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Abstract

Diffusion-based generative models have emerged as powerful tools for synthesizing anatomi-
cally realistic computed tomography (CT) scans from free-text prompts but remain opaque
when delineating token influence on the conditioned CT volume. This lack of interpretabil-
ity limits their clinical applicability, trustworthiness, and adoption across diagnostic and
decision-support scenarios. We present a token-wise voxel attribution method for 3D text-
to-image diffusion models that leverages cross-attention in U-Net–based architectures to
extract individual token attention maps for synthetic CT scans. Our method visualizes
individual, joint, or aggregated token-level voxel attributions during CT synthesis, helping
to alleviate concerns about model transparency. This lays the groundwork for practical
methods and structured explanations illustrating what aspects of attribution work well,
where current limitations lie, and how researchers might approach explainable AI for 3D
text-to-image diffusion models in radiology moving forward.
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1. Introduction

Text-to-image diffusion models are being increasingly utilized in medical imaging for gener-
ating synthetic anatomies conditioned on text prompts (Han et al., 2024; Wilde et al., 2023).
As these models scale to higher resolutions and generative reliability, they show promise
for data augmentation (Zhang et al., 2023), training support (Bluethgen and Chambon,
2025), and clinical decision-making (Moŕıs et al., 2024). However, clinical adoption remains
limited by their black-box nature in high-dimension modalities like computed tomography.

To improve transparency, explainability techniques such as gradient-based saliency (Sel-
varaju et al., 2020), keyword heatmaps (Chefer et al., 2023; Evirgen et al., 2024), and atten-
tive attribution (Tang et al., 2023) have been proposed. Still, many methods face three key
limitations. First, few extend to 3D generative models, and the most performant methods
(i.e. gradient-based saliency) are computationally laborious even on medium-end scientific
computing resources. Second, model-intrinsic evaluation is emphasized over clinical us-
ability (Reddy et al., 2021). Third, these methods produce static and dense, full-gradient
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Figure 1: Overview of our token-wise attention and aggregation method

heatmaps that are difficult for clinicians and trainees to interpret and interact with (Herm,
2023).

We propose a lightweight, post hoc explainability method for 3D text-to-image diffusion
models tailored to radiologists and trainees. Using a U-Net–based architecture, MedSyn (Xu
et al., 2024), we extract token-wise cross-attention maps during inference and construct
binary masked, word-attention volume pairs of individual and joint token attributions, cap-
tured in Figure 1. These token-wise attention volumes can be overlaid onto the synthesized
CT to highlight spatial regions influenced by individual or combined prompt tokens (Figure
2). Our method provides an efficient, flexible, and interactive lens into model behavior,
laying the groundwork for clinically meaningful explainability in 3D generative imaging.

2. Methods

2.1. Token-Wise Cross Attention Extraction

During inference, MedSyn downsamples the random Gaussian noise volume using denois-
ing diffusion implicit models (DDIM) (Song et al., 2021), to a latent space, where it is
cross-attended to using four bottleneck layers and text embeddings from BiomedVLP-CXR-
BERT- specialized (Boecking et al., 2022). To compute token-level attention graphs, spatial
features are flattened into queries Q ∈ RB·F×H×QL×D, where B is the batch size, F the
number of slices, H the number of heads, QL the number of query positions per slice, and
D the head dimension. Token embeddings form keys and values K,V ∈ RB·F×H×T×D for T

tokens. Cross-attention weights are computed as: A(l,t) = softmax
(
QK⊤
√
D

)
∈ RB·F×H×QL×T

for layer l ∈ {1 : 4} at timestep t.

Attention Weight Aggregation. At each of the TDDIM = 50 timesteps, we record

attention maps A
(l)
t from the L = 4 mid-block CrossAttention layers. These are: (1)

averaged over heads, Ā
(l)
t = 1

H

∑H
h=1A

(l)
t,h; (2) concatenated across layers; and (3) aggregated

over all timesteps to produce the final attention map: Āagg = 1
TDDIM·L

∑TDDIM
t=1

∑L
l=1 Ā

(l)
t ∈

RB·F×QL×T . This tensor is reshaped to RB×F×QL×T for downstream use.

Token-Wise Attention Volumes. To isolate per-token voxel attribution, we iterate
over each token index j ∈ {1, . . . , T} and extract: Hj = Āagg[0, :, :, j] ∈ RF×QL Each
Hj [f ] ∈ RQL is reshaped into a 64 × 64 spatial map, and the F = 64 slices are stacked to
form the volumetric saliency map Vj ∈ R64×64×64.
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Figure 2: Axial slices showing token-level attribution overlays on generated CT scans.

2.2. Post Inference Voxel Aggregation

Given per-token saliency volumes Vj ∈ R64×64×64 for j ∈ 1, . . . , T , we sparsify each volume
by thresholding to retain only the top 25% most salient voxels. The threshold τj is defined
as the 75th percentile of nonzero voxel-wise activations in Vj , yielding a binary mask Mj =
1[Vj ≥ τj ] that suppresses low-density confidence regions. Each mask is created based on a
threshold and color-coded to preserve token salience. To model overlapping or interacting
token influences, we define the filtered graph Ṽj = Mj ⊙ Vj , where ⊙ denotes elementwise
multiplication. When multiple tokens are selected (e.g., “severe” and “consolidation”),
their filtered saliency maps {Ṽj}j∈S are stacked and aggregated voxel-wise: Ṽagg(x, y, z) =

1
|Sx,y,z |

∑
j∈S Ṽj(x, y, z), where Sx,y,z = {j | Ṽj(x, y, z) > 0}. Averaging is restricted to

tokens with active influence at voxel (x, y, z), avoiding dilution in jointly attended regions.
The resulting volume Ṽagg ∈ R64×64×64 is overlaid on the CT scan (Fig. 2).

3. Conclusion and Future Directions

This work proposes a lightweight post hoc attribution method for 3D text-to-image diffusion
models, enabling spatially grounded visualization of how individual text tokens influence
generated CT volumes. This approach provides a push toward flexible mechanisms that
probe model behavior and surface foundational challenges that we invite the community to
consider for clinically relevant explainability in high-dimensional, generative models.

As the field continues exploring diffusion-intrinsic explainability methods, it is neces-
sary to reconsider how to evaluate such methods in clinical contexts. Although previous
approaches for 2D have been successful in running large-scale evaluations with radiologists
or segmentation models, the 3D space requires attention to computational constraints under
which these models will be deployed, the flexibility of interactive explanations in practical
use, and the visual design of explanations themselves. Attention-based techniques show
promise but must be interpreted cautiously. Word-to-CT visualizations should not be as-
sumed as injective prompt-to-ground truth pathology segmentation but as noisy semantic
artifacts, given different tokens and the stochastic process of DDIM sampling can yield
similar attention patterns.

Our ongoing work aims to validate these attention maps across multiple diffusion-based
architectures through radiologist-in-the-loop user studies. To support this, we are integrat-
ing this method into a custom-built OHIF (Hafey et al., 2019) viewer to assess usability and
diagnostic value in clinical usage. We also plan to study how radiologists interpret overlays
during diagnostic tasks to avoid misassumptions about model focus. We hope this work
helps shape a broader, clinically grounded framework for interpretable 3D generative AI.
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Wenzel, Eva Weicken, Saba Ansari, Piyush Mathur, Aaron Casey, and Blair Kelly. Eval-
uation framework to guide implementation of ai systems into healthcare settings. BMJ
Health & Care Informatics, 28(1):e100444, 2021. doi: 10.1136/bmjhci-2021-100444. URL
https://informatics.bmj.com/content/28/1/e100444.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam,
Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks

4

https://hai.stanford.edu/news/could-stable-diffusion-solve-gap-medical-imaging-data
https://hai.stanford.edu/news/could-stable-diffusion-solve-gap-medical-imaging-data
https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136960001.pdf
https://doi.org/10.1145/3592787.3592790
https://arxiv.org/abs/2406.14847
https://arxiv.org/abs/2406.14847
https://europepmc.org/article/PPR/PPR649403
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11190015/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11190015/
https://informatics.bmj.com/content/28/1/e100444


Toward Interpretable 3D Diffusion in Radiology

via gradient-based localization. International Journal of Computer Vision, 128(2):
336–359, 2020. doi: 10.1007/s11263-019-01228-7. URL https://doi.org/10.1007/

s11263-019-01228-7.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models.
In International Conference on Learning Representations (ICLR), 2021. URL https:

//openreview.net/forum?id=St1giarCHLP.

Raphael Tang, Linqing Liu, Akshat Pandey, Zhiying Jiang, Gefei Yang, Karun Ku-
mar, Pontus Stenetorp, Jimmy Lin, and Ferhan Ture. What the DAAM: Interpret-
ing Stable Diffusion Using Cross Attention. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pages
5644–5659, Toronto, Canada, 2023. Association for Computational Linguistics. URL
https://aclanthology.org/2023.acl-long.314.

Nils Wilde, Tianyuan Han, Constantin Seibold, Jens Kleesiek, and Rainer Stiefelhagen.
Medical diffusion on a budget: Textual inversion for medical image generation. arXiv
preprint arXiv:2303.13430, 2023. URL https://arxiv.org/abs/2303.13430.

Yanwu Xu, Li Sun, Wei Peng, Shuyue Jia, Katelyn Morrison, Adam Perer, Afrooz Zandifar,
Shyam Visweswaran, Motahhare Eslami, and Kayhan Batmanghelich. Medsyn: Text-
guided anatomy-aware synthesis of high-fidelity 3d ct images. IEEE Transactions on
Medical Imaging, 2024. doi: 10.1109/TMI.2024.3415032. URL https://doi.org/10.

1109/TMI.2024.3415032.

X. Zhang, A. Gangopadhyay, H.-M. Chang, and R. Soni. Diffusion model-based data aug-
mentation for lung ultrasound images. In Proceedings of Machine Learning Research,
volume 225, 2023.

5

https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s11263-019-01228-7
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://aclanthology.org/2023.acl-long.314
https://arxiv.org/abs/2303.13430
https://doi.org/10.1109/TMI.2024.3415032
https://doi.org/10.1109/TMI.2024.3415032

	Introduction
	Methods
	Token-Wise Cross Attention Extraction
	Post Inference Voxel Aggregation

	Conclusion and Future Directions

