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Abstract

Large language models (LLMs) have achieved001
remarkable performance through in-context002
learning (ICL) with demonstrations, yet these003
methods incur significant GPU memory and004
computational costs. Therefore, we consider a005
cost-efficient approach to implement implicit006
ICL such that demonstrations do not occupy007
space in the context. In this paper, we propose008
an in-place method for implicit ICL by identify-009
ing and amplifying specific neurons within the010
feed-forward networks of LLMs. The proposed011
method transfers few-shot learning capabilities012
to zero-shot settings through neuron perturba-013
tion. Despite the model taking zero-shot inputs,014
our method leads to performance approaching015
few-shot learning, while requiring no additional016
computation or memory costs. Experimental re-017
sults across instruction-following and problem-018
solving tasks demonstrate that our approach019
enables implicit ICL.020

1 Introduction and Related Work021

Large Language Models (LLMs) have revolu-022

tionized Natural Language Processing (NLP) by023

achieving remarkable performance across a wide024

range of tasks, such as Question Answering (Zhu025

et al., 2021), Information Extraction (Xu et al.,026

2024), and Text Classification (Li et al., 2022).027

Their success can be attributed to in-context028

learning (ICL), which enables the LLMs to adapt to029

specific tasks by effectively leveraging contextual030

information (Dong et al., 2024).031

ICL is an active field of research, delineated032

principally into two categories: (1) Training-033

time approaches, such as MetaICL (Min et al.,034

2022a) and ICL Markup (Brunet et al., 2023),035

use meta-learning to enhance LLMs for ICL036

inference. (2) Inference-time research focuses on037

optimizing prompts, particularly the organization038

of demonstrations including question-answer pairs.039

(Zhao et al., 2021; Lu et al., 2022). Additionally,040

Figure 1: Step 1 (Top): The LLM processes few-shot
prompts, identifying a set of salient neurons (red). Step
2 (Bottom): The examples are removed, and the salient
neurons are amplified (yellow arrows). Salient neurons
enable the model to generate correct outputs even
without explicit examples. Conversely, the default LLM
activates trivial neurons (blue), leading to unintended
outputs.

Chain of Thought (CoT) largely improves LLM 041

reasoning by refining instructions (Wei et al., 042

2022). 043

Although ICL approaches deliver excellent 044

outcomes, the lengthy demonstrations raise GPU 045

memory and computational costs. Therefore, how 046

to reduce the costs of ICL is important. Existing 047

context compression approaches, including implicit 048

CoT (Deng et al., 2024) and COCONUT (Hao et al., 049

2024), have certain drawbacks: (1) Training is 050

costly and lacks flexibility for diverse tasks; (2) The 051

training objective is vague, as it’s unclear whether 052

the model learns reasoning or merely memorizes 053

information. Therefore, we advocate for an in- 054

place method that enhances LLM performance 055

without extra parameters and computational costs. 056

Currently, extensive research focuses on the 057

neurons within the feed-forward networks (FFN) 058
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of LLMs. It is widely accepted that FFN layers059

make up the majority of a Transformer model’s060

parameters, and they function as key-value memory061

systems (Geva et al., 2021). Building upon this,062

research has identified various kinds of neurons063

with unique characteristics: Knowledge Neurons064

play a key role in representing and expressing065

specific factual information (Dai et al., 2022);066

Skill Neurons demonstrate the capability to handle067

specific tasks. (Wang et al., 2022a). Motivated068

by research on specialized neurons, we investigate069

perturbing neurons to facilitate implicit in-context070

learning in LLMs.071

In this paper, we propose a method that achieves072

implicit ICL by identifying and amplifying specific073

neurons within FFNs, as shown in Figure 1.074

Specifically, we first input few-shot prompts for075

a task into an LLM. Next, we identify salient076

neurons sensitive to the demonstrations. Then,077

we amplify these neurons by increasing their078

activation values. Finally, we feed the enhanced079

LLM with zero-shot prompts for the same task.080

Experimental results on instruction-following and081

problem-solving benchmarks demonstrate that our082

approach enables implicit ICL. Our contributions083

are as follows: (1) We introduce a novel in-place084

method that reduces the cost of learning from085

demonstrations; (2) we provide empirical results086

on benchmark NLP tasks that show the feasibility087

of our approach.088

2 Method089

Our method involves two key steps: identifying090

the neurons most sensitive to the few-shot demon-091

strations (§2.2), and subsequently amplifying these092

neurons for zero-shot inference (§2.3).093

2.1 Background094

Neurons in FFN. Our research focuses on LLaMA-095

2 (Touvron et al., 2023). Following Dai et al.096

(2022), we inspect FFN intermediate neurons097

which directly affect the output of the activation098

function. The effect of FFN can be represented as099

the following:100

FFN(H) = (f(HWgate) ◦HWup)Wdown,
(1)101

where H is the hidden state output from the102

attention module; Wgate, Wup, and Wdown are103

parameter matrices; f is the activation function; ◦104

denotes the element-wise multiplication.105

Special Tokens. Recent LLMs usually apply 106

chat templates to structure input prompts. Partic- 107

ularly for LLaMA-2, each question is enclosed 108

within a pair of tokens that delineate its boundaries 109

(see Appendix A). Such special tokens help trigger 110

ICL ability during inference (Brunet et al., 2023). 111

2.2 Identifying Salient Neurons for ICL 112

Inspired by previous studies on neurons, we aim 113

to identify neurons whose activation strongly 114

correlates to the demonstrations in the context of 115

a task. In this step, our identification method is a 116

variant of CGVST (Song et al., 2024). Given N 117

special words in the chat template: 118

W = {w1, w2, ..., wN}, (2) 119

the original approach utilizes the whole set. In 120

contrast, ours simply takes the final special word 121

wN , which is also the final word in the input 122

sequence (see Appendix A). This word is further 123

split into n tokens, forming our special token set: 124

S = {xT−n+1, xT−n+2, ..., xT } ⊂ X, (3) 125

where each x is a special token and X denotes an 126

input sequence of length T . 127

We continue by putting the input sequence 128

X into the LLM. In a forward pass, the model 129

compute a loss function using the log-likelihood of 130

predicting these special tokens S: 131

L = −
∑

t∈{t|xt∈S}

logP (xt | x1, x2, ..., xt−1).

(4) 132

Then, in a backward pass, we accumulate the 133

gradient variance of the intermediate neurons by 134

taking the derivative of the loss function with 135

respect to the Wgate parameter. 136

The outcome is a matrix of size l× d×n, where 137

l is the total number of layers in the model, d is the 138

size of the hidden state and n is the intermediate 139

size. We further compress the matrix into δ′ ∈ 140

Rl×n. Consequently, the position of a neuron in 141

the intermediate layer corresponds to its respective 142

index in the matrix. 143

In each cell of the matrix δ′, the value represents 144

how much a neuron’s gradient varies when the 145

model processes few-shot prompts. We select the 146

largest p% of cells as the salient neurons for ICL. 147

Their indices are stored for future use. 148
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2.3 Neuron Amplification149

In the previous step, we have used an LLM for150

inference and have obtained locations of its salient151

neurons. Now, we input the same data into the152

model, but this time without demonstrations. Inside153

the LLM, we enhance the influence of salient154

neurons by multiplying their activation values:155

FFN(H) = (A◦f(HWgate)◦HWup)Wdown,
(5)156

where matrix A acts as a mask which enlarge the157

activation values by a factor of α such that α > 1158

for the salient neurons only. It keeps the activation159

values unchanged otherwise.160

Two hyperparameters, α and p, greatly impact161

the performance of the proposed pipeline. To162

search for the best outcomes, we further optimize163

the two variables using this grid search algorithm:

Algorithm 1 Optimize α and p

Initialize temp← 0, α̂← 0, p̂← 0.
for each p in {0.05n}10n=1 do

for each α in {0.1n+ 1}15n=1 do
Amplify LLM with p% of salient neurons
Generate outputs and Evaluate acc
if acc > temp then

Update temp, α̂, and p̂.
Output: α̂, p̂

164

3 Experiments165

To examine the feasibility of LLMs performing166

implicit ICL with the assistance of amplified167

neurons, we conduct experiments on multiple-168

choice tasks and several general NLP tasks. We169

use 5-shot prompts to identify salient neurons by170

default, and we always evaluate the enhanced LLM171

with zero-shot prompts.172

3.1 Datasets173

We cherry-pick six specific tasks from the174

Super-NaturalInstructions dataset to evaluate the175

instruction-following capabilities of our enhanced176

model (Wang et al., 2022b). These include tweetqa177

classification (TC), overruling legal classification178

(LC), creak commonsense inference (CI), yelp179

polarity classification (PC), summarization (S), and180

drug extraction ade (DE).181

We also evaluate our approach on all 57 tasks182

in MMLU to assess its effectiveness in problem-183

solving. (Hendrycks et al., 2020).184

3.2 Implementation details 185

Model: We use the LLaMA-2-chat-7B model for 186

all our experiments on a platform with two 24GB 187

NVIDIA GPUs. 188

Metrics: Our major evaluation metric is Exact 189

Match accuracy for a single run. To provide a 190

comprehensive comparison, a "Total Diff." score is 191

also calculated to find the gap between baselines 192

and zero-shot prompting. Formally, given a row r 193

and column c in Table 1: 194

Total_Diff.(r) =
7∑

c=1

(mr,c −m2,c). (6) 195

Dataset Splits: In our experiments, we divide 196

the dataset into training and test sets (see Appendix 197

B for more details). The training set is used 198

to identify salient neurons, while the test set is 199

used to evaluate the enhanced model. Notably, 200

every training set also acts as the validation set for 201

optimization of the hyperparameters. 202

Label Extractor: In all experiments, we instruct 203

the LLM to generate the answer directly. After 204

receiving the responses, we process them using a 205

label extractor. The extractor accepts the answer 206

only if it follows the correct format as described in 207

the prompt. The extracted label is then compared 208

with the ground truth to compute the accuracy. 209

3.3 Baselines 210

We compare our identification method with the fol- 211

lowing baselines, while the amplification method 212

remains the same for all: (1) Random: We 213

randomly sample 25% of the neurons from the 214

intermediate layer, and amplify them with a fixed 215

factor of 1.7. (2) LAPE (Tang et al., 2024): We 216

calculate the LAPE score. For each neuron, it 217

estimates a activation probability which is later 218

used to calculate an entropy score. Even though 219

this method’s original purpose is to find language- 220

specific neurons, it serves as a good reference in our 221

problem setting due to its focus on activation values. 222

(3) CGVST (Song et al., 2024): We compute the 223

original CGVST with all available special tokens. 224

4 Results and Analysis 225

In this section, we report the results of our main 226

experiments (§4.1) and analysis (§4.2). 227

4.1 Main Results 228

We show the results of the main experiments in 229

Table 1. Experimentally, our method successfully 230

3



Method Dataset
T.C. L.C. C.I. P.C. S. D.E. MMLU Diff.

5-shot 83.9 75.8 81.1 89.0 83.4 89.8 43.6 494.2
Zero-shot 0.1 0.4 13.0 2.0 0.2 1.4 35.2 0.0
Random 1.2 1.2 13.2 0.1 4.5 0.6 25.1 -6.4
LAPE 23.2 1.4 11.3 40.5 1.4 4.9 35.8 66.1

CGVST 0.5 38.2 19.0 13.7 14.9 2.8 34.8 71.6
ours 27.2 14.2 8.6 17.6 6.4 43.3 35.9 100.7

Table 1: Exact Match Accuracy (%) on seven tasks
(TC, LC, CI, PC, S, DE, MMLU) for four methods
based on neuron amplification (including ours). The
"Diff." column represents the Total Diff. scores. 5-shot
and zero-shot results are presented as upper and lower
bounds of performance.

implement implicit ICL, as shown by consistent231

improvement over Random and Zero-shot. It is232

also the most stable one among its neuron-based233

counterparts, as indicated by a Total Diff. of 100.7.234

Several key findings are described below.235

Neuron Amplification is a feasible way to236

implicit ICL. In all three neuron-based methods,237

we observe a noticeable amount of performance238

gain compared to Zero-shot, even when the input239

is the same set of prompts in both scenarios. This240

demonstrates that our proposed 2-step pipeline is241

generally effective for implicit ICL, regardless of242

the specific identification method.243

The final special token is a better represen-244

tative of context. By comparing our approach245

with the original CGVST in terms of Total Diff.,246

we find that our method produces more consistent247

results. We hypothesize that this improvement can248

be attributed to concentration on the final special249

token. As the prefix of the answer tokens, our250

special token of choice participates in the sequence251

copying process of induction heads, which promote252

correct label words that appeared earlier in the253

context (Olsson et al., 2022).254

Improved accuracies comes from correct255

format. As suggested by our qualitative analysis of256

several outputs (see Appendix C), traditional zero-257

shot generation can produce responses that contain258

the correct answer but completely ignore the format259

requirement. As a result, the label extractor rejects260

such outputs. Without demonstrations, the default261

model rarely respect the format. In contrast, the262

enhanced model responds with answers in the263

correct format more often. We deduce that the264

identified neurons store the memories of task-265

specific labels, and amplifying these neurons serves266

as a hint on the label space (Min et al., 2022b).267

No learning is involved in neuron amplifica-268

Figure 2: Performance trends based on the number
of shots, measured across three tasks (TC, LC, and
DE) using Few-shot learning (dashed lines) and our
method (solid lines)

tion. Our method does not involve any parameter 269

updates. The neuron perturbation technique is 270

solely responsible for the change in behavior of 271

the LLM. We hypothesize that this occurs because 272

the model being tested already stores memories of 273

textual patterns closely related to the current task. 274

The amplification simply informs the model about 275

which memories to activate for generation. 276

4.2 Analysis 277

In this section, we explore how the performance of 278

our method varies with the number of shots. The 279

experiments are conducted for to 1, 3, 5, 7, and 9 280

shots. The outcome of regular few-shot prompting 281

is also presented as a reference. Based on the 282

results shown in Figure 2, we make the following 283

observations: 284

Regardless of the number of shots, our method 285

consistently outperforms vanilla zero-shot learning 286

which never exceeds 10%. This demonstrates 287

its effectiveness across various context lengths. 288

However, our method does not improve with the 289

increasing number of examples. This discrepancy 290

arise because even original few-shot performance 291

does not follow the expected scaling law. 292

5 Conclusion 293

In this paper, we propose a novel approach to the 294

implicit in-context learning of LLMs. Through 295

experiments and analysis, we demonstrate the 296

feasibility of our method and provide insights 297

into the fundamental learning processes underlying 298

ICL. We hope our work contributes to a deeper 299

understanding of LLMs. 300
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Limitations301

This study has several limitations. First, we did302

not explore larger sizes of LLaMA-2, which may303

have led to improved performance due to increased304

model capacity. Second, we focused solely on the305

LLaMA architecture and did not experiment with306

alternative models, such as GPT or Mistral, which307

could offer different strengths. Finally, we did not308

incorporate Chain of Thought reasoning, which has309

been shown to enhance complex reasoning tasks.310

Future work should investigate these aspects to311

better understand their impact on performance and312

robustness.313

Ethinics Statement314

This research, "In-place Implicit In-context Learn-315

ing by Neuron Amplification," was conducted with316

strict adherence to ethical principles. It raises no317

ethical concerns or potential risks, as it utilizes318

only open-source data and a large language model319

compliant with their declared licenses and intended320

use. None of these contains any information that321

names or uniquely identifies individual people322

or offensive content. All participants were fully323

informed of the study’s procedures and provided324

their informed consent.325
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A Choice of Special Tokens451

This section shows how our identification method452

is different from CGVST. The 5-shot prompt453

rendered by the default chat template of LLaMA-2454

is shown in Figure 3.455

B Details on Datasets456

The MMLU dataset consists of 57 tasks in 4 major457

groups: "Social Science," "STEM," "Humanities,"458

and "Others." We divide the data into two equal459

halves. The first half of the tasks form 4 combined460

training set, while the remaining half serves as the461

test set for each task. Similarly, the original data for462

few-shot learning is also combined and resampled463

to produce k examples for each category. During464

the neuron identification phase, we obtain a set of465

salient neurons for each category by processing466

its training set with the model. In the subsequent467

neuron amplification phase, we evaluate the model468

on the test set of each task, using amplified neurons469

specific to the category the task’s corresponding470

category. Overall, we split the MMLU dataset into471

4 training set and 57 test set. as examples, and the472

remaining half is the test set.473

Category Training Set Size Subcategory #
STEM 1507 18

Social Sciences 1536 12
Humanities 2349 13

Others 1618 14

Table 2: Statistics of MMLU Dataset Splits.

The Natural-Instructions dataset is split in a474

normal way. For each task, the first half of data475

is the training set. k instances are chosen as the476

few-shot examples.477

C Qualitative Analysis478

In Figure 4, we show three cases the default LLM479

generate the correct answer in its output sequence,480

but fails to follow the instructed format. The model481

generates extra tokens other than the label, so the482

prediction is evaluated as incorrect by the label483

extractor.484
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Figure 3: The default chat template for LLaMA-2. The special words highlighted in yellow are the special tokens
used in CGVST. Our method uses only the final special word "[/INST]", which is both highlighted in yellow and
colored in red.
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Figure 4: Several outputs of the default LLM for zero-shot prompts. The words matching the labels are highlighted
in yellow.

9


	Introduction and Related Work
	Method
	Background
	Identifying Salient Neurons for ICL
	Neuron Amplification

	Experiments
	Datasets
	Implementation details
	Baselines

	Results and Analysis
	Main Results
	Analysis

	Conclusion
	Choice of Special Tokens
	Details on Datasets
	Qualitative Analysis

