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ABSTRACT

The generative modeling of data on manifolds is an important task, for which
diffusion models in flat spaces typically need nontrivial adaptations. This article
demonstrates how a technique called ‘trivialization’ can transfer the effectiveness
of diffusion models in Euclidean spaces to Lie groups. In particular, an auxiliary
momentum variable was algorithmically introduced to help transport the position
variable between data distribution and a fixed, easy-to-sample distribution. Nor-
mally, this would incur further difficulty for manifold data because momentum lives
in a space that changes with the position. However, our trivialization technique
creates a new momentum variable that stays in a simple fixed vector space. This
design, together with a manifold preserving integrator, simplifies implementation
and avoids inaccuracies created by approximations such as projections to tangent
space and manifold, which were typically used in prior work, hence facilitating
generation with high-fidelity and efficiency. The resulting method achieves state-of-
the-art performance on protein and RNA torsion angle generation and sophisticated
torus datasets. We also, arguably for the first time, tackle the generation of data on
high-dimensional Special Orthogonal and Unitary groups, the latter essential for
quantum problems.
Code is available at https://github.com/yuchen-zhu-zyc/TDM.

1 INTRODUCTION

Diffusion-based (e.g., Song et al., 2020b; Ho et al., 2020; Dhariwal & Nichol, 2021) and flow-based
(e.g., Lipman et al., 2022; Liu et al., 2023; Albergo & Vanden-Eijnden, 2023) generative models have
significantly impacted the landscape of various fields such as computer vision, largely due to their
remarkable ability in modeling data that follow complicated and/or high-dimensional probability
distributions. However, in many application domains, data explicitly reside on manifolds. Note this
is different from the popular data manifold assumption which is implicit; here the manifold is a
priori fixed due to, e.g., physics. Such cases occur, for example, in protein modeling (Shapovalov &
Dunbrack, 2011; Yim et al., 2023b; 2024; Bose et al., 2024), cell development (Klimovskaia et al.,
2020), geographical sciences (Thornton et al., 2022), robotics (Sola et al., 2018), and high-energy
physics (Weinberg, 1995). The naive application of standard generative models to these cases via
embedding data in ambient Euclidean spaces often results in suboptimal performance (De Bortoli
et al., 2022). This is partly due to the lack of appropriate geometric inductive biases and potential
encounters with singularities (Brehmer & Cranmer, 2020).

Pioneering works suggest generalizing (continuous) neural ODE (Chen et al., 2018) to manifolds
(Mathieu & Nickel, 2020; Lou et al., 2020; Falorsi & Forré, 2020) with maximum-likelihood training.
Rozen et al. (2021); Ben-Hamu et al. (2022) develop simulation-free algorithms but their objective is
unscalable or biased (Lou et al., 2023). Recent milestones, such as Riemannian Score-based Model
(RSGM) De Bortoli et al. (2022), Riemannian Diffusion Model (RDM) (Huang et al., 2022), and
Riemannian Diffusion Mixture (Jo & Hwang, 2023) have successfully demonstrated the potential
to extend diffusion models onto Riemannian manifolds. RSGM explores the effectiveness and
complexity of various variants of score matching loss on a general manifold and their applicable
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Figure 1: Visualization of algorithmic intuition of TDM. Existing approaches such as RFM and RSGM often
model an object that lies on changing tangent spaces as the position gt moves, resulting in inaccuracies when
handling complicated manifolds during trajectory simulations. In contrast, TDM only needs to learn the score
in simple Euclidean space. Thanks to the special structure of trivialization, TDM guarantees the induced
momentum will strictly lie on the tangent space, which improves generation quality and reduces sampling error.

scenarios, and RDM discusses techniques such as variance reduction for the training objective
via importance sampling and likelihood estimation. Building upon RSGM and RDM, Riemannian
Diffusion Mixture further leverages a mixture of bridge processes to achieve a significant improvement
in training efficiency. These models learn to reverse the diffusion process on a manifold. This is
achieved through the employment of Riemannian score-matching methods, which serve as simulation-
based objectives for the optimization of the model. However, due to the inherent geometric complexity
of the data, the training and sampling processes of such models necessitate multiple approximations.
In particular, they require the projection of the vector field (i.e. score) to the tangent space which
subsequently serves as the training label for the neural network during the training phase. Furthermore,
to mitigate numerical integration errors during the sampling process, there is a requirement for the
projection of samples to the original data manifold. Moreover, among most scenarios, as these models
are simulation-based algorithms, an additional approximation is introduced during the collection of
training data from the simulation during training. This process also necessitates the projection of
data to the manifold, which is analogous to the sampling phase. The combination of all these three
approximations can compromise the quality of generation.

Even more recent advancements, such as Riemannian Flow Matching (RFM) (Chen & Lipman, 2024)
and Scaled-RSGM (Lou et al., 2023), aim to alleviate training complexities and enhance model
scalability through the introduction of simulation-free objectives. Scaled-RSGM achieves this by
focusing on Riemannian symmetric spaces, while RFM constructs conditional flows using premetrics.
However, it is important to note that both of the approaches still require some of the aforementioned
approximations during the training and sampling phases (such as projections onto tangent spaces),
which may potentially introduce inaccuracies in the generated results. Furthermore, whether RFM is
expressive enough for intricate data distribution was discussed in (Lou et al., 2023).

In this work, we build upon recent progress in momentum-based optimization (Tao & Ohsawa, 2020)
and sampling (Kong & Tao, 2024) on Lie groups to develop a highly scalable and effective generative
model for data on these manifolds, named Trivialized Diffusion Model (TDM). Our approach departs
from prior momentum-based generative models (Dockhorn et al., 2021; Chen et al., 2023; Pandey &
Mandt, 2023; Chen et al., 2024) due to an additional technique called trivialization, which utilizes the
additional group structure and enables us to learn score in a fixed flat space, while still encapsulating
the curved geometry without any approximation.

It’s also worth noting that several works have already achieved success in the generative modeling
of data distribution on special Lie groups such as SE(3) and SO(3), resulting in a remarkable
performance on applications like protein backbone generation (e.g., Yim et al., 2023b;a; Bose et al.,
2024). The seminal work of FrameDiff (Yim et al., 2023b) extends RSGM to SE(3) and SO(3) and
takes advantage of the pleasant properties of heat kernel IGSO(3) for SO(3) to perform denoising
score matching. Due to the tractable computation of the heat kernel, FrameDiff also enjoys the
benefits of efficient learning in a fixed space as well as projection-free simulation on the manifold,
much similar to the advantages enjoyed by TDM. However, we need to clarify that the success
of FrameDiff, while sharing a similar spirit with TDM, comes from distinct sources. FrameDiff
leverages the special structures of SO(3) and its algorithm can’t be easily generalized to other cases.
In contrast, TDM holds the advantage of efficient learning and projection-free sampling for general
Lie groups (see, e.g., Sec.3 for quantum applications of other Lie groups).

To sum up, our contributions can be summarized into the following three bullet points:
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1) We introduce TDM that enables manifold data generative modeling through learning a trivialized
score function in a fixed flat space, which dramatically improves the generative performance.

2) We leverage a nontrivial Operator Splitting Integrator to stay exactly on the manifold in an
accurate and efficient way. The reduction of approximations further improves the generation.

3) We outperform baselines by a large margin on protein/RNA torsion angle datasets. We achieve
much higher quality generation on a newly-introduced challenging problem called Pacman. We
present the first results on generating U(n) data corresponding to quantum evolutions, and high
dim SO(n) data too; these results are also appealing.

2 METHOD

In this section, we will discuss how to perform generative modeling of data distribution on a class
of smooth Riemannian manifolds, namely Lie groups, by learning a score function similar to a
Euclidean one. Our goal is to recover the scenario of Euclidean generative modeling to the maximum
by leveraging the group structure of the Lie group apart from its Riemannian manifold structure. To
achieve this, we explore a specific manifold extension of Kinetic Langevin dynamics Nelson (1967),
which contains an additional variable known as momentum. Importantly, a direct introduction of the
momentum would not simplify the situation, since the momentum lives in a changing tangent space as
the position moves. Fortunately, the group structure of the Lie group enables the design of a trivialized
momentum that stays in a Lie algebra for the whole time, which is a simple fixed Euclidean space
that suits our needs. In the following, we will discuss how the technique of trivialization can help
completely avoid challenges posed by the curved geometry in an exact, analytical fashion, without
resorting to complicated differential geometry notions such as parallel transport, and certainly no
need for approximations, projections, and retractions.

In the following, we first introduce a forward process that converges to an easy-to-sample distribution
with such trivialized momentum. We derive the time reversal of such a process, which can serve as
a backward generative process. We discuss methods to efficiently learn the drift of the backward
process. Finally, we introduce a numerical integrator that achieves high accuracy and preserves the
manifold structure of the Lie group.

We also provide a brief review of the Euclidean Diffusion Models, kinetic Langevin dynamics, and
Lie group. For details, please see Appendix A for more information.

Algorithm 1 TDM (Trivialized Diffusion Model)

Require: Iteration Niter, Total time horizon T , Simulation steps N , time step h = T/N , parameter
initialization θ0, Lie group data {gm}Mm=1, friction constant γ > 0, early-stopping time ε
// TRAINING

1: for n = 0, . . . , Niter − 1 do
2: Sample ḡ ∼ 1

M

∑M
m=1 δgm ▷ Sample initial g from data

3: Sample ξ̄ by i.i.d. generate ξ̄i ∼ N (0, 1) for 1 ≤ i ≤ dim g ▷ Sample arbitrary initial ξ
4: if JDSM is tractable then ▷ Use DSM if possible
5: Sample t ∼ Uniform[ε, T ], gt, ξt ∼ pt|0(g, ξ|ḡ, ξ̄)
6: ℓ(θn) = JDSM(θn, {gt, ξt}) ▷ Compute Denoising score matching objective
7: else ▷ Use ISM instead
8: {gt, ξt} = FSOI(ḡ, ξ̄, γ, h,N) ▷ Simuate forward dynamic with Algorithm 2
9: ℓ(θn) = JISM(θn, {gt, ξt}) ▷ Compute Implicit score matching objective

10: end if
11: θn+1 = optimizer_update(θn, ℓ(θn)) ▷ AdamW optimizer step
12: end for
13: Set optimal θ∗ = θNiter

// SAMPLING
14: Sample (g0, ξ0) ∼ π∗ ▷ Sample initial condition from stationary measure
15: (gN , ξN ) = BSOI(g0, ξ0, sθ∗ , γ, h,N) ▷ Simulate backward dynamic with Algorithm 3
16: return θ∗, (gN , ξN )
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2.1 TRIVIALIZED KINETIC LANGEVIN DYNAMICS ON LIE GROUP AS NOISING PROCESS

A Lie group is a manifold with a group structure, which gives us an important tool called left-
trivialization to handle momentum. The left group multiplication Lg : G → G is defined as
Lg : ĝ → gĝ, whose tangent map (also known as differential) TĝLg : TĝG→ TgĝG is a one-to-one
map. As a result, for any g ∈ G, we can represent the vectors in TgG by TeLgξ for any ξ ∈ TeG,
where e is the group identity and g := TeG is the Lie algebra.

Utilizing such property, Kong & Tao (2024) appropriately added noise to variational Lie group
optimization dynamics (Tao & Ohsawa, 2020) and constructed the following kinetic Langevin
sampling dynamics on Lie groups:{

ġt = TeLgtξt,

dξt = −γ(t)ξtdt− TgLg−1
t

(∇U(gt))dt+
√
2γ(t)dW g

t ,
(1)

where (gt, ξt) ∈ G × g, ∀t ≥ 0, here G denotes a Lie group and g denotes its associated Lie
algebra, dW g

t is the Brownian motion on Lie algebra g, ∇U is the Riemannian gradient of U , and
U : G→ R is a potential function. ξt is the left-trivialized momentum at time t and TeLgtξt is the
true momentum.

They also proved (Kong & Tao, 2024) that for connected compact Lie groups, which will be our setup,
(1) converges, under Lipschitzness of ∇U , exponentially fast to its invariant distribution, which is

π∗(g, ξ) =
1

Z
exp

(
− U(g)− 1

2
⟨ξ, ξ⟩

)
dgdξ, (2)

where dg denotes the Haar measure, dξ denotes the Lebesgue measure on g, and Z is the normalizing
constant. Dynamic (1) is a generalization of the Euclidean kinetic Langevin equation on Rk to general
Lie groups (Rk is a Lie group with vector addition being the group operation).

By Peter-Weyl Theorem, a connected compact Lie group can be represented as a closed subgroup
of GL(n,C) (Knapp, 2002), i.e. the group of n × n invertible matrices with entries in C. Such
representation can be computed explicitly by, e.g., adjoint representation (Hall, 2013). When gt and
ξt are both represented as matrices, the abstractly defined TeLgtξt in (1) can be calculated explicitly
by a matrix multiplication between the matrix representation of gt and ξt, where we write it as gtξt.
In the rest of this work, to avoid confusion and simplify notations, we use gt and ξt to refer to their
corresponding matrix representation and use gtξt to denote TeLgtξt.

We want to construct a forward noising process based on (1) by choosing a potential U that corre-
sponds to an easy-to-sample distribution. In the case of connected compact Lie groups, we pick the
natural choice, which is U(g) = 0,∀g, corresponding to an invariant distribution whose g marginal
is the uniform distribution on G, or more precisely, the Haar measure. In this case, the following
dynamics would be the forward noising process,{

ġt = gtξt,

dξt = −γ(t)ξtdt+
√

2γ(t)dW g
t ,

(3)

Important examples of connected compact Lie Groups include but are not limited to the Special
Orthogonal group SO(n), the Unitary group U(n), the Special Unitary group SU(n), etc. Note
1-sphere S1, torus T, and SO(2) are essentially the same thing (isomorphic). Note also the direct
product of any two connected compact Lie groups is still a connected compact Lie group, so in
general we can consider the Lie group G of form, for G1, . . . , Gk connected compact Lie groups

G = G1 ×G2 × · · · ×Gk, (4)

2.2 TIME REVERSAL OF TRIVIALIZED KINETIC LANGEVIN

The following result allows us to revert the time of the forward noising process. Thanks to the
introduction of momentum and the fact that it is trivialized, the time reversal will be very similar to
the Euclidean version Dockhorn et al. (2021) despite that g lives on a manifold. This pleasant feature
is because the forward dynamics (1) has no (direct) noise on g dynamics and therefore no score-based
correction is needed for its reversal, and ξ on the other hand is simply a Euclidean variable. More
precisely, one important implication of the momentum trivialization is that the only score present
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in the dynamic is ∇ξ log pT−t(gt, ξt), which now stays in the Lie algebra g (a fixed space and also
is isomorphic to Euclidean space). This implies that we manage to get rid of ∇g log pT−t from the
dynamic, which is a much more complicated subject than ∇ξ log pT−t due to being a Riemannian
gradient and has complicated geometric dependency. This trivialization technique leads to benefits on
numerical accuracy and score representation learning, which is not enjoyed by previous works such
as RFM (Chen & Lipman, 2024), RDM (Huang et al., 2022) and RSGM (De Bortoli et al., 2022).
More details of the advantages of the trivialized dynamic will be provided in Section 2.4.

Theorem 1 (Time Reversal of Trivialized Kinetic Langevin on Lie Group). Let T ≥ 0, W g
t

be a Brownian motion on the Lie algebra g. Let Xt = (gt, ξt) be the trajectory of the forward
dynamics (3), with Xt admitting a smooth density pt(gt, ξt) with respect to the Haar measure
on G and Lebesgue measure on g. Then, the solution to the following SDE{

ġt = −gtξt,
dξt = γ(T − t)ξtdt+ 2γ(T − t)∇ξ log pT−t(gt, ξt)dt+

√
2γ(T − t)dW g

t .
(5)

satisfy Yt
d
= (XT−t) under the notation Yt := (gt, ξt) and initialization Y0 = XT .

Note although a similar time reversal formula has been given for the Euclidean case in (Dockhorn
et al., 2021), their results are not applicable due to the presence of the manifold structure. In fact, we
need a non-trivial adaptation of the arguments and the proof relies on the Fokker-Planck equation on
the manifold G× g. For details of the proof of Theorem 1, see Appendix B.

In addition, similar to standard Euclidean diffusion model, dynamic 5 also has a corresponding
probabilistic ODE counterpart, given by the following:

Remark 1 (Probability Flow ODE). The following dynamic has the same marginal as (5){
ġt = −gtξt,
dξt = γ(T − t)ξtdt+ γ(T − t)∇ξ log pT−t(gt, ξt)dt

(6)

as long as initial conditions are consistent.

2.3 LIKELIHOOD TRAINING AND SCORE-MATCHING FOR TRIVALIZED KINETIC LANGEVIN

To perform generative modeling of data distribution, we would like to simulate and sample from
the stochastic dynamic in (5). However, the score ∇ξ log pT−t(gt, ξt) is intractable and we want to
approximate it with a neural network score model sθ(gt, ξt, t). We denote the sequence of probability
distribution qθt as the density of L(Yθ

t ) with respect to the reference measure, where Yθ
t is the

trajectory of the following dynamic,{
ġt = −gtξt,
dξt = γ(T − t)ξtdt+ 2γ(T − t)sθ(gt, ξt, t)dt+

√
2γ(T − t)dW g

t ,
g0, ξ0 ∼ π∗. (7)

In order to generate new data with dynamic (7), we need qθT ≈ p0, which would require learning a
score that is close to the true score ∇ξ log pt(g, ξ). A natural starting point for learning the score is
through Score Matching (SM) between sθ and ∇ξ log pt(g, ξ), but that alone is intractable because
pt is not known a priori. Instead, we can directly extrapolate some classical tractable variants of SM,
such as Denoising Score Matching (DSM) or Implicit Score Matching (ISM), to the Lie group case.

Denoising Score Matching Note the score matching objective can be rewritten as (Vincent, 2011)

JSM(θ) = Et,p0
Ept|0

[∥∥∇ξ log pt|0(g, ξ)− sθ(g, ξ, T − t)
∥∥2]︸ ︷︷ ︸

JDSM(θ)

+C1
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where C1 is a constant independent of θ. Hence, argminθ JSM = argminθ JDSM, but evaluating
JDSM only requires knowledge of the conditional transition probability pt|0. The question boils down
to finding out such condition transition probability induced by the forward dynamic (3).

Note that the Lie algebra g is a tangent space of G at the identity, so it’s a vector space that is
isomorphic to Euclidean space Rd, where d = dim(g). For example, the so(2) is the Lie algebra of
the Special Orthogonal group SO(2). so(2) consists of all the 2× 2 skew-symmetric matrices. This
implies that, for any ξ ∈ so(2),

ξ =

[
0 θ
−θ 0

]
, θ ∈ R =⇒ so(2) ∼= R

Here, the Brownian motion dW g
t on g should be understood as dW g

t =
∑d

i=1 dW
i
t · ei, where

{dW i
t }i=1,...d are independent standard Brownian motions on R and {ei}i=1,...,d is an orthogonal

basis for g. Therefore, the forward dynamic (3) with initial condition g(0) = g0, ξ(0) = ξ0 is
equivalent to the following,{

ġt = gtξt,

dξit = −γξitdt+
√
2γdW i

t ∀1 ≤ i ≤ d.
s.t g(0) = g0, ξ

i(0) = ξi0 ∀1 ≤ i ≤ d. (8)

Here, without loss of generality, we choose γ(t) to be a constant γ > 0. We notice that each ξi
follows is OU process with an explicit solution. This reduces problem (8) to a matrix-valued initial
value problem (IVP) for gt, since ξt can be treated as a known function of time. Then the IVP
ġt = gtξt, g(0) = g0 is just a linear system.

Unfortunately, note that even though the linearity ensures linear structure in the solution, namely
g(t) = g0Φ(t) where Φ is known as a fundamental matrix, Φ in general may not be analytically
available in closed-form because the linear system has a time-dependent coefficient matrix. This
differs from the scalar case where Φ(t) would just be exp(

∫ t

0
ξ(s)ds) or the constant coefficient

matrix case where Φ(t) would just be expm(ξt). Instead, we can represent the solution using
geometric tools, resulting in Magnus expansion Magnus (1954) in the following form

g(t) = g0 expm(Ω(t)), Ω(t) =

∞∑
k=1

Ωk(t). (9)

Here {Ωk}k=1,...,∞ is called the Magnus series, which is written in terms of integrals of iterated Lie
algebra between ξ(t) at different times. The first three terms of the Magnus series are given below to
illustrate the idea,

Ω1(t) =

∫ t

0

ξ(t1)dt1, Ω2(t) =
1

2

∫ t

0

∫ t1

0

[ξ(t1), ξ(t2)]dt2dt1

Ω3(t) =
1

6

∫ t

0

∫ t1

0

∫ t3

0

([
ξ(t1), [ξ(t2), ξ(t3)]

]
+
[
ξ(t3), [ξ(t2), ξ(t1)]

])
dt3dt2dt1

In general, the solution given in (9) may not be tractable due to the fact that Ω(t) is an infinite series
with increasing intricacy for each term. However, we want to discuss a special yet important case,
where the infinite series is reduced to only the first term. In fact, when G is an Abeliean Lie group,
for any ξ, ξ̂ ∈ g, the Lie bracket [ξ, ξ̂] = 0 vanishes identically, and the solution to IVP in (9) reduces
to g(t) = g0 exp(

∫ t

0
ξ(s)ds).

Theorem 2 (Conditional transition probability for Abelian Lie Group). Let G be an Abelian
Lie group which is isomorphic to SO(2). In this case, the conditional transition probability can
be written explicitly as

pt|0(gt, ξt | g0, ξ0) = WN(logm(g−1
0 gt);µg, σ

2
g) · N (ξt;µξ, σ

2
ξ ) (10)
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where WN(x;µ, σ2) is the density value of the Wrapped Normal distribution with mean µ
and variance σ2, and evaluated at x. For explicit expressions of µg, σ

2
g and µξ, σ

2
ξ and the

multivariate case formula, please see Appendix C.

An important example of Abelian Lie group is the 1D torus T or special orthogonal group SO(2),
and any of their direct product. In this case, we can compute the conditional transition probability
pt|0(gt, ξt) exactly due to the capability of solving the IVP exactly. We summarize the results in
Theorem 2 and leave the proof in Appendix C. Notice that while Theorem 2 only gives the conditional
transition probability for G ∼= SO(2), it can be extended to a multivariate case where G ∼= SO(2)k

since the conditional transition of forward dynamic factorizes over each dimension when conditioned
on the initial value. For a detailed discussion of the multivariate case, please see Appendix C.

Implicit Score Matching When G is not Abelian, the conditional transition probability in (10)
might not be available. In this case, we resort to another computationally tractable variant of the score-
matching loss derived by performing integration by parts, also known as the implicit score-matching
objective JISM (Hyvärinen, 2005). In fact, we can connect JISM and JSM by,

JSM(θ) = Et,pt

[∥∥sθ(g, ξ, t)∥∥2 + 2divξ(sθ(g, ξ, t))
]

︸ ︷︷ ︸
JISM(θ)

+C2

where C2 is a constant independent of θ. Hence, argminθ JSM = argminθ JDSM. To evaluate
JISM, samples approximated distributed as pt are generated through simulation of forward dynamic.
Computing it also requires evaluating the divergence with respect to ξ, which is the trace of the Jaco-
bian. For high dimensional problems, stochastic approximations with Hutchinson’s trace estimator
(Hutchinson, 1989; Song et al., 2020a) are often employed to improve computational efficiency.

2.4 NUMERICAL INTEGRATION AND SCORE PARAMETERIZATION

To either simulate the forward dynamic for generating trajectories used for evaluating implicit score
matching objective JISM or sampling from the backward dynamic for generating new samples, we
need to integrate the dynamic. To exploit the Euclidean structure of ξ to achieve higher numerical
accuracy, we introduce the Operator Splitting Integrator (OSI). Apart from enjoying a better
prefactor in terms of numerical errors, such an integrator is also manifold-preserving and projection-
free. Details of the integrator can be found in Appendix D, along with a convergence analysis of OSI
(Appendix D.3) which is essentially a reproduction of the proof in Kong & Tao (2024).

Integrating forward dynamic In order to numerically integrate the forward dynamic (3), we note
that the dynamic can be split into the sum of two much simpler dynamics depicted in (11). This is the
approach considered by Kong & Tao (2024).

AF
g :

{
ġt = gtξt
dξt = 0dt

+ AF
ξ :

{
ġt = 0
dξt = −γξtdt+

√
2γdW g

t
(11)

While the original forward dynamic does not in general have a simple, closed-form solution for
non-Abelian groups, the two smaller systems AF

g and AF
ξ are essentially linear and both allow exact

integration with closed-form solutions. Therefore, instead of directly integrating the forward dynamic,
we can integrate AF

g and AF
ξ alternatively for each timestep. Another notable property of such

integration is that the trajectory of this numerical integration scheme will stay exactly on the manifold
G× g. This avoids the use of projection operators at the end of each timestep to ensure the iterates
stay on the manifold. By performing such a manifold-preserving integration technique, we not only
get rid of the inaccuracy caused by projections but also greatly reduce the implementation difficulties
since such projections in general do not admit closed-form formulas.

Integrating backward dynamic To perform generative modeling and sample from the backward
dynamic, we can either directly work with the stochastic backward dynamic in (7) or its corresponding
marginally-equivalent probability flow ODE. We discuss mainly the integrators for the stochastic
dynamic and defer the discussion of probability flow ODE to Appendix D. Employing a similar

7



Published as a conference paper at ICLR 2025

operator splitting scheme, dynamic (7) can be split into the following two simpler dynamics,

AB
g :

{
ġt = −gtξt
dξt = 0dt

+ AB
ξ :

{
ġt = 0
dξt = γξtdt+ 2γsθ(gt, ξt, t)dt+

√
2γdW g

t
(12)

While AB
g still allows exact integration and helps preserve the trajectory on the Lie group, AB

ξ no
longer has a closed form solution due to the nonlinearity in sθ. In this case, we still use exponential
integrators to conduct the exact integration of the linear component and discretize the nonlinear
component by using a left-point rule, i.e. pretending that g and ξ do not change over a short time h.
This treatment is beyond the consideration by Kong & Tao (2024) but it is a rather natural extension.

Score parameterization Previous works on manifold generative modeling like RFM (Chen &
Lipman, 2024), RDM (Huang et al., 2022), and RSGM (De Bortoli et al., 2022) often require learning
a score that belongs to the tangent space at the input, i.e., sθ(g, t) ∈ TgG. This means that the score
network at each input g needs to adapt individually to the geometric structure at that point. One thus
needs to either write explicitly the g−dependent isomorphism between TgG and Rd for each g, or
embed TgG in the Euclidean space Rn with n≫ d and apply projections onto TgG to obtain a valid
score. Either way, one needs to handle the geometry of G and/or deal with additional approximation
errors and computational costs (e.g., incurred by projections), and learn a hard object in a changing
space with structural constraints.

On the other hand, since our approach only needs to approximate the score ∇ξ log pt, which is an
element in the Lie algebra g, we can use a standard Euclidean-valued neural network to universally
approximate sθ. Thanks to the technique of trivialization, we can enjoy the already demonstrated
success of score learning in a fixed Euclidean space, where the non-Euclidean effects stemming from
the Riemannian geometry are extracted and represented through the left-multiplied g position variable.
The need to parameterize the score function in a geometry-dependent space is by-passed, without any
approximation in this step. The hardwiring of the geometric structural constraints into the dynamics
greatly reduces the implementation difficulty, improves the efficiency of score representation learning,
releases the flexibility to choose score parameterization to users, and potentially makes the generative
model more data efficient as there is no more need to learn the geometry from data.

3 EXPERIMENTAL RESULTS

We will demonstrate accurate generative modeling of Lie group data corresponding to 1) complicated
and/or high-dim distribution on torus, 2) protein and RNA structures, 3) sophisticated synthetic
datasets on possibly high-dim Special Orthogonal Group, and 4) an ensemble of quantum systems,
such as quantum oscillator with a random potential or Random Transverse Field Ising Model (RTFIM),
characterized by their time-evolution operators. Details of the dataset and training set-up are discussed
in Appendix G.

Evaluation Methodology: We adhere to the standard evaluation criterion in Riemannian generative
modeling, which is Negative Log Likelihood (NLL). A consistent number of function evaluations is
maintained as per prior studies. All datasets were meticulously partitioned into training and testing
sets using a 9:1 ratio. Details of NLL estimation procedure are in Appendix F; note that result is not
new and only for completeness, but our proof is particularly adapted to Lie group manifolds, intrinsic
and independent of the choice of charts and coordinates.
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Figure 2: Log likelihood
(↑) v.s. Dimensions.

Complicated and/or High Dimensional Torus Data: We start by
comparing our model performance with RFM Chen & Lipman (2024)
on intricate datasets such as the checkerboard and Pacman on T2, which
are discontinuous and multi-modal. Here, Pacman is a dataset newly
curated by us to test generation on torus in challenging situations. It was
noted (Lou et al., 2023, Fig.3) that RFM produces less satisfactory results
when generating complicated patterns on torus, such as the checkerboard
with a size larger than 4 × 4. We observed that RFM, although a very
strong method, ran into a similar issue when generating Pacman, which is
arguably more sophisticated. Figure 3 and Figure 4 show that our model
consistently exhibited proficiency in generating intricate patterns within
the torus manifold. A scalability study shown in Figure 2 confirmed our method’s good scalability to

8



Published as a conference paper at ICLR 2025

(a) Pacman Maze (b) TDM (c) RFM

Figure 4: Visualization of Pacman dataset and generated data by TDM on T2. Pacman maze corresponds to a
random variable on T2 with a complicated distribution corresponding to locations where there is a wall.

high-dimensional cases with minimal degradation in performance (NLL). For the scalability study,
we adopted the same setting considered in RFM and compared with its results.

Figure 3: Visualization of Gen-
erated data by TDM on 4× 4 and
6× 6 checkerboard.

Protein/RNA Torison Angles on Torus: We also test on the
popular protein Lovell et al. (2003) and RNA Murray et al. (2003)
datasets compiled by Huang et al. (2022). These datasets correspond
to configurations of macro-molecules represented by torsion angles
(hence non-Euclidean), which are 2D or 7D. Results, including
generated data of the protein datasets, are presented in Table 1 and
Figure 7. The results of RFM were taken from (Chen & Lipman,
2024), where RDM was compared to and results of RSGM were
not provided. Notably, our model outperforms the baselines by
a significant margin, as evidenced by the visualizations of RNA
illustrating the alignment of generated data with ground truth via density plots. The empirical
results demonstrating our model’s substantial performance gains are possibly rooted in the proposed
simulation-free training, high-accuracy sampling, and reduced number of approximations.

Table 1: Test NLL (↓) over Protein/RNA datasets

Model General (2D) Glycine (2D) Proline (2D) Pre-Pro (2D) RNA (7D)

Dataset size 138208 13283 7634 6910 9478

RDM 1.04± 0.012 1.97± 0.012 0.12± 0.011 1.24± 0.004 −3.70± 0.592
RFM 1.01± 0.025 1.90± 0.055 0.15± 0.027 1.18± 0.055 −5.20± 0.067

TDM 0.69± 0.14 1.04± 0.27 −0.60± 0.15 0.52± 0.10 −6.86± 0.46

Model Log likelihood

RSGM 0.20± 0.03

TDM 0.292± 0.07

Figure 5: Log likelihood and visualization of generated data for SO(3) with 32 mixture components.

Special Orthogonal Group in High Dimensions: We now evaluate our model’s performance on
SO(n) data. Notably, our model is the first reported one to successfully generate beyond n = 3. For
SO(3), we generate a difficult mixture distribution in the same way as in (De Bortoli et al., 2022). We
also generate data for SO(n) with n > 3 in a similar fashion. With the trivialization technique, we
bypass the need to compute the Riemannian logarithm map used in RFM training or eigenfunctions
of the heat kernel on SO(n), which is needed by RSGM (De Bortoli et al., 2022) but in general does
not admit a tractable form. The accuracy of our approach can be seen from both the visualization and
NLL metric in Figure 5 and Figure 6.

Learning an Ensemble of Quantum Processes: Lastly, we experiment with a complex-valued
Lie group, the unitary group U(n). U(n) holds critical importance in, e.g., high energy physics
(Weinberg, 1995) and quantum sciences (Nielsen & Chuang, 2010). Our approach, arguably for the
first time, tackles the generative modeling of U(n) data and manages to scale to nontrivial dimensions.
Specifically, how a quantum system evolves is encoded by a unitary operator, i.e. an element in
U(n), and we consider training data corresponding to the time-evolution operators of an ensemble of
quantum systems, and aim at generating more quantum systems that are similar to the training data.
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Figure 6: Visualization of Generated SO(n) data. We scatter plot the marginals of randomly selected dimensions.
Left: SO(4). Middle: SO(6). Right: SO(8)

Figure 7: Visualization of Generated Protein Torsion Angle. ψ and ϕ are torsion angles on the protein backbone.
We scatter plot the ground truth distribution and overlay it with generated torsion angles. The high overlap
suggests a good match between the generated distribution and true distribution.

Two examples are tested, respectively quantum oscillators in random potentials, and Transverse Field
Ising Model with random couplings and field strength. (Spatial discretization, if needed, of) the time
evolution operator of Schrödinger equation for each system gives one U(n) data point in the training
set. Fig.8 provides marginals’ scatter plots to showcase the fidelity of our generated distributions, for
Quantum Oscillators. Fig.9 is for Transverse Field Ising Model.

Figure 8: Visualization of Generated Time-evolution Operator of Quantum Oscillator on U(n). Time-evolution
operators are of the form eitH, where H = ∆h−Vh, ∆h is the discretized Laplacian and Vh(x) =

1
2
ω2|x−x0|2

is a random potential function. We scatter plot the marginals of randomly selected dimensions. Left: U(4).
Middle: U(6). Right: U(8)

Figure 9: Visualization of Generated Time-evolution Operator of Transverse Field Ising Model (TFIM) on
U(n). Time-evolution operators are of the form eitH, where H is the Hamiltonian of the TFIM with a random
coupling parameter and field strength. We scatter plot the marginals of randomly selected dimensions. Left:
2-qubit TFIM, U(4). Middle: 3-qubit TFIM, U(8). Right: 3-qubit TFIM, U(8)

4 CONCLUSION, LIMITATION, AND FUTURE POSSIBILITIES

We propose TDM, an approximation-free diffusion model on Lie groups, by algorithmically introduc-
ing trivialized momentum, which turns a manifold problem to a Euclidean-like situation. Compared
to existing milestones such as RFM, RSGM and RDM, TDM achieves superior performance on
various benchmark datasets thanks to having fewer sources of approximations. However, trivialization
strongly leverages group structure and does not directly generalize to general manifolds, although
it is possible to extend to homogeneous spaces. Meanwhile, there is potential for improvement in
the score parameterization and training, such as by adopting techniques such as preconditioning and
exponential moving average tuning (Karras et al., 2022), which will be investigated in the future.
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A BACKGROUNDS

Diffusion Generative Model in Euclidean spaces: We first review Diffusion Generative Models
(sometimes also referred to as Score-based Generative Model, denoising diffusion model, etc.)
(Ho et al., 2020; Song et al., 2020b). Here, we adopt the Stochastic Differential Equations (SDE)
description (Song et al., 2020b). Given samples of Rd-valued random variable X0 that follows the
data distribution p0 which we are interested in, denoising diffusion adopts a forward noising process
followed by a backward denoising generation process to generate more samples of p0. The forward
process transports the data distribution to a known, easy-to-sample distribution by evolving the initial
condition via an SDE,

dXt = f(Xt, t)dt+
√

2γ(t)dWt, X0 ∼ p0. (13)

In this case, p+∞ will be a standard Gaussian N (0, I) with appropriate choice of γ(t). The backward
process then utilizes the time-reversal of the SDE (13) (Anderson, 1982). More precisely, if one
considers

dYt =
(
− f(Yt, t) + 2γ(t)∇ log pT−t(Yt)

)
dt+

√
2γ(T − t)dWt, Y0 ∼ pT . (14)

Then we have Yt ∼ pT−t, i.e. Yt = XT−t in distribution. In particular, the T -time evolution of (14),
YT , will follow the data distribution p0. In practice, one considers evolving the forward dynamics
for finite but large time T , so that pT ≈ N (0, I), and then initialize the backward dynamics using
Y0 ∼ N (0, I) and simulate it numerically till t = T to obtain approximate samples of the data
distribution. Critically, the score function s needs to be estimated in the forward process.

To do so, the score ∇ log pt is often approximated using a neural network sθ. For linear forward
SDE, it is typically trained by minimizing an objective based on denoising score matching (Vincent,
2011), namely

EtEX0∼p0
EXt∼pt(·|X0)∥sθ(Xt, t)−∇ log pt(Xt|X0)∥2 (15)

where ∇ log pt(Xt|X0) is the conditional score derived from the solution of (13) with a given initial
condition.

Kinetic Langevin dynamics in Euclidean spaces, and CLD: When Einstein first proposed ‘Brown-
ian motion’, he actually thought of a mechanical system under additional perturbations from noise and
friction (Einstein, 1905). This is now (generalized, formalized, and) known as the kinetic Langevin
dynamics (e.g., Nelson, 1967), i.e.{

dQ =M−1Pdt

dP = −γPdt−∇V (Q)dt+ σdWt
(16)

which converges, as t → ∞, to a limiting probability distribution Z−1 exp(−(PTM−1P/2 +
V (Q))/T )dPdQ under mild conditions, where M is mass matrix that can be assumed to be I
without loss of generality, and T = σ2/(2γ) is known as the temperature. If T is fixed and γ → ∞,
one recovers (in distribution and after time rescaling) overdamped Langevin dynamics

dQ = −∇V (Q)dt+
√
2TdWt.

Just like how overdamped Langevin (often with V being quadratic) can be used as the forward process
for diffusion generative model, kinetic Langevin can also be used as the forward process. In fact, in a
seminal paper, Dockhorn et al. (Dockhorn et al., 2021) used it to smartly bypass the singularity of
score function at t = 0 when overdamped Langevin is employed as the forward process and data is
supported on low dimensional manifolds and called the resulting method CLD. Similar to Equation
14, one can construct the reverse process of Equation 16 as follow,{

dQ = −M−1Pdt

dP = γPdt+∇V (Q)dt+ σ2∇P log p(Q,P, t)dt+ σdWt.
(17)

By endowing P with Gaussian initial condition, p is fully supported in P space, and since the score
function only takes the gradient with respect to P , it no longer has the aforementioned singularity
issue when t tends to zero. This benefits score parameterization and learning.
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Finally, let us contrast the trivialized Lie group kinetic Langevin dynamics (used as forward dynamics
in this work) with the classical Euclidean kinetic Langevin dynamics by setting σ =

√
2γ and

M = 1:

Lie:
{
ġ = gξ,

dξ = −γξdt− TgLg−1(∇U(g))dt+
√
2γdW g

t ,
Euclidean:

{
Q̇ = P,

dP = −γPdt−∇U(Q)dt+
√
2γdWt,

Note the main difference is the 1st line, i.e. the position dynamics; the 2nd line is identical except for
conservative forcing, but that has to be different in the manifold case.

Lie group: A Lie group is a differentiable manifold that also has a group structure, denoted by G.
A Lie algebra is a vector space with a bilinear, alternating binary operation that satisfies the Jacobi
identity, known as the Lie bracket. The tangent space of a Lie group at e (the identity element of the
group) is a Lie algebra, denoted as g := TeG.

B TIME REVERSAL FORMULA

In this section, we will prove the time reversal formula stated in Theorem 1. We first introduce an
important lemma and calculate the adjoint of the infinitesimal generator of a general diffusion process.
We then apply the lemma to derive the Fokker-Planck equation for our process of interest and finish
the proof.

Lemma 1. Given α, β : G× g → g, let L denote the infinitesimal generator of the following
dynamic {

ġ = TeLgα(g, ξ)dt

dξ = β(g, ξ)dt+
√
2γ(t)dWt

(18)

The adjoint of L is given by

L∗p = −divg(pTeLgα)− divξ(pβ) + γ(t)∆ξp

Proof of Lemma 1. We first write down the infinitesimal generator L for SDE (18). For any f ∈
C2

0 (G× g), L is defined as

Lf(g, ξ) := lim
δ→0

E [f(gδ, ξδ)|(g0, ξ0) = (g, ξ)]− f(g, ξ)

δ
=⟨∇gf, TeLgα⟩+ ⟨∇ξf, β⟩+ γ(t)∆ξf

By definition, L∗ : C2 → C2 (the adjoint operator of L) satisfies
∫
G×g

pLfdgdξ =∫
G×g

fL∗p dgdξ for any f, p ∈ C2
0 (G× g). By the divergence theorem, we have∫

G×g

pLf dgdξ =
∫
G×g

f
(
− divg(pTeLgα)− divξ(pβ) + γ(t)∆ξp

)
dgdξ

Here TeLgξ stands for the left-invariant vector filed on G generated by ξ ∈ g. As a result, we have

L∗p = −divg(pTeLgα)− divξ (pβ) + γ(t)∆ξp

We are now ready to show that the backward dynamic (5) is the time reversal process of the forward
dynamic (1). Fokker-Planck characterizes the evolution of the density of a stochastic process: denote
the density at time t as ρt, we have ρt satisfies ∂

∂tρt = L∗ρt. Thm. 1 is proved by comparing the
Fokker-Planck equation for Eq. (1) and (5).

Proof of Theorem 1. By denoting the density for SDE following the forward dynamic (1) as pt and
the density for SDE following backward dynamic (5) as p̃t, we only need to prove pt ≡ p̃T−t.
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Using Lemma 1, the Fokker-Planck equation of the forward dynamic Eq. (1) is given by,

∂

∂t
pt = −divg(ptTeLgξ) + γ(t) divξ(ptξ) + γ(t)∆ξpt

and the Fokker-Planck equation for Eq. (5) is given by

∂

∂t
p̃t = −divg(−p̃tTeLgξ)− 2γ divξ (p̃t∇ξ log p̃t)− γ(T − t) divξ(p̃tξ) + γ(T − t)∆ξp̃t

= divg(p̃tTeLgξ)− γ(T − t) divξ(p̃tξ)− γ(T − t)∆ξp̃t

where the last equation holds due to divξ (p̃t∇ξ log p̃t) = divξ (∇ξp̃t) = ∆ξpt.
We can calculate the partial derivative of the reversed distribution p̃T−t with respect to t, which gives

∂

∂t
p̃T−t = −divg(p̃tTeLgξ) + γ(t) divξ(p̃tξ) + γ(t)∆ξp̃t

Note that this exactly matches the expression for ∂
∂tpt. Together with the same initial condition

p̃0 = pT , we deduce that pt ≡ p̃T−t for all t.

C DENOISING SCORE MATCHING FOR ABELIAN LIE GROUP

We first state a detailed version of Theorem 2 in the following,

Corollary 1 (Conditional transition probability for Abelian Lie Group). Let G be an Abelian
Lie group which is isomorphic to T or SO(2). In this case, the conditional transition probability
can be written explicitly as,

pt|0(gt, ξt | g0, ξ0) = WN(logm(g−1
0 gt);µg, σ

2
g) · N (ξt;µξ, σ

2
ξ ) (19)

where WN(x;µ, σ2) is the density of the Wrapped Normal distribution with mean µ and
variance σ2 evaluate at x, logm is the matrix logarithm with principal root, and µg, µξ, σ

2
g , σ

2
ξ

are are given by,

µg =
1− e−t

1 + e−t
(ξt + ξ0), µξ = e−tξ0

σ2
g = 2t+

8

et + 1
− 4, σ2

ξ = 1− e−2t

In this section, we will prove Theorem 2 by proving its detailed version in Corollary 1, under the
condition that G is an Abelian Lie group which is isomorphic to T or SO(2). Note that this allows
us to compute the conditional transition probability for G that is also direct product of these Lie
groups. The reason is that, for a Lie group G that is a direct product of T and SO(2), we can represent
an element in G as (g1, . . . , gk) where gi ∈ T or SO(2). The corresponding Lie Algebra can be
represented as (ξ1, . . . , ξk). For each 1 ≤ i ≤ k, (gi, ξi), they follow the following dynamic,

ġit = gtξ
i
t,

dξit = −γξtdt+
√
2γdW i

t

gi(0) = gi0, ξ
i(0) = ξi0

(20)

Note that this will not create any confusion since ξi ∈ R and there’s no need for another superscript
to indicate other elements in ξi. Moreover, an important consequence of the factorization of the
dynamic of (g, ξ) as k independent smaller dynamic is that we can also factorize the conditional
transition probability for g, ξ as a product of k conditional transition probability, each computed from
gi, ξi. This means the following,

pt|0(gt, ξt | g0, ξ0) =
k∏

i=1

pt|0(g
i
t, ξ

i
t | gi0, ξi0) (21)
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Based on (21), we manage to compute the conditional transition probability of any general connected
compact Abelian Lie group, since they are necessarily isomorphic to a power of T or SO(2)(Kirillov,
2008). Therefore, we just need to compute the conditional transition probability for such a base case,
which is stated in Theorem 2.

From now on, we will consider γ = 1 for simplicity. Generalization of our results to time-dependent
is straightforward. Let’s stick to the notation that g0 ∈ SO(2), ξ0 ∈ R ∼= so(2). We slightly abuse the
notation in the sense that, when considering the dynamic for ξ, we are considering a valid SDE on R,
while when we are considering the dynamic for g, ξ should be understood as its matrix representation
in so(2), which is a 2 × 2 skew-symmetric matrix. Let also denote Yt =

∫ t

0
ξsds for notational

simplicity.

Since G is Abelian, [ξ, ξ̂] = 0 for any ξ, ξ̂ ∈ g, the Magnus series Ωk(t) = 0 in (9) for k ≥ 2, and
the solution to the IVP can be written explicitly as,{

gt = g0 expm(Yt)

ξt = e−tξ0 +
√
2
∫ t

0
e−(t−s)dWs

(22)

Notice that (gt, ξt) is a push forward of (ξt, Yt). Therefore, to find the condition transition pt|0(gt, ξt |
g0, ξ0), we first compute the joint distribution of (ξt, Yt) conditioned on the (g0, ξ0), and derive the
desired conditional transition probability by computing the probability change of variable.

Since Yt is the time integral of ξt, (ξt, Yt) is a Gaussian process, with mean and covariance stated in
the following Lemma,

Lemma 2. For a given t, (ξt, Yt) is distributed according to a bivariate Gaussian,(
ξt
Yt

)
∼ N

((
e−tξ0

(1− e−t)ξ0

)
,

(
1− e−2t e−2t(et − 1)2

e−2t(et − 1)2 4e−t − e2t + 2t− 3

))
(23)

Proof of Lemma 2. To show that the joint distribution (ξt, Yt) as the desired expression, we just need
to compute the mean and variance of ξt and Yt respectively, as well as their covariance. For ξt,

E[ξt] = E
[
e−tξ0 +

√
2

∫ t

0

e−(t−s)dWs

]
= e−tξ0

Var(ξt) = Var
(√

2

∫ t

0

e−(t−s)dWs

)
= 2

∫ t

0

e−2(t−s)ds = 1− e−2t

For Yt, since it’s the integration of ξt, it has the following expression,

Yt =

∫ t

0

e−sξ0ds+
√
2

∫ t

0

∫ p

0

e−(p−s)dWsdp

= (1− e−t)ξ0 +
√
2

∫ t

0

∫ t

s

e−(p−s)dpdWs

= (1− e−t)ξ0 +
√
2

∫ t

0

(1− e−(t−s))dWs

where we use Stochastic Fubini’s theorem to exchange the integration order of dWs and dp. Therefore,
we can compute the mean and variance of Yt,

E[Yt] = E
[
(1− e−t)ξ0 +

√
2

∫ t

0

(1− e−(t−s))dWs

]
= (1− e−t)ξ0

Var(Yt) = Var
(√

2

∫ t

0

(1− e−(t−s))dWs

)
= 2

∫ t

0

(1− e−(t−s))2ds = 4e−t − e2t + 2t− 3
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Finally, we need to compute Cov(ξt, Yt) to complete the proof, where we use Ito’s isometry,

Cov(ξt, Yt) = E
[
2

∫ t

0

e−(t−s)dWs ·
∫ t

0

(1− e−(t−s))dWs

]
= 2

∫ t

0

e−(t−s) · (1− e−(t−s))ds = e−2t(et − 1)2

As a corollary of Lemma 2, we can compute the conditional distribution Yt|ξt, here we omit the
dependence on ξ0, g0 for simplicity since all probability considered in this section is conditioned on
these two value. The conditional distribution between bivariate Gaussian is equivalent to orthogonal
projections,

Corollary 2. For a give t, Yt|ξt has distribution

Yt|ξt ∼ N
(1− e−t

1 + e−t
(ξt + ξ0), 2t+

8

et + 1
− 4

)
(24)

Proof. Let Σ and µ denotes the variance matrix and the mean vector of (ξt, Yt). The Yt|ξt has
conditional mean and variance given by,

E[Yt|ξt] = µY +ΣY ξΣ
−1
ξξ (ξt − µξ)

Var[Yt|ξt] = ΣY Y −ΣY ξΣ
−1
ξξ ΣξY

Plug in the expression for Σ and µ, and the expressions simplify to the desired ones.

We need the distribution of Yt|ξt due to the following factorization of pt|0(gt, ξt | g0, ξ0),

pt|0(gt, ξt | g0, ξ0) = pt|0(gt | ξt, g0, ξ0) · pt|0(ξt | g0, ξ0)

Here pt|0(ξt | g0, ξ0) is known due to ξt being a Gaussian, we need to compute pt|0(gt | ξt, g0, ξ0),
which is a hard object since it’s a distribution on the Lie group G. However, we can derive its
expression by computing the push-forward of Yt|ξt, g0, ξ0 by the exponential map. The following
theorem characterizes such a change of measure given by the exponential map of Lie group as the
push-forward,

Theorem 3 (Theorem 3.1 in Falosi et al. (Falorsi et al., 2019)). Let G denotes a Lie group and
g its Lie algebra. Consider a distribution m on g with density r(ξ) with respect to the Lebesgue
measure on g, the push-forward of m to G, denoted as exp∗(m) is absolutely continuous with
respect to the Haar measure on G, with density p(g) given by,

p(g) =
∑

ξ∈g: expm(ξ)=g

r(ξ)|J(ξ)|−1, g ∈ G,

where J(ξ) = det
(∑∞

k=0
(−1)k

(k+1)! (adξ)
k
)

.

Moreover, when G is SO(2) or T, the scenario simplifies to,

J(ξ) = 1,∀ξ ∈ g

{ξ ∈ g : expm(ξ) = g} = {ξ ∈ g : ξ = logm(g)± 2kπ, k ∈ Z}

Since the exponential map is not injective, computing the density of the push-forwarded measure at
g ∈ G requires summing over density at all the pre-images ξ of g in g and weighted by the inverse of
the Jacobian |J(ξ)|. Fortunately, for our considered case, both the pre-images and the Jacobian can
be explicitly characterized and computed.
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Applying Theorem 3 to our case, where r is the density of Yt|ξt, g0, ξ0, we derive the following
expression for pt|0(gt | ξt, g0, ξ0),

pt|0(gt | ξt, g0, ξ0) =
∞∑

k=−∞

pYt|ξt
(
logm(g−1

0 gt) + 2kπ
)

(25)

where pYt|ξt denotes the density of Yt|ξt, which is the density of a Gaussian with mean and variance
defined in (24). This is also known as the Wrapped Normal distribution (Mardia & Jupp, 2009),
its name comes from the fact that the density is generated by "wrapping a distribution" on a circle.
Therefore, we denote such a distribution with notation WN(x;µ, σ2) denotes such as density evalu-
ated at point x, where µ, σ2 is the mean and variance of the normal distribution being wrapped. This
finishes the proof of Theorem 2 and Corollary 1.

D PROABILITY FLOW ODE AND OPERATOR SPLITTING INTEGRATOR

In this section, we will first discuss in detail the Operator Splitting Integrator (OSI) and how
they help integrate the forward and backward trivialized kinetic dynamics accurately in a manifold-
preserving, projection-free manner. We then introduce the probability flow ODE of the backward
dynamic, which is an ODE that is marginally equivalent to dynamic (5). We will also introduce the
OSI for the probability flow ODE.

D.1 OPERATOR SPLITTING INTEGRATOR

In this section, we will demonstrate how OSIs are constructed from the dynamics and the benefits
they enjoy. We restrict our attention to first-order numerical integrators in the following discussion.
However, such an approach can be generalized and we can indeed craft an OSI with arbitrary order
of accuracy by following the approach in Tao and Ohsawa (Tao & Ohsawa, 2020).

Forward Integrator: Recall that the forward dynamic (3) can be split into two smaller dynamics,

AF
g :

{
ġt = gtξt
dξt = 0dt

+ AF
ξ :

{
ġt = 0
dξt = −γξtdt+

√
2γdW g

t

While the original dynamic does not admit a simple closed-form solution, AF
g and AF

ξ can be solved
explicitly as is shown in the following equations,

AF
g : g(t) = g(0) expm(tξ(0)), ξ(t) = ξ(0)

AF
ξ : g(t) = g(0), ξ(t) = exp(−γt)ξ(0) +

∫ t

0

√
2γ exp(−γ(t− s))dW g

s

Therefore, we can integrate AF
g and AF

ξ alternatively for each timestep h in order to integrate the
original forward dynamic. The detailed algorithm can be found in Algorithm 2.

Backward Integrator: Recall that the backward dynamic (12) can be split into two smaller dynamics,

AB
g :

{
ġt = −gtξt
dξt = 0dt

+ AB
ξ :

{
ġt = 0
dξt = γξtdt+ 2γsθ(gt, ξt, t)dt+

√
2γdW g

t

Again, we can write out explicit solutions to AB
g and AB

ξ in the following equations,

AB
g : g(t) = g(0) expm(−tξ(0)), ξ(t) = ξ(0)

AB
ξ : g(t) = g(0), ξ(t) = exp(γt)ξ(0) +

∫ t

0

√
2γ exp(γ(t− s))dW g

s + 2γ

∫ t

0

exp(γ(t− s))sθ(gs, ξs, s)ds

Note that, the solution to AB
ξ , though presented in an explicit form, can’t be implemented in practice

since we can not integrate exactly the neural network sθ. We employ an approximation here and
discretize the nonlinear component sθ by using a left-point rule, i.e. pretending that g and ξ do not
change over a short time h, and still use the exponential integration technique to conduct the exact
integration of the rest of the linear dynamic. The detailed algorithm can be found in Algorithm 3.
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Algorithm 2 Forward Operator Splitting Integration (FOSI)

Require: step size h, total steps N , friction constant γ > 0, initial condition ḡ ∈ G, ξ̄ ∈ g
1: Set g0 = ḡ, ξ0 = ξ̄
2: for n = 1, . . . , N do
3: Sample i.i.d. ϵin−1 ∼ N (0, 1− exp(−2γh) for 1 ≤ i ≤ dim g

4: ξin = exp(−γh)ξin−1 + ϵin−1 ▷ Entrywise exponential integration for ξ
5: gn = gn−1 expm(hξn) ▷ Lie group preserving update for g
6: end for
7: return {gk, ξk}k=0,...,N ▷ Return whole trajectory

Algorithm 3 Backward Operator Splitting Integration (BSOI)

Require: step size h, total steps N , friction constant γ > 0, score network sθ, initial condition
ḡ ∈ G, ξ̄ ∈ g

1: Set g0 = ḡ, ξ0 = ξ̄
2: for n = 1, . . . , N do
3: Set sn−1 = sθ(gn−1, ξn−1, (n− 1)h)
4: Sample i.i.d. ϵin−1 ∼ N (0, exp(2γh)− 1) for 1 ≤ i ≤ dim g

5: ξin = exp(γh)ξin−1+2(exp(γh)− 1)sin−1+ ϵ
i
n−1 ▷ Entrywise exponential integration for ξ

6: gn = gn−1 expm(−hξn) ▷ Lie group preserving update for g
7: end for
8: return gN , ξN ▷ Return final iterate

Advantages of OSI: The benefits of using an OSI for integration are threefold.

(1) The first benefit of the OSI is high numerical accuracy. In both the forward and backward
dynamic, the linear component of the dynamic is integrated exactly due to the use of the exponential
integration technique. This implies that, while OSI is still a first-order method in terms of the order
of errors, it enjoys a smaller prefactor thanks to the reduction in error source compared with the
Euler–Maruyama method (EM).

(2) The second benefit of OSI is that the trajectories generated stay on the manifold G × g for
the whole time, (g(kh), ξ(kh)) ∈ G × g for any k ≥ 0. If we use the EM scheme to integrate
the Riemannian component of the dynamic, which is the g dynamic, we would arrive at iterates
g((k + 1)h) = g(kh) + h · g(kh)ξ(kh). Note that since g(kh)ξ(kh) is in the tangent space of
Lie group G at point g(kh), moving arbitrary short time h along such direction would result in
g((k + 1)h) /∈ G. Therefore, to achieve a valid trajectory on G, we need to employ a projection
πG onto the manifold, which causes additional numerical errors apart from the time discretization
error. If employing OSI, we will be free from such a concern of leaving the manifold and also the
projection errors.

(3) The third benefit of OSI is that the numerical scheme is projection-free. As we have discussed
in point (2), EM method does not respect the Riemannian geometry structure of the Lie group
and constantly requires the application of projections to achieve valid iterates. Apart from the
numerical error, computing such a projection could be problematic. In general, Lie groups live in
a nonconvex set, which naturally raises concerns about the existence of the closed-form formula
for such projections and more generally, how to implement them in a fast algorithm. For example,
SO(n) is the set of matrices satisfies {X ∈ Rn×n | X⊤X = XX⊤ = In}, which is characterized
by nonlinear constraints. Therefore, finding out the projection onto these Lie groups requires heavy
work and needs to be investigated on a case-by-case basis. Not to mention the possibility that these
projection functions could be difficult to implement and require heavy computational resources, which
is certainly not scalable for large-scale applications and high-dimensional tasks. On the contrary, by
employing OSI, we can enjoy a projection-free numerical algorithm and reduce the complexity of
both training and generation.
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D.2 PROBABILITY FLOW ODE

In this section, we will introduce the OSI for probability flow ODE. We recall that the probability
flow ODE is given by, {

ġt = −gtξt,
dξt = γ(T − t)ξtdt+ γ∇ξ log pT−t(gt, ξt)dt

Similar to the SDE setting, this can be split into two smaller dynamics,

AP
g :

{
ġt = −gtξt
dξt = 0dt

+ AP
ξ :

{
ġt = 0
dξt = γξtdt+ γsθ(gt, ξt, t)dt

Similar to the Backward Operator Splitting Integrator (BSOI), we employ an approximation of the ξ
dynamic, discretize the nonlinear component sθ by using a left-point rule, i.e. pretending that g and ξ
do not change over a short time h, and use the exponential integration technique to conduct the exact
integration of the rest of the linear dynamic. The details can be found in Algorithm 4.

Algorithm 4 Probability Flow ODE

Require: step size h, total steps N , friction constant γ > 0, score network sθ, initial condition
ḡ ∈ G, ξ̄ ∈ g

1: Set g0 = ḡ, ξ0 = ξ̄
2: for n = 1, . . . , N do
3: Set sn−1 = sθ(gn−1, ξn−1, (n− 1)h)
4: ξin = exp(γh)ξin−1 + (exp(γh)− 1)sin−1 ▷ Entrywise exponential integration for ξ
5: gn = gn−1 expm(−hξn) ▷ Lie group preserving update for g
6: end for
7: return gN , ξN ▷ Return final iterate

D.3 ERROR ANALYSIS OF OPERATOR SPLITTING INTEGRATOR ON LIE GROUPS

In this section, we reproduce the error analysis for OSI on Lie groups provided in the work of
Kong & Tao (2024). Such an analysis justifies the convergence of OSI, which we provide just to be
self-contained. For technical details of the proof, please kindly refer to the original paper of Kong &
Tao (2024).

In this section, we consider the following general form of OSI update,{
g̃k+1 = g̃k exp(hξ̃k+1)

ξ̃k+1 = exp(−γh)ξ̃k − 1−exp(−γh)
γ TgLg−1∇U(g̃k) +

√
2γ

∫ (k+1)h

kh
exp(−γ(h− s))dWs

(26)
where (g̃k, ξ̃k) denotes the points generated by discrete numerical scheme. We note that by choosing
carefully the potential function U , this OSI update can correspond to both the forward operator
splitting integration in Algorithm 2 and the backward operator splitting integration in Algorithm 3.
Therefore, providing a general error and convergence analysis of equation (26) covers the situation of
using OSI on the simulation of both the forward noising process and the backward sampling process.
Following the same setting as in Kong & Tao (2024), we introduce the following assumption on the
regularity of potential function U ,
Assumption 1. For the Lie group G, we assume it is finite-dimensional, connected, and compact.
For the potential U , We assume it is L-smooth under the Riemannian metric in Lemma 3 in Kong &
Tao (2024), i.e., there exist constants L ∈ (0,∞), s.t.∥∥TgLg−1∇U(g)− TĝLĝ−1∇U(ĝ)

∥∥ ≤ Ld(g, ĝ) ∀g, ĝ ∈ G

We further recall that π0 is the initial distribution and π∗ is the stationary distribution. Under these
assumptions, we have the following convergence analysis for the OSI:

Theorem 4 (Nonasymptotic error bound for OSI). If the initial condition (g̃0, ξ̃0) ∼ π0 satisfies
Wρ(π0, π∗) <∞ and π0 is absolute w.r.t. dgdξ, then ∀k = 1, 2, . . . , the density of scheme Eq. (26)
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starting from π0 has the following W2 distance from the target distribution:

W2(π̃k, π∗) ≤ Cρ

(
e−ckhWρ(π0, π∗) +

E(h)

1− exp(−ch)

)
where E(h) = O(h

3
2 ) . Note this holds ∀h > 0, but E(h) can grow exponentially. Wρ is the

Wasserstein distance induced by a semi-distance ρ (given explicitly in Eq. 7 in Kong & Tao (2024))
and Cρ is a constant.

Theorem 4 quantifies the distance between the resulted sampled distribution using OSI and the true
distribution in terms of W2 distance. We notice that the upper bound on this Wasserstein shrinks to 0
as timestep h tends to 0, suggesting the convergence of OSI under the general setting.

E EVOLUTION OF KL DIVERGENCE

In this section, we will discuss the effectiveness of likelihood training in terms of learning the correct
data distribution. We will show that the KL divergence between the true data distribution p0 and the
learned data distribution can be bounded by accumulated score-matching errors up to an additional
discrepancy error caused by a mismatch in the initial condition.

Recall that Xt = (gt, ξt) is the trajectory of the forward dynamics (3), with Xt admitting a smooth
density pt(gt, ξt) with respect to the product of Haar measure onG and Lebesgue measure on g. Let’s
denote (qt)t∈[0,T ] = (pT−t)t∈[0,T ]. Note that by construction, q0 = pT ≈ π∗ when T is large, where
π∗ is the invariant distribution of the forward dynamic (3). Also, qT = p0 is the initial condition for
the forward dynamic, which in practice is the (partially unknown) joint data distribution on g and ξ.
Recall that we have denoted the sequence of probability distribution qθt as the density of L(Yθ

t ) with
respect to the reference measure, where Yθ

t is the trajectory of the learned backward dynamic in (7).

We have Theorem 5 regarding the KL divergence between the learnt data distribution qθT and the true
data distribution p0,

Theorem 5. Let Yθ
t be the trajectory of the learnt backward dynamic (7) under initial con-

dition Yθ
0 = π∗, Yθ

t has density (qθt )t∈[0,T ]. When the score is given by sθ(g, ξ, t) :=
∇ξ log q̂T−t(g, ξ, t), where (q̂t)t∈[0,T ] is the density of the forward dynamic (3) under initial
condition q̂0 and satisfies q̂T = π∗. We then have

DKL

(
p0 ∥ qθT

)
=

∫ T

0

∫
G×g

pT−t(g, ξ)∥∇ξ log pT−t(g, ξ)− sθ(g, ξ, t)∥2dgdξdt+DKL(pT ∥ π∗)

In order to prove Theorem 5, we need the following Lemma that characterizes the time derivative of
the KL divergence between two sequences of probability distributions that corresponds to the time
marginal of the same SDE with different initial conditions.

Lemma 3. Given p0, q0 two distributions on G × g. We denote the sequence of probability
distributions (pt)t≥0 and (qt)t≥0 the marginals of the forward dynamic (3) with initial conditions
p0 and q0 respectively. Then, pt and qt satisfies

∂

∂t
DKL(pt ∥ qt) =

∫
G×g

γ(t)pt∥∇ξ log pt −∇ξ log qt∥2dgdξ

where ∇ξ is the gradient w.r.t. ξ.

Lemma 3 relates the time derivative of KL divergence between two distributions to the difference
in their score integrated over the manifold G × g. To prove this lemma, we need to derive the
Fokker-Planck equation for pt and qt respectively.
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Proof of Lemma 3. We prove a general case and consider the general form of forward dynamic
described in (13). The evolution of pt and qt can be characterized by following Fokker-Plank
equations,

∂

∂t
pt = L∗,ppt = −divg(ptTeLgξ) + γ(t) (divξ(ptξ) + ∆ξpt)

∂

∂t
qt = L∗,qqt = −divg(qtTeLgξ) + γ(t) (divξ(qtξ) + ∆ξqt)

where divg is the divergence of vector fields on G under the left-invariant metric we choose, divξ is
the divergence in g and ∆ξ is the Laplace operator on g. They are well-defined since g is a linear
space. Consequently, we can evaluate the time derivative of KL divergence between pt and qt, where
the integration is performed over G× g unless specifically noted,

∂

∂t
DKL(pt ∥ qt) =

∂

∂t

(∫
pt log

pt
qt
dgdξ

)
=

∫
∂pt
∂t

log
pt
qt

dgdξ −
∫
∂qt
∂t

pt
qt

dgdξ

=

∫ (
log

pt
qt

)
L∗,pptdgdξ −

∫ (
pt
qt

)
L∗,qqtdgdξ

Using the divergence theorem, we have for any smooth function f : G× g → R, we have∫
f · L∗,pptdgdξ =

∫
⟨∇gf, ptTeLgξ⟩+ ⟨∇ξf, ptγ(t) (ξ +∇ξ log pt)⟩dgdξ

Similar results holds for L∗,q. As a consequence, applying the previous equation with f = log pt

qt

and f = pt

qt
respectively, we can write,

∂

∂t
DKL(pt ∥ qt) =

∫ 〈
∇g log

pt
qt
, ptTeLgξ

〉
+

〈
∇ξ log

pt
qt
, ptγ(t) (ξ +∇ξ log pt)

〉
dgdξ

−
∫ 〈

∇g
pt
qt
, qtTeLgξ

〉
−

〈
∇ξ

pt
qt
, qtγ(t) (ξ +∇ξ log qt)

〉
dgdξ

=

∫ 〈
∇g

pt
qt
, qtTeLgξ

〉
+

〈
∇ξ

pt
qt
, qtγ(t) (ξ +∇ξ log pt)

〉
dgdξ

−
∫ 〈

∇g
pt
qt
, qtTeLgξ

〉
−

〈
∇ξ

pt
qt
, qtγ(t) (ξ +∇ξ log qt)

〉
dgdξ

=

∫
γ(t)

〈
∇ξ

pt
qt
, qt (∇ξ log pt −∇ξ log qt)

〉
dgdξ

=

∫
γ(t)pt

∥∥∇ξ log pt −∇ξ log qt
∥∥2dgdξ

This finishes the proof of the desired Lemma.

We are now ready to present proof for Theorem 5. Note that under the conditions on sθ, in fact
qθt = q̂T−t. We just need to apply Lemma 3 between pt and q̂t to conclude.

Proof of Thm. 5. Lemma 3 gives

DKL

(
p0 ∥ qθT

)
= DKL (p0 ∥ q̂0)

= DKL (pT ∥ q̂T ) +
∫ T

0

∂

∂t
DKL (pt ∥ q̂t)dt

= DKL (pT ∥ q̂T ) +
∫ T

0

∫
G×g

γ(t)pt∥∇ξ log pt −∇ξ log q̂t∥2dgdξdt
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Using the condition sθ(g, ξ, t) := ∇ξ log q̂T−t(g, ξ, t), and q̂T = π∗, with the choice γ(t) = 1, we
arrived at the following equation,

DKL

(
p0 ∥ qθT

)
=

∫ T

0

∫
G×g

pT−t(g, ξ)∥∇ξ log pT−t(g, ξ)− sθ(g, ξ, t)∥2dgdξdt+DKL(pT ∥ π∗)

F NLL ESTIMATION WITH INTRINSIC PROOF

In this section, we provide an intrinsic proof of the instantaneous change of variables on a general
manifold, which does not depend on local charts in the proof or the formula. While we are now aware
that the results are not new and has been discussed in (Chen et al., 2018; Lou et al., 2020; Falorsi &
Forré, 2020; Chen & Lipman, 2024), we still provide proof for a self-consistency.

Let z be a random variable whose range is M and denote its density as p0 ∈ C(M). Given a smooth
time-dependent vector field X(t, ·), i.e.,X(t, ·) ∈ Γ∞(TM) for any t ∈ [0, T ]1. We consider the
push forward map generated by the flow of X , i.e., f ts : M → M satisfies

d

ds
f ts(x) = X(s, f ts(x)), ∀x ∈ M, 0 ≤ s ≤ t ≤ T

with initial condition fss is the identity map for any s. We define pt as the density of f t0(z). Then we
have the following theorem,

Theorem 6. [Instaneous Change of Variables on Manifold] Consider p : R×M → R, such that
pt = p(t, ·) is the density of z(t), where z(t) is the random variable defined by z pushforward
along X for time t. Then we have

d

dt
log p(t, f t0(x)) = − divX(t, f t0(x)), ∀x ∈ M

We first review a standard result (see e.g., Ross et al. (2023)) Lemma 4, and then provide a proof
for Theorem 6. The following Lemma 4 describes the relationship between the density of the push-
forward as well as the determinant of the differential and corresponding points. We will use this
result heavily in our proof.

Lemma 4. For any diffeomorphism f : M → M, we have

f#p(f(x)) = p(x) (det df(x)) , ∀x ∈ M

f# is the push-forward density. On the right-hand side, df(x) : TxM → Tf(x)M, denoting the
differential of f , is a linear map. Consequently, det df is well-defined and independent of the
choice of coordinate.

With Lemma 4, we are ready to present our proof for Theorem 6.

Proof of Thm. 6. In this proof, we use the shorthand notation xt := f t0(x), which also induces
x0 = x. Lemma 4 gives

d

dt
log p(t, f t0(x)) =

d

d
log

[
(f t0)♯p

(
f t0(x)

)]
=

d

dt
log

[
p0(x) det df

t
0(x)

]
=

d

dt
log

[
det df t0(x)

]
1Γ∞(TM) denotes the set of all smooth vector fields on M
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Since f is the pushforward map, it has the semi-group structure, i.e., f t2t1 ◦ f t3t2 = f t3t1 for any
t1 ≤ t2 ≤ t3, which gives det df t2t1 · det df t3t2 = det df t3t1 , and immediately

d

dt
log

[
det df t0

]
= lim

ϵ→0+

1

ϵ

(
log

[
det df t+ϵ

0 (x)
]
− log

[
det df t0(x)

])
= lim

ϵ→0+

1

ϵ
log

[
det df t+ϵ

t (xt)
]

Consequently,
d

dt
log p(t, f t0(x)) = − ∂

∂ϵ
log

∣∣det df t+ϵ
t (xt)

∣∣∣∣∣
ϵ=0

= −
∂
∂ϵ

∣∣det df t+ϵ
t (xt)

∣∣∣∣∣
ϵ=0∣∣det df t+ϵ

t (xt)
∣∣∣∣∣
ϵ=0

= − ∂

∂ϵ

∣∣det df t+ϵ
t (xt)

∣∣∣∣∣
ϵ=0

where we use ∂
∂ϵ to denote the right derivative, and the last equation is because of f tt is identity.

Jacobi’s formula gives d
d det(A) = tr

(
Ȧ
)

at A = I , which tells

d

dt
log p(t, f t0(x)) = − tr

(
∂

∂ϵ
df t+ϵ

t (xt)

) ∣∣∣
ϵ=0

Before we proceed, we define two sets of vector fields, {Ei}di=1 and {Yi}di=1. {Ei}di=0 is defined as
a set of smooth coordinate frame, defined on the whole manifold M. {Yi}di=1 is a set of vector fields
along xt generated by the push forward map f t+ϵ

t , i.e., df t+ϵ
t is a map from TxtM to Txt+ϵM, and

Yi satisfies

df t+ϵ
t (Yi(xt+ϵ)) = Yi(xt+ϵ),∀i = 1, . . . , d, ∀t < t+ ϵ ≤ T

with constraint Yi(xt) = Ei(xt). Note that Yi is defined only along the curve xt for t ∈ [0, T ].

Since we are considering a push forward map f along a time-dependent vector field X(t, ·) ∈
Γ∞(TM), we consider to make it time-independent by considering the problem in a new space
M̃ := R×M, and a new time-independent vector field X̃ ∈ Γ∞(TM̃) defined by

X̃(t, x) = (1, X(t,X)) , t ∈ [0, T ], x ∈ M

Since xt is the integral curve generated by X , the integral curve of X̃ with initial condition (0, x) is
given by x̃t = (t, xt), i.e., x̃t satisfies ˙̃xt = X(x̃t).

Both {Ei}di=1 and {Yi}di=1 can be extended to M̃. For {Ei}di=1, this is defined by Ẽ0 ≡ (1, 0) and
Ẽi = (0, Ei). Similarly, for {Yi}di=1, this is defined byỸi(x̃t) = (0, Yi(xt)) and Ỹ0 ≡ (1, 0).

By choosing an arbitrary linear connection ∇ on M, we can also extend ∇ to M̃, and we denote
such induced linear connection as ∇̃ (see e.g., Do Carmo & Flaherty Francis, 1992, Ex. 1 in Chap.
6). Since f is the pushforward generated by X , ∂

∂ϵf
t+ϵ
t |ϵ=0 = X(t, ·), and we have

d

dt
log p(t, f t0(x)) = −

d∑
i=1

∂

∂ϵ

〈
df t+ϵ

t (E(xt)), Ei(f
t+ϵ
t (xt))

〉
|ϵ=0

= −
d∑

i=1

∂

∂ϵ

〈
Yi(f

t+ϵ
t (xt)), Ei(f

t+ϵ
t (xt))

〉
|ϵ=0

= −
d∑

i=1

∇̃X̃

〈
Ỹi, Ẽi

〉
|x̃t

= −
d∑

i=1

∇X⟨Yi, Ei⟩|xt
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We choose ∇ to be the Levi-civita connection. Because it is compatible with the metric, we have

d

dt
log p(t, f t0(x)) = −

d∑
i=1

⟨∇XYi, Ei⟩+ ⟨Yi,∇XEi⟩

By the definition of Lie derivative, we have LXYi ≡ 0. Together with the constraint Yi(xt) = Ei(xt),
we have ∇XYi = ∇Yi

X = ∇Ei
X at xt, which gives

d

dt
log p(t, f t0(x)) = −

d∑
i=1

⟨∇Ei
X,Ei⟩+ ⟨Ei,∇XEi⟩

Now we show ⟨Ei,∇XEi⟩ = 0 using local coordinates:

⟨Ei,∇XEi⟩ =
∑

XiΓ
j
ij =

∑
Xi

∂

∂ei
ln

√
|g|

where Γ’s are Christoffel symbols corresponding to the local coordinates Ei, defined by Γk
ij :=

⟨∇Ei
Ej , Ek⟩. Due to our choice of Ei as orthonormal frames, we have |g| ≡ 1 and ⟨Ei,∇XEi⟩ = 0

for all i.

By simplifying the expression, we arrive at the following desired results, which finishes our proof.

d

dt
log p(t, f t0(x)) = −

d∑
i=1

⟨∇EiX,Ei⟩ = −divX(t, f t0(x))

We can choose Ei as the left-invariant vector fields generated by ei, i.e., Ei(g) = TeLgei, where
ei ∈ g is a set of orthonormal basis. As a corollary, we can compute dynamic for the log probability
as the following,

Corollary 3 (NLL estimation on Lie group with left-invariant metric). For SDE in Eq. (1), the
time-dependent vector field is given by

X(g, ξ) = (TeLgξ,−γξ + β(t, g, ξ))

Using the fact that divg(TeLgξ) = 0, we have

d

dt
log p(t, f t0(x)) =

d∑
i=1

(
−γ +

∂

∂ξi
βi

)

G TRAINING SET-UP, DATASET

G.1 HYPERPARAMETERS

Hardware: All the experiments are running on one RTX TITAN, one RTX 3090 and one 4090.

Architectural Framework: We employed the score function sθ(gt, ξt, t; θ) parameterized by the
same network architecture as outlined in the CLD paper Dockhorn et al. (2021), albeit with varying
parameter counts for each task. Specifically, we consider the following architectures. We represent gt
and xt as real vectors and embed them into latent vectors of hidden dimension D respectively with
trainable MLPs, where the latent vectors are denoted as ghid, ξhid. We embed time t into the sinusoid
embedding of dimension D as well, denoted as thid. The score network output is given by

sθ = MLP-SKIP(GN(ghid + ξhid + thid))

where GN is the group norm operation, and MLP-SKIP is a k-layer MLP with skip connections.
We use SiLU as the activation function for all the MLPs used in the neural network.
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For low dimensional experiments such as Torus, SO(3), we set D = 256. For other experiments, we
set D = 512. We choose varied k based on problem difficulties, ranging from k = 3 to k = 5.

Training Hyperparameters: Throughout our experiments, we maintained the diffusion coefficient
γ(t) constant at 1, while the total time horizon T varied depending on the task, with a good choice
ranging from T = 5 to T = 15. We use AdamW optimizer to train the neural networks with an initial
learning rate of 5× 10−4 with a cosine annealing learning rate scheduler. We train for at most 200k
iterations with a batch size of 1024 for each task, and we observe that the model usually converges
within 100k iterations.

G.2 DATASET PREPARATION

Protein and RNA Torsion Angles: We access the dataset prepared by Huang et al. (Huang et al.,
2022) from the repository of (Chen & Lipman, 2024). We further post-processed it and transformed
the data into valid elements of Tn.

Pacman: We take the maze of the classic video game Pacman and extract all the pixel coordinates
from the image that corresponds to the maze. We post-processed it and transformed the data into
valid elements of T2.

Special Orthogonal group SO(n): For SO, we followed the same procedure as the one described
in (De Bortoli et al., 2022) and generate a Gaussian Mixture with 32 components, uniformly random
mean and variance. For n > 3, we follow a similar procedure with a reduced number of mixture
components.

Unitary group U(n): We considered the unitary group data of the form expm(−itH), which is
the time evolution operator of the following Schrödinger’s equation for a general quantum system,
i∂tψt = Hψt. Here ψ denotes the quantum state vector and H denotes the Hamiltonian operator of
the system. We considered the following two types of Hamiltonians,

• For quantum oscillator, the Hamiltonian is given by H = ∆+ V , where ∆ is the Laplacian
operator, and V (x) = 1

2ω
2∥x− x0∥2 is a random potential function, where ω and x0 are

random variables. Note that these are infinite dimensional objects. To obtain a valid element
in U(n) for a finite n, we perform spectral discretization on the Laplacian operator as well
as the random potential to get a finite-dimensional Hamiltonian operator Hh, with which
the time-evolution operator is computed with. We choose t = 1 in this case.

• For Transverse field Ising Model, the Hamiltonian is given by

H = −
∑
⟨i,j⟩

Jijσ
z
i σ

z
j −

∑
i

giσ
x
i

where σz
i , σ

x
i are the Pauli matrices, Jij is the coupling parameter and gi is the field strength.

Here Jij and gi are random variables, which corresponds to the situation of RTFIM. The
time-evolution operator is generated with such a Hamiltonian at t = 1.

H ADDITIONAL NUMERICAL RESULTS

In this section, we present additional numerical results on learning time-evolution operators for
ensembles of quantum systems, which are data distributions on complex-valued Unitary groups. We
randomly select entries to scatter plot the data generated by TDM and compare it against the ground
truth distribution. Additionally, we plot against the data distribution generated by RFM to further
demonstrate our approach’s advantage. As shown in Figure 10 and Figure 11, TDM captures the
complicated patterns of distribution more accurately compared with RFM. While in general RFM
also well captured the global shape of the data distribution, the details near the distribution boundary
tend to be noisier than the one produced by TDM. This potentially originates from the approximations
adopted by RFM, suggesting again the advantage of our proposed approximation-free TDM.
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Figure 10: Visualization of Generated Time-evolution Operator of Quantum Oscillator on U(n) by TDM,
compared against true distribution and RFM. Plotted entries are randomly chosen. Top row: U(4). Mid row:
U(6). Bottom row: U(8)
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Figure 11: Visualization of Generated Time-evolution Operator of Transverse Field Ising Model (TFIM) on
U(n) by TDM, compared against true distribution and RFM. Plotted entries are randomly chosen. Top row:
U(4). Mid row: U(8). Bottom row: U(8)

30


	Introduction
	Method
	Trivialized Kinetic Langevin Dynamics on Lie Group as Noising Process
	Time Reversal of Trivialized Kinetic Langevin
	Likelihood Training and Score-Matching for Trivalized Kinetic Langevin
	Numerical Integration and Score Parameterization

	Experimental Results
	Conclusion, Limitation, and Future Possibilities
	Backgrounds
	Time Reversal Formula
	Denoising Score Matching for Abelian Lie group
	Proability Flow ODE and Operator Splitting Integrator
	Operator Splitting Integrator
	Probability Flow ODE
	Error Analysis of Operator Splitting Integrator on Lie Groups

	Evolution of KL divergence
	NLL Estimation with Intrinsic Proof
	Training Set-up, Dataset
	Hyperparameters
	Dataset Preparation

	Additional Numerical Results

