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ABSTRACT

We present a simple yet robust noise synthesis framework based on unsupervised
contrastive learning. With access to clean images only, the proposed contrastive
noise synthesis framework trains a Glow-based generative model to synthesize
image noise in a self-supervised fashion. We utilize the signal-dependency of
the synthetic noise as a discriminative feature for the instance-wise discrimination
pretext task and introduce a noise contrastive loss based on maximum mean dis-
crepancy. The empirical results show that, with only 4312 parameters, the noise
synthesized by the proposed framework shows advantages over the noise synthe-
sized by traditional statistical models both qualitatively and quantitatively. The
proposed framework fills a methodological gap in learning-based noise synthesis
and can be used as an alternative to traditional statistical models.

1 INTRODUCTION

(a) Clean (b) AWGN (c) NLF (d) CoNo

Figure 1: Synthetic noisy images generated by (b) ad-
ditive white Gaussian noise (AWGN), a homoscedas-
tic Gaussian model; (c) noise level function (NLF), a
signal-dependent heteroscedastic Gaussian model; and
(d) CoNo, the proposed unsupervised contrastive learn-
ing framework. Compared with AWGN and NLF,
CoNo does not have the inductive bias caused by the
statistical independence between the pixels. CoNo gen-
erates noise with unnoticeable local patterns, which
can be used to mimic the non-photon noise (e.g. fixed-
pattern noise and spatially-correlated noise). The im-
ages are from the Kodak dataset (Malvar et al., 2004).
Best viewed in color, with digital zoom.

With a long-standing history in computer vi-
sion and image processing, image noise synthe-
sis has been an important and active research
topic. The additive synthetic noise has been
widely utilized in applications such as data aug-
mentation, noise modeling and reduction, and
simulated robustness testing. Intuitively, the
noise generation process can be understood as
a one-to-many mapping due to the stochasticity
of noise models, i.e. a clean image could have
many noisy variants synthesized by the same
noise model.

A cheap solution is statistical modelling, where
noise can be sampled from simple statisti-
cal distributions such as Gaussian or Poisson.
However, recent studies (Plotz & Roth, 2017;
Abdelhamed et al., 2018) argue that these sta-
tistical models cannot fully represent the char-
acteristics of real noise. The statistical models
simplify the real problem by imposing strong
priors. For example, a homoscedastic Gaussian
model ignores the signal-dependency of photon
noise, i.e. the variance of the noise is propor-
tional to the magnitude of the signal, and a het-
eroscedastic Gaussian model, a.k.a. the noise
level function (NLF), can not model the non-
photon noise (such as fixed-pattern noise and spatially-correlated noise) and non-linearities (such as
amplification noise and quantization noise).

Fueled by the advance of deep learning, efforts have been made to learn realistic noise explicitly
given large-scale noisy and clean image pairs as the training data. The state-of-the-art (SOTA) ap-
proaches (Chen et al., 2018; Abdelhamed et al., 2019; Chang et al., 2020) model the stochastic
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noise generation process as a (conditional) generative model using GAN (Goodfellow et al., 2014)
or Flow (Rezende & Mohamed, 2015). However, in most scenarios of noise synthesis, only clean
images are available (Vincent et al., 2008), which makes the above noise learning approaches less
practical. In addition, how to generate realistic signal-dependent noise via a self-supervised ap-
proach remains an open question.

Contributions To bridge the aforementioned methodological gap, we introduce a data-driven noise
synthesis framework, named CoNo (stands for Contrastive Noise). CoNo integrates the concepts
of unsupervised contrastive learning (UCL) (He et al., 2020; Chen et al., 2020), a powerful self-
supervised learning (SSL) framework, and generative modeling. The key of UCL is to define an
instance-wise discrimination pretext task, where the pretext task can be solved by minimizing a
contrastive loss. The model of interest is then trained without any labels. We propose to use the
signal-dependency of the synthetic noise as a discriminative feature in the self-supervised pretext
task. To the best of our knowledge, this is the first effort of UCL in the domain of noise synthe-
sis. While existing contrastive losses are designed to handle semantic feature vectors (Oord et al.,
2018), we design a noise contrastive loss based on maximum mean discrepancy (Pan et al., 2010)
that measures the distance between two distributions. CoNo consists of a signal-dependent fusion
layer, which builds dependency between the homoscedastic Gaussian samples and clean images via
self-attention (Vaswani et al., 2017), and a Glow-based (Kingma & Dhariwal, 2018) convolutional
neural network (CNN). With only clean images, CoNo is able to generate realistic signal-dependent
noise, as an alternative to traditional statistical models. The experimental results show that the noise
generated by CoNo shows both qualitative and quantitative advantages over the noise generated by
statistical models in the considered settings.

2 BACKGROUND

Statistical Noise Modeling Given a noisy image y and corresponding noise-free image x, we have

y = x+ n, (1)

where n ∼ P (n) is the additive noise following an unknown distribution P (n). The goal of
statistical noise modeling or noise synthesis is to model P (n).

The simplest model is to assume n is independent of x, i.e. P (n|x) = P (n). The most com-
mon noise model is to assume n follows a homoscedastic Gaussian distribution (Majumdar, 2018;
Lehtinen et al., 2018; Batson & Royer, 2019; Krull et al., 2019; Guo et al., 2019; Yue et al., 2019),
a.k.a. the additive white Gaussian noise (AWGN). Thus,

ni ∼ N (0, σ2), (2)

where ni is the noise at pixel i of the image x and σ is the standard deviation. However, AWGN
ignores the fact the noise could be signal-dependent (Healey & Kondepudy, 1994; Gow et al., 2007;
Liu et al., 2008; Foi et al., 2008; Hasinoff et al., 2010; Makitalo & Foi, 2012).

To take the signal dependency into consideration, a popular choice1 is the heteroscedastic Gaussian
model (Mohsen et al., 1975; Liu et al., 2014), a.k.a. the noise level function (NLF). NLF is defined
as

ni ∼ N (0, λshotxi + λread), (3)

where λshot and λread are two parameters controlling the variance (Brooks et al., 2019).

To sum up, the statistical noise modeling provides a simple yet robust solution to model P (n|x)
and generate synthetic noise. It is worth mentioning that, with clean and noisy image pair (x,y),
n can also be modeled via a data-driven approach, e.g. using a CNN to model P (n|x,y) (Chen
et al., 2018; Abdelhamed et al., 2019; Chang et al., 2020). We focus on the situation that only x is
available in this work.

Contrastive Learning The theoretical breakthroughs in unsupervised contrastive learning (UCL)
has fueled the recent successes in self-supervised learning (SSL) (Chen et al., 2020; He et al.,
2020; Misra & Maaten, 2020; Tian et al., 2020; Chuang et al., 2020). Let v denote a feature vec-
tor extracted from an image patch of interest. For image classification tasks, a CNN backbone,

1See Appendix A.1 for the description of other statistical signal-dependent models.
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e.g. ResNet (He et al., 2016), is commonly used as the encoder. Given an query image patch q and
(N + 1) key image patches, a positive pair (vq,v0) is defined as two patches taken from the same
image and a negative pair (vq,vi>0) is defined as two patches taken from different images. Com-
monly, the image patches are generated by randomly cropping the stochastically augmented images.
A common choice for the contrastive loss is InfoNCE (Oord et al., 2018), which is formulated as,

LNCE = − log
exp(sim(vq,v0)/τ)∑N
i=0 exp(sim(vq,vi)/τ)

(4)

where τ is a temperature parameter and sim(·, ·) is the cosine similarity between two feature vectors.
Mathematically, minimizing Eq. 4 is equivalent to maximize the mutual information shared between
two views of the same image.

Note, Eq. 4 poses several constraints on the problem formulation of the downstream tasks of inter-
est. First, high-level vision tasks containing semantic information benefit more from the encoded
feature vectors than low-level vision tasks such as noise synthesis. This is determined by the nature
of the instance-wise discrimination pretext task. Second, sim(·, ·) requires that two feature vec-
tors are projected into the same high-dimensional feature space, i.e. there will be an element-wise
correspondence between two feature vectors.

3 CONTRASTIVE NOISE LEARNING

3.1 PROBLEM FORMULATION

Following Sec. 2, we use x, y, n, n̂ to denote clean image, noisy image, real noise, and synthetic
noise, respectively. A dataset of clean images D = {xi}Mi=1 is given as the training set. The goal is
to generate realistic signal-dependent noise given D without access to {yi}Mi=1 or {ni}Mi=1.

For simplicity, we denote the dimension of the image as d = H×W×C for aC-channel image with
height H and width W . Let gθ : R2d 7→ Rd, where g is a function parameterized by θ, e.g. a CNN.
Let z ∼ N (0, σId) be a d-dimensional homoscedastic Gaussian sample2, where σ is a parameter
controlling the noise variance level (e.g. N is a standard normal distribution when σ = 1). We
define the generated noise as

n̂ = gθ(z,x). (5)
So, the learning outcome is to find an optimal set of parameters θ that generates realistic n̂. Note, z
is just an AWGN and gθ could be viewed as a transformation of z conditioning on x.

3.2 PRETEXT TASK

To utilize UCL on noise synthesis, we need to define an instance-wise discrimination pretext task as
the first step. Let P (n|x) be the underlying but unknown signal-dependent noise distribution. We
make the following assumption based on empirical observation:

Assumption 1 The divergence between the noise distributions of two patches from the same image
instance should statistically be smaller than the divergence between the noise distributions of two
crops from two different image instances.

As long as the assumption that P (n|x) is true, Asm. 1 should be valid. In addition to the fact that
the patches from the same image instance share the same camera and acquisition setting, Asm. 1
can also be understood from the perspective of the self-similarity within the same image. Because
of the potential self-similarity, the signal-dependent noise of two views of the same image instance
should be somewhat correlated, which makes the divergence small. We expect the synthetic noise to
share the same assumption as the real noise. Thus, we use the synthetic noise as the discriminative
feature, analogous to feature vectors in high-level vision, for the pretext task,

3.3 NOISE CONTRASTIVE LOSS

Similar to previous UCL frameworks, the proposed framework consists of an instance-wise discrim-
ination pretext task and a contrastive loss. The overall workflow is depicted in Fig. 2.

2We use Id to denote the d× d identity matrix.
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Figure 2: Illustration of the framework of CoNo. The random crops in shape H×W×1 sampled from the
RAW image (only a positive pair is shown) are rearranged into 4-channel (in order RGGB in this work) signal
tensors in shape H/2×W/2×4. Then, the signal tensors and additive white Gaussian noise (AWGN) samples
are fed into the network to generate the noise for the instance-wise discrimination pretext task. The images
displayed are proportionally scaled for better visualization.

In this work, we introduce a noise contrastive loss that is defined as:

Lcontrast = − log
exp(−dis(n̂q, n̂0)/τ)∑N
i=0 exp(−dis(n̂q, n̂i)/τ)

, (6)

where dis(·, ·) is a statistical distance. n̂ is the generated noise conditioning on the corresponding
image patch x̂ cropped from the original image. Again, (n̂q, n̂0) denotes the positive pair and
(n̂q, n̂i>0) denotes the negative pair, given the query image patch x̂q .

In contrast to Eq. 4, Eq. 6 replaces the statistical similarity with a negative statistical distance. We use
dis(·, ·) to measure the divergence between two noise tensors instead of two feature vectors. Note,
dis(·, ·) should be differentiable and be able to handle high-dimensional data. This is infeasible for
most popular information theoretic approaches in generative modeling, such as mutual information
(MI), Kullback–Leibler divergence (KLD), and Jensen–Shannon divergence (JSD) as the probability
densities of two distributions have to be estimated beforehand.

Inspired by unsupervised domain adaptation (Pan et al., 2010), we consider maximum mean discrep-
ancy (MMD) (Gretton et al., 2012) instead. It has been shown that MMD has several computational
and statistical advantages over the above-mentioned distance measures (Smola et al., 2007)3. MMD
is a nonparametric method based on the kernel embedding of distributions where a probability dis-
tribution is represented as an element of a reproducing kernel Hilbert space (RKHS)4.

Given a domain Ω, let a function f : Ω→ R belong to a class of functions F . With n̂p = {npj}dj=1

conditioning on xp, we can view {npj}dj=1 as samples from the probability distribution Pp(n̂p|xp).
Similarly, we can define n̂q = {nqj}dj=1 and Pq(n̂q|xq). We can define MMD and the empirical
estimate of MMD (Borgwardt et al., 2006) between (n̂p, n̂q) respectively as

MMD(F , Pp, Pq) = sup
f∈F

(Ep[f(np)]− Eq[f(nq)]) (7)

MMD(F , n̂p, n̂q) = sup
f∈F

(
1

d

d∑
j

f(npj )−
1

d

d∑
j

f(nqj)). (8)

Given a Gaussian kernel k defined on Ω× Ω

k(ω, ω′) = exp(−‖ω − ω
′‖2

δ2
) ∀ω ∈ Ω ω′ ∈ Ω, (9)

3See Appendix A.2.1 for the advantages.
4See Appendix A.2.2 for the definition of RKHS.
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Algorithm 1 Batch-wise training of noise contrastive loss for CoNo.
1: Sample a batch of N + 1 images. . Sample N + 1 positive pairs
2: Sample two positive patches for each image.
3: Generate n̂ for each of 2N + 2 patches given σ. . Eq. 5
4: for j = 1, 2, · · · , N + 1 do . Compute noise contrastive loss
5: Take the jth pair as the positive pair (n̂q, n̂0).
6: Take the second patch of each of the other N pairs as n̂i>0.
7: Compute Lcontrast for the jth positive pair. . Eq. 6
8: Sum up Lcontrast for a batch N + 1 images as the batch-wise noise contrastive loss.

k is guaranteed to be universal. Now the statistical distance between (n̂p, n̂q) can be empirically
computed5 as

MMD2(F , n̂p, n̂q) =
1

d2

d∑
j

d∑
j′

k(npj , n
p
j′) +

1

d2

d∑
j

d∑
j′

k(nqj , n
q
j′)−

2

d2

d∑
j

d∑
j′

k(npj , n
q
j′).

(10)

With Eq. 10, we can formally define Eq. 6 with dis(·, ·) = MMD2(·, ·). Specifically, we define two
patches within the same image instance as a positive pair if they overlap. Two negative patches are
defined as two patches without any overlap, either in the same image instance or in different image
instances. This will provide the synthetic noise with a strong local similarity. Note, following the
sampling process of UCL (Chen et al., 2020; He et al., 2020), we only sample positive pairs in the
batch-wise training, illustrated in Algorithm 1.

It is worth mentioning that, while the workflow is similar to SimCLR (Chen et al., 2020), the pro-
posed framework is not a trivial extension. CoNo differs from SimCLR in pretext task (noise ten-
sors vs. feature vectors), downstream task (noise synthesis vs. semantic understanding), optimization
(noise contrastive loss vs. InfoNCE), and modeling (a generative model vs. a discriminative model).

3.4 NETWORK ARCHITECTURE

gθ consists of two parameterized modules. The first module aims to fuse the AWGN and the clean
image, i.e. to establish a signal-dependent prior distribution. The second module leverages the sta-
tistical power of flow-based models (Rezende & Mohamed, 2015; Kingma et al., 2016; Kingma &
Dhariwal, 2018) in transforming a simple distributions into a complex one. For the second module,
we just utilize Glow (Kingma & Dhariwal, 2018), a flow-based model comprising of a sequence of
building blocks with identical architectures. Each building block has three layers, namely actnorm,
invertible 1×1 convolution, and affine coupling.

Signal-Dependent Fusion As the first step in the noise generation process, we build a dependency
between the AWGN z and the clean image x, motivated by self-attention mechanism (Vaswani et al.,
2017). We define a prior noise distribution as:

gθ0(z,x) =
√
A⊗ x⊕B ⊗ z, A = exp(a(x)), B = exp(b(x)), (11)

where gθ0
implies that Eq. 11 is the zeroth step (the first step in the context of computer science),

⊗ and ⊕ denote element-wise multiplication and addition, respectively, and a(·) and b(·) are two
shallow networks consisting of convolutional layers. Note, A and B are non-negative and are
dependent on x. A⊗x⊕B is equivalent to simulate a signal-dependent variance, similar to Eq. 3.
Intuitively, gθ0

(z,x) scales up z by a factor of
√
A⊗ x⊕B in an element-wise fashion. The

signal-dependent fusion (SDF) layer, together with the following Glow architecture, can transform
a simple Gaussian distribution z ∼ N (0, Id) into a complex data-dependent distribution.

3.5 OPTIMIZATION

Note, the noise contrastive loss is only designed to enforce Asm. 1, trivial solutions exist, i.e. the
synthesized noise is unrealistic. Besides, we often expect the noise generation process to be control-

5See Appendix A.2.3 for the derivation of MMD2(F , n̂p, n̂q).
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lable, like statistical models, in practical applications. In addition to the noise contrastive loss, we
include two regularization terms below to ensure that CoNo can generate realistic noise.

Perceptual Loss As the noisy images and clean images should convey the similar underlying se-
mantic information, we set an optimization objective to maintain the semantic information contained
in the noisy image. To do so, we include a perceptual loss (Johnson et al., 2016) based on feature
extracted from a pre-trained encoder fe:

Lperceptual = ‖φ(fe(x+ n̂))− φ(fe(x))‖22, (12)

where φ(·) represents the features extracted from different layers of fe.

Distributional Alignment Loss The unsupervised learning process can be further regularized if
additional knowledge of P (n|x) is given. Commonly, when using synthetic noise to assess the per-
formance of denoising algorithms (Majumdar, 2018; Lehtinen et al., 2018; Batson & Royer, 2019;
Krull et al., 2019), the statistics of the noise for the target images are given for a quantitative com-
parison. For example, we always assume the noise has a zero mean and the denoising methods are
usually evaluated under various noise variance levels. Thus, to make the synthetic noise controllable
at different noise variance level, we want to align the learned distribution Pθ with a prior statistical
distribution Pprior. We implement this alignment via moment matching, i.e. we minimize the dis-
tance between the moments of Pθ and Pprior. For the generated noise n̂ of image x, the first moment
(mean) and the second moment (variance) are

µ(n̂) =

∑
j nj

d
, σ2(n̂) =

∑
j(nj − µ(n̂))2

d− 1
. (13)

Given Pprior = N (0, σ2), the distributional alignment loss is

Lalignment = ‖µ(n̂)‖22 + ‖σ2(n̂)− σ2‖22. (14)

Final Objective The total loss is then the sum of three losses:

Ltotal = Lcontrast + Lperceptual + Lalignment. (15)

We use equal weights for three losses in this work, but different weights could be assigned.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We use three public benchmark datasets: Kodak Image Dataset (Malvar et al., 2004),
Darmstadt Noise Dataset (DND) (Plotz & Roth, 2017) and Smartphone Image Denoising Dataset
(SIDD) (Abdelhamed et al., 2018). Kodak contains 25 images in PNG format with fixed resolution
768×512. Kodak has been widely adopted as the denoising dataset by adding the synthetic noise
generated by statistical models described in Sec. 2. We use Kodak as the training set and visually
analyze the noised generated by CoNo. DND contains 50 high-resolution images with realistic
noise from 50 scenes taken by 4 cameras. SIDD contains thousands of noisy and clean image pairs,
captured with five different smartphone cameras repeatedly from ten different scenes. As DND and
SIDD contain real signal-dependent noise, we use DND and SIDD to illustrate the advantage of
CoNo over statistical models quantitatively.

Implementation We focus on RAW images as they directly represent the noise distribution (Abdel-
hamed et al., 2019), while the rendering process from RAW images to RGB images can significantly
change the noise distribution (Nam et al., 2016). So, we generate noise in RAW color space. For
consistency, we set the Bayer color filter array pattern as RGGB. The input RAW crop has a size of
128×128×1 and is reshaped into 64×64×4 following (Gharbi et al., 2016). The RAW images are
rendered into RGB images through a color processing pipeline (Menon et al., 2006).

Network CoNo consists of a SDF layer and a sequence of 8 identical building blocks of
Glow (Kingma & Dhariwal, 2018), where each block consists of three layers: actnorm, invert-
ible 1×1 convolution, and affine coupling. The sub-networks a(·) and b(·) in SDF both have three
convolutional layers, followed by ReLU (Nair & Hinton, 2010) and batch normalization (Ioffe &
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Szegedy, 2015). The input and output dimension pair for three layers are (4, 8), (8, 8), and (8, 4),
respectively. The kernel size of three convolutional layers are 1×1, 3×3 and 1×1. Note, CoNo is a
fairly simple model with only 4312 parameters.

Training We follow (Chen et al., 2020) in defining temperature τ = 0.07 in Eq. 6. We use an
Adam (Kingma & Ba, 2015) optimizer with a batch size of 64 and a fixed learning rate 0.03. Given
the overall noise variance level σ2 in Eq. 14, the network is trained for 50 epochs and we choose the
best model parameters θ by selecting the epoch which provides the lowest Ltotal in Eq. 15.

Baselines Without access to real noise or any camera-calibrated parameters, we compare CoNo
against two well-known baseline models, AWGN (Eq. 2) and NLF (Eq. 3). For a fair comparison,
we aim to evaluate three models under the same overall variance level σ2. Given σ, λshot and λread
are sampled to ensure that the overall variance level is around σ2.

4.2 QUALITATIVE ANALYSIS

(a) Clean (b) AWGN (c) NLF (d) CoNo

Figure 3: Synthesized noisy images at the same noise
variance level (σ = 10): (a) clean images: (b) AWGN,
(c) NLF, (d) CoNo. CoNo shows more local noise pat-
terns than the other two models.

Noise Synthesis In order to qualitatively ana-
lyze the synthetic noisy images, we first visu-
alize the synthetic noisy images at the same
noise variance level. Fig. 3 shows the gen-
erated noisy Kodak images for AWGN, NLF,
and CoNo at noise variance level σ = 10.
Note, although statistical models may describe
photon noise, the real images have other noise
sources (e.g. fixed-pattern noise, defective pix-
els, clipped intensities, spatially correlated
noise, amplification noise, and quantization
noise). These non-photon noise can not be eas-
ily modeled via statistical models. Moreover,
statistical models such as AWGN and NLF tend
to assume independence between the pixels. As
a comparison, CoNo does not have this induc-
tive bias. Meanwhile, the convolution opera-
tions give CoNo more flexibility in synthesizing
the signal-dependent noise. If we take a closer
look at Fig. 3, CoNo generates noise with unno-
ticeable local patterns, which simulate the non-
photon noise and logically make the synthetic
noisy images more similar to the real noisy images than rigid statistical models. In our experiment,
independent human viewers suggest that the noisy images synthesized by CoNo are more percep-
tually comfortable than the noisy images synthesized by AWGN and NLF under the same noise
variance level. We hypothesize that this is due to the fact that the noisy images generated by CoNo
share more similar characteristics with the commonly seen real noisy images, such as intensity-based
local patterns and pixel-wise dependence6.

Impact of Noise Variance Level To further understand the noise synthesized by CoNo, we examine
the noise at different noise variance level (represented by the standard deviation σ).The noisy images
generated by AWGN, NLF, and CoNo at σ ∈ {10, 20, 30} are displayed in Fig. 4. With increased σ,
CoNo tends to show more local patterns than NLF, while Gaussian has no patterns at all. Another
interesting observation is that, given the same σ, UCL tends to show more artifacts in the bright
regions than AWGN and NLF (see the white region of the parrot’s beak). This phenomenon might
be explained by the physical model of camera noise (Hasinoff et al., 2010)7: the bright regions
in the photo have larger noise variances than the dark regions. The statistical models describe the
signal-dependency variance via a linear relationship (e.g. Eq. 3). As a comparison, the data-driven
approach can model more complex relationships.

6We conjecture that such a similarity may activate the human memory mechanism, thus make the viewer
perceptually comfortable. The psychological discussion is beyond the scope of this work.

7See Appendix A.3 for the description of the physical model.
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Clean AWGN
σ = 10

NLF
σ = 10

CoNo
σ = 10

Clean AWGN
σ = 20

NLF
σ = 20

CoNo
σ = 20

Clean AWGN
σ = 30

NLF
σ = 30

CoNo
σ = 30

Figure 4: Generated noisy images at different noise
variance level (σ ∈ {10, 20, 30}). In contrast to
AWGN and NLF, CoNo tends to generate larger noise
in the bright regions.

Figure 5: Scatter plots of pixel intensity and noise at
different noise variance level (σ ∈ {10, 20, 30}) for
Fig. 4. The horizontal axis represents the pixel intensity
([0, 255]). The vertical axis represents the noise at each
pixel (normalized by 255). In contrast to AWGN and
NLF, the noise generated by CoNo tends to show larger
variance for high pixel intensity.

Analysis of Noise Distribution In addition to the qualitative comparison, we visualize the noise
distribution to further validate the advantages of CoNo. We leverage statistical plots to study the
relationship between pixel intensity x and noise n̂ in signal-dependent noise modeling. The scatter
plots of pixel intensity and noise for three noise models are displayed in Fig. 5. The noise generated
by CoNo shows similar patterns as the noise generated by AWGN and NLF for pixels with low
intensity. However, for pixels with high intensity, the noise generated by CoNo tends to show
larger variance for high pixel intensity than AWGN and NLF. This observation fits the physical
phenomenon previously discussed, which further validates the hypothesis above: CoNo shows more
flexibility in noise modeling than AWGN and NLF.

Noise Stochasticity As a generative model, a key property is the stochasticity of the noise synthesis,
i.e. we expect the model can generate different noise given the same input image. Theoretically, the
stochasticity comes from z ∼ N (0, σId) in Eq. 11. We visualize the noisy images generated by
CoNo given different z in Fig. 6. The noisy images are slightly different.

4.3 QUANTITATIVE ANALYSIS

Figure 6: Stochasticity of the noisy images generated by CoNo. At each row,
the first image is the clean image and the other four images are the generated
noisy images given the same clean image but different random sample z (σ =
10 for the displayed images).

The synthetic noise has
been widely utilized in the
applications of computer
vision and image process-
ing. The purposes of the
experiments in this section
are twofold. First, we
notice that the real noise
should be unavailable un-
der our problem formula-
tion. Thus, we use image
denoising, a closely related
problem to noise synthesis,
as a proxy task to evaluate
the quality of the synthetic
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Table 1: DnCNNs are trained on the synthetic Kodak
datasets and evaluated on DND and SIDD datasets, re-
spectively. CoNo outperforms AWGN and NLF in the
proxy evaluation.

DND SIDD
Model PSNR SSIM PSNR SSIM
DN-AWGN 31.53 0.750 27.57 0.668
DN-NLF 31.96 0.759 28.68 0.685
DN-CoNo 32.51 0.804 30.82 0.701

Table 2: Under data scarcity (e.g. with only 10%
of training set), there is a performance gain by pre-
training DnCNN on the synthetic dataset. Oracle is
trained with the full training set.

DND SIDD
Model PSNR SSIM PSNR SSIM
w/o CoNo 34.07 0.851 32.59 0.861
w/ CoNo 34.67 0.865 33.28 0.867
Oracle 38.08 0.936 38.41 0.909

noise generated by CoNo
in a quantitative manner. Second, we illustrate that CoNo can be used as an alternative noise syn-
thesis method in practical applications.

Proxy Evaluation Setup We create three large labeled training sets by generating 10000 noisy-
clean RGB image pairs by AWGN, NLF, and CoNo. Specifically, for a clean image patch randomly
cropped from Kodak dataset, we generate a noisy image given a randomly sampled σ, where σ ∼
U(0, 30) and U is a uniform distribution. Note, we assume that the distribution of the test set is
unknown during the training, i.e. we have no prior knowledge on the test set. Thus, we sample
σ to cover possible variance levels as a common practice in denoising (Gharbi et al., 2016). For
computational efficiency, we do batch-wise sampling for σ, while the other training details are the
same as above. In this way, CoNo is trained to be sensitive to σ. We use DnCNN (Zhang et al.,
2017), a SOTA image denoiser, as the backbone. We train three DnCNNs initialized with the same
random seed on three training sets respectively in a standard supervised fashion (Abdelhamed et al.,
2019), where the loss is L1. Then, we get three trained DnCNNs, which are denoted as DN-AWGN,
DN-NLF, and DN-CoNo. We evaluate the trained DnCNNs by reporting the denoising performance
on DND and SIDD, with metrics PSNR and SSIM.

Empirical Results In the first scenario, we directly evaluate the trained denoiser on the testing sets
of DND and SIDD, which are unseen in the training. The results are presented in Table 1. Because
DnCNNs are trained and evaluated in different datasets, i.e. the noise distributions are different,
the results in Table 1 are only used as a proxy evaluation on the quality of the synthetic noise. As
DN-CoNo outperforms DN-AWGN and DN-NLF by a large margin, we conclude that CoNo can
synthesize more realistic noise than AWGN and NLF. As an ablation study, we demonstrate how
CoNo could be used to in practical applications to mitigate the data scarcity. Two DnCNNs initial-
ized with the same random seed are trained in parallel. One is trained under a standard supervised
learning with 10% of the training set of the target tasks. Another one is firstly pre-trained with the
synthetic dataset and then trained as the first DnCNN. As shown in Table 2, pre-training DnCNN on
the synthetic dataset generated by CoNo does improve the performance.

4.4 LIMITATIONS

Although a UCL framework is proposed to fill a methodological gap in self-supervised noise syn-
thesis, we should admit the limitations of CoNo: there is a trade-off between the performance and
cost. Compared with statistical models, the training and inference phases of CoNo both require
non-trivial computational cost and memory footprint. Meanwhile, the focus of experimental design
is to evaluate the quality of the synthetic noise. The study on the related downstream tasks such as
data augmentation and denoising is beyond the scope of the discussion, and is left as future work.

5 CONCLUSIONS

We are the first to propose an unsupervised signal-dependent noise synthesis framework based on
contrastive learning. The proposed framework is simple yet robust and can be utilized as an alterna-
tive to traditional statistical models.
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Michaël Gharbi, Gaurav Chaurasia, Sylvain Paris, and Frédo Durand. Deep joint demosaicking and
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A APPENDIX

A.1 SIGNAL-DEPENDENT MODELS

In low-level computer vision, an early signal-dependent model is the Poisson model:

ni ∼ αP(xi)− xi, (16)

where P is the Poisson distribution with rate xi, xi is the noise-free signal at pixel i of the image x,
and α is a scaling factor.

As there could be both signal-dependent and signal-independent components in the sources of noise,
a stand-alone Poisson model is inefficient to fully explain noise. A more popular choice is to com-
bine Eq. 2 and Eq. 16, which represent the signal-independent and signal-dependent parts respec-
tively. The Poisson-Gaussian model (Foi et al., 2008; Foi, 2009; Makitalo & Foi, 2012) is

ni ∼ αP(xi)− xi +N (0, σ2). (17)
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A.2 MAXIMUM MEAN DISCREPANCY

A.2.1 ADVANTAGES

The advantages of MMD over information theoretic approaches can be summarized as below.

1. There are no restrictive assumptions about the form of the distributions and relationships
between variables.

2. No intermediate density estimation is required.

3. The prior knowledge could be incorporated via choice of the kernel.

4. There is no information loss as the kernel embedding can uniquely preserve all information
about a distribution.

5. It is fairly easy to compute.

6. It has good generalization ability.

A.2.2 DEFINITION OF RKHS

The Moore–Aronszajn theorem (Aronszajn, 1950) asserts the existence of RKHS H as a complete
inner product space of functions f : Ω 7→ R with formal definitions of inner products 〈·, ·〉H and
norms ‖ · ‖H. Let φ denote a feature space map Ω 7→ H, the reproducing property holds:

∀ω ∈ Ω 〈f, φ(ω)〉H = f(ω). (18)

A.2.3 DERIVATION

Following (Borgwardt et al., 2006), we constrain ‖f ≤ 1‖H ∀f ∈ F . Eq. 7 can be rewritten as

MMD(F , Pp, Pq) = sup
‖f≤1‖H

(Eq[f(np)]− Ep[f(nq)]) (19)

= sup
‖f≤1‖H

(Ep[〈f, φ(np)〉H]− Eq[〈f, φ(nq)〉H]) (20)

= sup
‖f≤1‖H

〈f, µp − µq〉H (21)

= ‖µp − µq‖H, (22)

where µp = Ep[φ(np)] and µq = Eq[φ(nq)] are the expectation of φ in feature space. Eq. 20 is an
application of the reproducing property in Eq. 18. Eq. 21 utilizes the linearity of the inner product.
Eq. 22 utilizes the Cauchy–Schwarz inequality.

MMD2(F , n̂p, n̂q) = 〈µp − µq, µp − µq〉H
= 〈µp, µp〉H + 〈µq, µq〉H − 2〈µp, µq〉H
= Ep[〈φ(np), φ(np)〉H] + Eq[〈φ(nq), φ(nq)〉H]

− 2Ep,q[〈φ(np), φ(nq)〉H]

(23)

Eq. 10 is just an empirical estimated of the last equation.

A.3 PHYSICAL CAMERA NOISE MODEL

A widely recognized physical camera noise model (Hasinoff et al., 2010) points out the variance of
the signal-dependent noise can be modeled as

σ2 =
Φt

g2
+
σ2
read

g2
+ σ2

ADC. (24)

The first term denotes the photon noise, where Φ is the radiant power, t is the exposure time, and g
is the sensor gain. The terms σ2

read and σ2
ADC are the variance of the readout noise and the variance

of the analog-to-digital conversion (ADC) noise.
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A.4 DATASETS

We use three public benchmark datasets: Kodak Image Dataset (Malvar et al., 2004)8, Darmstadt
Noise Dataset (DND) (Plotz & Roth, 2017)9 and Smartphone Image Denoising Dataset (SIDD) (Ab-
delhamed et al., 2018)10. For DND and SIDD, the datasets are randomly split into a training set with
80% of images and a testing set with 20% of images. We perform the denoising in the RGB color
space.

8http://www.cs.albany.edu/˜xypan/research/snr/Kodak.html
9https://noise.visinf.tu-darmstadt.de

10https://www.eecs.yorku.ca/˜kamel/sidd/dataset.php
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