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Abstract

Large language models (LLMs) have achieved
remarkable performance through in-context
learning (ICL) with demonstrations, yet these
methods incur significant GPU memory and
computational costs. Therefore, we consider a
cost-efficient approach to implement implicit
ICL such that demonstrations do not occupy
space in the context. In this paper, we propose
an in-place method for implicit ICL by identify-
ing and amplifying specific neurons within the
feed-forward networks of LLMs. The proposed
method transfers few-shot learning capabilities
to zero-shot settings through neuron perturba-
tion. Despite the model taking zero-shot inputs,
our method leads to performance approaching
few-shot learning, while requiring no additional
computation or memory costs. Experimental re-
sults across instruction-following and problem-
solving tasks demonstrate that our approach
enables implicit ICL.

1 Introduction and Related Work

Large Language Models (LLMs) have revolu-
tionized Natural Language Processing (NLP) by
achieving remarkable performance across a wide
range of tasks, such as Question Answering (Zhu
et al., 2021), Information Extraction (Xu et al.,
2024), and Text Classification (Li et al., 2022).
Their success can be attributed to in-context
learning (ICL), which enables the LLMs to adapt to
specific tasks by effectively leveraging contextual
information (Dong et al., 2024).

ICL is an active field of research, delineated
principally into two categories: (1) Training-
time approaches, such as MetalCL (Min et al.,
2022a) and ICL Markup (Brunet et al., 2023),
use meta-learning to enhance LLMs for ICL
inference. (2) Inference-time research focuses on
optimizing prompts, particularly the organization
of demonstrations including question-answer pairs.
(Zhao et al., 2021; Lu et al., 2022). Additionally,
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Figure 1: Step 1 (Top): The LLM processes few-shot
prompts, identifying a set of salient neurons (red). Step
2 (Bottom): The examples are removed, and the salient
neurons are amplified (yellow arrows). Salient neurons
enable the model to generate correct outputs even
without explicit examples. Conversely, the default LLM
activates trivial neurons (blue), leading to unintended
outputs.

Chain of Thought (CoT) largely improves LLM
reasoning by refining instructions (Wei et al.,
2022).

Although ICL approaches deliver excellent
outcomes, the lengthy demonstrations raise GPU
memory and computational costs. Therefore, how
to reduce the costs of ICL is important. Existing
context compression approaches, including implicit
CoT (Deng et al., 2024) and COCONUT (Hao et al.,
2024), have certain drawbacks: (1) Training is
costly and lacks flexibility for diverse tasks; (2) The
training objective is vague, as it’s unclear whether
the model learns reasoning or merely memorizes
information. Therefore, we advocate for an in-
place method that enhances LLLM performance
without extra parameters and computational costs.

Currently, extensive research focuses on the
neurons within the feed-forward networks (FFN)



of LLMs. It is widely accepted that FFN layers
make up the majority of a Transformer model’s
parameters, and they function as key-value memory
systems (Geva et al., 2021). Building upon this,
research has identified various kinds of neurons
with unique characteristics: Knowledge Neurons
play a key role in representing and expressing
specific factual information (Dai et al., 2022);
Skill Neurons demonstrate the capability to handle
specific tasks. (Wang et al., 2022a). Motivated
by research on specialized neurons, we investigate
perturbing neurons to facilitate implicit in-context
learning in LLMs.

In this paper, we propose a method that achieves
implicit ICL by identifying and amplifying specific
neurons within FFNs, as shown in Figure 1.
Specifically, we first input few-shot prompts for
a task into an LLM. Next, we identify salient
neurons sensitive to the demonstrations. Then,
we amplify these neurons by increasing their
activation values. Finally, we feed the enhanced
LLM with zero-shot prompts for the same task.
Experimental results on instruction-following and
problem-solving benchmarks demonstrate that our
approach enables implicit ICL. Our contributions
are as follows: (1) We introduce a novel in-place
method that reduces the cost of learning from
demonstrations; (2) we provide empirical results
on benchmark NLP tasks that show the feasibility
of our approach.

2 Method

Our method involves two key steps: identifying
the neurons most sensitive to the few-shot demon-
strations (§2.2), and subsequently amplifying these
neurons for zero-shot inference (§2.3).

2.1 Background

Neurons in FFN. Our research focuses on LLaMA -
2 (Touvron et al., 2023). Following Dai et al.
(2022), we inspect FFN intermediate neurons
which directly affect the output of the activation
function. The effect of FFN can be represented as
the following:

FFN(H) = (f(HWgate) o kup)wdownv
(1)
where H is the hidden state output from the
attention module; Wgate, Wyp, and W gown are
parameter matrices; f is the activation function; o
denotes the element-wise multiplication.

Special Tokens. Recent LLMs usually apply
chat templates to structure input prompts. Partic-
ularly for LLaMA-2, each question is enclosed
within a pair of tokens that delineate its boundaries
(see Appendix A). Such special tokens help trigger
ICL ability during inference (Brunet et al., 2023).

2.2 Identifying Salient Neurons for ICL

Inspired by previous studies on neurons, we aim
to identify neurons whose activation strongly
correlates to the demonstrations in the context of
a task. In this step, our identification method is a
variant of CGVST (Song et al., 2024). Given N
special words in the chat template:
W:{wl,wg,...,w]\/}, (2)
the original approach utilizes the whole set. In
contrast, ours simply takes the final special word
wy, which is also the final word in the input
sequence (see Appendix A). This word is further
split into n tokens, forming our special token set:

S = {xT—n+1a TT—n+2, .-.,.’L'T} - Xa (3)

where each zx is a special token and X denotes an
input sequence of length 7.

We continue by putting the input sequence
X into the LLM. In a forward pass, the model
compute a loss function using the log-likelihood of
predicting these special tokens .S:

>

te{t|z,eS}

log P(x¢ | x1, T, ..., xi—1).

“)
Then, in a backward pass, we accumulate the
gradient variance of the intermediate neurons by
taking the derivative of the loss function with
respect to the W44 parameter.

The outcome is a matrix of size [ X d X n, where
[ is the total number of layers in the model, d is the
size of the hidden state and n is the intermediate
size. We further compress the matrix into ¢’ €
R™_ Consequently, the position of a neuron in
the intermediate layer corresponds to its respective
index in the matrix.

In each cell of the matrix &', the value represents
how much a neuron’s gradient varies when the
model processes few-shot prompts. We select the
largest p% of cells as the salient neurons for ICL.
Their indices are stored for future use.



2.3 Neuron Amplification

In the previous step, we have used an LLM for
inference and have obtained locations of its salient
neurons. Now, we input the same data into the
model, but this time without demonstrations. Inside
the LLM, we enhance the influence of salient
neurons by multiplying their activation values:

FFN(H) = (Aof(ngate>oHWup)Wdown7

(&)
where matrix A acts as a mask which enlarge the
activation values by a factor of o such that o > 1
for the salient neurons only. It keeps the activation
values unchanged otherwise.

Two hyperparameters, o and p, greatly impact
the performance of the proposed pipeline. To
search for the best outcomes, we further optimize
the two variables using this grid search algorithm:

Algorithm 1 Optimize o and p

Initialize temp < 0, & < 0, p < O.
for each p in {0.05n}1% | do
for each ain {0.1n + 1}15; do
Amplify LLM with p% of salient neurons
Generate outputs and Evaluate acc
if acc > temp then
Update temp, &, and p.
Output: &, p

3 Experiments

To examine the feasibility of LLMs performing
implicit ICL with the assistance of amplified
neurons, we conduct experiments on multiple-
choice tasks and several general NLP tasks. We
use 5-shot prompts to identify salient neurons by
default, and we always evaluate the enhanced LLM
with zero-shot prompts.

3.1 Datasets

We cherry-pick six specific tasks from the
Super-Naturallnstructions dataset to evaluate the
instruction-following capabilities of our enhanced
model (Wang et al., 2022b). These include tweetqa
classification (TC), overruling legal classification
(LC), creak commonsense inference (CI), yelp
polarity classification (PC), summarization (S), and
drug extraction ade (DE).

We also evaluate our approach on all 57 tasks
in MMLU to assess its effectiveness in problem-
solving. (Hendrycks et al., 2020).

3.2 Implementation details

Model: We use the LLaMA-2-chat-7B model for
all our experiments on a platform with two 24GB
NVIDIA GPUs.

Metrics: Our major evaluation metric is Exact
Match accuracy for a single run. To provide a
comprehensive comparison, a "Total Diff." score is
also calculated to find the gap between baselines
and zero-shot prompting. Formally, given a row r
and column c in Table 1:

7
Total_Diff.(r) = Z(mnC —ma.). (6)

c=1

Dataset Splits: In our experiments, we divide
the dataset into training and test sets (see Appendix
B for more details). The training set is used
to identify salient neurons, while the test set is
used to evaluate the enhanced model. Notably,
every training set also acts as the validation set for
optimization of the hyperparameters.

Label Extractor: In all experiments, we instruct
the LLM to generate the answer directly. After
receiving the responses, we process them using a
label extractor. The extractor accepts the answer
only if it follows the correct format as described in
the prompt. The extracted label is then compared
with the ground truth to compute the accuracy.

3.3 Baselines

We compare our identification method with the fol-
lowing baselines, while the amplification method
remains the same for all: (1) Random: We
randomly sample 25% of the neurons from the
intermediate layer, and amplify them with a fixed
factor of 1.7. (2) LAPE (Tang et al., 2024): We
calculate the LAPE score. For each neuron, it
estimates a activation probability which is later
used to calculate an entropy score. Even though
this method’s original purpose is to find language-
specific neurons, it serves as a good reference in our
problem setting due to its focus on activation values.
(3) CGVST (Song et al., 2024): We compute the
original CGVST with all available special tokens.

4 Results and Analysis

In this section, we report the results of our main
experiments (§4.1) and analysis (§4.2).

4.1 Main Results

We show the results of the main experiments in
Table 1. Experimentally, our method successfully



Dataset

Method |-+ c I PC. S. DE MMLU[Dff

5-shot [83.9 75.8 81.1 89.0 83.4 89.8 43.6
Zero-shot| 0.1 04 130 2.0 02 14 352 | 0.0

Random | 1.2 1.2 132 0.1 45 0.6 251 |-64
LAPE |232 14 113405 14 49 358 |66.1
CGVST | 0.5 38.2 19.0 13.7 149 28 348 |71.6
ours |272 142 8.6 17.6 64 433 359 [100.7

Table 1: Exact Match Accuracy (%) on seven tasks
(TC, LC, CI, PC, S, DE, MMLU) for four methods
based on neuron amplification (including ours). The
"Diff." column represents the Total Diff. scores. 5-shot
and zero-shot results are presented as upper and lower
bounds of performance.

implement implicit ICL, as shown by consistent
improvement over Random and Zero-shot. 1t is
also the most stable one among its neuron-based
counterparts, as indicated by a Total Diff. of 100.7.
Several key findings are described below.

Neuron Amplification is a feasible way to
implicit ICL. In all three neuron-based methods,
we observe a noticeable amount of performance
gain compared to Zero-shot, even when the input
is the same set of prompts in both scenarios. This
demonstrates that our proposed 2-step pipeline is
generally effective for implicit ICL, regardless of
the specific identification method.

The final special token is a better represen-
tative of context. By comparing our approach
with the original CGVST in terms of Total Diff.,
we find that our method produces more consistent
results. We hypothesize that this improvement can
be attributed to concentration on the final special
token. As the prefix of the answer tokens, our
special token of choice participates in the sequence
copying process of induction heads, which promote
correct label words that appeared earlier in the
context (Olsson et al., 2022).

Improved accuracies comes from correct
format. As suggested by our qualitative analysis of
several outputs (see Appendix C), traditional zero-
shot generation can produce responses that contain
the correct answer but completely ignore the format
requirement. As a result, the label extractor rejects
such outputs. Without demonstrations, the default
model rarely respect the format. In contrast, the
enhanced model responds with answers in the
correct format more often. We deduce that the
identified neurons store the memories of task-
specific labels, and amplifying these neurons serves
as a hint on the label space (Min et al., 2022b).

No learning is involved in neuron amplifica-
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Figure 2: Performance trends based on the number
of shots, measured across three tasks (TC, LC, and
DE) using Few-shot learning (dashed lines) and our
method (solid lines)

tion. Our method does not involve any parameter
updates. The neuron perturbation technique is
solely responsible for the change in behavior of
the LLM. We hypothesize that this occurs because
the model being tested already stores memories of
textual patterns closely related to the current task.
The amplification simply informs the model about
which memories to activate for generation.

4.2 Analysis

In this section, we explore how the performance of
our method varies with the number of shots. The
experiments are conducted forto 1, 3, 5, 7, and 9
shots. The outcome of regular few-shot prompting
is also presented as a reference. Based on the
results shown in Figure 2, we make the following
observations:

Regardless of the number of shots, our method
congistently outperforms vanilla zero-shot learning
which never exceeds 10%. This demonstrates
its effectiveness across various context lengths.
However, our method does not improve with the
increasing number of examples. This discrepancy
arise because even original few-shot performance
does not follow the expected scaling law.

5 Conclusion

In this paper, we propose a novel approach to the
implicit in-context learning of LLMs. Through
experiments and analysis, we demonstrate the
feasibility of our method and provide insights
into the fundamental learning processes underlying
ICL. We hope our work contributes to a deeper
understanding of LLMs.



Limitations

This study has several limitations. First, we did
not explore larger sizes of LLaMA-2, which may
have led to improved performance due to increased
model capacity. Second, we focused solely on the
LLaMA architecture and did not experiment with
alternative models, such as GPT or Mistral, which
could offer different strengths. Finally, we did not
incorporate Chain of Thought reasoning, which has
been shown to enhance complex reasoning tasks.
Future work should investigate these aspects to
better understand their impact on performance and
robustness.

Ethinics Statement

This research, "In-place Implicit In-context Learn-
ing by Neuron Amplification," was conducted with
strict adherence to ethical principles. It raises no
ethical concerns or potential risks, as it utilizes
only open-source data and a large language model
compliant with their declared licenses and intended
use. None of these contains any information that
names or uniquely identifies individual people
or offensive content. All participants were fully
informed of the study’s procedures and provided
their informed consent.
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A Choice of Special Tokens

This section shows how our identification method
is different from CGVST. The 5-shot prompt
rendered by the default chat template of LLaMA-2
is shown in Figure 3.

B Details on Datasets

The MMLU dataset consists of 57 tasks in 4 major
groups: "Social Science," "STEM," "Humanities,"
and "Others." We divide the data into two equal
halves. The first half of the tasks form 4 combined
training set, while the remaining half serves as the
test set for each task. Similarly, the original data for
few-shot learning is also combined and resampled
to produce k£ examples for each category. During
the neuron identification phase, we obtain a set of
salient neurons for each category by processing
its training set with the model. In the subsequent
neuron amplification phase, we evaluate the model
on the test set of each task, using amplified neurons
specific to the category the task’s corresponding
category. Overall, we split the MMLU dataset into
4 training set and 57 test set. as examples, and the
remaining half is the test set.

Category Training Set Size | Subcategory #
STEM 1507 18
Social Sciences 1536 12
Humanities 2349 13
Others 1618 14

Table 2: Statistics of MMLU Dataset Splits.

The Natural-Instructions dataset is split in a
normal way. For each task, the first half of data
is the training set. k instances are chosen as the
few-shot examples.

C Qualitative Analysis

In Figure 4, we show three cases the default LLM
generate the correct answer in its output sequence,
but fails to follow the instructed format. The model
generates extra tokens other than the label, so the
prediction is evaluated as incorrect by the label
extractor.



5-shot Prompt:

<s> [INST] <<SYS>>

In this task, you will be given sentences in which your task is to recognize the name of the drug or
medicine. Drugs are substances that change a person's mental or physical state. They can affect how
your brain works, how you feel and behave, your understanding, and your senses. Although there
might be several correct answers, you need to write one of them.

<</SYS>>

We report a case of torsade de pointes following a single oral dose of amiodarone (1400 mg or 30
mg kg-1) administered after short intravenous loading for prevention of paroxysmal atrial flutter.
[/INST] amiodarone [INST] OBJECTIVE: To describe a probable case of transient global amnesia
caused by propafenone. [/INST] propafenone [INST] Development of persistent late onset asthma
following treatment with captopril. [/INST] captopril [INST] Disulfiram-induced hepatitis. [/INST]
Disulfiram [INST] MATERIALS AND METHODS: We present two cases of significant morbidity
related to primary and secondary perforation of the bladder following two installations of
epirubicin. [/INST] epirubicin [INST] Subsequently, he developed hyperglycemia (fasting blood
glucose 138 mg/dL) that resolved when olanzapine was stopped and recurred (fasting blood
glucose 150 mg/dL) after 2 days of rechallenge with olanzapine 2.5 mg twice daily. [ /INST]

Figure 3: The default chat template for LLaMA-2. The special words highlighted in yellow are the special tokens
used in CGVST. Our method uses only the final special word "[/INST]", which is both highlighted in yellow and
colored in red.



Prompt:

"<s> [INST] <<SYS>>\nlIn this task, you are given a context tweet, a question and corresponding answer of
given question. Your task is to classify given passage into two categories: (1) \"yes\" if the given context is
useful in answering the question, and (2) \"no\" if the given context is not useful.\n<</SYS>> \n\n Context:
just scored an exclusive w/ Sen. Cruz... he denies he was whipping against Boehner, defends mtgs w/ House
Rs— Robert Costa (@costareports) July 31, 2014 Question: who is being interviewed? Answer: senator cruz
[/INST]"

Output: " Based on the context provided, I would classify the passage as:\n\nYes, the"

Label: "yes"

Prompt:

"<s> [INST] <<SYS>>\nln this task, you will be given sentences in which your task is to recognize
the name of the drug or medicine. Drugs are substances that change a person's mental or physical
state. They can affect how your brain works, how you feel and behave, your understanding, and your
senses. Although there might be several correct answers, you need to write one of
them.\n<</SYS>>\n\nSubsequently, he developed hyperglycemia (fasting blood glucose 138
mg/dL) that resolved when olanzapine was stopped and recurred (fasting blood glucose 150
mg/dL) after 2 days of rechallenge with olanzapine 2.5 mg twice daily. [/INST]"

Output: " The drug mentioned in the sentence is \"olanzapine\".

Label: "olanzapine"

Prompt:

"<s> [INST] <<SYS>>\nlIn this task, you will be shown a sentence, and you should determine
whether it is overruling or non-overruling. In law, an overruling sentence is a statement that
nullifies a previous case decision as a precedent by a constitutionally valid statute or a decision by
the same or higher ranking court which establishes a different rule on the point of law involved.
Classify your answers into overruling or non-overruling\n<</SYS>>\n\nnor did ms. shahin offer
any authority interpreting rule 59(e), or any legal argument to persuade this court that the motion
for reconsideration was incorrectly decided. [/INST]"

Output: " Non-overruling.\n\nThe sentence you provided does not nullify or change any"

Label: "non-overruling”

Figure 4: Several outputs of the default LLM for zero-shot prompts. The words matching the labels are highlighted
in yellow.



	Introduction and Related Work
	Method
	Background
	Identifying Salient Neurons for ICL
	Neuron Amplification

	Experiments
	Datasets
	Implementation details
	Baselines

	Results and Analysis
	Main Results
	Analysis

	Conclusion
	Choice of Special Tokens
	Details on Datasets
	Qualitative Analysis

