
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LANGUAGE MODELS CAN HELP TO LEARN HIGH-
PERFORMING COST FUNCTIONS FOR RECOURSE

Anonymous authors
Paper under double-blind review

ABSTRACT

Algorithmic recourse is a specialised variant of counterfactual explanation, con-
cerned with offering actionable recommendations to individuals who have re-
ceived adverse outcomes from automated systems. Most recourse algorithms as-
sume access to a cost function, which quantifies the effort involved in following
recommendations. Such functions are useful for filtering down recourse options
to those which are most actionable. In this study, we explore the use of large lan-
guage models (LLMs) to help label data for training recourse cost functions, while
preserving important factors such as transparency, fairness, and performance. We
find that LLMs do generally align with human judgements of cost and can label
data for the training of effective cost functions, moreover they can be fine-tuned
with simple prompt engineering to maximise performance and improve current
recourse algorithms in practice. Previously, recourse cost definitions have mainly
relied on heuristics and missed the complexities of feature dependencies and fair-
ness attributes, which has drastically limited their usefulness. Our results show
that it is possible to train a high-performing, interpretable cost function by con-
sulting an LLM via careful prompt engineering. Furthermore, these cost functions
can be customised to add or remove biases as befitting the domain and problem.
Overall, this study suggests a simple, accessible method for accurately quantifying
notions of cost, effort, or distance between data points that correlate with human
intuition, with possible applications throughout the explainable AI field.

1 INTRODUCTION

Algorithmic recourse has emerged as one of the most impactful areas of explainable AI (Karimi
et al., 2022). The field focuses on generating actionable counterfactual recommendations to users
who were treated unfavorably by automated systems, with the canonical example being a rejected
bank loan application, and what actions could be taken by a user to have it accepted in future (Ustun
et al., 2019). In such a scenario, a cost function is needed to quantify how much effort a recourse
recommendation would take, so that algorithms can consider this during optimisation. Separately, it
is worth noting that the field has branched out to consider positive outcomes with gain functions and
semifactual recourse (Kenny & Huang, 2024). In either case, these functions must align with human
domain knowledge and intuition, so they can inform appropriate recourse selection. In this paper,
we focus on cost functions, and show how large language models (LLMs) can be used to largely
automate their design while maintaining desirable aspects such as transparency and fairness.

Typically in recourse, a cost function is assumed a priori, often as some variant of an Lp norm on
the feature space (Keane et al., 2021). For example, an L0 norm assigns higher cost to recourse
recommendations that change more features, although this ignores other factors such as how much
they are changed. A (weighted) L1 or L2 norm can incorporate magnitude information, but not
pairwise or higher-order interactions between features. These can be added in an ad hoc manner,
but are challenging to formalise and combine. As an alternative, we examine if the issue of recourse
cost can be addressed in a flexible and scalable way by tapping into the tacit domain knowledge
of LLMs. We show how, with the right prompting, LLMs can be consulted to compare the costs
of pairs of recourses, creating a labelled dataset for training either neural network cost functions or
transparent tree-based ones (Kanamori et al., 2022; Bewley & Lecue, 2022). Our results suggest
that future research into cost functions may benefit from the use of LLMs.
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2 COST FUNCTION DESIDERATA

We begin by considering what constitutes a high-performing cost function for recourse applications.
Ideally, a cost function should satisfy many intricate criteria which basic Lp norms cannot, such
as variable feature weighting and dependencies. Here, we outline our desiderata grounded in prior
literature, which will form the basis for subsequent evaluation.

1. Feature Cost. A cost function should have different weighting considerations for each
feature in the data. For example, adding an additional credit card is generally easier than
increasing your down payment (Rawal & Lakkaraju, 2020).

2. Relative Cost. A cost function should weigh the cost of a given change differently at differ-
ent points in the distribution, if appropriate. For example, going from the 55-60th percentile
in an exam score may be easier than going from the 90-95th (Ustun et al., 2019).

3. Dependent Cost. It must be possible to represent relevant dependencies between two or
more features. For example, applying for college funding is usually easier if you are native
to a country rather than an immigrant (Karimi et al., 2022).

4. Fair Cost. Cost functions should take into account any fairness properties relevant to a
given domain and application (Von Kügelgen et al., 2022). In this paper, we define fairness
as the cost function not varying its output if demographic information is mutated.

These desiderata have been extensively discussed in the literature cited above. We do not claim this
to be an exhaustive list, but a reasonable starting point.1

3 METHOD

This section outlines our four-step framework for learning cost functions. First, synthetic recourse
examples are generated by randomly perturbing a set of data points subject to actionability con-
straints. Second, pairs of recourse examples are selected at random for comparison. Third, an LLM
is queried to provide ratings (i.e. labels) for these comparisons. Finally, the resultant dataset is used
to train a cost function. In this process, we assume access to a capable chatbot LLM which may be
queried at liberty, and that the data domain is tabular in nature.

3.1 GENERATING SYNTHETIC RECOURSES

Let D = {xi}Ni=1 ⊂ Rd denote a given dataset, where each xi represents a d-dimensional feature
vector. For our purposes, we benefit from D being as diverse as possible. We define a stochastic
perturbation function ϕ : Rd × A → ∆(Rd), where A denotes a set of actionability constraints
(see Appendix A for details). The number of features to be perturbed is problem-specific and will
determine the cost function’s capabilities in deployment. Here, we randomly select this number from
a truncated geometric distribution, which favors perturbations of one feature to focus on sparsity,
which is desired in recourse (Keane et al., 2021; Karimi et al., 2022). See Appendix B for details.

For each data point xi and perturbed feature f ∈ {1, . . . , d}, we apply the following perturbation:

x′
i[f ] =

{
∼ Uniform(categoriesf ) if f is categorical
xi[f ] + ϵ : ϵ ∼ Ef if f is continuous,

(1)

where Uniform(categoriesf ) is a uniform distribution over categories and Ef is a finite set of pertur-
bations for a continuous feature (positive/negative multiples of the standard deviation across D).

This process generates a set of recourse examples R = {(xi, x
′
i)}Ni=1, where each xi represents an

original instance and x′
i is the corresponding synthetic perturbation. We use a finite set of pertur-

bation magnitudes for numerical features because it allows a direct comparison between exactly the
same change at different parts of a feature distribution. This helps to learn relative differences in

1Another possible desideratum is Individual Cost, whereby even if two individuals have identical feature
values, they could still have different ideal recourse recommendations based on their preferences (Nauta et al.,
2023; Rawal & Lakkaraju, 2020). However, this is largely a separate human computer interaction (HCI) ques-
tion, and we are instead focused on the training of the cost function itself.
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Figure 1: Method Schematic: (1) Each instance in a given dataset is perturbed within actionability
constraints to simulate a recourse situation. (2) Pairs of these recourses are selected for comparison
in such a way as to from a connected graph (where a path exists between all pairs of recourses). (3)
Each edge in the graph is then labeled with an LLM which judges which of the two corresponding
recourses takes a higher cost to achieve (or optionally an additional “equal cost” option if specified).
(4) The dataset of comparisons is used to train the cost function, in our case either a transparent tree
model or an MLP.

cost for the same change, thereby addressing the relative cost criterion (i.e., Desideratum 2). The
parameters can be tuned to suit the specific requirements of the problem domain.

3.2 SELECTING RECOURSE PAIRS

Next, we select a set of K ≤ N2 pairs of recourse examples from R which will be presented
to an LLM for cost comparison. This process can be understood as connecting the recourses into
an undirected graph structure. In forming this graph, we enforce that each recourse must have a
minimum of Kmin edges, and that the graph as a whole forms a single connected component (where
a path exists between all pairs of recourses). We find that this improves the performance of the
final cost function, as it allows the costs for all recourses to be estimated on the same scale. To
enforce the relative cost criterion, we prioritise edges between recourses which perturb the same
continuous feature at two different parts of the distribution by exactly the same amount. This has
the effect of forcing the LLM to reason about the difference in cost between e.g. increasing salary
from 30-35k versus 50-55k. We also add edges to enforce comparisons of the same feature changes
for different feature dependencies, e.g. two recourses which have the same increase in loan amount,
but different credit ratings, which can be used to enforce the relative cost criterion of Desideratum
3 (see Section 4 later). The total additional edges from this enforcement is set to 10% of the total
data for both, adding 20% extra data on average. Aside from these considerations, we find that the
algorithm used to construct the graph of recourse pairs is relatively unimportant. In practice, any
algorithm forming a connected graph subject to the Kmin constraint seems to work well. We used a
random spanning tree algorithm in all experiments.

3.3 PAIRWISE LLM LABELLING

For the standard prompt structure B (see Appendix D), we begin by instructing the LLM that it is
a helpful assistant to a data scientist which labels data. It is then told the task of comparing two

3
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individuals and their respective feature changes. We then enumerate the features, as well as their
descriptions. The LLM is then asked to reason about which of the two given recourses requires
more effort for the individual to achieve (i.e. cost), and finally to respond with a label of 1 (first
requires more effort), or 0 (second requires more effort). Optionally, we also permit a third category
of 0.5, indicating a judgement that equal effort is required, which is a useful de-biasing signal in con-
texts where features represent sensitive demographic attributes. The prompt then gives a high-level
overview of the desiderata in Section 2. In addition, the LLM is instructed to use chain-of-thought
to increase performance and reduce social biases (Kamruzzaman & Kim, 2024). In other experi-
ments, we also fine-tune the prompt more with a set of desired cost function parameters, denoted
by B′. For the full prompts, see Appendix D. The output of this stage is a set of K comparisons
Q = {(i, j, y)}Kk=1, where i and j ̸= i are indices of a pair of recourse examples from R and
y ∈ {0, 0.5, 1} denotes the LLM’s effort/cost judgement.

3.4 TRAINING THE COST FUNCTION

Finally, we use the dataset of LLM comparisons Q to train a cost function C : Rd × Rd → R≥0.
Inspired by Rawal & Lakkaraju (2020), as well as the dominant approach to learning reward models
from pairwise comparisons (Kwon et al., 2023), we train cost functions using the Bradley-Terry
model. That is, given a cost function C and a pair of recourses (xi, x

′
i) and (xj , x

′
j), we define the

predicted probability that recourse i has higher cost than recourse j as

ŷC(i, j) =
1

1 + exp(C(xj , x′
j)− C(xi, x′

i))
. (2)

Our cost function training objective is to minimise the binary cross-entropy between these predicted
comparison probabilities and the labels provided by the LLM across all training examples:

arg min
C∈M

[
−

∑
(i,j,y)∈Q

y log(ŷC(i, j)) + (1− y) log(1− ŷC(i, j))
]
, (3)

where M is a chosen model class. Since this loss is differentiable, we can define M as the class of
MLP neural networks and train by stochastic gradient descent. As an alternative, we also consider
the class of axis-aligned decision trees up to a maximum leaf count Lmax, which offers greater trans-
parency. To train a non-differentiable tree with the pairwise Bradley-Terry loss, we use a bespoke
algorithm developed by (Bewley & Lecue, 2022) (and refined in (Bewley et al., 2022)).

We one-hot encode categorical features (or binary encode ones with only 2 categories) and con-
catenate the original data point x, the perturbed recourse point x′ and the feature-wise difference
x′ − x into a single vector [x, x′, x′ − x] ∈ R3d. In practice, we found that this simple feature aug-
mentation step significantly improved the models’ ability to learn costs. As a final post-processing
step, we shift the outputs of trained models to ≥ 0 on all training data. This has no impact on the
Bradley-Terry loss, but produces the expected behaviour for a non-negative cost function to only
output non-negative values.

4 EVALUATION

In our evaluation, we seek to understand how to train effective cost functions utilising LLMs.
Throughout, we focus on three datasets, the Home Equity Line of Credit (HELOC) dataset (Mstz,
2024) for predicting whether someone will repay their account, the Adult Census dataset (Becker &
Kohavi, 1996), for predicting if an individual earns higher than 50k per year, and the German Credit
dataset (Hofmann, 1994), for classifying a client’s credit risk. All are binary classification tasks,
and we considered the first 800 instances from each dataset for training/testing of the cost func-
tion. All categorical features were modeled as binary 0/1 options, except German Credit which has
multi-categorical features one-hot encoded. After creating the dataset of pairwise comparisons, and
adding the additional links described in Section 3, we had 22,000 pairwise training examples on av-
erage, which was divided into 80/20% training/testing, respectively, for the cost functions. Currently
GPT-4o represents state-of-the-art performance on many benchmarks (OpenAI, 2024), and indeed
it is shown to be fairer than prior models Bowen III et al. (2024), so we used it in all our tests. As
our data is mostly synthetic, we do not expect GPT-4o’s known memorization of the datasets to be
an issue (Bordt et al., 2024).

4
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4.1 COMPARING HUMAN AND LLM JUDGEMENT OF COST

A natural first question is whether or not LLMs can provide a judgement of cost that aligns with
human intuition. Hence, our evaluation started with a study to compare pairwise choices of cost
between GPT-4o and humans. Participants were shown two individuals, a proposed change (i.e.
their recourse), and asked to select which of these would require more “effort” (i.e, cost). We
limited the options to a forced choice between Recourse 1 and Recourse 2, with no equal effort
option, which we primarily reserved for situations involving demographic fairness (which this study
did not involve). With a distribution of responses from humans in hand, this was then compared
to GPT-4o’s responses on the same questions using our prompt template in Appendix D. Note that
because the LLM would arbitrarily choose Option 1 when its chain of thought communicated it was
unsure, we allowed it a third option to identify this, and then replaced these data points with random
answers. This allowed a more accurate comparison to humans, who tend to choose at random when
unsure (Gigerenzer & Goldstein, 1996).

The materials covered all three datasets, with six questions for each. These six questions were split
into three sets of two representing the first three parts of the desiderata, respectively.2 Participants
were also asked to choose how “close” they felt the two were, so we could compare their uncertainty
with the LLM. See Figure 6 for an example and the supplementary material for the full survey.

We randomly recruited thirty industry data scientists for the purposes of the study. The participants
were not compensated; all volunteered to participate. In total, 20 of the participants were male, 10
were female, all were aged 18+, and there was a mix of native/non-native English speakers.3 The
study obtained IRB approval.

The metric of interest was how the distributions of responses from humans matches that of the
LLM. The test used was the Chi-square test of independence. A second metric was whether or not
the most common response from the LLM and humans was identical, represented as mode: Y (they
were equal), or mode: N (they were not equal). Lastly, we asked humans to quantify how far apart
they felt the two options were, so we could quantify their certainty compared to the LLM.

The LLM was unsure of the answer 13.8% of the time, and this was replaced with random responses
to simulate human uncertainty. Correlating LLM uncertainty to humans, we observe a strong pos-
itive correlation (Person’s r=0.5; p < 0.04) in Figure 7, indicating that users and the LLM had
approximately the same level of uncertainty across the same questions. Figure 2 shows more re-
sults. Overall, there is a tendency of the LLM to accurately align with the human labellers, with
15/18 of questions having statistically similar distributions (i.e. p > 0.05). When considering the
most common responses (i.e. mode: Y), 15/18 different questions are also in agreement, two of

Desideratum 1 Desideratum 2 Desideratum 3

Recourse 1 selection rate

Figure 2: Human Study Results: 15/18 of the questions had the same modal response (i.e. the mode
was Y), and 15/18 statistically similar distributions. Overall, 17/18 had one or the other, and were
mostly aligned. Note we are trying to show the p-value is greater than 0.05, because we do not want
to reject the null that humans and LLMs are aligned in cost judgement.

2Note that we did not evaluate Desideratum 4 with humans due to ethical concerns.
3Although the human sample is somewhat biased, results show they are aligned with the LLM, which

increasingly simulate population user responses in surveys (De Bona et al., 2024).
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these encompassing the questions without statistically similar distributions. Together, this can be in-
terpreted to suggest that the LLM is in alignment for 17/18 of the questions. These results highlight
that LLMs largely agree with human judgment of cost.

4.2 TRAINING THE COST FUNCTIONS

We used two types of prompts to label data for the cost functions, the standard prompt, and the
custom prompt. The standard prompt is identical to what was used in the user study and uses only
a high-level description of the desiderata to instruct the LLM, whilst the custom prompt attempts
to fine-tune the resultant cost function with a ground truth we defined in the prompt (i.e., B′ in
Figure 1). The point of this custom prompt is to see if we can e.g. re-order feature importance,
manipulate the spectrum of cost for numerical features, add dependencies, and fairness attributes,
see Section H for details on the ground truth chosen. This is important because (for example) the
definition of fairness varies (Mehrabi et al., 2021), so we need to fine-tune different aspects of the
cost function in practice. The choice of ground truth is largely irrelevant, we are simply seeing
if it can be worked into the final cost function via the prompt. We trained either an MLP model
or a tree for 50,000 batches of size 32. So, in total, there are 2 models we are testing across 3
datasets with 2 prompt types. We chose these models because trees help with transparency required
in financial applications (Bewley et al.), and MLPs are differentiable, which is often required in
recourse algorithms (Wachter et al., 2017).

4.3 DEPENDENCY TEST

Perhaps the primary advantage of using LLMs to learn cost functions is that they have the potential
to naturally model causal feature dependencies, which is the most intractable part of hand-designing
a cost function. In this test, we examine the ability of LLMs to naturally label this with our standard
prompt (i.e., no dependencies are mentioned in the prompt). We consider both synthetic and real
data in this process. Synthetic data is considered because there is a risk that the LLM can only reason
about causal dependencies on well known recourse datasets used for counterfactual generation, as
the generated counterfactuals may be in the LLM training data.

Synthetic Data The generation of the synthetic data is detailed in Appendix K. In short, we crafted
a novel dataset of known scientific dependencies in a medical domain, where data privacy laws
should give additional reassurances that no such dataset was used to fine-tune the LLM, or sub-
sequently used in recourse research papers. The dependencies where (1) that it is harder to lower
cholesterol levels with a high saturated fat intake, (2) that it is harder to lower blood pressure with
a high dietary salt intake, and (3) that it is harder to lose weight if consuming a large amount of
heavily processed food. The ground truth was always Recourse 2, and we allowed the LLM to chose
Recourse 1 or 2 as the one of higher cost, or 0 (i.e., uncertain) . We compared our standard prompt
to an ablated version without the desiderata, to understand more how this helps. The most important
difference between these is that the ablated prompt has no explicit instruction to consider dependen-

HELOCRecourse 1 selection rate

Lowering cholesterol
with high saturated fat intake

Lowering blood pressure
with high salt intake

Losing weight with
high processed food intake

Adult German

Mean Dependency Effects for MLP

Figure 3: (left) Synthetic Data: Comparing the standard prompt (with the desiderata included
in the prompt) and the ablated version (without the desiderata), the LLM was 90% + accurate at
labelling the three known scientific causal dependencies, but only with the deisderata inserted into
the prompt. Note the black areas in the data indicate the probability of the LLM being uncertain.
(right) Real Data: The trained MLP cost functions successfully learned 6/9 of the ground truth
dependencies suggested by Claude Sonnet 3.5., showing a general trend that the LLM can generally
identify suitable dependencies in its labeling which are subsequently learned by the cost functions.
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cies when evaluating cost of recourses. The results are shown in Figure 3(left), where the standard
prompt correctly identified all three dependencies with a mean accuracy of 91%, compared to the
same prompt with the desiderata ablated which was not significantly better than random guessing.
Overall, this shows how we can trust the LLM to label reasonable causal dependencies in novel
domains, but only if we (1) use chain-of-thought prompting and (2) the desiderata4, which includes
instructions to the LLM to explicitly look for dependencies.

Real Data. We prompted Claude Sonnet 3.5 to list the most important feature dependencies in
each dataset (to help avoid leakage with GPT-4o), and repeated this 10 times to pick out three which
were listed the most for our ground truths, see Appendix D and G. We iterated all the testing data
with each cost function variation, and manually adjusted the data to subtract the cost of the less costly
recourse option from the higher, hence, a positive score shows that the dependency is present in the
cost function. In Figure 3 and Figure 4, we refer to this as the “Mean Dependency Effect”, where
positive scores indicate the dependency has been learned to match the ground truth. The present
results can be seen in Figure 3(right). Overall, 6/9 of all dependencies were modeled in accordance
with Claude’s ground truth in the MLP cost function, showing a generally positive ability to learn
appropriate dependencies. In contrast, the tree models only learned one of these with the other eight
showing 0 cost. The reason for this is likely that the tree would require most splits to learn the
necessary dependency, but the MLP forms a smoother interpretation of the labels and learned the
dependencies more easily.

4.4 FINE-TUNING EXPERIMENTS

Going forward, we consider a suite of experiments which try to fine-tune the prompt to achieve
different results in the cost function. This is because judgement of cost often needs to be tuned to
certain context. For example, during an economic downturn, a bank might need to adjust its lending
criteria and weight features differently. In addition, the definition of fairness varies substantially
between contexts (Mehrabi et al., 2021), so this also needs to be finetuned occasionally. We design
a fine-tuning experiment using our custom prompting scheme B′ originally described in Figure 1.
The prompting scheme adds a high-level description B′ to the original prompt B indicating (1)
how costly each feature should be to mutate in order, (2) how numerical features should change
in cost at different parts of the distribution, (3) any dependencies we want to exaggerate or create,
and (4) any fairness attributes desired. Not all these need to be specified during fine-tuning of cost
functions, but we test all here for a complete experiment. When perturbing features in the subsequent

Figure 4: Accuracy and Desideratum 1 and 3 Fine-Tuning: (left) Accuracy of the cost functions
at imitating the LLM’s pairwise labels on test data. (middle) Ability of the cost functions to be
fine-tuned to correlate with ground truth feature cost rankings specified in the custom prompt. A
score of 1 illustrates the rankings are perfectly learned by the cost function. (right) Ability of the
cost functions to be fine-tuned to weight dependencies specified in the custom prompt. Notably, the
Adult MLP flips from a negative to positive dependency effect, showing we can reverse the cost
of certain dependencies if desired. Standard error is shown. Red background indicated negative
correlation or dependency effect for middle and right plots, respectively.

4In additional unreported experiments, we found that the ability of the LLM to reason successfully about
causal dependencies requires chain-of-thought prompting.
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Bias towards high cost for Age 65, 
not Male, and not Caucasian

Bias towards high cost for Age 25, 
Male, and Caucasian

Figure 5: Desideratum 2/4 Fine-Tuning Results: (left) As the numeric features rise in value for
the custom models, so does their respective cost relative to the standard ones. (right) Instructing
the LLM to not unfairly discriminate between demographic information increased its fairness when
suggesting recourse which increased education level. Overall, these results show how it is possible
to fine-tune the cost function on Desideratum 2 and 4.

tests, categorical features were either flipped for binary or randomly changed for multi-categorical
features, numerical features were perturbed upwards a standard deviation.

Desideratum 1 Here the ground truth specified in the custom prompt was a specific rank ordering
of how costly each feature should be to mutate. Each testing datum had each feature perturbed
to test its cost, the results for each feature were averaged and reported across four random seeds.
Each feature was rank ordered in a list and compared against the ground truth defined in the custom
prompt with Spearman’s rho ρ. Results can be seen in Figure 4(middle), where the custom prompt
is compared to the standard one (which did not specify what the most costly features should be).
Overall, the custom prompt-based cost functions successfully moved towards the new features rank
orderings as instructed in B′, with Heloc learning them perfectly, illustrating that it is possible to
realign the relative importance of features if desired.

Desideratum 2 Here the ground truth specified in the custom prompt was that each numerical
feature should be harder to mutate the higher it gets in value. Each testing datum had each numerical
feature perturbed upwards to test its cost at 16 evenly spaced intervals. Each feature across all
datasets were averaged and again shown across four random seeds in Figure 5(left). The average
Spearman’s ρ for the custom models across all features and datasets was 0.41, compared to 0.04 on
the standard models, showing that the numerical features have a gradual trend of increasing their
cost the higher the mutation starts, which aligns with the original ground truth schematic B′ given to
the LLM. This illustrates that it is possible to fine-tune the relative cost of numerical features across
their spectrum if desired.

Desideratum 3 Here the ground truth specified in the custom prompt was to purposefully enforce
the worst performing previously tested dependencies in each dataset in Section ??(right). The point
is to see if we can correct them to be a positive mean cost dependency. As before, each testing datum
had each dependency tested the same as Section 4.3, all were averaged and again shown across four
random seeds in Figure 4. Notably, the negative cost associated with the dependency in Adult Census
and Heloc flipped to be positive, showing it is possible to fine-tune this if desired. Moreover, the tree
models all went from no/little cost associated with each dependency, to a positive one. Lastly, the
strength of the positive cost in Heloc and German Credit for the MLP models increased, showing
that by adding the dependency directly to the prompt, we can strengthen the dependency cost. This
illustrates that it is possible to fine-tune dependencies if desired, simply by instructing the LLM to
explicitly consider this dependency.

Desideratum 4 Here the ground truth specified in the custom prompt was that the LLM should
never use demographic information when considering the cost of other mutations, so here we tested
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if mutating education upwards differed in cost between demographics. Each testing datum in Adult
Census and had its education perturbed upwards while considering the datum being male/female,
white/not-white, and aged 25/65. Figure 5 shows the results were the custom prompting with these
fairness constraints was significantly less biased than the standard prompt alternative in all three
demographic features. Specifically, Cohen’s d was 0.34, 0.53, and -1.09 for age, gender, and race,
respectfully, showing small to large effect sizes. This illustrates that it is possible to make the cost
function fairer simply by adding this constraint to the prompt.

4.5 COST FUNCTION FIDELITY

It’s important to understand how accurate the decision tree and MLP cost functions are at imitating
the LLM’s reasoning, since we are trying to distill the LLM’s knowledge into small cost function,
which can be judged based on how accurately it predicts pairwise comparisons the LLM labeled.
Note there is noise in the LLM labels due to its inherent temperature settings, so 100% accuracy
would be unwarranted, and indeed some noise has been shown to improve preference learning (Laid-
law & Russell, 2021). Models were trained for 50,000 batches of size 32, and evaluated on the labels
of the remaining pairwise comparisons labeled by the LLM described in Section 4. The results can
be seen in Figure 4(left). Overall, the custom models always achieved higher accuracy, because there
was less noise in their labeling process due to the specific constraints in the prompt. Tree models on
average also did better, but this is mostly due to their ability to classify equal cost, which the MLP
could not, as it has a non-discrete function output. German Credit performed worse on average also
due to the sparser one-hot encoding feature space. 5 Overall, this illustrates that the cost functions
have learned to imitate the original LLM labeling well.

4.6 CASE STUDY

Here we showcase how our cost functions can improve current recourse algorithms by Keane &
Smyth (2020) and Wachter et al. (2017), the prior being a data driven approach with an L1 cost func-
tion and the latter a gradient-based method using a median-absolute deviation (MAD) cost function.
A simple MLP classifier was trained on Adult Census and achieved 82% accuracy on the training and
testing data. Note we repeated this evaluation on Heloc and German Credit in Appendix I. The data
was standard normalised for a fair comparison between features when checking distances using each
method’s default cost function, this was then compared to our custom MLP cost function which was
plugged into each method. Adult census was used in all tests with the standard prompting scheme.
For full implementation details of each method, the data, and the architectures see Appendix I. In
total, we evaluated on the same 6000 instances for each method, and for each of these we attempted
recourse generation if they were negative predictions by the model initially. Keane & Smyth (2020)
generated 1027 successful recourses, whilst Wachter et al. (2017) was an average of 2322 between
methods.

Male Age Native-US Married Education Hours-Work Private Work Caucasian

Keane and Smyth (2020) - Data Driven

L1 0 554 1 29 266 177 0 0
Ours 0 380 1 30 275 341 0 0

Wachter et al. (2017) - SGD Driven

MAD 20 53 78 332 1594 4 8 1
Ours 1 28 3 313 1750 174 84 0

Table 1: Case Study Results: Each number represents the number of times each method recom-
mended mutating that feature for recourse. In Keane & Smyth (2020), our method recommended
mutating age less and hours-worked more as the main trade-off. In Wachter et al. (2017), our method
recommended mutating education and hours-work in comparison to MAD which favored features
such as male, and native-US, which are generally considered less actionable.

5These two models were also compared against a baseline LLM GPT-4o which was instructed to label every
recourse option with a numerical cost value from 0-1, but the results were not competitive and not reported.
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Table 1 shows the results where we counted how often each method recommended mutating a par-
ticular feature to achieve recourse. Broadly speaking, from a feature weighting perspective, the
method by Keane & Smyth (2020) prioritized age as a feature, whilst our method reduced this by
focusing instead on hours-work. For the method by Wachter et al. (2017) the default MAD cost
function suggested many questionable recourses such as changing gender 20x more than our cost
function, age almost 2x times, and even race once. However, perhaps the most inactionable feature
(native-us) was suggested 78 times, compared to ours which was just 3 times.

5 RELATED WORK

In the counterfactual literature, early work used the median absolute deviation as a distance func-
tion (Wachter et al., 2017), which has some desirable properties such as robustness to outliers, but
can’t deal with categorical features or actionability constraints. Early work in this area by Ustun
et al. (2019) proposed total and maximum-log percentile shift measures, which can address relative
cost, but not the other desiderata constraints. Other researchers such as Karimi et al. (2020) pro-
posed a weighted combination of Lp norms across features, which does deal with feature cost, but
again misses the other constraints in Section 2. Other recent work continued the use of Lp norms
(Karimi et al., 2020; Ramakrishnan et al., 2020), while others investigated HCI questions (Tominaga
et al., 2024). In a more recent trend, work has begun to focus on individualised cost (De Toni et al.,
2022; Yetukuri et al.; Nguyen et al., 2024), with some also focusing on the Bradley-Terry loss for
pairwise comparisons specifically (Rawal & Lakkaraju, 2024), albeit without LLM assistance. In
comparison to these works, we are concerned with how to automate the training of high-performing
cost functions at scale with LLMs, which follows all the core desiderata constraints in Section 2 laid
out in the literature.

LLMs have recently been applied to various tasks (Han et al., 2024; Hollmann et al., 2024; Hegsel-
mann et al., 2023; Borisov et al., 2022), but, here we are focused on utilising their latent knowledge
for labeling data for training cost functions, which has not been explored before. Perhaps the most
similar work to ours was suggested by Rawal & Lakkaraju (2020). Specifically, they learned a pref-
erence function using the Bradley-Terry Loss, pairwise comparisons, and MAP estimates (Hunter,
2004; Caron & Doucet, 2012). However, their approach would require human labellers, and doesn’t
take relative or dependent feature cost into account. To help automate similar processes in related
areas, recent work has utilised LLMs as judges or evaluators to produce pairwise preferences for
learning reward models. Most popularly they are used in RLHF for aligning language models with
human preferences (Ouyang et al., 2022), but the ability of this to help with cost functions has not
been evaluated until the present work.

There is a literature on evaluating how well LLMs correlate with human judgement, but it is difficult
to interpret because as much work has shown positive results (Liu et al., 2023; Chiang et al., 2024),
as negative (Bavaresco et al., 2024; Koo et al., 2023). Some of this work has highlighted how the
discrepancy of results is likely due to a narrow focus on tasks (Bavaresco et al., 2024), suggesting
that LLMs may need to be evaluated on very specific use cases to uncover credible ones. Bearing
this in mind, the ability of LLMs to correlate with human judgement of cost has not been explored
previously, which we addressed in the present paper with our human study.

6 CONCLUSION

The problem of algorithmic recourse, and counterfactual explanation more broadly, has grown in
importance the past several years as AI is increasingly used for high-stakes decisions (Keane et al.,
2021; Karimi et al., 2022; Gajcin & Dusparic, 2024; Kothari et al., 2024). However, one of the
core unresolved issues plaguing research in the area has been the lack of appropriate cost functions,
which has limited the practical value of recourse recommendations. In this paper, we first explored
LLM’s natural ability to align with human judgments of cost, showing that they do largely correlate.
We then showed that the cost functions can be fine-tuned to fit a variety of use cases. Lastly, we
also demonstrated the practical outcomes of using these cost functions in two real-world algorithms.
In future work, it would be interesting to investigate the ability of LLMs to learn gain functions for
semifactual recourse (Kenny & Huang, 2024), as opposed to counterfactual recourse, which likely
involves other considerations.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Anna Bavaresco, Raffaella Bernardi, Leonardo Bertolazzi, Desmond Elliott, Raquel Fernández, Al-
bert Gatt, Esam Ghaleb, Mario Giulianelli, Michael Hanna, Alexander Koller, et al. Llms instead
of human judges? a large scale empirical study across 20 nlp evaluation tasks. arXiv preprint
arXiv:2406.18403, 2024.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

Tom Bewley and Freddy Lecue. Interpretable preference-based reinforcement learning with tree-
structured reward functions. In Proceedings of the 21st International Conference on Autonomous
Agents and Multiagent Systems, pp. 118–126, 2022.

Tom Bewley, Salim I Amoukou, Saumitra Mishra, Daniele Magazzeni, and Manuela Veloso. Coun-
terfactual metarules for local and global recourse. In Forty-first International Conference on
Machine Learning.

Tom Bewley, Jonathan Lawry, Arthur Richards, Rachel Craddock, and Ian Henderson. Reward
learning with trees: Methods and evaluation. arXiv preprint arXiv:2210.01007, 2022.

Sebastian Bordt, Harsha Nori, Vanessa Rodrigues, Besmira Nushi, and Rich Caruana. Elephants
never forget: Memorization and learning of tabular data in large language models. arXiv preprint
arXiv:2404.06209, 2024.

Vadim Borisov, Kathrin Seßler, Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. Language
models are realistic tabular data generators. arXiv preprint arXiv:2210.06280, 2022.

Donald E Bowen III, S McKay Price, Luke CD Stein, and Ke Yang. Measuring and mitigating racial
bias in large language model mortgage underwriting. Available at SSRN 4812158, 2024.

Francois Caron and Arnaud Doucet. Efficient bayesian inference for generalized bradley–terry mod-
els. Journal of Computational and Graphical Statistics, 21(1):174–196, 2012.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena:
An open platform for evaluating llms by human preference. arXiv preprint arXiv:2403.04132,
2024.

Francesco Bombassei De Bona, Gabriele Dominici, Tim Miller, Marc Langheinrich, and Martin
Gjoreski. Evaluating explanations through llms: Beyond traditional user studies. arXiv preprint
arXiv:2410.17781, 2024.

Giovanni De Toni, Paolo Viappiani, Stefano Teso, Bruno Lepri, and Andrea Passerini. Personalized
algorithmic recourse with preference elicitation. arXiv preprint arXiv:2205.13743, 2022.

Jasmina Gajcin and Ivana Dusparic. Redefining counterfactual explanations for reinforcement learn-
ing: Overview, challenges and opportunities. ACM Computing Surveys, 56(9):1–33, 2024.

Gerd Gigerenzer and Daniel G Goldstein. Reasoning the fast and frugal way: models of bounded
rationality. Psychological review, 103(4):650, 1996.

Sungwon Han, Jinsung Yoon, Sercan O Arik, and Tomas Pfister. Large language models can au-
tomatically engineer features for few-shot tabular learning. arXiv preprint arXiv:2404.09491,
2024.

Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David
Sontag. Tabllm: Few-shot classification of tabular data with large language models. In Interna-
tional Conference on Artificial Intelligence and Statistics, pp. 5549–5581. PMLR, 2023.

Hans Hofmann. Statlog (German Credit Data). UCI Machine Learning Repository, 1994. DOI:
https://doi.org/10.24432/C5NC77.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Noah Hollmann, Samuel Müller, and Frank Hutter. Large language models for automated data
science: Introducing caafe for context-aware automated feature engineering. Advances in Neural
Information Processing Systems, 36, 2024.

David R Hunter. Mm algorithms for generalized bradley-terry models. The annals of statistics, 32
(1):384–406, 2004.

Mahammed Kamruzzaman and Gene Louis Kim. Prompting techniques for reducing social bias in
llms through system 1 and system 2 cognitive processes. arXiv preprint arXiv:2404.17218, 2024.

Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, and Yuichi Ike. Counterfactual explanation
trees: Transparent and consistent actionable recourse with decision trees. In International Con-
ference on Artificial Intelligence and Statistics, pp. 1846–1870. PMLR, 2022.

Amir-Hossein Karimi, Gilles Barthe, Borja Balle, and Isabel Valera. Model-agnostic counterfactual
explanations for consequential decisions. In International conference on artificial intelligence
and statistics, pp. 895–905. PMLR, 2020.

Amir-Hossein Karimi, Gilles Barthe, Bernhard Schölkopf, and Isabel Valera. A survey of algorith-
mic recourse: contrastive explanations and consequential recommendations. ACM Computing
Surveys, 55(5):1–29, 2022.

Mark T Keane and Barry Smyth. Good counterfactuals and where to find them: A case-based tech-
nique for generating counterfactuals for explainable ai (xai). In Case-Based Reasoning Research
and Development: 28th International Conference, ICCBR 2020, Salamanca, Spain, June 8–12,
2020, Proceedings 28, pp. 163–178. Springer, 2020.

Mark T Keane, Eoin M Kenny, Eoin Delaney, and Barry Smyth. If only we had better counterfactual
explanations: Five key deficits to rectify in the evaluation of counterfactual xai techniques. arXiv
preprint arXiv:2103.01035, 2021.

Eoin Kenny and Weipeng Huang. The utility of “even if” semifactual explanation to optimise posi-
tive outcomes. Advances in Neural Information Processing Systems, 36, 2024.

Ryan Koo, Minhwa Lee, Vipul Raheja, Jong Inn Park, Zae Myung Kim, and Dongyeop
Kang. Benchmarking cognitive biases in large language models as evaluators. arXiv preprint
arXiv:2309.17012, 2023.

Avni Kothari, Bogdan Kulynych, Tsui-Wei Weng, and Berk Ustun. Prediction without preclusion:
Recourse verification with reachable sets. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=SCQfYpdoGE.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. arXiv preprint arXiv:2303.00001, 2023.

Cassidy Laidlaw and Stuart Russell. Uncertain decisions facilitate better preference learning. Ad-
vances in Neural Information Processing Systems, 34:15070–15083, 2021.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg
evaluation using gpt-4 with better human alignment. arXiv preprint arXiv:2303.16634, 2023.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey
on bias and fairness in machine learning. ACM computing surveys (CSUR), 54(6):1–35, 2021.

Mstz. Heloc dataset. https://huggingface.co/datasets/mstz/heloc, 2024. Ac-
cessed: 2024-09-13.

Meike Nauta, Jan Trienes, Shreyasi Pathak, Elisa Nguyen, Michelle Peters, Yasmin Schmitt, Jörg
Schlötterer, Maurice Van Keulen, and Christin Seifert. From anecdotal evidence to quantitative
evaluation methods: A systematic review on evaluating explainable ai. ACM Computing Surveys,
55(13s):1–42, 2023.

Duy Nguyen, Bao Nguyen, and Viet Anh Nguyen. Cost-adaptive recourse recommendation by
adaptive preference elicitation. arXiv preprint arXiv:2402.15073, 2024.

12

https://openreview.net/forum?id=SCQfYpdoGE
https://huggingface.co/datasets/mstz/heloc


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

OpenAI. Hello gpt-4 turbo. https://openai.com/index/hello-gpt-4o/, 2024. Ac-
cessed: 2024-09-13.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Goutham Ramakrishnan, Yun Chan Lee, and Aws Albarghouthi. Synthesizing action sequences
for modifying model decisions. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 5462–5469, 2020.

Kaivalya Rawal and Himabindu Lakkaraju. Beyond individualized recourse: Interpretable and inter-
active summaries of actionable recourses. Advances in Neural Information Processing Systems,
33:12187–12198, 2020.

Kaivalya Rawal and Himabindu Lakkaraju. Learning recourse costs from pairwise feature compar-
isons. arXiv preprint arXiv:2409.13940, 2024.

Tomu Tominaga, Naomi Yamashita, and Takeshi Kurashima. Reassessing evaluation functions in
algorithmic recourse: An empirical study from a human-centered perspective. arXiv preprint
arXiv:2405.14264, 2024.

Berk Ustun, Alexander Spangher, and Yang Liu. Actionable recourse in linear classification. In
Proceedings of the conference on fairness, accountability, and transparency, pp. 10–19, 2019.
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A ACTIONABILITY CONSTRAINTS AND FEATURES USED

The following are the datasets and features used, alongside any actionablity constraints employed
throughout the paper:

HELOC Dataset: Here, the actionability constraints were to clamp feature mutations at the highest
and lowest values observed in the dataset.

• MSinceMostRecentInqexcl7days: Number of months passed since the last credit inquiry on
the individual.

• NumRevolvingTradesWBalance: The number of the individual’s current credit accounts
(e.g. credit cards) that have balances on them.

• NumTradesOpeninLast12M: The number of new credit accounts opened in the last 12
months.

• NumInqLast6M: The number of credit inquiries carried out on the individual in the last 6
months.

Adult Census Dataset: Here, the actionability constraints were to clamp feature mutations at the
highest and lowest values observed in the dataset. Also, age and education number were only al-
lowed to move upwards.

• isMale: If the person is male, or female, represented as 1 or 0, respectively.
• age: The person’s age, represented as a floating point number.
• native-country-United-States: If the person’s birthplace is the United States, or not, repre-

sented as 1 or 0, respectively.
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• marital-status-Married: If the person is married, or not, represented as 1 or 0, respectively.

• education-num: The person’s level of education, represented by a positive integer, where
higher numbers are higher levels of education.

• hours-per-week: The number of hours the person works per week, represented by a positive
integer.

• workclass-Private: If the person works for a private company, or is self-employed, repre-
sented as 1 or 0, respectively.

• isCaucasian: Is the person white or not, represented as 1 or 0, respectively.

German Credit Dataset: Here, the actionability constraints were to clamp numeric feature muta-
tions at the highest and lowest values observed in the dataset.

• status: Status of existing checking account.

• duration: The proposed duration of the loan in months, expressed as an integer.

• credit history: The person’s credit history with the options.

• purpose: The purpose of the loan.

• amount: The size of the loan asked for.

B PERTURBATION FUNCTION

In the context of feature vector perturbation, we employ a probabilistic approach to introduce con-
trolled mutations to the feature set. Specifically, we perturb a feature vector by altering a random
subset of its components. The number of features to be perturbed, denoted as k, is selected from
the discrete set {1, 2, 3, 4} with a predefined probability distribution. The probability mass function
(PMF) for k is given by:

P (K = k) =


0.8 if k = 1

0.1 if k = 2

0.05 if k = 3

0.05 if k = 4

This distribution ensures that perturbing a single feature is the most probable event, while perturbing
four features is the least probable. The purpose was to focus on sparsity for the cost function training,
but also have some robustness. When perturbing numeric features, they have four possible values in
our tests. All numeric features can be perturbed upwards one standard deviation, or half a standard
deviation. If actionability constraints allow, they can also be perturbed down the same two values,
they were then rounded to the nearest integer.

C OUT OF DISTRIBUTION EXPERIMENT

In addition, we were interested in how our cost functions, which were trained to specialise in sparse
single feature modifications performed out of distribution when scoring multiple feature mutations
in recourse. Hence, we trained a custom tree and MLP model on Adult Census with only 2 fea-
ture perturbations allowed, which achieved 88.2% and 87.5% test accuracy on the LLM labels,
respectively, and dropped by 82.1% and 81%, respectively. This drop in performance constituted
an average of 6.15%, and shows that performance is largely maintained out of distribution, but for
maximum effect the training data should represent what is desired in deployment.

D PROMPTS

Here are the prompts for HELOC, all other datasets followed the exact same pattern, and all can be
seen in the code base if desired. Note in the actual prompts we instructed the LLM to use 1, 2, 0,
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to select Recourse 1, Recourse 2, and neither, respectively, although in the main paper we used 1, 0,
and 0.5, as this more accurately reflected the Bradley-Terry model.

Standard prompt (B):

You are a helpful assistant to a data scientist to help them
label data. You will be shown a data point representing a person
Alex, and a mutation of it, You will also be shown a data point
representing a person Jaden, and a mutation of it, your task is
to label which of the two mutations would take more effort to
achieve.

The data will be the HELOC Dataset which uses these features:

MSinceMostRecentInqexcl7days: Number of months passed
since the last credit inquiry on the individual.
NumRevolvingTradesWBalance: The number of the individual’s
current credit accounts (e.g. credit cards) that have balances on
them. NumTradesOpeninLast12M: The number of new credit accounts
opened in the last 12 months. NumInqLast6M: The number of credit
inquiries carried out on the individual in the last 6 months.

The data is represented in array form like [’MSinceMostRecentInqexcl7days’,
’NumRevolvingTradesWBalance’, ’NumTradesOpeninLast12M’,
’NumInqLast6M’]

Now consider the following individual Alex: """+str(x1)+""" Now
consider this mutation of Alex: """+str(x1p)+"""

Now consider the following individual Jaden: """+str(x2)+""" Now
consider this mutation of Jaden: """+str(x2p)+"""

Which of these two mutations would take more effort? You must
provide an answer.

Remember the following 4 rules and use them in your decision:

1. Some features are naturally harder to change than others, use
this logic.

2. For numerical features, the difficulty of changing them can
often depend on their starting values.

3. Apart from the mutated features, consider the other features
which are different between Alex and Jaden, and how this may
affect difficulty.

4. Do not ever use demographic features (e.g., age, gender, race)
when considering the difficulty of mutating other features.

Outline your reasoning process step by step, before giving your
answer as 1, 2, or 0 in the tags <answer>...</answer>, where 1
means you think the first mutation requires more effort, 2 means
you think the second mutation requires more effort, and 0 means
you think there is no difference.

Custom Prompt (B + B′):

You are a helpful assistant to a data scientist to help them
label data. You will be shown a data point representing a person
Alex, and a mutation of it, You will also be shown a data point
representing a person Jaden, and a mutation of it, your task is
to label which of the two mutations would take more effort to
achieve.

The data will be the HELOC Dataset which uses these features:
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MSinceMostRecentInqexcl7days: Number of months passed
since the last credit inquiry on the individual.
NumRevolvingTradesWBalance: The number of the individual’s
current credit accounts (e.g. credit cards) that have balances on
them. NumTradesOpeninLast12M: The number of new credit accounts
opened in the last 12 months. NumInqLast6M: The number of credit
inquiries carried out on the individual in the last 6 months.

The data is represented in array form like [’MSinceMostRecentInqexcl7days’,
’NumRevolvingTradesWBalance’, ’NumTradesOpeninLast12M’,
’NumInqLast6M’]

Now consider the following individual Alex: """+str(x1)+""" Now
consider this mutation of Alex: """+str(x1p)+"""

Now consider the following individual Jaden: """+str(x2)+""" Now
consider this mutation of Jaden: """+str(x2p)+"""

Which of these two mutations would take more effort?

Remember the following:

1. The hardest features to change, in order from the
hardest to easiest are [MSinceMostRecentInqexcl7days,
NumRevolvingTradesWBalance, NumTradesOpeninLast12M, NumInqLast6M]

2. For the numerical features, they are all harder to increase
the higher they get.

3. If NumInqLast6M is greater than zero, then increasing
’NumTradesOpeninLast12M’ becomes more difficult.

Outline your reasoning process step by step, before giving your
answer as 1, 2, or 0 in the tags <answer>...</answer>, where 1
means you think the first mutation requires more effort, 2 means
you think the second mutation requires more effort, and 0 means
you think there is no difference.

Prompt to elicit numerical response from LLM:

You are a helpful assistant to a data scientist that helps them
label data. You will be shown a data point representing a person
Alex, and a mutation of it. your task is to label how much effort
this mutation was to achieve using a number between 0 and 1, where
0 is no effort, and 1 is the most possible effort.

The data will be the HELOC Dataset which uses these features:

MSinceMostRecentInqexcl7days: Number of months passed
since the last credit inquiry on the individual.
NumRevolvingTradesWBalance: The number of the individual’s
current credit accounts (e.g. credit cards) that have balances on
them. NumTradesOpeninLast12M: The number of new credit accounts
opened in the last 12 months. NumInqLast6M: The number of credit
inquiries carried out on the individual in the last 6 months.

The data is represented in array form like [’MSinceMostRecentInqexcl7days’,
’NumRevolvingTradesWBalance’, ’NumTradesOpeninLast12M’,
’NumInqLast6M’]

Now consider the following individual Alex: """+str(x1)+""" Now
consider this mutation of Alex: """+str(x1p)+"""

Using a floating point number between 0 and 1, how much effort was
this to achieve? You must provide an answer.
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Outline your reasoning process step by step before giving your
answer in the tags <answer>...</answer>

Human Study Prompt:

You are a helpful assistant to a data scientist to help them
label data. You will be shown a data point representing a person
Alex, and a mutation of it, You will also be shown a data point
representing a person Jaden, and a mutation of it, your task is
to label which of the two mutations would take more effort to
achieve.

The data will be the HELOC Dataset which uses these features:

MSinceMostRecentInqexcl7days: Number of months passed
since the last credit inquiry on the individual.
NumRevolvingTradesWBalance: The number of the individual’s
current credit accounts (e.g. credit cards) that have balances on
them. NumTradesOpeninLast12M: The number of new credit accounts
opened in the last 12 months. NumInqLast6M: The number of credit
inquiries carried out on the individual in the last 6 months.

The data is represented in array form like [’MSinceMostRecentInqexcl7days’,
’NumRevolvingTradesWBalance’, ’NumTradesOpeninLast12M’,
’NumInqLast6M’]

Now consider the following individual Alex: """+str(x1)+""" Now
consider this mutation of Alex: """+str(x1p)+"""

Now consider the following individual Jaden: """+str(x2)+""" Now
consider this mutation of Jaden: """+str(x2p)+"""

Which of these two mutations would take more effort? You must
provide an answer.

Remember the following 4 rules and use them in your decision:

1. Some features are naturally harder to change than others, use
this logic.

2. For numerical features, the difficulty of changing them can
often depend on their starting values.

3. Apart from the mutated features, consider the other features
which are different between Alex and Jaden, and how this may
affect difficulty.

4. Do not ever use demographic features (e.g., age, gender, race)
when considering the difficulty of mutating other features.

Outline your reasoning process step by step, before giving your
answer as 1, 2, or 0 in the tags <answer>...</answer>, where 1
means you think the first mutation requires more effort, 2 means
you think the second mutation requires more effort, and 0 means
you think there is no difference.

Prompt to acquire ground truth dependencies:

... (insert the previous standard prompt here) ...

In the above problem, what are the primary feature dependencies
that may effect effort?
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E HUMAN STUDY QUESTION EXAMPLE

Here we supply an example question from the human study for the HELOC dataset. The full survey
can be seen in the supplement.
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Figure 6: Human study question example.
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F UNCERTAINTY IN HUMAN STUDY

Here we consider the percentage of replies from the LLM in the Section 4 human study for each
question which were uncertain (i.e., it chose the third option rather than Recourse 1 or 2), alongside
the average response humans gave for the distance between the two recourse in Figure 6. For both
lists, we normalized each to be between 0-1, and plotted them in a scatter plot to see the correlation.
Both lists represent each group’s uncertainty in choosing a recourse, and shows how the LLMs and
humans correlate in this aspect to a high degree (Person’s r=0.48; p < 0.04). What this tells us is
that how uncertain humans an LLMs are on these recourse questions in the human study strongly
correlate. Note that the correlation is identical with un-normalized scores also, we just do so here
for clarity and visual purposes.
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Figure 7: The correlation between LLM uncertainty and human uncertainty in the human study
shows both groups were similarly uncertain on each question.

G FEATURE DEPENDENCIES

In Section 4.3 we evaluated how well various prompt types picked up on feature dependencies. To
acquire these dependencies in an objective way, we queried Claude Sonnet 3.5 to list all feature
dependencies in all 3 datasets using the standard prompt in Section D and adding:

...

If I change the same feature in Alex and Jaden the same amount,
but another feature is different which effects the effort
involved, what would be the most likely dependencies like this
to happen?
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Question P-value Same Most Common Response LLM Uncertainty %

1 0.27 True 0.00
2 0.00 True 0.00
3 0.26 True 7.14
4 0.18 False 42.86
5 1.00 True 28.57
6 1.00 True 46.43
7 1.00 True 0.00
8 0.53 True 0.00
9 0.35 True 0.00
10 0.53 True 3.57
11 0.47 True 0.00
12 0.59 False 71.43
13 0.00 False 0.00
14 0.03 True 0.00
15 0.06 True 0.00
16 0.56 True 32.14
17 0.12 True 0.00
18 0.24 True 17.86

Table 2: Results of 18 Question in Human Study: We are looking to see which have statistically
similar distributions or the same most common response as a sign of LLM alignment with humans
in judgement of cost. Overall, 17/18 show one metric or the other with positive results.

We repeated this 10 times and took the three dependencies which occurred most often, theses were:

HELOC:

1. If NumTradesOpeninLast12M is low, it makes it more challenging to increase NumRevolv-
ingTradesWBalance.

2. If NumInqLast6M is high, it suggests it should be more difficult to increase NumTrades-
OpeninLast12M.

3. If NumInqLast6M is high, it should be more difficult to increase NumRevolving-
TradesWBalance.

Adult:

1. Increasing working hours should be more difficult if you are married.
2. Changing marital status should be more difficult the older you are.
3. Increasing working hours should be more difficult if working for a private company.

German Credit:

1. A bad credit history should make it harder to increase your loan amount.
2. A bad credit history should make it harder to increase your duration.
3. The effort to decrease the duration of a loan should be harder for larger loan amount.

H GROUND TRUTH FOR SECTION 4.4

We had to define a ground truth for our fine-tuning experiments to see how we could manipulate the
four desiderata outlined previously. Note Desideratum 4 (i.e., fair cost) was only evaluate on Adult
due to its numerous demographic features. The ground truth defined in B′ for each dataset was:

HELOC:

... 1. The hardest features to change, in order from
the hardest to easiest are [MSinceMostRecentInqexcl7days,
NumRevolvingTradesWBalance, NumTradesOpeninLast12M, NumInqLast6M]
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2. For the numerical features, they are all harder to increase
the higher they get.

3. If NumInqLast6M is greater than zero, then increasing
’NumTradesOpeninLast12M’ becomes more difficult.

Adult Census:

... 1. The hardest features to change, in order from the hardest
to easiest are [native-country-United-States, isWhite, isMale,
age, marital-status-Married, education-num, workclass-Private,
hours-per-week]

2. For age, education-num, and hours-per-week, they are all
harder to increase the higher they get.

3. Increasing hours-per-week is more effort if the person works
for a private company.

4. Never use demographic information (i.e., isMale, age, isWhite)
when calculating the effort of other feature changes.

German Credit:

... 1. The hardest features to change, in order from the hardest
to easiest are [credit history, status, purpose, duration, amount]

2. For the numerical features, they are all harder to increase
the higher they get.

3. Having bad credit history or bad status makes it harder to
increase amount.

These dependencies where chosen to be fine-tuned because they performed badly in Section 4.3.

I BASELINE IMPLEMENTATION DETAILS

This section serves to give full details about the implementation of Keane & Smyth (2020) and
Wachter et al. (2017) in Section 4.6. The data used was Adult Census with 30,000 for training, and
6,000 for testing the recourse generation.

I.1 KEANE AND SMYTH

This method is data driven and works by defining a case-base of recourse options for training
data (Keane & Smyth, 2020). In practice, each training data has its nearest unlike neighbor found in
the case-base and the difference between the two is taken as one recourse option. Recourses of 2 or
less feature changes are preferred by the authors, we focus on single feature changes. At test time, a
query has its nearest neighbour found in the case base and its recourse is applied to the query, this is
repeated for all nearest neighbours to find the best recourse option adhering to some constraints. For
us, these constraints are a single feature mutation, and that the result must be a valid counterfactual.
Finally, we also considered the 100 nearest neighbours as possible recourses.

I.2 WACHTER ET AL.

A heavily implemented framework in research (Wachter et al., 2017), the method works by gener-
ating a set of random recourses which optimize to be closer to the query, while optimizing to also
be the counterfactual class. The second constraint is gradually up-weighted with a lambda term to
be more important throughout several optimization steps. We implement the method as normal with
300 possible counterfactuals during optimization, categorical features are snapped to the closest real
value, the results are filtered to those which are valid counterfactuals, and the closest chosen as the
answer. Because we are interested in sparse explanations, we also clamp each possible counterfac-
tual to have one possible feature mutation, which in practice is done allowing the largest currently
mutated feature to be the recommended recourse action.
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J CASE-STUDY EXTRA RESULTS

To complete our case study in Section 4.6, we add the two other datasets in the paper. We focused
on Adult Census in the main paper because it is less debatable what the most actionable features are.

MSinceMostRecentInqexcl7days NumRevolvingTradesWBalance NumTradesOpeninLast12M NumInqLast6M

Keane and Smyth (2020) - Data Driven

L1 336 9 1 0
Ours 270 43 8 25

Wachter et al. (2017) - SGD Driven

MAD 167 1 0 0
Ours 5 10 5 148

Table 3: Heloc Results: On average the baselines favored Months Since Most Recent Inquiry Ex-
cluding 17 days, in contrast to our cost function which favored Number of inquiries in the last 6
months and number of revolving trades with balance as a trade-off. Considering the first feature has
a time constraint, it is immediately more actionable to modify the feature our cost function chose.
Our cost function also generally offers a more diverse set of explanations.

Repayment Term Loan Amount Status Credit History Purpose

Keane and Smyth (2020) - Data Driven

L1 0 37 0 0 0
Ours 0 37 0 0 0

Wachter et al. (2017) - SGD Driven

MAD 1 1 22 34 51
Ours 19 1 1 51 38

Table 4: German Credit Results: Keane and Smyth performed poorly on this dataset because (1)
the dataset itself is smaller than the others (666 training), and is heavily imbalanced (95/5%), hence
because it is a data driven method which directly uses the data for computation, there was sparse ex-
amples of how to generate counterfactuals. In Wachter et al. (2017) our method favored Repayment
Term and Credit History in comparison to MAD which focused on Status and Purpose. Arguably,
Repayment Term is the easiest feature to modify, as Status involves changing your savings amount
which is quite costly when increasing, Credit History by comparison is easier to change but takes
time, and Purpose which involves major changes to ones future plans.

K DEPENDENCY EXPERIMENT WITH SYNTHETIC DATA

Due to our datasets in the paper being popular recourse datasets, it is reasonable to assume that
there are counterfactual pairs the LLM has seen during pre-training. Hence, to verify that it can
detect causal dependencies without having seen direct examples from datasets, we create a synthetic
dataset which does not exist anywhere, and thus cannot be part of the LLM’s pre-training data.

We generated a medical dataset of personal information which is unlikely to have similar publicly
available datasets used in recourse papers online. The features we used were:

• Saturated Fat Intake: the amount of saturated fat they eat, from 0 to 100 grams..

• Salt Intake: the amount of salt fat they eat, from 0 to 10 grams.

• Processed Food Intake: the amount of saturated fat they eat, from 0 to 500 grams.

• Cholesterol Level: Cholesterol level in mg/dl.

• Blood Pressure: their systolic blood pressure.

• Weight: weight in KG.
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We chose these features because there are three scientifically known dependencies we can use as a
ground truth.

1. It is harder to lower cholesterol if your saturated fat is too high.
2. It is harder to lower blood pressure if your salt intake is too high.
3. It is harder to lose weight if your intake of processed food is too high.

We generated this dataset according to reasonable values seen in the below script

import numpy as np
import pandas as pd

np.random.seed(42)
n_samples = 1000

saturated_fat_intake = np.random.randint(0, 101, n_samples) # 0 to 100 grams
salt_intake = np.random.randint(0, 11, n_samples) # 0 to 10 grams
processed_food_intake = np.random.randint(0, 501, n_samples) # 0 to 500 grams

cholesterol_level = np.round(200 + 0.5 * saturated_fat_intake +
np.random.normal(0, 10, n_samples)).astype(int)

blood_pressure = np.round(120 + 2 *
salt_intake + np.random.normal(0, 5, n_samples)).astype(int)

weight = np.round(70 + 0.1 * processed_food_intake +
np.random.normal(0, 5, n_samples)).astype(int)

mortality_risk = ((cholesterol_level > 240) |
(blood_pressure > 140) | (weight > 100)).astype(int)

data = pd.DataFrame({
’Saturated Fat Intake’: saturated_fat_intake,
’Salt Intake’: salt_intake,
’Processed Food Intake’: processed_food_intake,
’Cholesterol Level’: cholesterol_level,
’Blood Pressure’: blood_pressure,
’Weight’: weight,
’Mortality Risk’: mortality_risk

})

With this dataset in hand we iterated each datum 3 times and made the following 3 mutations each
time to test each dependency. In each case the datum was duplicated to control for other features
and focus only on the dependencies across a diverse range of data.

1. We set saturated fat to 10g v 100g, and took the action of lowering cholesterol by 10.
2. We set salt intake to 1g or 15g, and took the action of decreasing blood pressure by 10.
3. We set processed food intake to 10g v. 1500g, and took the action of losing 5KG of weight.

In all cases these mutations had additional random noise added to them for robustness. The LLM
was allowed to answer that the first, second, or neither recourse was higher effort. In all cases,
recourse 2 was the ground truth, hence, if most of the LLM responses are Recourse 2, then it is
picking up on the causal dependencies. Lastly, we compared a standard prompting scheme with no
information, and the same prompt with a high-level overview of the desiderata in Section 2. Results
are shown in Figure 8. Overall, when adding the high-level desiderata to the prompt, the LLM can
always detect these known causal dependencies with very high acccuracy. This shows the LLM is
capable of reasoning about causal dependencies without being exposed to similar training data in
the past. Moreover, what is particularly interesting is that by explicitly telling the LLM to consider
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other dependencies (by adding the desiderata to the prompt), it is able to do that. However, without
being told to consider dependencies in the prompt, it is not able to reason correctly.

In short, this experiment tells us two important things. First, LLMs can reason about causal depen-
dencies it has not been exposed to before in terms of counterfactual data available on the internet.
Secondly, in order to do this, the desiderata from Section 2 must be added to the prompt. Note, this
is a general desiderata, not dataset specific, it does not make the method less general.
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Lower Cholesterol with High Saturated Fat intake
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0 1 2
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Loose weight with high processed food intake
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With Desiderata in Prompt

Figure 8: The labeling of the LLM on our synthetic causal relationships. The ground truth always
corresponds to Recourse option 2. In general, the LLM was capable of modeling the causal depen-
dencies with 90% accuracy. When ablating the desiderata from the prompt, this reduced to near
random guessing between he two recourse options. Note, 0 corresponds to the LLM assigning equal
cost to both recourses.

24


	Introduction
	Cost Function Desiderata
	Method
	Generating Synthetic Recourses
	Selecting Recourse Pairs
	Pairwise LLM Labelling
	Training The Cost Function

	Evaluation
	Comparing Human and LLM Judgement of Cost
	Training the Cost Functions
	Dependency Test
	Fine-Tuning Experiments
	Cost Function Fidelity
	Case Study

	Related Work
	Conclusion
	Actionability Constraints and Features Used
	Perturbation Function
	Out of Distribution Experiment
	Prompts
	Human Study Question Example
	Uncertainty in Human Study
	Feature Dependencies
	Ground Truth for Section 4.4
	baseline Implementation Details
	Keane and Smyth
	Wachter et al.

	Case-Study Extra Results
	Dependency Experiment With Synthetic Data

