang et al., 2025) 648M 0.638 0.422 0.194 0.772 0.138 0.834 65.8
MVDUSt3R (Tang et al., 2024) 661M 0.805 0.283 0.426 0.357 0.456 0.342 0.69
CUT3R (Wang et al., 2025b) 793M 0.417 0.507 0.078 0.937 0.122 0.876 6.98
Aether (Team et al., 2025) 5.57B 0.324 0.502 0.273 0.594 0.056 0.978 6.14
FLARE (Zhang et al., 2025) 1.40B 0.729 0.336 0.152 0.790 0.356 0.570 1.75
VGGT (Wang et al., 2025a) 1.26B 0.299 0.638 0.057 0.966 0.062 0.969 43.2
π3 (Ours) 959M 0.233 0.664 0.049 0.975 0.038 0.986 57.4

Input Images Ground Truth Ours VGGT FLARE Fast3R

Figure 5: Qualitative comparison of multi-view 3D reconstruction. Compared to other multi-
frame feed-forward reconstruction methods, π3 produces cleaner, more accurate and more complete
reconstructions with fewer artifacts.

Video depth estimation. In this setting, video depth sequences are aligned to the ground truth with a
scale per sequence. As reported in Table 4, our method achieves a new SOTA performance across all
three datasets within feed-forward 3D reconstruction methods. Notably, it also delivers exceptional
efficiency, running at 57.4 FPS on KITTI, significantly faster than VGGT (43.2 FPS) and Aether
(6.14 FPS), despite having a smaller model size.

Monocular depth estimation. In this setting, each depth map is aligned independently to its ground
truth with a scale factor. As reported in Table 5, our method achieves state-of-the-art results among
multi-frame feed-forward reconstruction approaches, even though it is not explicitly optimized for
single-frame depth estimation. Meanwhile, it performs competitively with MoGe (Wang et al.,
2025c;d), one of the top-performing monocular depth estimation models.

Table 5: Monocular depth estimation

Method
Sintel Bonn KITTI NYU-v2

Abs Rel↓ δ < 1.25 ↑ Abs Rel↓ δ < 1.25 ↑ Abs Rel↓ δ < 1.25 ↑ Abs Rel↓ δ < 1.25 ↑
DUSt3R (Wang et al., 2024) 0.488 0.532 0.139 0.832 0.109 0.873 0.081 0.909
MASt3R (Leroy et al., 2024) 0.413 0.569 0.123 0.833 0.077 0.948 0.110 0.865
MonST3R (Zhang et al., 2024) 0.402 0.525 0.069 0.954 0.098 0.895 0.094 0.887
Fast3R (Yang et al., 2025) 0.544 0.509 0.169 0.796 0.120 0.861 0.093 0.898
CUT3R (Wang et al., 2025b) 0.418 0.520 0.058 0.967 0.097 0.914 0.081 0.914
FLARE (Zhang et al., 2025) 0.606 0.402 0.130 0.836 0.312 0.513 0.089 0.898
VGGT (Wang et al., 2025a) 0.335 0.599 0.053 0.970 0.082 0.947 0.056 0.951
MoGe 0.273 0.695 0.050 0.976 0.049 0.979 0.055 0.952

- v1 (Wang et al., 2025c) - 0.273 - 0.695 - 0.050 - 0.976 - 0.054 - 0.977 - 0.055 - 0.952

- v2 (Wang et al., 2025d) - 0.277 - 0.687 - 0.063 - 0.973 - 0.049 - 0.979 - 0.060 - 0.940

π3 (Ours) 0.277 0.614 0.044 0.976 0.060 0.971 0.054 0.956

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Standard deviation of point cloud estimation

Method

DTU ETH3D
Acc. std. ↓ Comp. std. ↓ N.C. std. ↓ Acc. std. ↓ Comp. std. ↓ N.C. std. ↓

Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

Fast3R (Yang et al., 2025) 0.578 0.451 0.677 0.376 0.007 0.009 0.182 0.205 0.381 0.273 0.047 0.072
FLARE (Zhang et al., 2025) 0.720 0.494 1.346 1.134 0.009 0.012 0.171 0.187 0.251 0.188 0.048 0.053
VGGT (Wang et al., 2025a) 0.033 0.022 0.054 0.036 0.007 0.007 0.049 0.040 0.062 0.042 0.022 0.015
π3 (Ours) 0.003 0.002 0.006 0.003 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.000

Table 7: Ablation study on the key components of our model. We show how the performance
metric improves as each component is added to the baseline.

Model

ETH3D 7-Scenes NRGBD
Acc. ↓ Comp. ↓ N.C ↑ Acc. ↓ Comp. ↓ N.C ↑ Acc. ↓ Comp. ↓ N.C ↑

Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

Model 1 0.229 0.150 0.166 0.103 0.802 0.930 0.020 0.010 0.019 0.009 0.715 0.834 0.034 0.018 0.025 0.011 0.859 0.977
Model 2 0.197 0.118 0.118 0.065 0.820 0.943 0.020 0.009 0.020 0.008 0.716 0.837 0.031 0.018 0.023 0.010 0.861 0.978
Full Model 0.131 0.076 0.079 0.043 0.841 0.957 0.019 0.009 0.020 0.009 0.723 0.843 0.028 0.015 0.022 0.010 0.875 0.981

4.4 ROBUSTNESS EVALUATION

A key property of our proposed architecture is permutation equivariance, ensuring that its outputs
are robust to variations in the input image sequence order. To empirically verify this, we conduct
experiments on the DTU (Jensen et al., 2014) and ETH3D (Schops et al., 2017) datasets. For each
sequence of length N, we create N different input orderings, by making each of the N frames the
first frame in the sequence in turn. We then compute the standard deviation of the metrics across
these N runs. We then compute the standard deviation of the reconstruction metrics across these N
outputs. A lower standard deviation indicates higher robustness to input order variations.

As reported in Table 4.4, our method achieves near-zero standard deviation across all metrics on
DTU and ETH3D, outperforming existing approaches by several orders of magnitude. For in-
stance, on DTU, our mean accuracy standard deviation is 0.003, while VGGT reports 0.033. On
ETH3D, our model achieves effectively zero variance. This stark contrast highlights the limita-
tions of reference-frame-dependent methods, which exhibit significant sensitivity to input order.
Our results provide compelling evidence that the proposed architecture is genuinely permutation-
equivariant, ensuring consistent and order-independent 3D reconstruction.

4.5 ABLATION STUDY

To validate the effectiveness of our proposed components, we conducted an ablation study by sys-
tematically removing features from our complete model. We define two ablated variants of our full
model: Model 2, which lacks the affine-invariant camera pose modeling, and Model 1, which lacks
both affine-invariant poses and scale-invariant pointmaps. See Appendix A.6 for more details.

The comparative results for pointmap estimation across three datasets are presented in Table 7.
We found that scale-invariant pointmap modeling does not yield significant performance gains on
indoor datasets like 7-Scenes and NRGBD. For outdoor data, however, the performance improve-
ment is substantially more pronounced. This observation is consistent with previous studies on
scale-invariant depth, which have shown that outdoor scenes are more significantly affected by scale
ambiguity. Furthermore, we observed that affine-invariant camera pose modeling consistently en-
hances the final performance. More importantly, unlike Model 1 and Model 2, its inclusion renders
the model permutation-equivariant. Consequently, the model becomes robust to both the order of
input frames and the selection of the reference view.

5 CONCLUSION

In this work, we introduced π3, a feed-forward neural network that presents a new paradigm for
visual geometry reconstruction by eliminating the reliance on a fixed reference view. By leveraging
a fully permutation-equivariant architecture, our model is inherently robust to input ordering and
leads to higher accuracy. This design choice removes a critical inductive bias found in previous
methods, allowing our simple yet powerful approach to achieve state-of-the-art performance on a
wide array of tasks, including camera pose estimation, depth estimation, and dense reconstruction.
π3 demonstrates that reference-free systems are not only viable but can lead to more stable and
versatile 3D vision models.
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A APPENDIX

A.1 ARCHITECTURE DETAILS

The encoder and alternating attention modules are the same as those in VGGT (Wang et al., 2025a),
with the exception that we use only 36 layers for the alternating attention module, whereas VGGT
uses 48. The decoders for camera poses, local point maps, and confidence scores share the same
architecture but do not share weights. This architecture is a lightweight, 5-layer transformer that
applies self-attention exclusively to the features of each individual image. Following the decoder,
the output heads vary by task. The heads for local point maps and confidence scores consist of
a simple MLP followed by a pixel shuffle operation. For camera poses, the head is adapted from
Reloc3r (Dong et al., 2025) and uses an MLP, average pooling, and another MLP. The rotation is
initially predicted in a 9D representation (Levinson et al., 2020) and is then converted to a 3×3
rotation matrix via SVD orthogonalization.

A.2 TRAINING DETAILS

𝑦

𝑥

𝑧

𝑦

𝑥

𝑧

VGGT 𝜋! (ours)

Figure 6: Comparison of predicted pose dis-
tributions. We visualize the predicted pose dis-
tributions in 3D space. π3 shows a clear low-
dimensional structure, while VGGT’s distribution
is scattered.

We train π3 in two stages, a process similar to
Dust3R (Wang et al., 2024). First, the model is
trained on a low resolution of 224 × 224 pix-
els. Then, it is fine-tuned on images of random
resolutions where the total pixel count is be-
tween 100,000 and 255,000 and the aspect ra-
tio is sampled from the range [0.5, 2.0], a strat-
egy similar to MoGe (Wang et al., 2025c). We
use a dynamic batch sizing strategy similar to
VGGT. In the first stage, we sample 64 images
per GPU, and in the second stage, we sample
48 images per GPU. Each batch is composed of
2 to 24 images. Each training stage runs for 80
epochs, with each epoch comprising 800 itera-
tions. Our final model is not trained from scratch. Instead, we initialize the weights for the encoder
and the alternating attention module from the pre-trained VGGT model, and we keep the encoder
frozen during training. We train the first stage on 16 A100 GPUs and the second stage on 64 A100
GPUs. For our loss function, we set the weights for each component as follows: λnormal = 1.0,
λconf = 0.05, λcam = 0.1, and λtrans = 100.0. The implementation of our normal loss follows
that of MoGe, and the resolution for aligning the local point map loss is set to 4096. Regarding
optimization, we set the initial learning rate for all model components to 5 × 10−5. We employ a
OneCycleLR scheduler, where the learning rate anneals from its maximum value down to a mini-
mal value over the entire training duration following a cosine curve. We use the same learning rate
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Table 8: Comparison with VGGT when trained from scratch.

Method ETH3D 7-Scenes NRGB
Acc. ↓ Comp. ↓ Acc. ↓ Comp. ↓ Acc. ↓ Comp. ↓

π3 0.618 0.453 0.064 0.068 0.071 0.047
VGGT (Wang et al., 2025a) 0.563 0.449 0.057 0.046 0.060 0.042
π3 + global proxy 0.418 0.266 0.059 0.071 0.052 0.035

and scheduler settings for both stages. The confidence head is not trained jointly with the other
modules. Instead, after completing the two main training stages, we freeze the rest of the network
and train the confidence head in isolation. This final stage converges rapidly, typically within a few
epochs, without impacting the model’s overall performance. We use gradient clipping with a norm
of 1.0.

A.3 DISCUSSION FOR PREDICTED POSE DISTRIBUTION

In Figure 6, we analyze the geometric properties of the learned representations by visualizing the
distribution of predicted camera poses. In this plot, the spatial coordinates (x, y, z) correspond to
the translation component, while the rotation is encoded into the RGB color space. Specifically,
we convert each predicted rotation matrix into an axis-angle vector, normalize its components to
the range [0, 1], and map them to the Red, Green, and Blue channels. The visualization reveals a
striking contrast: while VGGT’s distribution appears scattered and random, our predictions form a
distinct low-dimensional structure. This suggests that our model effectively captures the underlying
geometric manifold, which is likely a key factor contributing to its superior performance.

A.4 COMPARISON WITH VGGT

This section details an experiment designed solely for a fair comparison against VGGT (Wang et al.,
2025a). A direct comparison is challenging because training our model from scratch with only
its core objectives (camera poses and local pointmaps) leads to suboptimal convergence, whereas
VGGT’s design incorporates a multi-task learning setup.

We attribute this difficulty to the “cold start” problem inherent in relative pose supervision. Unlike
reference-anchored methods, our approach generates highly coupled N × N relative constraints,
which are significantly more unstable to optimize from a completely random initialization.

To address this, we introduce an auxiliary head to predict a global pointmap relative to a reference
frame, using a loss analogous to Eq. 3.2. Crucially, while the reference view is used via cross-
attention in this head, it serves purely as a proxy task to decouple geometry learning and stabilize
the optimization landscape. Our final model remains fully permutation-equivariant.

We train both our adapted model and VGGT under these identical, multi-task conditions: from
scratch (except for DINOv2 encoders) on the same data, at a 224 × 224 resolution for 80 epochs
(800 steps/epoch). We use the same data as described in Section 3.4.

As shown in Table 8, once the optimization stability is ensured by the global proxy, π3 significantly
outperforms the VGGT baseline on ETH3D and NRGB benchmarks. Note that while our model
can be trained from scratch effectively with this proxy, we utilize VGGT initialization in our main
experiments to maximize computational efficiency and leverage the large-scale data priors captured
in the pre-trained weights.

A.5 CAMERA POSE EVALUATION METRICS

Angular Accuracy Metrics. Following prior work (Wang et al., 2024; 2025a), we evaluate
predicted camera poses on the scene-level RealEstate10K (Zhou et al., 2018) and object-centric
Co3Dv2 (Reizenstein et al., 2021) datasets, both featuring over 1000 test sequences. For each se-
quence, we randomly sample 10 images, form all possible pairs, and compute the angular errors
of the relative rotation and translation vectors. This process yields the Relative Rotation Accuracy
(RRA) and Relative Translation Accuracy (RTA) at a given angular threshold (e.g. 30 degrees). The
Area Under the Curve (AUC) of the min(RRA,RTA)-threshold curve serves as a unified metric. All
methods in Table 1 have been trained on Co3Dv2, while RealEstate10K is excluded from trainset
except for CUT3R (Wang et al., 2025b).
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Input Images Ours VGGT FLARE Fast3R

Figure 7: Qualitative comparison of in-the-wild multi-view 3D reconstruction. π3 demonstrates
superior robustness on challenging in-the-wild sequences, consistently producing more coherent and
complete 3D structures for both dynamic and complex static scenes compared to other feed-forward
approaches.

Distance Error Metrics. Following (Wang et al., 2025b), we report the Absolute Trajectory Error
(ATE), Relative Pose Error for translation (RPE-t), and Relative Pose Error for rotation (RPE-r)
on the synthetic outdoor Sintel (Bozic et al., 2021) dataset, as well as the real-world indoor TUM-
dynamics (Sturm et al., 2012) and ScanNet (Dai et al., 2017) datasets. Predicted camera trajectories
are aligned with the ground truth via a Sim(3) transformation before calculating the errors. All meth-
ods in Table 1 have seen ScanNet or ScanNet++ (Yeshwanth et al., 2023) samples during training
time. Zero-shot pose estimation accuracy is evaluated on Sintel and TUM-dynamics for all methods.

A.6 ABLATION DETAILS

The primary difference between our full model and the ablated models (Model 1 and Model 2) is
that the latter two incorporate a camera token. This token is essential for distinguishing the refer-
ence view, as the model is no longer permutation-equivariant after the removal of the affine-invariant
camera pose modeling. At each iteration, the camera token is concatenated with a randomly selected
reference view before the alternating-attention module similar to (Wang et al., 2025a). We compute
an angle loss for rotation and a Huber loss for translation between the predicted and ground-truth
poses in the reference view’s coordinate system for Model 1 and Model 2. While Model 1 and
Model 2 share an identical architecture and parameter count, their key distinctions lie in the loss
calculation and normalization processes. For Model 1, we neither perform alignment during the loss
computation for the predicted pointmap nor do we normalize the pointmap itself. We found that ap-
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plying normalization in this specific case led to anomalous and significantly degraded performance,
a phenomenon also observed in prior work (Wang et al., 2025a). In contrast, the predicted local
pointmaps are normalized for both Model 2 and the full model.

For a fair comparison, all models were trained for 80 epochs, with 800 iterations per epoch, on
images with a resolution of 224 × 224. They shared the same initialization procedure as our final
model: we loaded pre-trained weights for the VGGT encoder and alternating-attention layers, and
kept the encoder frozen throughout training. For the 7-Scenes and NRGBD datasets, we use the
same dense view setting as in the previous section.

A.7 ADDITIONAL EVALUATION

Camera pose estimation with tighter angular thresholds. Following the protocol of VGGT (Wang
et al., 2025a), Tab. 1 primarily reports the RRA, RTA, and AUC metrics using a relaxed angular
threshold of 30◦. However, to better assess precision, we also examine tighter thresholds, such as 5◦
and 15◦ used by Fast3R (Yang et al., 2025) and FLARE (Zhang et al., 2025). Accordingly, in Tab.
9, we present a full set of RRA, RTA, and AUC metrics across thresholds of 1◦, 3◦, 5◦, 10◦, and
15◦, evaluated on RealEstate10K. Our π3 model demonstrates robust and consistent performance
even with these more demanding constraints.

Table 9: Camera pose estimation with tighter angular thresholds on RealEstate10K

Method
RRA (↑) RTA (↑) AUC (↑)

@1 @3 @5 @10 @15 @1 @3 @5 @10 @15 @1 @3 @5 @10 @15

Fast3R (Yang et al., 2025) 54.30 87.24 94.78 97.90 98.46 5.47 24.56 39.23 59.29 69.11 3.77 13.67 22.36 37.33 46.71
CUT3R (Wang et al., 2025b) 78.63 96.06 98.15 99.31 99.63 16.23 51.43 67.44 82.98 88.93 13.40 33.39 45.63 61.78 70.15
FLARE (Zhang et al., 2025) 70.99 93.42 97.11 98.98 99.44 11.01 43.33 62.39 82.29 89.20 8.43 25.67 38.47 57.20 67.02
VGGT (Wang et al., 2025a) 69.68 92.70 97.06 99.40 99.74 8.58 39.93 60.61 80.20 86.34 6.23 22.25 35.46 54.76 64.54
π3 (Ours) 85.19 97.56 98.83 99.63 99.86 27.57 65.57 78.32 88.69 92.02 24.87 47.28 58.63 72.11 78.39

Point map estimation with Chamfer Distance(CD). To further evaluate the quality of the point map
estimation, we additionaly calculate the Chamfer Distance metric, which is defined as the mean
value of the Accuracy (Acc.) and Completion (Comp.) terms. The results across all evaluation
datasets are reported in Tab. 10.

Table 10: Point map estimation with Chamfer Distance.
Method

7-Scenes-sparse 7-Scenes-dense NRGBD-sparse NRGBD-dense DTU ETH3D
CD-mean↓ CD-med↓ CD-mean↓ CD-med↓ CD-mean↓ CD-med↓ CD-mean↓ CD-med↓ CD-mean↓ CD-med↓ CD-mean↓ CD-med↓

Fast3R (Yang et al., 2025) 0.150 0.111 0.048 0.018 0.150 0.097 0.061 0.024 3.134 1.476 0.875 0.646
CUT3R (Wang et al., 2025b) 0.097 0.049 0.025 0.009 0.091 0.036 0.065 0.025 4.021 1.886 0.684 0.551
FLARE (Zhang et al., 2025) 0.115 0.083 0.023 0.010 0.052 0.023 0.020 0.009 2.834 1.409 0.564 0.377
VGGT (Wang et al., 2025a) 0.050 0.029 0.024 0.010 0.058 0.032 0.015 0.007 1.619 0.888 0.287 0.177
π3 (Ours) 0.061 0.039 0.019 0.009 0.026 0.013 0.013 0.006 1.472 0.626 0.199 0.128

Monocular depth estimation compared with Depth Anything V2 (Yang et al., 2024), one of the
SOTA models for monocular depth estimation. We evaluate it on our standard benchmarks with
input resolution 518, following CUT3R (Wang et al., 2025b) protocol. As shown in Tab. 11, π3

achieves comparable performance to the specialized DAv2, despite being designed for generalist
multi-view reconstruction.

Table 11: Monocular depth estimation.

Method
Sintel Bonn KITTI NYU-v2

Abs Rel↓ δ < 1.25 ↑ Abs Rel↓ δ < 1.25 ↑ Abs Rel↓ δ < 1.25 ↑ Abs Rel↓ δ < 1.25 ↑
DA V2 (Yang et al., 2024) 0.372 0.541 0.126 0.804 0.090 0.919 0.081 0.921

- metric indoor - 0.372 - 0.541 - 0.126 - 0.804 - 0.097 - 0.912 - 0.081 - 0.921

- metric outdoor - 0.478 - 0.477 - 0.186 - 0.668 - 0.090 - 0.919 - 0.172 - 0.689

MoGe 0.273 0.695 0.050 0.976 0.049 0.979 0.055 0.952
- v1 (Wang et al., 2025c) - 0.273 - 0.695 - 0.050 - 0.976 - 0.054 - 0.977 - 0.055 - 0.952

- v2 (Wang et al., 2025d) - 0.277 - 0.687 - 0.063 - 0.973 - 0.049 - 0.979 - 0.060 - 0.940

π3 (Ours) 0.277 0.614 0.044 0.976 0.060 0.971 0.054 0.956

A.8 LIMITATIONS

Our model demonstrates strong performance, but it also has several key limitations. First, it is unable
to handle transparent objects, as our model does not explicitly account for complex light transport
phenomena. Second, compared to contemporary diffusion-based approaches, our reconstructed ge-
ometry lacks the same level of fine-grained detail. Finally, the point cloud generation relies on a
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simple upsampling mechanism using an MLP with pixel shuffling. While efficient, this design can
introduce noticeable grid-like artifacts, particularly in regions with high reconstruction uncertainty.

A.9 LLM USAGE STATEMENT

In the preparation of this manuscript, we utilized a Large Language Model (LLM) as a writing
assistant. The LLM’s role was strictly limited to improving the manuscript’s clarity, correcting
grammatical errors, and refining the overall language for professional academic standards. All sci-
entific contributions, including the core ideas, methodology, experimental design, and interpretation
of results, are the original work of the authors.
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