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ABSTRACT

Existing research often treats long-form videos as extended short videos, leading
to several limitations: inadequate capture of long-range dependencies, inefficient
processing of redundant information, and failure to extract high-level semantic
concepts. To address these issues, we propose a novel approach that more ac-
curately reflects human cognition.1 This paper introduces HERMES: temporal-
coHERent long-forM understanding with Episodes and Semantics, a model that
simulates episodic memory accumulation to capture action sequences and rein-
forces them with semantic knowledge dispersed throughout the video. Our work
makes two key contributions: First, we develop an Episodic COmpressor (ECO)
module that efficiently aggregates crucial representations from micro to semi-
macro levels, overcoming the challenge of long-range dependencies. Second, we
propose a Semantics reTRiever (SeTR) that enhances these aggregated represen-
tations with semantic information by focusing on the broader context, dramati-
cally reducing feature dimensionality while preserving relevant macro-level infor-
mation. This addresses the issues of redundancy and lack of high-level concept
extraction. Extensive experiments demonstrate that HERMES achieves state-of-
the-art performance across multiple long-video understanding benchmarks in both
zero-shot and fully-supervised settings. Our code will be made public.

Figure 1: Semantic Knowledge and Episodic Memory Aggregation: Our Episodic COmpressor
(ECO) processes input video frames and aggregates key episodes: (I) A cosmic setting with a planet
and starfield, (II) A narrator explaining the scene, and (III) An aircraft viewed from inside and out.
Concurrently, our Semantics reTRiever (SeTR) identifies high-level semantic cues throughout the
video, including: (I) The theme of space exploration and (II) Human interaction with technology.
This dual-level approach enables comprehensive video understanding by capturing both specific
events and overarching concepts.

1 INTRODUCTION

Video understanding reflects how humans perceive the world through one of our most essential
senses, sight, and drives a wide range of visual and multimodal applications. Whether we want

1We elaborate on this in Appendix A.7
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to create better video summarization tools, index and retrieve specifics from the vast and ever-
expanding array of video content, or improve content moderation and copyright enforcement, we
need models that excel at video understanding. This requirement extends beyond short videos with
few frames—a task that image models can already handle adequately—to encompass the analysis
of extended video content spanning minutes and comprising thousands of interrelated frames.

Long-form video understanding is challenging for several reasons. First and foremost is the tempo-
ral complexity, as it requires handling a large number of frames throughout the video. Second, it
requires a semantic understanding of high-level concepts as well as the narrative structure. The third
challenge is the memory and computational constraints, making it non-trivial to solve the previous
two challenges. Attempts to address these issues have been made by researchers who mainly borrow
ideas from short videos (Wu & Krahenbuhl, 2021; Miech et al., 2020), which is a more mature area
of research encompassing action recognition and video classification, among others, and for which
datasets are more abundant. However, these approaches, which adopt techniques such as pooling
(Faure et al., 2023), or 3D convolutions (Feichtenhofer et al., 2019), often do not fully account for
the unique characteristics of long videos that distinguish them from a simple concatenation of short
video segments. Some ideas about short-video modeling, especially for those at the spatial level,
may also hold for longer ones, but when it comes to long-term modeling, macro-level representations
should be extracted efficiently.

In video understanding, we can distinguish between two types of information: episodic and se-
mantic. Episodic information refers to specific, sequential events that occur in a video, while se-
mantic information encompasses overarching themes and concepts. To illustrate, imagine walk-
ing through a scene at a birthday party. Episodic information might include observing five peo-
ple singing a birthday song, followed by one person cutting a cake. These are specific, time-
bound events. In contrast, semantic information might involve recognizing decorations scattered
throughout the scene, instantly comprehending that you’re witnessing a birthday party. This high-
level understanding provides a concise overview of the scene and actions, transcending specific
moments. Building on these concepts, we propose temporal-coHERent long-forM understanding
with Episodes and Semantics (HERMES), a model designed to capture both episodic and seman-
tic information in long-form videos. HERMES comprises two key components: ECO and SeTR.
The Episodic COmpressor (ECO) aggregates key contiguous information as we process the video,
shaping the model’s understanding of the scene sequentially without cluttering it. Complementing
this, the SEmantic reTRiever (SeTR) identifies and extracts high-level cues that provide a concise
overview of the scene and actions. HERMES achieves state-of-the-art performance on four long-
form video understanding benchmarks in both zero-shot and fully-supervised settings, notably out-
performing the state-of-the-art by a significant 7.3% on LVU(Wu & Krahenbuhl, 2021) and 14.9%
on MovieChat-1k (Song et al., 2024).

Our key contributions are as follows:

• We address the challenge of efficiently processing and understanding long-form videos, a prob-
lem that has been hindered by computational constraints and the difficulty of capturing complex
temporal dynamics over extended durations.

• We propose an Episodic COmpressor (ECO) to stream through the video and keep important
episodes by aggregating similar scenes. ECO enables efficient processing of extended video se-
quences while preserving temporal coherence and narrative structure.

• We develop a Semantics reTRiever (SeTR) that enhances the model’s understanding of long videos
by distilling high-level semantic cues, providing a cohesive framework for understanding the con-
text and themes within long-form videos.

Through comprehensive evaluation across multiple benchmarks and detailed ablation studies, we
validate the effectiveness of ECO and SeTR, and demonstrate their complementary roles in enhanc-
ing long-form video understanding

2 PROBLEM SETTING

Given a long video V = {f1, f2, . . . , fN}, where fi represents the i-th frame and N is the total
number of frames, our objective is to develop a model M that can efficiently process V and construct

2
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an internal understanding U of its content. This understanding should enable the model to answer
queries Q or follow instructions I related to the video content. Formally, we aim to optimize the
function:

M : (V, I)→ U (1)
such that:

• U captures both episodic and semantic information from V .
• U can be used to maximize the probability P (A|Q,U) of generating correct answers A to queries
Q about the video content.

The key challenges in this formulation are:

• Temporal Complexity: Efficiently processing N frames, where N can be very large (thousands
of frames for minutes-long videos).
• Semantic Understanding: Extracting high-level concepts and narrative structure from the video

content.
• Memory Constraints: Developing a method that can maintain relevant information without ex-

hausting computational resources.

We aim to address these challenges, by proposing two key contributions:

1. Episodic COmpressor (ECO):

ECO : f1, f2, . . . , fN → e1, e2, . . . , eK (2)

where K ≪ N , and ei represents a compressed episodic memory.
2. Semantics reTRiever (SeTR):

SeTR : {f1, f2, . . . , fN} → {s1, s2, . . . , sL} (3)

where L≪ N , and si represents extracted semantic knowledge.

The final understanding U is then generated by combining the outputs of ECO and SeTR:

U = G(ECO(V, I), SeTR(V )) (4)

where G is a function that integrates episodic and semantic information. This formulation allows
us to approach long-form video understanding in a way that more closely mimics human cognition,
addressing the identified challenges while maintaining computational efficiency.

3 PROPOSED FRAMEWORK: HERMES

This paper is not about a new LLM or a new way to fine-tune existing LLMs or VLMs. It focuses on
leveraging what we know about how humans understand visual scenes to guide the model through
the same process. Although this work uses an LLM for autoregressive prediction, the core ideas of
episodic memory compression (ECO) and semantic knowledge retrieval (SeTR) can be applied to
other models where learning contiguous sequences and high-level representations is advantageous.

Given a video, short or long, and a set of instructions specifying what to do with the video, our
method can return the specified output, such as video question answering (VQA) or video classifi-
cation. It achieves this by leveraging two important properties of human understanding of scenes:
episodic memory, which involves determining and stratifying a sequence of frames with similar
properties, and semantic knowledge, which can help answer broad questions about the scene (e.g.,
does it occur at night or during the day?). We refer to the former as ECO, detailed in Section 3.2,
and to the latter as SeTR, described in Section 3.4.

3.1 WINDOW ENCODER

Our model takes as input a video of arbitrary length. To batch process the video, we first specify a
number of frames N to extract, leading to v = {f1, f2, . . . , fN}, where ft denotes the t-th frame. The

3
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Figure 2: HERMES framework overview: We stream through a video window-by-window and
extract features using a frozen ViT. Each window feature is processed by the Episodic COmpres-
sor (ECO) in an online fashion, discarding redundancies along the way and retaining video episodes
that are passed to an episodic Q-Former. The video token bank contains the concatenated features of
every window, and SeTR selects only the high-level information to pass to a hierarchical frame-to-
sequence Q-Former. The episodic and high-level representations are then concatenated before being
fed to the frozen LLM, which outputs a text following the instructions.

ViT-G/14 encoder (Fang et al., 2023) progressively encodes non-overlapping windows of the video
data. The window size w is a divisor of N and determines how many frames to encode at once. The
features of each window are denoted as Fw,i ∈ RB×w×T×C , where Fw,i are the extracted features
for the i-th window, B the batch size, T the number of visual tokens, and C the number of channels.
Fw are then passed on to the Episodic COmpressor (ECO) described in Section 3.2.

3.2 ECO: EPISODIC COMPRESSOR

Algorithm 1 ECO: Episodic COmpressor

1: A ←M⊕ Fw

2: while ∥A∥ > E do
3: (i∗, j∗)← argmaxi ̸=j

Ai·Aj

∥Ai∥∥Aj∥

4: Ai∗ ←
(Ai∗+Aj∗ )

2
5: A ← A \ Aj∗

6: end while
7: M←A

The proposed Episodic COmpressor (ECO) aggre-
gates the video frames into episodes. This module
maintains a memory buffer with a maximum num-
ber of episodes E. Upon receiving a window of
frame features, Fw, we first check whether the buffer
M has sufficient bandwidth to support the incoming
features. If it does, we simply concatenate them to
the buffer; otherwise, we proceed with the compres-
sion. At its core, ECO is a distribution process that
determines the episode to which a certain frame be-
longs. It can be summarized as:

M =

{
M⊕ Fw if ∥M∥+ ∥Fw∥ ≤ E

ECO(M, Fw) otherwise
(5)

4
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Where ⊕ is the concatenation operation, ∥M∥ and ∥Fw∥ the sizes of the buffer and the incoming
features, respectively.

ECO works as Algorithm 1. As long as concatenating the new window and the buffer results in a size
greater than E, we compute the cosine similarity between each pair of frame features inM⊕ Fw.
We then iteratively merge the most similar frames until the size constraint E is satisfied. Specifically,

whereM is the existing buffer, Fw represents the incoming window of frame features,A is the con-
catenated buffer and new window, and ∥A∥ is the size of A. To summarize Algorithm 1, Ai·Aj

∥Ai∥∥Aj∥
computes the cosine similarity between frame features Ai and Aj , argmaxi ̸=j finds the pair of
frames with the highest cosine similarity, (Ai∗+Aj∗ )

2 combines the most similar frames, andA\Aj∗

removes the frame Aj∗ from A after merging. The process repeats until the size of A is within the
maximum allowed episodes E.

Similarities can be drawn with He et al. (2024), where cosine similarity serves as the basis for frame
reduction. However, their approach is notably inefficient and less intuitive. For a buffer of size
S, they iterate S times until the buffer reaches capacity, after which each new incoming frame is
compared against every other frame in the buffer.

3.3 EPISODIC Q-FORMER

The Episodic Q-Former uses the same architecture as the original Q-Former (Li et al., 2023a) and is
loaded with weights pretrained by Dai et al. (2023). However, we insert ECO as a pruning module
within the Q-Former to combine and branch queries into episodes over the long video. Given initial
queries and instructions, we perform self-attention on these queries and then cross-attention between
the queries and the visual representations M. The enhanced queries then undergo an ECO-like
process, where we iteratively merge similar queries across video windows, effectively forming video
query episodes of high information density. The following equation summarizes the process,

Q = ECOq (CA (SA(Q0),M)) (6)

where Q0 represents the initial queries,M denotes the visual representations from the visual ECO,
SA(Q0) applies self-attention on the initial queries, and CA(·,M) performs cross-attention between
the self-attended queries and the visual representations. Finally, ECOq(·) – note the q to differentiate
it from the visual ECO – applies the iterative merging process similar to the visual compression
detailed in Section 3.2 on the enhanced queries. The episodic Q-Former outputs Q ∈ RB×q×C′

with B, q and C ′ alluding to the batch size, the number of queries and the channel dimension,
respectively.

3.4 SETR: SEMANTICS RETRIEVER

To complement ECO and capture higher-level semantic information from the video, we develop
a Semantics reTRiever (SeTR). SeTR is designed to identify and consolidate important high-level
information that may be scattered (contiguously or not) throughout the video. Given a video feature
tensor F ∈ RB×N×T×C , where B is the batch size, N the number of frames, T the number of
tokens per frame and C the channel dimension, SeTR operates as follows: we first normalize F to
ensure consistent scaling across features. Second, we apply a stride of k to create two groups, group
X containing every k-th frame, resulting in N

k frames and group Y with the remaining N − N
k

frames. Third, we calculate dot product similarity scores between frames in X and Y . Finally, for
each frame in Y , we merge it with its most similar frame in X , based on the computed scores by
taking their mean.

This process effectively reduces the number of frames from N to N
k , consolidating semantic in-

formation while maintaining the most relevant features across the video timeline. The resulting
semantic representations are denoted as F ′ ∈ RB×N

k ×T×C . We evaluate the effectiveness of this
approach in Section 4.3. While ToMe (Bolya et al., 2022) have explored token reduction in vision
transformers, their approach and objectives differ significantly from ours. Their method focuses
on minor token reductions within individual frames, specifically between different layers of a Vi-
sion Transformer. In contrast, SeTR retains the most salient frames while significantly reducing
redundancies.
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3.5 HIERARCHICAL QFORMER

Following our SeTR, is a hierarchical Q-Former composed of a frame Q-Former (fQFormer), a
frame-to-sequence adapter and a video Q-Former (vQFormer). The frame Q-Former enhances
each semantic piece of information, independently of the others, and the video Q-Former consol-
idates them. The resulting query Qsem ∈ RB×q×C′

contains the semantic representations of the
entire video.

Qsem = vQFormer(Linear(fQFormer(F ′))) (7)

3.6 FROM REPRESENTATIONS TO NATURAL LANGUAGE

After obtaining the episodic representations Q and the semantic representations Qsem, we prepare
them for input into a Large Language Model (LLM). Specifically, we concatenate Q and Qsem to
form a unified representation vector. This concatenated vector is then projected into the input em-
bedding space of the LLM using a learned linear transformation. In our implementation, we utilize
a Vicuna-7B model (Chiang et al., 2023) as LLM. The model, conditioned on this projected repre-
sentation and guided by task-specific instructions, generates the requested natural language output.
This approach allows us to leverage the LLM’s pretrained knowledge and language generation ca-
pabilities while incorporating our task-specific episodic and semantic information. The process is
summarized by the following equation:

Ŷ = LLM(W [Q;Qsem] + b, I) (8)

where Ŷ is the generated output, [Q;Qsem] denotes the concatenation of Q and Qsem, W and b are
the learned projection matrix and bias respectively, and I represents the task-specific instructions.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

We evaluate our approach on two primary tasks: long-form video classification and long-form video
question answering.

For long-form video classification, we utilize three diverse datasets. The first, LVU (Wu & Krahen-
buhl, 2021), focuses on movie content, offering a rich source of narrative and thematic video data.
The second, Breakfast (Tang et al., 2019), consists of instructional videos that emphasize procedural
and step-by-step understanding. Lastly, COIN (Kuehne et al., 2014) is another instructional video
dataset, but it covers a broader range of procedural activities compared to Breakfast. We report top-1
classification accuracy on these datasets.

For long-form video question answering, we employ the MovieChat-1k dataset (Song et al., 2024)
and report both zero-shot and fully-supervised results. As evaluation metrics, we follow the evalu-
ation protocol developed by Maaz et al. (2023), employing GPT-3.5-turbo (Brown et al., 2020) to
assess both accuracy and answer quality score.

4.2 QUANTITATIVE RESULTS

We present our long video action classification results in Table 1 for LVU (Wu & Krahenbuhl, 2021),
Table 2 for Breakfast (Kuehne et al., 2014) and COIN (Tang et al., 2019), and compare HERMES ’s
performance against transformer-based models, including Object Transformers (Wu & Krahenbuhl,
2021), Movies2Scenes (Chen et al., 2023), and FACT (Lu & Elhamifar, 2024); hybrid state-space
and transformer-based models such as Vis4mer (Islam & Bertasius, 2022), TranS4mer (Islam et al.,
2023), and S5 (Wang et al., 2023); as well as the LLM-based model MA-LMM (He et al., 2024). For
the MovieChat-1k dataset (Song et al., 2024), our results are presented in Table 3, where we compare
against recent LLM-based models including MovieChat (Song et al., 2024), Video-ChatGPT (Maaz
et al., 2023), Video-LLaMA (Zhang et al., 2023), and VideoChat (Li et al., 2023b). Our method
achieves state-of-the-art performance across all datasets, with notable accuracy improvements of
7.3% on LVU and 14.9% on MovieChat-1k, significantly surpassing previous methods.

6
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Table 1: SOTA Comparison on the LVU Dataset: The table presents Top-1 accuracy for
various models. Unlike the minor incremental improvements observed among other methods,
our model demonstrates a significant performance leap, outperforming its nearest competitor
by 7.3%. The highest score is highlighted in bold, and the second highest is underlined.

Model Content Metadata AvgRelation Speak Scene Director Genre Writer Year

Object Transformer 53.1 39.4 56.9 52.1 54.6 34.5 39.1 47.1
VIS4mer 57.1 40.8 67.4 62.6 54.7 48.8 44.8 53.7
TranS4mer 59.5 39.2 70.9 63.9 55.9 46.9 45.5 54.5
S5 67.1 42.1 73.5 67.3 65.4 51.3 48.0 59.2
Movies2Scenes 71.2 42.2 68.2 70.9 57.8 55.9 53.7 60.0
MA-LMM 58.2 44.8 80.3 74.6 61.0 70.4 51.9 63.0

HERMES (Ours) 67.6 47.5 90.0 82.6 69.5 77.2 57.7 70.3

Table 2: Performance comparison on
Breakfast and COIN datasets (Top-1 ac-
curacy). Our method outperforms state-of-
the-art models on both datasets.

Model Breakfast COIN
FACT 86.1 -
VIS4mer 88.2 88.4
MA-LMM 93.0 93.2
S5 90.7 90.8
TranS4mer 90.3 89.2

HERMES (Ours) 95.2 93.5

Table 3: Zero-shot performance on MovieChat-1k.
Our model significantly outperforms existing methods.
The model marked with ‡ is fully supervised.

Model Global Breakpoint
Acc. Score Acc. Score

MovieChat 63.7 3.15 48.1 2.46
Video-ChatGPT 58.7 2.89 47.8 2.43
Video-LLaMA 56.3 2.72 45.8 2.11
VideoChat 60.2 3.08 46.3 2.32

HERMES (Ours) 78.6 4.23 57.3 3.29
HERMES (Ours)‡ 84.9 4.40 65.8 3.65

4.3 ABLATION STUDIES

Ablations are conducted on the MovieChat-1k test set (global mode) using the zero-shot setting with
additional ablations on the Breakfast dataset using the fully-supervised setting. These experiments
focus on our two primary contributions, ECO and SeTR. For an extended and more comprehensive
ablations, please refer to Appendix A.4.

How important is ECO? In Table 4, we demonstrate the critical role of ECO through several ex-
periments. The results clearly indicate that the absence of our ECO and the Episodic Q-Former leads
to a significant degradation in model performance due to the model lacking micro-level continuous
representations. We further explore alternative update strategies, including randomly selecting fea-
tures to retain (Rand.) and employing a first-in-first-out (FIFO) streaming approach. Our proposed
update strategy outperforms both the Rand. and FIFO methods, highlighting its efficacy in retaining
more relevant episodes. It is worth noting that during these ablations, SeTR remains active.

How important is SeTR? SeTR is designed to complement the episodic knowledge of our model
with semantic insights. In Table 5, we observe that removing SeTR results in a 5% drop in accuracy.
Additionally, we show that naive methods such as max pooling and average pooling are not as
effective.

Do we need a hierachical Q-Former? Yes. We conducted an ablation study on the Breakfast
dataset (Kuehne et al., 2014), to evaluate the efficacy of our proposed hierarchical Q-Former ar-
chitecture. As shown in Table 6, our hierarchical Q-Former achieves superior performance with
an accuracy of 95.2%, outperforming both flat frame-level (fQFormer, 93.2%) and video-level
(vQFormer, 94.1%) architectures. This improvement can be attributed to the hierarchical struc-
ture’s ability to capture multi-scale features, effectively aggregating information from frame to video
level. By first processing frame-level details and then aggregating them at the video level, our ap-

7
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Table 4: Ablations on the
memory update design of our
Episodic COmpressor (ECO).

Acc. Score

w/o 55.1 3.55
Rand. 76.9 4.13
FIFO 77.1 4.15
ECO 78.6 4.23

Table 5: Ablations on dif-
ferent semantic compression
methods.

Acc. Score

w/o 73.3 4.09
MaxPool 70.4 3.99
AvgPool 73.3 4.04
SeTR 78.6 4.23

Table 6: Performance comparison
between frame Q-Former, video
Q-Former and our hierarchical Q-
Former architecture.

Acc.

Flat fQFormer 93.2
Flat vQFormer 94.1
Hierarchical QFormer 95.2

Table 7: Zero-shot performance comparison of MA-LMM with and without ECO and
SeTR integration on MovieChat-1k.

Model Acc. Score Latency (s)

MA-LMM 73.3 4.05 467

MA-LMM + ECO 76.7 (+3.4) 4.14 (+0.09) 266 (-43%)

MA-LMM + SeTR 77.1 (+3.8) 4.16 (+0.11) 474 (+1.5%)

HERMES (Ours) 78.6 (+5.3) 4.23 (+0.18) 250 (-46%)
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Figure 3: Effect of the number of ECO
episodes on the model’s accuracy on the
MovieChat-1k and Breakfast datasets.
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Figure 4: Effect of the SeTR ’s keep ratio on
the model’s accuracy on the MovieChat-1k and
Breakfast datasets.

proach mitigates information loss that may occur in direct video-level processing while avoiding the
computational intensity of processing every frame individually.

ECO as off-the-shelf memory manager. We evaluate the impact of our Episodic COmpressor
(ECO) as plug-ins to the existing MA-LMM model (He et al., 2024) by replacing the memory bank
of MA-LMM. ECO is designed to efficiently process long video sequences while preserving tempo-
ral coherence and narrative structure. The results in Table 7 demonstrate substantial improvements
with ECO integration with an accuracy increase by 3.4%. Moreover, ECO demonstrates superior
efficiency compared to MA-LMM’s memory bank, almost halving the overall inference latency.

SeTR as off-the-shelf semantics retriever. We also integrate our Semantics reTRiever (SeTR)
into MA-LMM. SeTR is designed to enhance long video understanding by distilling high-level se-
mantic cues, providing a cohesive framework for comprehending context and themes in long-form
videos. As shown in Table 7, the integration of SeTR results in significant performance improve-
ments. Accuracy increases by 3.8%, while the score improved by 0.11 points. Remarkably, these
substantial performance gains were achieved with only a marginal 1.5% increase in inference time,
highlighting the computational efficiency of SeTR and its potential for seamless integration into
models requiring enhanced semantic representations.
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Both SeTR and ECO yield significant performance enhancements when integrated with MA-LMM.
SeTR showed a marginally higher performance boost in accuracy, which is expected given its role
as a semantic add-on to MA-LMM’s existing memory management system.
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60

65

70

75

80

A
cc

ur
ac

y 
(%

)

64.8

78.6

73.3

Model Comparison: Accuracy vs Inference Time
Accuracy (%)

200

300

400

500

In
fe

re
nc

e 
Ti

m
e 

(s
)

259 250

467

Inference Time (s)

Figure 5: Our method is 46% faster than MA-
LMM while being 5.3% more accurate, and regis-
ters an absolute gain of 13.8% accuracy compared
to ToMe.

How effective and efficient is ECO compared
to other memory compressors? To demon-
strate the effectiveness and efficiency of our
proposed ECO, we conduct a comparative anal-
ysis against two strong existing compression
techniques: ToMe (Bolya et al., 2022) and MA-
LMM (He et al., 2024) in Figure 5. We calcu-
late the inference time for each model on the
MovieChat-1k dataset. Powered by ECO our
model achieves the highest accuracy (78.6%)
among all models, outperforming MA-LMM
by 5.3% and ToMe by a substantial 13.8%.
HERMES achieves the highest inference speed
among the compared models, while also main-
taining superior accuracy. It is slightly faster
than ToMe and significantly outperforms MA-
LMM, reducing inference time by 46% com-
pared to the latter. These results demonstrate our model’s ability to deliver state-of-the-art accuracy
without compromising on efficiency.

Hyperparameters for ECO and SeTR. Our experiments on the MovieChat-1k (zero-shot) and
Breakfast (fully-supervised) datasets reveal compelling insights into the optimal configuration of
ECO (Figure 3) and SeTR (Figure 4). For ECO, we discover that an episodic memory size of 20 con-
sistently yields peak performance across both datasets, achieving a 78.6% accuracy on MovieChat-
1k and a 95.2% on Breakfast. This sweet spot balances comprehensive video representation with
computational efficiency, as larger memory sizes show diminishing returns. SeTR’s performance
proved equally intriguing, with a keep ratio of 20% (reducing representations by 80%) emerging as
the optimal choice. Remarkably, even at extreme keep ratios as low as 5%, our model exhibits ro-
bust performance, with a very slight decrease in accuracy. Such results demonstrate the resilience of
HERMES to hyperparameter variations suggesting that it is suitable for deployment across diverse
video understanding datasets with minimal hyperparameter tuning.

Question # 1: What is the expression on the faces of the spectators?
MovieChat: It's difficult to accurately describe the expressions on the faces of the spectators
without more context, but it appears that there are a mix of happy and serious expressions. Some
people may be more interested in the fireworks, while others may be focused on the crane. Ours: Surprised

Question # 2: Is the main actor in a foreign country or his own?
MovieChat: At the beginning of the video, a man is seen flying through a dark sky. The next
scene shows a construction site with a crane in the background. The next scene shows a man
flying through a dark sky again. Then, a person falls off a train in a dark room, followed by a man
on a boat and another man at a construction site. Finally, a man is seen flying through a dark sky.

Ours: Foreign
Country

Question # 3: What is the origin of the explosion at the end of the movie?

MovieChat: At the end of the video, there is an explosion at a construction site. It appears that the
explosion was caused by the construction workers using dynamite. Ours: Unknown

Figure 6: Qualitative Results: We select a challenging video from the MovieChat-1k dataset and
pose various difficult questions to both MovieChat (Song et al., 2024) and HERMES. The results
demonstrate our model’s superior ability to answer both fine-grained questions (Q1 and Q3) and
general questions (Q2). Answers highlighted in blue denote tentative answers, red denote wrong
answers, purple denote hallucinations, and green denote correct answers.
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4.4 QUALITATIVE RESULTS

We present qualitative results on a challenging movie scene from the MovieChat-1k dataset to eval-
uate our model’s capability in answering both fine-grained and general questions about an extended
video (14k frames). To rigorously assess the models, we bypass the original Q&As from the dataset
(e.g., Q: What’s the time in the video? A: Day, ...) and ask questions that require a deeper under-
standing of the scene. Our model accurately responds to these questions while exhibiting a candid
acknowledgment of its limitations (e.g., Q3). In contrast, MovieChat (Song et al., 2024) frequently
generates hallucinated and incorrect answers. For instance, in response to Q2, MovieChat avoids
answering the question. Our model achieves this performance by processing only 100 out of the 14k
frames (approximately 0.7%), whereas MovieChat processes 2,048 frames, more than 20 times the
data utilized by HERMES. For failure cases of our model, please refer to Appendix A.5.

5 RELATED WORK

Action recognition is an essential task in video understanding, primarily focusing on identifying
specific actions within short video clips. Various approaches have been developed, with convolu-
tional neural networks forming the core of many of them. Early work by Ji et al. (2012) utilized 3D
convolutions, while Varol et al. (2017) employed temporal convolutions. 2D CNNs coupled with
temporal modeling have also been explored, with representative works such as Temporal Difference
Networks (TDN) (Ng & Davis, 2018) and Event Adaptive Networks (EAN) (Tian et al., 2022). More
recently, transformer-based models have gained prominence with works such as Faure et al. (2023),
Xu et al. (2021), and Zhang et al. (2022).

Video question answering (VideoQA) aims to answer questions related to video content, requiring
a deep understanding of both visual and textual information. Datasets such as ActivityNet-QA (Yu
et al., 2019) for short videos, and MovieChat-1k for long videos (Song et al., 2024) provide bench-
marks for evaluating models in this field, allowing for several research endeavors on this subject
(Zhang et al., 2020; Zhuang et al., 2020; Pan et al., 2023).

Long-form video understanding presents unique challenges due to the extended duration and com-
plex narrative structures involved. Datasets with these properties include LVU (Wu & Krahenbuhl,
2021), COIN (Tang et al., 2019), Breakfast (Kuehne et al., 2014), and MovieChat-1k (Song et al.,
2024). Traditional approaches to tackling such a task often extend methods designed for short videos
to handle longer sequences, such as pooling over the temporal dimension (Tang et al., 2020; Faure
et al., 2023). Other methods such as Wu & Krahenbuhl (2021); He et al. (2024); Wu et al. (2022)
and Song et al. (2024) explore memory techniques via token compression. Additionally, Tian et al.
(2024) introduced a video semantic compression framework using low-level bitrate coding. Wang
et al. (2023) introduced selective structured state-spaces for long-form videos, followed by others
Islam & Bertasius (2022); Islam et al. (2023) exploiting the ability of state-space models to retain
long-term context.

LLM-based Long-Form Video Understanding: Recent advancements in large language models
(LLMs) (Touvron et al., 2023; Chiang et al., 2023) have piqued researchers’ curiosity regarding their
use for video understanding (Maaz et al., 2023). It turns out to be a good match, as understanding
videos often involves transforming their content into words, whether it’s video captioning, video
question answering, or even action classification. Song et al. (2024) and He et al. (2024) propose
frameworks that employ memory techniques to handle extensive video content while Ren et al.
(2024) presents TimeChat, explicitly conditioning the model to manage time-dependent information.

6 CONCLUSION

We propose HERMES, a novel framework designed to enhance long-form video understanding
through two key components inspired by cognitive processes. The first, Episodic COmpressor
(ECO), captures representations as sequences of continuous actions, reflecting episodic memory.
The second, Semantics reTRiever (SeTR), serves as a high-level summarizer, distilling essential
semantic information. Our model achieves state-of-the-art results on several long-video datasets,
significantly outperforming existing methods. Through experiments on LVU, Breakfast, COIN and
MovieChat, we have demonstrated the effectiveness and efficiency of ECO and SeTR.
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A APPENDIX

The Appendix is organized as follows:

• A.1 Reproducibility Statement

• A.2 Implementation Details

• A.3 Model Details

• A.4 Extended Ablations

• A.5 More Qualitative Results

• A.6 Error Analysis: When does HERMES fail and why?

• A.7 How is our approach related to cognitive processes?

A.1 REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of our work, we will make our code, pretrained models, default
hyperparameters, and preprocessed annotations publicly available. Detailed hyperparameters for
each dataset are also provided in Table 8. Our model demonstrates efficient performance, completing
inference on the MovieChat-1k test set in 13 minutes (22 FPS) using a single V100 GPU (32 GB),
and training on the MovieChat-1k dataset in less than 12 minutes with 8x 32 GB GPUs. In contrast
to recent LLM-based approaches that necessitate extensive and costly multi-stage pretraining on
increasingly large datasets, our model is designed for accessibility, thereby lowering the barrier for
researchers without access to high-end computing resources. We achieve high performance while
maintaining accessibility by leveraging existing pretrained weights and implementing our training-
free ECO and SeTR, resulting in a model where finetuning is optional.

A.2 IMPLEMENTATION DETAILS

To ensure the reproducibility of our results, we provide the training details, which are also the de-
faults in our soon-to-be-released code. These settings are mostly consistent across different datasets.

Table 8: Hyperparameters used for different datasets.

Dataset Max Epochs LR Batch Frames (N) Episodes Keep Ratio
MovieChat-1k (G) 1 1e-4 32 100 20 0.2
MovieChat-1k (B) 1 1e-4 32 40 10 0.5
LVU 20 1e-4 32 100 20 0.2
COIN 20 1e-4 32 100 20 0.2
Breakfast 20 1e-4 32 100 20 0.2

LR is the learning rate, and Keep Ratio is the SeTR keep ratio. Episodes refer to the number of
episodes to which we compress the input frames (i.e., the capacity of ECO). The number of frames
(N) represents the quantity of frames retained from the original video to serve as input to the model.
These frames are selected by applying a regular stride over the original video’s frame sequence,
where the stride length is determined by the ratio of original frame count to N. Max Epoch = 20
means we run the program for 20 epochs, performing evaluation after each epoch, and then pick the
model with the highest validation accuracy. MovieChat-1k (G) and MovieChat-1k (B) denote global
and breakpoint modes, respectively. All models were trained on 8 V100 GPUs (32GB VRAM each).

A.3 MODEL DETAILS

A.3.1 DETAILS OF OUR EPISODIC QFORMER

The Episodic Q-Former, as visualized in Figure 7, extends the original QFormer architecture by
inserting the Episodic COmpressor (ECO) described in Section 3.2. It begins with a set of ini-
tial queries that undergo a self-attention process, enhancing internal query representations. These
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Figure 7: Illustration of our Episodic
QFormer: We insert our ECO in the
original QFormer to effectively and ef-
ficiently compute and aggregate queries
across long video sequences. It returns
query episodes representing the whole
video.

Video Tokens
BankSplit
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framesframes
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Representations
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Figure 8: Illustration of SeTR: Our Se-
mantics reTRiever uses a stride of k split
the videos into groups X of N/k frames
and Y of N − N

k frames, then merge each
frame from Y to its most semantically
similar in X .

queries then interact with episodic visual features through cross-attention, allowing the incorpora-
tion of contextual visual information. The resulting enhanced queries are fed into our ECO mod-
ule alongside existing query episodes, which represent previously processed queries grouped into
episodes. ECO iteratively updates the query episodes, adding the new queries to the existing
episodes. This Episodic QFormer allows the model to better handle long sequences or repeated
queries by maintaining richer contextual knowledge across iterations.

A.3.2 DETAILS OF SETR

We design SeTR as an efficient tool to retrieve semantic information from a long video. Given
tokens extracted from a long video sequence, we use a stride of size k, to form a group of N

k
frames representing the number of semantics we want to extract. We then compress the remaining
N − N

k frames into extracted N
k frames to obtain the semantic representations. SeTR is illustrated

in Figure 8.

A.4 EXTENDED ABLATIONS

A.4.1 HOW DOES THE NUMBER OF FRAMES AFFECT THE MODEL’S ACCURACY AND
LATENCY?

MovieChat (Song et al., 2024) processes 2048 frames for each video, while we use only 100 frames,
as previous studies have demonstrated how redundant video data is (Simonyan & Zisserman, 2014;
Wang et al., 2016). Given that the MovieChat-1k dataset contains very long videos (some exceeding
14,000 frames), we conducted experiments to extend the number of frames our model processes.
Specifically, we experiment with 40, 80, 100, 300, 500, and 1000 frames while keeping the number
of episodes constant. As for the SeTR keep ratio, we decrease it in function of the number frames
so that the number of semantic features we keep equals 20.

We observe a complex relationship between model accuracy, processing latency, and the number
of frames analyzed. Figure 9 illustrates these relationships, providing insights into the performance
trade-offs of our model. As evident from Figure 9, the relationship between accuracy and the number
of frames is non-monotonic. Accuracy initially increases as the number of frames grows, reaching
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Figure 9: Accuracy and latency as func-
tions of the number of frames pro-
cessed: This figure demonstrates the
non-monotonic relationship between ac-
curacy and frame count, with peak per-
formance at 80 frames. Latency increases
super-linearly with frame count while ac-
curacy stalls, highlighting the redundancy
of video data.
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Figure 10: Accuracy and latency as
functions of input window size: The
graph illustrates the interplay between
model accuracy, processing latency, and
the window size. Notably, accuracy peaks
at a window size of 10, while latency sta-
bilizes for window sizes of 10 and above.
In all cases the accuracy only slightly fluc-
tuates.

a peak of 79.4% at 80 frames with a modest latency (note that we use 100 frames as the default
parameter in other experiments for consistency with other datasets). This suggests that up to this
point, additional frames provide valuable context that enhances the model’s understanding. How-
ever, beyond 80 frames, we observe a decline in accuracy, possibly due to the introduction of noise
or irrelevant information from temporally distant parts of the video.

Latency, on the other hand, exhibits a near-linear increase with the number of frames up to 300
frames, after which it grows super-linearly. This rapid increase in latency for higher frame counts
underscores the computational challenges of processing large numbers of frames, particularly in
real-time or near-real-time applications.

Interestingly, the model’s performance at 1000 frames (76.7% accuracy) is lower than its perfor-
mance at 40 frames (77.6% accuracy), but with a significantly higher latency (2676s vs. 143s).
This observation highlights the diminishing returns and potential drawbacks of simply increasing
the number of processed frames. It also underscores the importance of thoughtful frame selection in
video understanding tasks. Future work could explore adaptive frame selection techniques that dy-
namically adjust the number of frames based on video content, potentially optimizing both accuracy
and efficiency.

A.4.2 HOW DOES THE WINDOW SIZE AFFECT THE MODEL’S ACCURACY AND LATENCY?

Our analysis of our model’s zero-shot performance on the MovieChat-1k test set reveals intrigu-
ing relationships between accuracy, latency, and input window size. Figure 10 illustrates these
trade-offs. As evident from Figure 10, the relationship between accuracy and window size is non-
monotonic. Accuracy initially increases with window size, reaching a peak of 78.6% at a window
size of 10. This suggests that providing more context to the model improves its performance up to a
certain point. However, beyond this optimal window size, accuracy begins to decline, possibly due
to the introduction of irrelevant context.

Latency exhibits a sharp decrease from window size 1 to 5, after which it remains relatively stable.
This indicates that while smaller window sizes may seem computationally advantageous, they incur
higher latency, possibly due to the need for more frequent ECO call. The optimal trade-off occurs at a
window size of 10, where we observe peak accuracy and stabilized latency suggesting that carefully
tuned context windows can enhance long-form video understanding without incurring additional
computational costs.
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A.4.3 A NOTE ON LATENCY

The MovieChat-1k test set comprises 170 videos, from each of which our model samples 100 frames.
This results in a total of 17,000 frames to be processed. Our empirical measurements show that the
model requires 774 seconds to complete end-to-end inference on this dataset using a single V100
GPUs (32GB VRAM). This translates to a processing speed of approximately 22 frames per second
(FPS), which is very close to real-time performance. Such a result suggests that our approach is
not only effective in terms of accuracy but also efficient enough for practical applications in video
understanding tasks.

(a) Animal Identification: MovieChat mistakenly identifies a Leopard as a Cheetah, even though no
Cheetah appears in the video.

Question: How many baby bears are there?

MovieChat: I am sorry, I do not have enough information to provide the answer.
Could you please provide me with the number of baby bears in the video? Ours: 2

(b) Animal Counting: This question is particularly challenging because the bears appear infrequently
in the video, and the question specifically asks about “baby bears.” Despite MovieChat analyzing 2048
frames and our model only analyzing 100 frames, our model was able to locate and count the baby bears
accurately.

(c) Determining People’s Relationships: We compare our results with those of MA-LMM, with both
models trained on the LVU dataset. Thanks to our episodic memory compression, our model excels at
determining people’s relationships across thousands of frames of interactions.

Figure 11: Qualitative results demonstrating the capabilities of our model compared to MovieChat
and MA-LMM across different tasks. (a) Animal identification shows MovieChat’s confusion be-
tween Leopard and Cheetah. (b) Animal counting highlights the challenge of locating baby bears
with limited appearances in the video, where our model outperforms despite fewer frames. (c)
Relationship determination benefits from our episodic memory compression, enabling better identi-
fication of relationships over extended interactions.
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A.5 MORE QUALITATIVE RESULTS

To further illustrate the capabilities of our model, we present a series of qualitative examples that
highlight its strengths in various long-form video understanding tasks.

Animal Identification. Figure 11a demonstrates our model’s superior performance in animal iden-
tification compared to MovieChat. In this example, MovieChat incorrectly identifies a leopard as
a cheetah, despite no cheetah being present in the video. This misidentification underscores the
importance of accurate visual feature extraction and semantic understanding in long-form video
analysis.

Animal Counting. Figure 11b showcases our model’s ability to perform complex counting tasks,
even with limited information. The task involves counting baby bears, which appear infrequently
in the video. Despite analyzing only 100 frames compared to MovieChat’s 2048 frames, our model
accurately locates and counts the baby bears. This demonstrates the efficiency of our ECO and SeTR
modules in capturing and retaining crucial information from sparse appearances.

Determining People’s Relationships. In Figure 11c, we compare our model’s performance against
MA-LMM in determining relationships between people over extended video sequences. Both mod-
els were trained on the LVU dataset. Our model’s superior performance in this task can be attributed
to the episodic memory compression technique, which allows for better retention and analysis of
interactions across thousands of frames.

Figure 12: Where and when HERMES fail: The top row shows a marine life video where the
model fails to recognize underwater scenes. The bottom row depicts a wildlife documentary where
the model struggles with quantitative reasoning and event inference across multiple frames. These
cases highlight limitations in contextual understanding and temporal information integration.

A.5.1 VISUALIZATION OF ECO AND SETR

Figure 13 demonstrates the inner-workings of ECO and SeTR. The top row illustrates a curated
summary of the video content, highlighting diverse scenes, such as landscapes, wildlife, and envi-
ronmental features.

SeTR is responsible for extracting high-level semantic features and grouping frames with similar
themes, as shown in the mid row. For instance, the module effectively captures thematic clusters
such as “Landscape,” “Various Birds,” and “Reptiles,” providing a concise overview of the video.

Meanwhile, ECO processes the video at a more granular level, segmenting it into coherent episodes
that reflect the narrative flow. The bottom row showcases this segmentation, organizing the content
into episodic units like “Arid Landscape,” “Lake and Aquatic Bird,” and “Flies.” This two-tiered
approach ensures both thematic abstraction and temporal coherence, enabling a comprehensive un-
derstanding of the video.
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Arid Landscape Lake and aquatic bird Flies

Landscape Various birds Greenerie Reptile Mountains

Features Extracted by SeTR

Episodes by ECO

A snapshot of the video

Figure 13: Visualization of ECO and SeTR: The top row presents a curated visual summary of the
video, showcasing key scenes such as landscapes, wildlife, and environmental features. The middle
row highlights the functionality of SeTR, which extracts semantic features and clusters frames into
thematic groups, including “Landscape,” “Various Birds,” and “Reptiles.” Finally, the bottom row
illustrates the operation of ECO, which segments the video into coherent narrative episodes, such
as “Arid Landscape,” “Lake and Aquatic Bird,” and “Flies.” Together, these modules provide both
high-level abstraction and detailed episodic structure for comprehensive video understanding.

A.6 ERROR ANALYSIS: WHEN DOES HERMES FAIL AND WHY?

Our model, while generally effective, demonstrates several notable failure cases that warrant fur-
ther investigation and improvement. Figure 12 illustrates examples where the model’s predictions
deviate from ground truth answers, revealing key limitations in contextual reasoning and temporal
information integration. Figure 12 presents two sets of video frame sequences that highlight short-
comings in our model’s performance. In the top row, we observe a documentary on marine life.
Despite clear visual cues of underwater scenes and diving equipment, the model incorrectly predicts
that no one got underwater. The bottom row showcases a more complex scenario from a wildlife
documentary. Here, the model exhibits multiple errors: It underestimates the number of cheetahs
involved in the hunt, predicting only one when at least three are present. This indicates a weakness
in quantitative reasoning across temporally distributed information. The model incorrectly predicts
that the cheetah’s hunt was unsuccessful, contradicting the visual evidence. This error points to
difficulties in inferring outcomes from sequences of events. Lastly, the model fails to recognize the
fate of a dead baby giraffe, predicting “nothing” when the correct answer is “eaten by hyenas”.

These examples emphasize the need for improved mechanisms to aggregate and reason over long-
range temporal dependencies, as well as enhanced capabilities in scene understanding and event
inference.

A.7 HOW IS OUR APPROACH RELATED TO COGNITIVE PROCESSES?

Our approach to long-form video understanding is inspired by cognitive processes involving memory
and comprehension. According to the literature on neuroscience (Tulving et al., 1972; Schacter &
Tulving, 1982; Tulving, 1983), human cognition involves two primary types of memory: episodic
and semantic. Episodic memory is the ability to recall specific events or episodes, while semantic
memory refers to the storage of general knowledge and concepts. These forms of memory are crucial
for understanding long-form narratives, where a coherent understanding arises from the integration
of specific events and overarching themes.
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The proposed HERMES model incorporates these cognitive processes through its two main com-
ponents, ECO and SeTR. ECO, akin to the function of episodic memory, selectively retains and
compresses key events from the video, allowing the model to form a structured representation of the
narrative as it unfolds. This approach is an oversimplified abstraction of findings in cognitive neu-
roscience, which highlight the role of the hippocampus in the consolidation of episodic memories
(Eichenbaum, 2004; Schacter & Tulving, 1982), and the concept of subjective time (Arstila et al.,
2014) that sees a scene (or a video) not as a series of frames but as a series of experiences. The hip-
pocampus enables the organization of temporally distinct experiences into a coherent memory trace,
something that we aim to capture with ECO. Moreover, the sequential processing and aggregation
of information in our model align with the concept of event segmentation in cognitive psychology
(Zacks et al., 2007). Humans naturally segment continuous experiences into discrete events, which
aids in memory formation and recall.

Meanwhile, SeTR functions similarly to semantic memory, extracting and reinforcing high-level se-
mantic cues. This process mirrors how the brain integrates detailed episodic memories with broader
semantic knowledge stored in the neocortex (McClelland et al., 1995; Binder & Desai, 2011). Also
related is the concept of gist extraction which involves rapidly comprehending the essence or overall
meaning of a scene or situation (Oliva, 2005). This ability allows humans to quickly understand
the context of a complex scene without processing every detail. Our SeTR operates similarly by
identifying and extracting high-level semantic cues that provide a concise overview of the scene and
actions.

The integration of these cognitive processes not only aligns with human-like comprehension but also
offers a framework for efficiently handling the vast and diverse information present in long-form
videos. Significant improvements over existing state-of-the-art models, underscore the effectiveness
of this cognition-inspired approach. While our model is a oversimplified abstraction of human
cognition, it provides a foundation for exploring more complex cognitive mechanisms in future
work.
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