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Abstract

The advancements in Multimodal Large Lan-
guage Models (MLLMs) have enabled various
multimodal tasks to be addressed under a zero-
shot paradigm. This paradigm sidesteps the cost
of model fine-tuning, emerging as a dominant
trend in practical application. Nevertheless, Mul-
timodal Sentiment Analysis (MSA), a pivotal chal-
lenge in the quest for general artificial intelligence,
fails to accommodate this convenience. The zero-
shot paradigm exhibits undesirable performance
on MSA, casting doubt on whether MLLMs can
perceive sentiments as competent as supervised
models. By extending the zero-shot paradigm to
In-Context Learning (ICL) and conducting an in-
depth study on configuring demonstrations, we
validate that MLLMs indeed possess such capa-
bility. Specifically, three key factors that cover
demonstrations’ retrieval, presentation, and dis-
tribution are comprehensively investigated and
optimized. A sentimental predictive bias inherent
in MLLMs is also discovered and later effectively
counteracted. By complementing each other, the
devised strategies for three factors result in av-
erage accuracy improvements of 15.9% on six
MSA datasets against the zero-shot paradigm and
11.2% against the random ICL baseline.

1. Introduction

Equipping models with emotional intelligence has been a
fascinating yet vital challenge over the past few decades
(Zhao et al., 2022; Zhang et al., 2023). Studies on var-
ious facets of emotions and sentiments in numerous do-
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Figure 1. Comparison of fully-supervised models, few-shot mod-
els, and MLLMs based on average accuracy and annotated data
requirement across six MSA datasets. The MLLMs’ zero-shot
paradigm, although avoiding the laborious annotation, exhibits a
substantial performance gap compared to fully-supervised models.
With proper demonstration configuration, this gap can be notably
narrowed by In-Context Learning (ICL).

mains have flourished. Among them, Multimodal Sentiment
Analysis (MSA) aims to classify the sentiment polarity em-
bedded in multimodal data. As corroborated by empirical
(Zadeh et al., 2017) and theoretical (Huang et al., 2021)
evidence, the synergy between modalities facilitates more
comprehensive modeling of sentiment clues compared to
unimodal data. This superiority has led to growing interest
in MSA from academia and industry (Zhang et al., 2018a;
Yue et al., 2019).

In this paper, we focus on MSA with the input form of
image-text posts, whose number grows exponentially thanks
to the prosperity of social media. The current research land-
scape can be broadly grouped into two streams: post-level
branch (Xu & Mao, 2017), which identifies the overall sen-
timent of posts, and aspect-level branch (Xu et al., 2019),
which probes the sentiment associated with specific aspect
terms within the context of posts. Leveraging elaborate mod-
ules and a large volume of annotated data, both streams have
attained remarkable achievements. Entering the era of Mul-
timodal Large Language Models (MLLMs), various multi-
modal tasks can be reformulated as filling textual prompts
and properly accomplished by MLLMs in a zero-shot man-
ner (Yin et al., 2023). This emerging paradigm avoids time-
intensive fine-tuning and task-specific annotation. However,
recent surveys (Yang et al., 2023b; Lian et al., 2024) have
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Figure 2. Comparison between MLLMs’ zero-shot paradigm and ICL. In addition to the test sample, ICL sequences three demonstrations
with inputs and corresponding outputs, facilitating more precise sentiment predictions for MLLMs.

revealed that, under the zero-shot paradigm, MLLMs lag
behind supervised models by a significant margin on MSA,
as also illustrated in Figure 1. Given the success of MLLMs
on tasks such as image captioning (Li et al., 2023) and vi-
sual question answering (Driess et al., 2023), it is natural
to wonder whether the capabilities of MLLMs to perceive
sentiment are yet to be fully explored. If not, how can we
fully tap into their potential at a minimal cost?

A feasible answer is In-Context Learning (ICL), which ex-
tends MLLMs’ zero-shot paradigm to a few-shot scenario
by sequencing a series of input-output pairs as demonstra-
tions (Brown et al., 2020). Figure 2 illustrates this process
with an example. In this manner, ICL showcases the for-
mulation of the task and the mapping between inputs and
outputs (Pan et al., 2023), which has been proven beneficial
for MLLMs in both unimodal and multimodal tasks (Chen
et al., 2023a; Li et al., 2024). Despite its success, the ef-
ficacy of ICL heavily relies on the retrieval (Zhang et al.,
2022), presentation (Li et al., 2024), and distribution (Lyu
et al., 2023) of demonstrations. Studying the impact of these
factors is a prevalent subject in natural language process-
ing, yet there’s a notable absence of necessary attention in
multimodal settings, particularly for MSA.

To fill this gap and unleash the potential of MLLMs, we
systematically investigate the configuration of ICL demon-
strations in MSA. Specifically, we delve deeper into three
crucial factors underexplored in current studies. (1). The
similarity measurement of multimodal data for demon-
stration retrieval. The similarity between the test sample
and demonstration is positively correlated with the effective-
ness of ICL (Liu et al., 2022). The mainstream measurement
method directly aggregates images’ and texts’ similarity
scores (Yang et al., 2022). Nevertheless, our experiments re-
veal that this approach overlooks fine-grained aspect terms
and fails to weigh the significance of modalities. In re-
sponse, we refine and customize similarity measurements
specifically tailored for MSA. (2). The trade-off between
multimodal information presented in the demonstra-
tions. Owing to the disparity in information density, images
and texts each have unique pros and cons under different

scenarios. Therefore, image captioning (Yang et al., 2023a)
and text-to-image generation (Alimisis et al., 2024) are com-
monly employed to convert between the two modalities to
furnish supportive information in multimodal tasks. Inspired
by this, we explore the effects of modality compositions on
ICL, ultimately arriving at the most efficacious modality
presentation. (3). The biases introduced by sentiment
distribution. It has been observed on various tasks (Yang
et al., 2023c; Li et al., 2024; Baldassini et al., 2024) that
MLLMs are prone to be affected by the biases in ICL se-
quences, a phenomenon we also validate on MSA. Driven
by this discovery, we devise various distribution protocols
to intentionally incorporate sentiment biases and probe their
influences. Comprehensive experiments reveal that appro-
priate sentiment biases can counterbalance the inherent pre-
dictive bias of MLLMs, thereby promoting fair prediction.
In summary, our contributions are three-fold:

* Through configuring ICL demonstrations, we unleash
the potential of MLLMs on MSA, validating that
MLLMs are competent in perceiving sentiment.

* We investigate and optimize three key factors covering
the retrieval, presentation, and distribution of demon-
strations in ICL on MSA. During the process, a senti-
mental predictive bias inherent in MLLMs is discov-
ered and mitigated, facilitating fairness in sentiment
prediction.

By complementing each other, the ICL strategies tai-
lored for the three factors improve the accuracy of
MLLMs by an average of 15.9% on six MSA datasets
compared to the zero-shot paradigm, and 11.2% com-
pared to the random ICL baseline.

2. Related Works

2.1. Multimodal Sentiment Analysis

With the explosion of multimodal data from social media
platforms in recent years, MSA has evolved as a pivotal
topic in affective computing (Zhu et al., 2024; Yang et al.,
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Figure 3. Illustration of the three factors to be investigated and optimized, during which we aim to address the following questions. (a).
How do we measure the similarity score between multimodal data? (b). How do we decide which modality should be presented in the
input? (c). What kind of impact does the sentiment distribution of demonstrations have?

2024). Image-text posts (Xu & Mao, 2017) and videos
(Zadeh et al., 2017) are two major forms of input in MSA.
Our investigation centers on image-text posts, as they are
more congruent with the input specifications of MLLMs.
Within this domain, the majority of research adheres to a
similar methodology, typically initiating with the extraction
of unimodal features followed by their fusion for sentiment
classification. Over the past few years, notable advance-
ments have been made in both post-level (Xu, 2017; Yang
et al., 2021b; Li et al., 2022; Wei et al., 2023; Wu et al.,
2024a) and aspect-level (Xu et al., 2018; Ling et al., 2022;
Zhou et al., 2023; Peng et al., 2024) branches, by refin-
ing fusion strategies and learning from thousands of hand-
annotated data. However, as highlighted by Yu et al. (2022),
the acquisition of such data is unrealistic in practical set-
tings. Consequently, few-shot MSA has been proposed (Yu
et al., 2022) and developed (Yang et al., 2023a). Although
it reduces data requirements, the time-intensive fine-tuning
persists as an impediment to the cost-effective application
of MSA.

The advent of MLLMs presents a viable alternative via
the zero-shot paradigm (Lian et al., 2024), which is sub-
sequently augmented by ICL. By harnessing the general
knowledge acquired during pre-training, MLLMs are en-
dowed with the proficiency to address a wide array of down-
stream tasks, requiring merely a minimal set of annotated
samples and no gradient updates. Compared with fully-
supervised and few-shot MSA, the ICL of MLLMs accords
better with practical applications, holding the potential to
evolve into a prevailing trend for future development.

2.2. In-Context Learning

The scaling up of model size has empowered Large Lan-
guage Models (LLMs) to generalize to unseen tasks through

analogical learning (Dong et al., 2024), a capability known
as ICL (Wang et al., 2024). First identified in GPT-3 (Brown
et al., 2020), ICL has sparked numerous studies on LLMs.
Among these, a predominant emphasis has been placed
on the impact of demonstration configurations. Through
exhaustive explorations, various effective strategies have
been proposed from distinct angles (Lu et al., 2022; Li &
Qiu, 2023; Wu et al., 2023; Levy et al., 2023). Certain ICL
strategies of LLMs also demonstrate proficiency in tackling
multimodal tasks (Yang et al., 2022; Cai et al., 2023) by
converting them into textual format.

To transfer the ICL capability into MLLMs, Flamingo
(Alayrac et al., 2022) interleaves cross-attention modules
that receive visual input into the pre-trained LLMs. Inspired
by its success, a series of open-sourced MLLMs armed
with ICL capability are developed, such as Open-Flamingo
(Awadalla et al., 2023), IDEFICS (Laurencon et al., 2023)
and Kosmos (Huang et al., 2023). Parallel to the case in
LLMs, the performance of MLLMs exhibits significant vari-
ability in response to diverse demonstrations. A line of
studies methodically probes into such effects in image cap-
tioning (Yang et al., 2023c) and visual question answering
(Li et al., 2024; Chen et al., 2024; Qin et al., 2024), uncov-
ering valuable insights of ICL and important properties of
MLLMs. Nonetheless, the unique challenges intrinsic to
MSA remain inadequately overcome. We aim to fill this
blank through a comprehensive empirical exploration.

3. Configuring ICL Demonstrations
3.1. Task Definition

MSA is a classification task where the target categories
are sentiment polarities. Depending on the classification
objective, MSA is grouped into post-level MSA and aspect-
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level MSA. For post-level MSA, the input comprises an
image-text post (¢, t), and the target is to identify the overall
sentiment. For aspect-level MSA, the input includes an
additional aspect a: (¢, t, a), and the target shifts to identify
the sentiment of the aspect within the context of the post.
We wrap the input as Z and the output as O for uniformity.

Before feeding into the MLLM, the test sample 7 and n
demonstrations (Z, Q) are templatized into a multimodal
sequence S = {P;(Z1,01); (Zo, O2); ... (In, 0n); I},
where P is a textual prompt including the task description
and the set of target categories. A 3-shot case is illustrated
in Figure 2 (b). The output Ois subsequently generated by
MLLM M (-) predicting the next single token:

O = arg max M (T|S). (1)
T

Achieving desirable outcomes through ICL involves the in-
terplay of various factors that each contribute to the process.
Among these, the retrieval, presentation, and distribution
of demonstrations have been empirically verified to wield
significant impact (Zhang et al., 2022; Li et al., 2024; Lyu
et al., 2023). In light of MSA’s multimodal and affective
nature, we concretize these aspects into three key factors to
optimize: similarity measurement, modality presentation,
and sentiment distribution. The three factors are briefly il-
lustrated in Figure 3 (a), (b), and (c), respectively, and are
elaborated on in the subsequent sections.

3.2. Similarity Measurement

In demonstration retrieval, prior research has reached two
primary agreements: demonstrations bearing greater simi-
larity to the test sample are more beneficial for the reasoning
process of MLLMs (Liu et al., 2022), and demonstrations
should be ordered from lowest to highest similarity in the
ICL sequence (Lu et al., 2022). Given adherence to these
two fundamental principles, measuring the similarity be-
tween multimodal data emerges as the crux of the matter.

Considering the input of a demonstration (4, ¢, a) and the
test sample (i, t, a), there are currently three predominant
strategies to measure similarity. Here we discuss the sce-
nario of aspect-level MSA due to its generalizability.

Image Based (I) and Text Based (T) strategies. Under
unimodal settings, the similarity score /C can be straightfor-
wardly obtained by computing the cosine similarity in the
embedding space of a pre-trained encoder £. Indexing by
images, this process can be described as:

@I IE@] @

For simplicity, we abbreviate it as K; = C/(4,2). Likewise,
with text indexing, it would be K = C(¢, ).

I

£(1) ® E()
\

Table 1. Formulations of six devised strategies for measuring simi-
larity between multimodal data.

Strategy | Formulation

A Ka=C(a,a)

1A Kia=Kr+Ka

TA Kra=Kr+Kax

ITA Krra=Kr+Kr+Ka

WIT ’CW[TZOé'/C]Jrﬁ'/CT
WITA Kwira=a -Ki+8-Kr+v-Ka

Image-Text Based (IT) strategy. It extends the unimodal
strategies to a multimodal form by aggregating the unimodal
similarity scores: K;p = Ky + KCp. This strategy is also
referred to as RICES (Yang et al., 2022).

Despite their proven efficacy across various tasks, these
strategies fall short in two critical areas when applied to
MSA. In particular, they fail to consider the aspect-specific
relevance and overlook the unequal significance of modal-
ities. To probe the impact of these shortcomings and op-
timize accordingly, we further devise six strategies in Ta-
ble 1. Among these, the Aspect Based (A) strategy is an
unimodal measurement indexed by aspects. The Image-
Aspect Based (IA), Text-Aspect Based (TA), and Image-
Text-Aspect Based (ITA) strategies are the aspect-inclusive
versions of the I, T, and IT strategies, respectively. The
Weighted Image-Text Based (WIT) and Weighted Image-
Text-Aspect Based (WITA) strategies expand upon the
IT and ITA strategies by incorporating weights a, 3,7 to
modulate the impact of each modality.

3.3. Modality Presentation

The density of information embedded in images and texts
naturally differs (Chen et al., 2023b; Wu et al., 2024b). Im-
ages convey information in a broadly ranged yet abstract
manner, whereas text is typically more precise and con-
cise. By converting images to text through image caption-
ing, salient objects are emphasized and the irrelevant fine-
grained details are omitted (Xu et al., 2015; Yang et al.,
2023c). Conversely, transforming texts into images through
text-to-image generation can supplement the background
and context beyond the description of texts. The extra in-
formation is conducive to the elicitation of previously latent
emotions (Kosti et al., 2017). As exemplified in Figure 3
(b), the captioned text summarizes the flyer’s contents, and
the generated image portrays the unmentioned details of
the barbecue. Recognizing these benefits, various multi-
modal studies leverage these techniques to derive auxiliary
modalities to promote performance.

This drives us to investigate whether such success can be
replicated in multimodal ICL, where the form in which in-
formation is presented within the ICL sequence is of critical
importance. Specifically, we obtain the captioned texts from
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Table 2. Average accuracy across 4,8,16-shot demonstrations re-
trieved based on varying similarity measurements. R strategy
represents the random retrieval.

Post-Level Aspect-Level
Strategy
MVSA-S MVSA-M  Twitter-15  Twitter-17

R 49.2 60.8 574 56.4
I 56.5 64.9 59.1 56.7
T 56.0 66.2 58.7 57.0
IT 55.7 66.2 61.4 57.6
A - - 61.3 574
1A - - 59.6 58.0
TA - - 60.9 57.3
ITA - - 61.0 58.1

the MLLM itself, and the generated images from the dif-
fusion model (Rombach et al., 2022). Subsequently, we
reconstruct the inputs of demonstrations and the test sample
with combinations of original and auxiliary modalities. An
input form combining the captioned text and generated im-
age is depicted at the bottom of Figure 3 (b), and a broader
range of combinations is investigated in the experiments.

3.4. Sentiment Distribution

Under ICL, MLLMs have been shown to manifest a short-
cut effect (Lyu et al., 2023). Upon encountering a test
sample, MLLMs tend to duplicate the output from one of
the demonstrations, and this tendency intensifies when mul-
tiple demonstrations share identical outputs. This exposes
MLLMs’ susceptibility to biases presented within the ICL
sequence, where divergent biases can lead to markedly dif-
ferent predictions.

Regarding MSA, its classification nature and limited cate-
gories inevitably result in certain sentiment biases within
the ICL sequence, reflected in the sentiment distribution of
demonstrations. To analyze the potential impact of these
biases and utilize them to optimize the ICL configuration,
we formulate five distribution protocols that regulate the
sentiment distribution of demonstrations, thereby injecting
distinct sentiment biases. The first two protocols serve to
highlight the spectrum of the impact of biases. (1). Ideal
protocol: every demonstration aligns with the test sample’s
sentiment. (2). Contrary to Ideal protocol: every demon-
stration differs from the test sample’s sentiment. Utilizing
the ground truth from test samples, they introduce extreme
biases into the ICL sequence to establish the theoretical
ceiling and floor. In contrast, the following protocols are
devised for practical ICL configuration. (3). Unlimited
protocol: demonstrations are retrieved without distribution
restriction. (4). Category Balanced protocol: each senti-
ment class carries an identical number of demonstrations.
(5). Identical to Support Set protocol: the sentiment distri-
bution of demonstrations mirrors that of the support set.
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Figure 4. Average accuracy across 4,8,16-shot demonstrations re-
trieved based on the WIT and WITA strategies.

4. Experiments
4.1. Datasets and Implementation Details

In exploratory experiments, IDEFICS-9B (Laurengon et al.,
2023) is selected as a representative MLLM (Shukor et al.,
2024). Datasets MVSA-S, MVSA-M (Niu et al., 2016) are
utilized for post-level MSA, and Twitter-15 (Zhang et al.,
2018b), Twitter-17 (Lu et al., 2018) are chosen for aspect-
level MSA. For each dataset, demonstrations are retrieved
from the support set sampled as Yang et al. (2023a), which
accounts for 1% of the training set. MLLMSs’ performances
are evaluated on the original test set, with accuracy serving
as the primary metric. The three factors are investigated
separately, and the optimal strategies are subsequently com-
bined for a comprehensive assessment. To validate the
generalizability, additional experiments are carried out us-
ing Open-Flamingo2-9B (Awadalla et al., 2023) and on
two other MSA datasets TumEmo (Yang et al., 2021a) and
MASAD (Zhou et al., 2021).

Due to practical considerations, we choose the above model
scale, which also aligns with the primary research scope of
Yang et al. (2023c¢); Li et al. (2024). By default, we adopt
the IT strategy for similarity measurement, compose the
input by the original image and text, and put no constraints
on the distribution. Variations are introduced only to the
pertinent settings when investigating a specific factor.

4.2. Results and Analysis

4.2.1. SIMILARITY MEASUREMENT

Table 2 contrasts the impact of similarity measurement.
Here we employ CLIP (Radford et al., 2021) as the pre-
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Table 3. Average accuracy over 4,8,16-shot settings with the inputs
composed of different modalities. “I”” abbreviated for Image, T—
Text, C—Captioned Text, G—-Generated Image.

Modality Post-Level Aspect-Level Mean
MVSA-S MVSA-M Twitter-15 Twitter-17
I 51.7 56.7 574 534 54.8
C 43.9 49.5 56.2 52.1 50.4
ILC 56.9 59.3 54.3 50.1 55.3
T 46.3 56.0 61.7 59.0 55.8
G 46.8 55.5 54.8 552 53.1
T.G 47.7 58.1 54.0 54.8 53.6
LT 55.7 66.2 61.4 57.6 60.2
LG 54.5 58.8 54.5 53.8 554
CT 49.7 60.3 62.6 56.7 573
CG 47.5 53.7 53.1 53.1 51.8
LCT 553 64.4 60.3 55.6 58.9
LT.G 50.8 62.0 59.7 54.8 56.8
CT.G 47.4 582 56.5 54.1 54.1
ILC,G 50.3 57.0 52.9 52.1 53.1

LCT.G 49.2 61.4 58.7 53.1 55.6

trained encoder for both images and texts following previ-
ous studies (Yang et al., 2022; Li et al., 2024). Observably,
all measurements surpass random retrieval, revealing their
validity in reflecting the relationships among multimodal
samples. Moreover, in aspect-level MSA, the consistent
improvement achieved by factoring in aspect similarity un-
derscores the aspect’s significance. Counterintuitively, the
IT or ITA strategies do not always yield optimal results,
despite considering the most comprehensive information.
Explanations for this necessitate an analysis in conjunction
with the results of WIT and WITA strategies. As evidenced
in Figure 4, the performance of these strategies fluctuates in
response to alterations in the weighting factors. This empha-
sizes the criticality of maintaining a proper balance among
similarity components, which the IT and ITA strategies fail
to achieve, thereby leading to their deficiency.

Delving into the impact of weighting factors, we uncover
that prioritizing textual similarity (o« < (3) yields a pro-
nounced benefit for the WIT strategy in post-level MSA.
This benefit peaks at « : 3 = 2 : 8, where the WIT strat-
egy achieves an accuracy of 57.6 on MVSA-S and 66.7
on MVSA-M, outperforming all competing strategies. In
aspect-level MSA, as illustrated in Figure 4 (b), the WITA
strategy should, instead, accord priority to the similarity of
aspects. Interestingly, under this priority, the relationship
between image and text weights is reversed. We attribute
these to the fact that aspects are most directly correlated with
sentiment prediction, and the similarity among aspects tends
to eclipse the textual similarity, given that these aspects typ-
ically originate from the texts. When o : 3 = 7 : 3 and
(a+P8) : v =2: 8, the WITA strategy achieves peak accu-
racy of 61.8 on Twitter-15 and 59.0 on Twitter-17, making
it the optimal strategy for aspect-level MSA.
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(b). Influences of inputs’ constituent modalities on “Task Learning” effect.

Figure 5. Evaluation of ICL’s “Task Learning” effect by progres-
sively incorporating modalities into the inputs.

4.2.2. MODALITY PRESENTATION

Table 3 compares inputs composed of various modalities.
When input is confined to single-modal information, pre-
senting the text modality generally leads to superior out-
comes, reaffirming the significance of texts in MSA. As
more modalities are incorporated, the MLLM can benefit
from processing multimodal information, thereby enhanc-
ing sentiment prediction in most cases. Noticeably, substi-
tuting original modalities with auxiliary ones (e.g. from
I, T) to (C, G)) leads to universal performance degrada-
tion. This implies that the potential benefits of modality
conversions, which involve highlighting salient objects or
providing richer context, are outweighed by the inherent
drawbacks. These drawbacks encompass information loss
and the generation of extraneous noise during the conver-
sion process. Strangely, augmenting original modalities
with auxiliary ones (e.g. from (I, T) to (I, C, T)) still re-
sults in a performance drop, despite the pure addition of
information without any loss. Drawing from insights in Pan
et al. (2023), we associate this with the impairment of the
“Task Learning” effect in ICL. Specifically, Pan et al. (2023)
decompose ICL’s role into “Task Recognition” and “Task
Learning”. The former prompts the task format for MLLMs
to apply their prior knowledge, and the latter aids MLLMs
in building mapping relationships between inputs and out-
puts. Incorporating additional modalities complicates the
inputs, making it more challenging for the MLLM to learn
these relationships accurately.

To validate this, we design the experiments in Figure 5 (a) to
quantitatively evaluate the “Task Learning” effect. Before
feeding into the MLLM, each sentiment is substituted with
an animal unrelated to the input semantics according to a pre-
defined mapping. This approach ensures that the MLLM can
no longer rely on pre-trained prior knowledge but is instead
compelled to learn the input-output mapping solely from
ICL. As shown in Figure 5 (b), the “Task Learning” effect
diminishes as additional modalities are incorporated into the
input, supporting our explanation. To this end, employing
original images and text to form inputs has empirically
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Figure 6. Impact of distribution protocols on MLLM’s sentiment predictions. In addition to overall accuracy, precision and recall for each
category are studied in 2-16 shot settings. The two selected datasets possess distinctive test set distributions, which are detailed above the
accuracy charts. In (a-2,3,4) and (b-2,3,4), the results of the same protocol under various shots are grouped into clusters of three colors,

and the results of different protocols under 16-shot are connected in a fixed order.

Test Set A :Positive 1*SLR-Positive
A :Neutral SLR-Overall =1/4 | 2*SLR-Neutral ) =1/2
A :negative 1*SLR-Negative
Demonstrations Test Sample Demonstrations Test Sample
SLR-Neutral = 7/12

Figure 7. Illustration of SLR under 6-shot setting. Taking SLR-
Neutral as an example, the ICL sequences of the two Neutral test
samples contain 4 and 3 Neutral demonstrations respectively, thus
SLR-Neutral is computed as (3/6 +4/6)/2 = 7/12.

proven optimal, as it attains the finest equilibrium between
information enrichment and input complexity.

4.2.3. SENTIMENT DISTRIBUTION

When assessing the impact of sentiment biases within the
ICL sequence, it is intuitive to assume that the more demon-
strations sharing the same sentiment as the test sample, the
more likely the MLLM will make the correct prediction.
Indeed, this is one of the primary mechanisms by which
distribution protocols affect the performance of MLLMs.
To quantify this, we introduce a metric termed “Same Label
Rate (SLR)”. First, the proportion of demonstrations with
identical sentiments to each test sample is calculated. Then,
these proportions are averaged across a collection of test
samples. Depending on whether the collection comprises
the entire test set or all test samples of a specific category,
SLR can be calculated for all test samples (SLR-Overall) or
the corresponding sentiment (e.g., SLR-Positive). Figure 7
provides an example illustrating SLR. Utilizing SLR, Fig-
ure 6 evaluates the nuanced impact of distribution protocols.

On MVSA-S, when the number of shots is fixed, overall
accuracy exhibits a stable positive correlation with SLR-
Overall (Figure 6 (a-1)). Under the extreme sentiment bi-
ases imposed by the Ideal and Contrary to Ideal protocols,
MLLM’s sentiment prediction tends to adapt correspond-
ingly, with this trend becoming more pronounced as the
number of shots increases. It validates the vulnerability
of MLLM to sentiment biases within the ICL sequence.
Inspecting each sentiment category (Figure 6 (a-2,3,4)),

4@ : Category Balanced
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: J
1 227

z z

Pos Neu Neg Pos Neu Neg
Prediction Prediction
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Figure 8. Confusion matrices of IDEFICS under the Unlimited
and Category Balanced protocols on Twitter-17 (16-shot setting).

MLLM performs notably well on the positive samples, while
it shows considerably diminished precision on neutral sam-
ples and recall on negative samples. This reveals a potential
predictive bias in the MLLM, which favors positive and
neutral over negative. Among three practical protocols, the
Unlimited protocol stands out with superior performance,
particularly in positive and negative samples. Compared to
the Contrary to Ideal protocol, it attains a higher SLR in
these two categories. This indicates that similarity-based
retrieval improves SLR upon the original distribution in
the support set. Though resulting in the least favorable
performance, the Category Balanced protocol exhibits an
intriguing phenomenon. It achieves the highest SLR in the
rarest category (Neutral) while obtaining the lowest SLR in
a more prevalent category (Negative), leading the model to
classify samples of the latter as the former.

On Twitter-17, most distribution protocols still adhere to
the positive correlation between SLR-Overall and accuracy
(Figure 6 (b-1)), except for the Category Balanced protocol.
It substantiates SLR as a feasible indicator to reflect the effi-
cacy of ICL sequences and drives us to explore the reasons
behind this exception. In parallel to MVSA-S, the MLLM
shows slightly lower precision than recall on positive and
neutral samples (Figure 6 (b-2,3)). Whereas, on negative
samples (Figure 6 (b-4)), recall remains remarkably lower
than precision, which is intuitively illustrated in Figure 8.
This further validates that the predictive bias observed in
MVSA-S is irrelevant to datasets or demonstrations, and
might be intrinsic to the MLLM itself. Such bias could po-
tentially originate from the curation of the pre-training data,
where most negative instances are filtered out, impairing
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Table 4. Accuracy comparison of MLLMs, SOTA few-shot models and SOTA fully-supervised models. We report the ICL performance of
MLLMs under a 16-shot setting, as it includes sufficient demonstrations while not exceeding MLLMs’ input limit.

Post-Level Aspect-Level

Model & Strategy Support Set Mean
MVSA-S MVSA-M TumEmo Twitter-15 Twitter-17 MASAD

Zero-Shot Paradigm — 38.6 56.5 46.6 60.7 54.7 73.0 55.0

ICL Random 16-shot 1% Training Set 49.9 60.4 52.1 61.1 57.5 712 59.7

ICL RICES 16-shot (Yang et al., 2022) 1% Training Set 57.9 64.2 61.4 61.6 61.5 82.7 64.9

ICL SQPA 16-shot (Li et al., 2024) 1% Training Set 53.6 62.2 64.6 55.8 50.4 74.2 60.1

MLLM ICL MMICES 16-shot (Chen et al., 2024) 1% Training Set 59.2 65.3 60.5 61.6 56.6 80.5 63.9
IDEFICS ICL Ours 16-shot 1% Training Set 66.5 67.7 63.4 67.0 62.0 88.2 69.1
ICL Random 16-shot Full Training Set 50.0 60.2 52.1 61.0 57.5 713 59.7

ICL RICES 16-shot (Yang et al., 2022) Full Training Set 583 65.5 61.7 62.7 61.8 834 65.6

ICL SQPA 16-shot (Li et al., 2024) Full Training Set 55.8 63.2 59.7 573 52.1 75.1 60.5

ICL MMICES 16-shot (Chen et al., 2024)  Full Training Set 63.0 64.6 62.3 59.2 54.5 83.5 64.5

ICL Ours 16-shot Full Training Set 68.5 69.5 65.0 69.0 63.7 89.8 70.9

Zero-Shot Paradigm — 525 59.2 27.8 34.4 47.1 69.6 48.4

ICL Random 16-shot 1% Training Set 59.2 67.3 34.8 57.6 519 75.0 57.6

ICL RICES 16-shot (Yang et al., 2022) 1% Training Set 61.5 67.9 42.0 61.2 55.8 84.7 622

ICL SQPA 16-shot (Li et al., 2024) 1% Training Set 59.5 63.3 44.9 56.2 539 75.5 59.7

MLLM ICL MMICES 16-shot (Chen et al., 2024) 1% Training Set 63.3 68.0 46.4 56.9 55.4 80.8 61.8

. ICL Ours 16-shot 1% Training Set 65.2 68.5 52.7 68.8 614 87.6 67.4

Open-Flamingo

ICL Random 16-shot Full Training Set 59.0 67.4 34.5 57.6 51.7 75.1 57.5

ICL RICES 16-shot (Yang et al., 2022) Full Training Set 62.2 68.0 443 61.5 56.4 85.5 63.0

ICL SQPA 16-shot (Li et al., 2024) Full Training Set 61.4 63.3 435 60.3 54.7 76.3 60.8

ICL MMICES 16-shot (Chen et al., 2024)  Full Training Set 64.7 68.1 47.5 59.8 57.0 82.4 63.3

ICL Ours 16-shot Full Training Set 66.3 68.7 54.1 70.4 62.6 89.3 68.6

SOTA Few-Shot Models — 69.8 68.3 58.1 67.3 61.9 84.1 68.3
SOTA Fully-Supervised Models — 79.2 73.5 66.7 81.1 76.4 95.6 78.8

Table 5. Our final strategies for configuring ICL demonstrations strategy. “ICL SQPA” and “ICL MMICES” are originally

on six MSA datasets. Due to the diversity of task focus and data
distribution, the optimal strategies for the three factors of each
dataset are different.

Dataset Retrieval Presentation Distribution
MVSA-S WIT [o: 3=2:8] Image, Text Unlimited
MVSA-M WIT [a: 3=2:8] Image, Text Unlimited
TumEmo WIT [@: 3=2:8] Image, Text Unlimited
Twitter-15 WITA [a: 8=7:3,(a+8):v=2:8] Image, Text Category Balanced
Twitter-17  WITA [ : B=7:3,(a+3) : v =2:8] Image, Text Category Balanced
MASAD WITA [a: 3=7:3,(ac+B):y=2:8] Image, Text Unlimited

MLLM’s discernment of negative samples. In contrast to
MVSA-S, the rarest category on Twitter-17 is negative. Un-
der this disparity, the Category Balanced protocol instead
inclines the model to predict the negative category over the
positive category, offsetting MLLM’s predictive bias and
attaining the peak performance across both categories.

To summarize, two conclusions have been deduced. Firstly,
MLLM exhibits a predictive bias in sentiment analysis, with
an inclination to avoid negative predictions. Secondly, in
datasets with less prevalent negative samples, the Category
Balanced protocol emerges as the optimal selection by mit-
igating MLLM’s bias effectively. Otherwise, the Unlimited
protocol is the preferable alternative.

4.2.4. OVERALL STRATEGY

The overall strategy is crafted by integrating three finely op-
timized factors, as presented in Table 5. Table 4 compares
our devised strategies and other models. Among the ICL
baselines we compared, “ICL Random” randomly selects
demonstrations from the support set. “ICL RICES” retrieves
samples based solely on the similarity measured by the WIT

designed for the Visual Question Answering task. The for-
mer assigns pseudo-labels to the samples in the support set,
while the latter first retrieves images and then retrieves texts.
In our case, pseudo-labels are assigned as random sentiment
categories, and “ICL MMICES” is identical to the I strategy.

From Table 4, our devised strategies exhibit consistent and
pronounced superiorities against other ICL baselines, ex-
tending to datasets and MLLMs unused in the exploration.
By expanding the support set to the full training set, our
approach enables both MLLMs to outperform the SOTA
few-shot models. Notably, configuring demonstrations oper-
ates independently of annotations, ensuring that the anno-
tated data required for each test sample remains constant.
This renders MLLMs’ ICL more efficient and accurate in
MSA than few-shot models. However, compared to fully-
supervised models, ICL still exhibits a performance gap,
particularly noticeable in certain datasets. It suggests that
the role of fine-tuning with specific data still cannot be eas-
ily replaced. Overall, Table 4 demonstrates the effectiveness
and generalizability of our devised ICL strategies, as well as
the considerable potential of ICL for further development.

5. Conclusion and Discussion

In this paper, we seek to unleash the sentimental percep-
tion capability of MLLMs through ICL. As a pioneering
effort that applies ICL to MSA, we conduct an in-depth
investigation into three pivotal factors that influence the con-
figuration of ICL demonstrations: similarity measurement,
modality presentation, and sentiment distribution. For these
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factors, we optimize strategies by balancing the similarity
components, weighing the richness of information against
the complexity of inputs, and offsetting the sentimental pre-
dictive bias of MLLMs. Comprehensive experiments on
six datasets and two MLLMSs demonstrate the pronounced
superiority of our strategies against other ICL baselines, val-
idating their effectiveness and generalizability. Our findings
confirm that MLLMs can perceive sentiment as competent
as supervised models, paving the way for further research
and exploration.

A primary limitation of this paper lies in the range of
MLLMs investigated. The effectiveness of ICL heavily de-
pends on the MLLMs themselves, however, some advanced
MLLMs are beyond the research scope due to practical
reasons. Despite our progress, multimodal ICL is still in
its infancy compared to ICL on text modality. Other as-
pects of configuring ICL demonstrations also merit further
investigation.
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This manuscript focuses on configuring ICL demonstra-
tions to unleash MLLMs’ sentimental perception capability.
By investigating three factors, we aim to advance multi-
modal ICL in MLLMs and shed light on MLLMs’ sentiment-
related properties. During the investigation, we discover
a sentimental predictive bias, later mitigating it on the in-
ference level to facilitate fairness in MLLMs’ sentiment
prediction. We have not delved deeper into the source lim-
itations of this bias, as it lies beyond the primary scope of
our research.

However, systematic studies of these limitations can poten-
tially contribute to both MLLMs and MSA. As a further
discussion, we attribute these limitations to pretraining data
rather than model architecture, which is validated by Xie
et al. (2024). By constructing emotion-related data, it en-
hances MLLMs’ zero-shot performance on visual emotion
recognition. This success has the potential to be replicated
in solving the sentimental predictive bias.
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Configuring ICL Demonstrations for Unleashing MLLLMs’ Sentimental Perception Capability

A. Textual Prompts

The textual prompt P of multimodal ICL sequence S aims to provide the task description and the set of target categories.

A.1. Aspect-Level MSA

‘P is “A post contains an image, a text and an aspect. Identify the sentiment of the aspect in the post. The optional categories
are [Positive, Neutral, and Negative]. Here are some examples”.

A.2. Post-Level MSA

‘P is “A post contains an image and a text. Classify the sentiment of the post into [Positive, Neutral, Negative]. Here are
some examples”.

A.3. Sensitivity of ICL to Prompt Variations

In the investigation, we experiment with various textual prompts and find that they significantly impact zero-shot performance.
However, their impact on ICL is minimal. Since this manuscript primarily focuses on how ICL configurations influence
MLLMs’ sentiment perception capabilities, we select a set of appropriate textual prompts and keep them fixed throughout
the investigation. The performance of IDEFICS under different prompts is reported in Table 6.

For post-level MSA:
#1 Prompt: A post contains an image and a text. Classify the sentiment of the post into [Positive, Neutral, Negative].
#2 Prompt: Please classify the sentiment of the image-text post into [Positive, Neutral, Negative].

#3 Prompt: Here is a post containing an image and a text. The optional categories are [Positive, Neutral, Negative]. What is
the overall sentiment of the post?

For aspect-level MSA:

#1 Prompt: A post contains an image, a text and an aspect. Identify the sentiment of the aspect in the post. The optional
categories are [Positive, Neutral, Negative].

#2 Prompt: Please classify the sentiment of the aspect in image-text post into [Positive, Neutral, Negative].

#3 Prompt: Here is a post containing an image, a text and an aspect. The optional categories are [Positive, Neutral, Negative].
What is the sentiment of the aspect in the post?

Table 6. Influence of prompt variations on accuracy of IDEFICS.

Model & Strategy Support Set MVSA-S Twitter-15
#1 Prompt  #2 Prompt  #3 Prompt  #1 Prompt #2 Prompt  #3 Prompt
IDEFICS Zero-Shot Paradigm - 38.6 28.2 50.6 60.7 51.9 19.1
ICL Ours 16-shot 1% Training Set 66.5 66.3 66.4 67.0 66.9 66.7
B. Dataset Details

The statistics of the adopted datasets are presented in Table 7.

MVSA-S, MVSA-M (Niu et al., 2016) are labeled on single modalities, where the sentiment categories include Positive,
Neutral and Negative. The multimodal sentiment categories are obtained by majority voting following Xu & Mao (2017).

TumEmo (Yang et al., 2021a) is a weakly supervised dataset. Image-text posts are retrieved based on seven emotion
keywords: Love, Happy, Calm, Bored, Sad, Angry, Fear, and labeled accordingly.

Twitter-15 (Zhang et al., 2018b), Twitter-17 (Lu et al., 2018) are initially proposed for Multimodal Named Entity Recognition.
Their named entities are later annotated by Yu & Jiang (2019) based on the sentiment polarities: Positive, Neutral, Negative,
and utilized for aspect-level MSA.
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MASAD (Zhou et al., 2021) extends textual aspects to visual aspects, and includes posts from more diverse domains. The
aspects are labeled by sentiment polarities: Positive and Negative.

Table 7. Statistics of datasets.

Dataset Train Test

MVSA-S (Niu et al., 2016) 3608 452
Post-Level MVSA-M (Niu et al., 2016) 13618 1703
TumEmo (Yang et al., 2021a) 156217 19524

Twitter-15 (Zhang et al., 2018b) 3179 1037
Aspect-Level Twitter-15 (Lu et al., 2018) 3562 1234
MASAD (Zhou et al., 2021) 14868 4935

C. Computational Overheads

In the optimized configuration, presenting and distributing demonstrations do not introduce additional computational
overhead. The extra costs originate from demonstration retrieval and the expanded input sequence for MLLMs. The former
scales with the size of the support set, as each test sample needs to be compared against all support set samples, while the
latter is inherent to ICL. We report the average time overhead (ms) of processing an image-text sample under two support
set scales on a single NVIDIA GeForce RTX 4090 GPU.

Table 8. Comparison of time costs.

Time Overhead (ms)

Model & Strategy Support Set
Retrieval Inference Total
Zero-Shot Paradigm - 0 78.1 78.1
ICL Random 4-shot 136 /1562 Samples 0 134.5 134.5
S ICL Ours 4-shot 136 Samples 36.4 134.5 170.9
IDEFICS 101 Ours 4-shot 1562 Samples 64.2 1345 1987
ICL Random 16-shot 136/ 1562 Samples 0 346.1 346.1
ICL Ours 16-shot 136 Samples 36.4 346.1 382.5
ICL Ours 16-shot 1562 Samples 64.2 346.1 410.3

D. Complete Results

In the main paper, we simplify the reported results to emphasize the key findings. Here we present the complete results in
numerical form.

Table 2 reports the average accuracy across 4,8,16-shot demonstrations retrieved based on varying similarity measurements.
Table 9 is its complete version.

Figure 4 reports the average accuracy across 4,8,16-shot demonstrations retrieved based on the WIT and WITA strategies.
Table 10 is its complete version.

Table 3 reports the average accuracy across 4,8,16-shot settings with the inputs composed of different modalities. Table 11
is its complete version.

Figure 5 evaluates ICL’s “Task Learning” effect by progressively incorporating modalities into the inputs. Table 12 is its
complete version.
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Table 9. Complete results of Table 2.

4-shot 8-shot 16-shot
Strategy Post-Level Aspect-Level Post-Level Aspect-Level Post-Level Aspect-Level
MVSA-S MVSA-M Twitter-15 Twitter-17 MVSA-S MVSA-M  Twitter-15 Twitter-17 MVSA-S MVSA-M  Twitter-15  Twitter-17

R 452 59.7 56.1 55.2 50.8 61.2 58.8 56.9 51.4 61.6 57.3 57.1

I 51.2 64.3 56.5 56.8 59.2 65.2 59.2 56.7 59.2 65.3 61.6 56.6

T 49.6 64.6 55.0 552 583 67.2 58.6 56.8 60.0 66.8 62.5 58.9

IT 49.5 64.8 60.5 58.7 57.7 66.3 62.2 56.2 60.1 67.3 61.6 57.9

A - - 60.2 57.0 - - 60.5 57.6 - - 63.4 577

1A - - 57.1 58.2 - - 59.5 57.8 - - 62.0 57.9

TA - - 58.7 56.6 - - 61.6 57.3 - - 62.4 58.0

ITA - - 59.3 583 - - 61.6 57.5 - - 62.2 585

Table 10. Complete results of Figure 4.

WIT Strategy | 4-shot 8-shot 16-shot |  WITA Strategy | 4-shot 8-shot 16-shot
a:f3 ‘ MVSA-S MVSA-M MVSA-S MVSA-M MVSA-S MVSA-M ‘ a:B;(a+8):vy ‘ Twitter-15  Twitter-17 ~ Twitter-15  Twitter-17 ~ Twitter-15  Twitter-17
0:10 49.6 64.6 583 67.2 60.0 66.8 1:9; 8:2 56.7 56.9 59.0 574 62.8 59.0

1:9 51.7 65.5 58.5 67.0 61.4 66.3 1:9; 5:5 58.6 56.4 62.5 575 63.2 58.5
2:8 49.0 65.3 572 67.1 66.5 67.7 1:9;2:8 58.9 58.2 60.8 56.5 63.0 579
3.7 50.2 65.4 57.2 67.7 64.9 66.9 3:7;8:2 56.6 55.8 60.5 55.9 62.9 59.1
4:6 49.0 64.9 57.7 67.2 62.7 67.2 3:7;5:5 59.7 582 61.7 573 62.8 58.4
5:5 49.5 64.4 575 66.6 60.1 673 3:7;2:8 60.2 58.6 59.8 574 63.2 57.8
6:4 49.5 64.4 58.1 67.2 59.4 66.7 5:5;8:2 57.8 57.1 62.5 56.5 64.0 58.1
7:3 51.2 64.2 57.7 66.8 59.2 66.9 5:5;5:5 58.8 579 60.2 56.8 62.0 58.2
8:2 512 64.6 58.8 67.0 57.7 66.7 5:5;2:8 59.8 59.7 60.2 575 63.7 58.7
9:1 50.8 64.8 57.9 65.6 57.2 66.2 7:3;8:2 55.7 572 58.3 58.2 62.4 58.6
10:0 51.2 64.3 59.2 65.2 59.2 65.3 7:3;5:5 58.4 575 59.5 56.4 62.1 579
- - - - - - - 7:3;2:8 60.5 58.9 60.5 593 64.4 58.7
- - - 9:1; 8:2 55.0 58.0 59.7 57.7 63.0 58.5
- - - 9:1; 5:5 56.8 583 59.4 57.1 61.9 58.8
- - - 9:1;2:8 60.5 58.8 60.6 57.9 63.8 59.0
Table 11. Complete results of Table 3.
4-shot 8-shot 16-shot
Modality Post-Level Aspect-Level Post-Level Aspect-Level Post-Level Aspect-Level
MVSA-S MVSA-M Twitter-15 Twitter-17 MVSA-S MVSA-M  Twitter-15 Twitter-17 MVSA-S MVSA-M  Twitter-15  Twitter-17

I 335 45.7 55.2 51.7 55.4 57.8 58.5 53.8 66.3 66.5 584 54.7

C 26.2 35.1 533 49.8 47.2 523 56.8 54.1 583 61.1 58.5 524

LC 48.8 54.9 523 50.1 60.1 60.9 534 50.1 61.9 62.0 57.1 50.1

T 29.7 47.6 60.8 58.9 48.6 56.3 61.5 59.1 60.8 64.2 62.9 59.0

G 31.7 44.0 543 54.6 48.3 57.8 54.9 554 60.3 64.9 55.2 55.7

T,G 342 475 49.0 54.1 50.6 61.0 55.4 55.0 58.3 65.7 57.6 55.4

LT 49.5 64.8 60.5 58.7 57.7 66.3 62.2 56.2 60.1 673 61.6 57.9

LG 473 54.2 53.1 51.8 56.4 58.9 55.0 53.4 59.8 63.3 554 56.2

C,T 322 54.5 61.5 56.4 55.7 61.8 63.9 573 61.2 64.6 62.4 56.3

C,G 337 41.0 51.6 51.5 49.9 56.8 52.5 54.3 59.0 63.2 552 53.5

LCT 477 63.3 56.5 54.9 57.9 64.0 61.0 56.2 60.3 65.8 63.5 55.8

LT,G 45.0 58.6 58.0 539 539 62.4 60.3 552 53.4 64.8 61.0 552

C,T,G 36.1 50.5 51.0 53.0 48.6 59.9 57.8 554 57.7 64.2 60.9 54.0

ILC,G 41.0 523 52.8 51.1 54.1 57.5 51.1 52.4 559 61.2 54.7 529

LC,T,G 41.7 59.4 54.7 524 512 61.4 59.4 53.6 54.8 63.5 62.2 534

Table 12. Complete results of Figure 5.

. 4-shot 8-shot 16-shot
Modality
Twitter-15  Twitter-17  Twitter-15  Twitter-17  Twitter-15  Twitter-17
T 33.7 43.0 39.6 449 52.7 48.5
+ (1, T) 30.4 43.5 36.7 44.7 48.2 46.7
+C (L, C,T) 30.3 43.7 334 433 49.2 45.7
+G (1,C, T, G) 232 39.7 35.8 444 49.9 45.8

14



