Under review as a conference paper at ICLR 2026

BRANCH-AND-BOUND SEARCH FOR EXACT MAP
INFERENCE IN CREDAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Credal networks extend Bayesian networks by incorporating imprecise probabili-
ties through convex sets of probability distributions known as credal sets. MAP
inference in credal networks, which seeks the most probable variable assignment
given evidence, becomes inherently more difficult than in Bayesian networks be-
cause it involves computations over a complex joint credal set. In this paper, we
introduce two tasks called maximax and maximin MAP, and develop depth-first
branch-and-bound search algorithms for solving them exactly. The algorithms
exploit problem decomposition by exploring an AND/OR search space and use
a partitioning-based heuristic function enhanced with a cost-shifting scheme to
effectively guide the search. Our experimental results obtained on both random
and realistic credal networks clearly demonstrate the effectiveness of the proposed
algorithms as they scale to large and complex problem instances.

1 INTRODUCTION

Credal networks (Cozman, 2000) are probabilistic graphical models that generalize Bayesian networks
(Pearl, [1988)) by allowing imprecise probabilities. Instead precise probability mass functions, they
utilize convex sets of probability distributions known as credal sets to represent the local models
for network variables given their parents. This enables a more flexible and robust treatment of
uncertainty compared with Bayesian networks, accommodating severe uncertainty, unreliable data
or conflicting information (Maud & Cozman, 2020). Credal networks are especially valuable when
precise probability estimates are difficult or undesirable to obtain. Moreover, credal networks are
obtained in partially identifiable structural causal models with non-observed latent variables, as often
met in causal discovery and inference (Zatfalon et al.| 2020).

Over the past decades, research has primarily focused on developing marginal inference algorithms
to efficiently compute the upper and lower probability bounds of a query variable given evidence
in a credal network (Maua & Cozmanl 2020; [Cano et al.,|2007; /Antonucci et al., 2010; Wijk et al.,
2022). Maximum a Posteriori or MAP inference tasks for credal networks, which aim to identify
the most probable value assignments to the variables given evidence, have received relatively little
attention from the community. This stands in stark contrast to Bayesian network MAP, which has
been extensively investigated over the years (Koller & Friedman, 2009).

MAP inference in credal networks is substantially more challenging than in Bayesian networks due
to computations over the joint credal set. Despite its difficulty, it remains relevant for explaining
evidence, whether or not hidden variables are involved. Some recent work has proposed a variety
of exact and approximate algorithms for Marginal MAP inference in credal networks, including
variable elimination, exhaustive depth-first search and stochastic local search (Marinescu et al.| [2023).
Although these methods can be trivially extended to credal MAP inference they often scale poorly,
limiting applicability to small models or offering no guarantees on solution quality.

Contributions: This paper advances recent research on MAP inference in credal networks. In
particular, we focus on two MAP tasks called maximax and maximin MAP, defined as finding
an assignment to the network variables that is consistent with the evidence and has a maximum
upper and, respectively, lower probability. We introduce new depth-first branch-and-bound search
algorithms for solving these tasks exactly in practice. The methods leverage an AND/OR search space
associated with the credal network, effectively exploiting the underlying problem structure during
search. The proposed AND/OR search for credal networks extends the approach previously developed

Under review as a conference paper at ICLR 2026

for Bayesian networks (Dechter & Mateescu,,[2007). Furthermore, we enhance these algorithms with a
novel partitioning-based heuristic that combines potential approximations with cost-shifting strategies
to produce effective search heuristics. We empirically evaluate the new MAP inference algorithms on
random credal networks with various graph topologies and on a collection of credal networks derived
from real-world applications. Our experimental results demonstrate that our algorithms significantly
improve computational efficiency, scaling effectively to large problems with over 3000 variables
while guaranteeing the optimality of the solutions found. Thus, our proposed approach addresses two
major shortcomings of previous methods for MAP inference in credal networks: the lack of solution
quality guarantees and the inability to solve large and complex problems. The Appendix includes
additional details, experimental results, code and benchmarks.

2 BACKGROUND

2.1 BAYESIAN NETWORKS

A Bayesian network (BN) (Pearl, 1988) is defined by a tuple (X,D,P,G), where X =
{X1,...,X,} is a set of variables over multi-valued domains D = {D;,...,D,}, G is a di-
rected acyclic graph (DAG) over X as nodes, and P = {P;} where P, = P(X;|II;)) are con-
ditional probability tables (CPTs) associated with each variable X; and II; C X are the parents
of X; in G. A Bayesian network represents a joint probability distribution over X, given by
P(X) = [[;=; P(Xi|IL).

Given evidence e on a subset of variables E C X, the MAP task seeks an assignment y* =

(y3,...,ys,) to the remaining variables Y = X \ E that has a maximum probability:
y* = argmax P(y,e) = argmaxHP(:cAm) (1
yeQ(Y) yeQ(yY) iy

where Q(Y) denotes the Cartesian product of the domains of the variables in Y, while z; and 7; are
the configurations of X; and X;’s parents II; in the assignment x = (y, e) consistent with e.

MAP is known to be NP-hard in general (Shimony, [1994; Kwisthout, 2011). However, in recent
decades, several algorithmic schemes have been developed to solve MAP exactly (Kask & Dechter,
1999; [Larrosa & Schiex} [2003; [Marinescu & Dechter, 2009; |Otten & Dechter, 2011)).

2.2 CREDAL NETWORKS

A set of probability distributions for variable X is called a credal set and is denoted by K (X) (Levi,
1980). Similarly, a conditional credal set is a set of conditional distributions, obtained by applying
Bayes rule to each distribution in a credal set of joint distributions (Walley,|1991). We consider credal
sets that are closed and convex with a finite number of vertices. Two credal sets K (X|Y = y;) and
K(X|Y = ys), where y; # yo are two values in variable Y’s domain, are called separately specified
if there is no constraint on the first set that is based on the properties of the second set.

A credal network (CN) (Cozman, 2000) is defined by a tuple (X,D,K,G), where X =
{X1,...,X,} is a set of discrete variables with finite domains D = {D,...,D,}, G is a di-
rected acyclic graph (DAG) over X as nodes, and K = { K (X;|II; = m;)} is a set of separately
specified conditional credal sets for each variable X; and each k-th configuration 7;;, of its parents
I1; in G. The strong extension K (X) of a credal network is the convex hull (denoted CH) of all joint
distributions that satisfy the following Markov property: every variable is strongly independent of its
non-descendants conditional on its parents (see (Cozman|(2000) for more details).

K(X)=CH{P(X) : PX) = HP(Xi|7rik), P(X;|m) is a vertex of K (X;|IT; =)} (2)
i=1

It can be shown that the strong extension K (X) can be built from the extreme points of the conditional
local credal sets denoted by ext(K (X;|IL; = m;x)) (Maud & Cozman, [2020).
Example 1. Figureshows a simple credal network with five bi-valued variables { A, B,C, D, E'}.

The local conditional credal sets are given by closed probability intervals. For example, we have that
0.1<PB=1A=0)<0.3and 0.5 < P(B=1|A=1) <0.7, respectively.

Under review as a conference paper at ICLR 2026

A | KA
1 [06,08

K(B|A)

A c | Kcla)
0 107,09 , G
s
11 '
'
'

A B
0 1 ([01,03]
101

[05,07] [0.4,06]

¢ o |KplBg) H o
|
[03,05] i
'
[0.7,0.9] \

02,04] \ o
[0.6,0.8]

(a) Credal network (b) Pseudo tree (c) AND/OR search tree

D E [KEID)
0 1 ([0608]

1 1 [[0103]

Figure 1: Example of a credal network and its AND/OR search space.

In credal networks, there may be multiple distributions that admit maximal assignments (Maud &
Cozman, 2020). Therefore, we define the following maximax and maximin credal MAP tasks:

Definition 1 (maximax MAP). Given a credal network C = (X, D, K, G) and evidence e on E C X,
the maximax MAP task is finding the assignment ¥* to'Y = X \ E with maximum upper probability:

y* = argmax max P(X; |1, 3)
Y y»’:gQ(Y) P(er)eiff(X)il;[1 (i)

Definition 2 (maximin MAP). Given a credal network C = (X, D, K, G) and evidence e on E C X,
the maximin MAP task is finding the assignment y* to Y = X \ E with maximum lower probability:

y* = arg max min P(X;|1I;)
P yeQY) P(Y,e)EK(X)E (‘)

It is easy to see that the upper probability (or value) of an assignment x = (z1,...,2,) to X can
be calculated as P(x) = []!_, P(z;|m;), where z; and 7; are X; and II;’s configurations in x, and
P(z;|m;) = max ext(K (z;|m;)) is the extreme point of K (x;|7;) with the highest value. Similarly,
the lower probability of x is P(x) = []}"_; P(x;|m;), where P(z;|r;) = minext(K (z;|m;)) is the
extreme point of K (z;|m;) with the smallest value.

Example 2. Consider again the credal network from Figure|la|and let x = (1,1,0,0,0) be a
complete assignment to variables A, B, C, D and E. In this case, the conditional local credal
sets K(A = 1) and K(B = 1|A = 1) have 2 unique extreme points each, i.e., ext(K(A = 1)) =
{0.6,0.8} and ext(K (B = 1|A = 1)) = {0.5,0.7}, respectively. The lower and upper probabilities
of the assignment can be computed as P(x) = 0.0144 and P(x) = 0.10752, respectively.

MAP inference in credal networks can also be shown to be NP-hard (Kwisthout, 201 1};|Campos &
Cozman, |2005). Despite sharing the same complexity class as Bayesian MAP, credal MAP involves
an optimization step over the extreme points of the joint credal set, making it significantly more
challenging to solve in practice. However, unlike Bayesian MAP, currently there are no established
algorithmic frameworks for exact MAP inference in credal networks.

3 BRANCH-AND-BOUND SEARCH FOR CREDAL MAP

We present now the first depth-first branch-and-bound search algorithms to exactly solve the maximax
and maximin MAP tasks in credal networks. These algorithms explore an AND/OR representation of
the search space which exploits the problem structure and has led to significant improvements in the
search for MAP explanations in Bayesian networks (Marinescu & Dechter,|2009).

3.1 AND/OR SEARCH SPACES FOR CREDAL NETWORKS

The AND/OR search space which is defined relative to a pseudo tree capturing problem decomposition
(Freuder & Quinnl [1985)) has never been considered in the context of credal networks. Here, we
extend and leverage it to facilitate the credal maximax and maximin MAP inference tasks.

Under review as a conference paper at ICLR 2026

Algorithm 1 AND/OR Branch-and-Bound Search for Maximax/Maximin Credal MAP

1: procedure AOBB(C = (X,D,K,),e, T) 12: if f(xx) > S then

2: if X = () then 13: Initialize v(Xy, zx) < 1

3: returnl 14: for all children X, of X}, inT" do
4: else 15: val < AOBB(Cq,e,T)

5: Xk < SELECTVAR(X) according to T’ 16: v(Xk, zk) < v(Xk, z) - val
6: if X} is evidence variable then 17: else

7 Dy, = {xr} such that z, € e 18: Set v(Xg, k) < 0

8: Initialize v(Xj) < 0 19: Kp — % \ { Xk = 21}

9: for all values x1 € Dy do 20: val — w(Xg, zx) - v(Xg, Vi)

10 Xp < %p U { Xy = a1} 21: Update v(X) + max(v(Xy),val)
1 Evaluate f (%) 22: return v(Xx)

Definition 3 (pseudo tree). A pseudo tree of an undirected graph G = (V, E) is a directed rooted
tree T = (V, E') such that every arc of G not included in E’ is a back-arc in T, namely, it connects
a node in T to one of its ancestors. The arcs in E' may not all be included in E.

Given a credal network (X, D, K, G) and pseudo tree T of GG, the AND/OR search tree St based on
T has alternating levels of OR nodes corresponding to the variables and AND nodes corresponding
to the values of the OR parent’s variable, with edges weighted according to the extreme point of the
conditional local credal sets in K. The size of the AND/OR search tree is bounded exponentially by
the depth of the pseudo tree rather than the number of variables (Dechter & Mateescul, 2007).

A solution tree x of St is a subtree that: (1) contains the root of St ; (2) if an internal OR node
n € St isin X then n is labeled by a variable and exactly one of its children is in X; (3) if an internal
AND node n € S is in X then all its OR children labeled variables are in x.

Each edge from an OR node X; to its AND child (X, z;) is associated with a weight w(X;, x;).
For maximax MAP, the weight is defined by the product of the upper probabilities corresponding to
the extreme points of the conditional local credal sets K (X ;|m,;) whose scopes mention variable
X; and are completely instantiated along the path from the root of St to (X;, ;). For maximin
MAP, we consider the lower probabilities instead. Each node n in St is associated with a value
v(n) that captures the optimal maximax or maximin MAP value of the conditioned subproblem
rooted at n. Clearly, v(n) can be computed recursively based on the values of n’s successors and the
corresponding edge weights: OR nodes by maximization and AND nodes by multiplication. The
value of the optimal solution is therefore given by the value v(s) of the root node s of St.

Example 3. Figure[Id we show the AND/OR search tree of the credal network from Figure [ld]
relative to the pseudo tree given in Figure[ID| The solution tree X corresponding to the assignment
(A=1,B=1,C=1,D =1, FE = 1) is highlighted, and its maximax MAP value, for example, is
obtained by multiplying the weights associated with the OR-to-AND edges in X. In this case, the weight
w(A, 1) of the edge from Ato (A, 1) inkXisw(A,1)=P(A=1)-P(B=1A4A=1)-P(C=1]A=
1) = 0.336, where P(A = 1) = maxext(K(A=1)) = 0.8, P(B=1|A = 1) = maxext(K (B =
1JA=1)) =0.7and P(C = 1|A = 1) = maxext(K (C = 1|A = 1)) = 0.6, respectively.

3.2 AND/OR BRANCH-AND-BOUND SEARCH FOR CREDAL MAP

We present an AND/OR Branch and Bound algorithm designed to solve the maximax and maximin
MAP tasks. This algorithm builds upon recent AND/OR search schemes developed for MAP inference
in Bayesian networks (Marinescu & Dechter, [2009)), extending them to credal networks.

Algorithm T] outlines the AND/OR Branch and Bound (AOBB) approach for solving the maximax
MAP problem in credal networks. We denote the current partial solution, the evidence and the value
of the best solution found so far as X, e, and .S respectively. The algorithm assumes that variables
are selected statically based on a pseudo tree T'. A heuristic evaluation function, f(x), computes an
upper bound on the optimal maximax MAP extension of X. For the maximin MAP task, only the
computation of edge weights and the heuristic evaluation function needs to be adjusted.

If the set X is empty, the result is trivially computed (line 3). Otherwise, AOBB selects the next
variable X} in T and iterates over its domain values (i.e., its AND successors) to compute the OR
node value v(X}) (lines 8-20). Subsequently, the algorithm attempts to prune unpromising domain

Under review as a conference paper at ICLR 2026

values by comparing the upper bound f(x) of the current partial solution tree X to the value S of
the current best solution tree found which is maintained by the root node s of the search space (line
12). For each domain value xj, of X, the problem rooted by the AND node labeled (X}, xy) is
decomposed into r independent subproblems C, = (X4, Dy, K,), one for each child X, of X} in
T. Note that if X}, is an evidence variable then its domain is just D, = {x}} where z;, € e (lines
6-7). These problems are then solved independently and their results are accumulated by the AND
node value v(X}, x) (lines 14-15). After trying all possible values of variable X}, the maximax
MAP value of the subproblem rooted by X}, is v(X%) and is returned (line 21). Finally, the optimal
maximax MAP value for the original problem is returned by the root node s of the search space.

AOBB computes its guided heuristic function f(X) using an improved mini-bucket based bounding
scheme which we will describe in detail in Section 4. The heuristic can be pre-compiled along the
reverse order of a depth-first traversal of the pseudo tree (which corresponds to an elimination order).

Theorem 1 (complexity). Given a credal network C = (X, D, K, G) and evidence e, the time and
space complexities of algorithm AOBB are O(n - d") and O(n), respectively, where h is the depth of
the pseudo tree T of G, n is the number of variables and d bounds their domain sizes.

4 MINI-BUCKETS FOR CREDAL MAP

We next describe novel partitioning-based bounds (aka mini-bucket bounds) that are compatible
with AOBB search for both maximax and maximin MAP. Although the mini-bucket bounds have
proven effective in guiding search algorithms for MAP in Bayesian networks (Kask & Dechter, [2001}
Marinescu & Dechter, [2009), they have not yet been explored in the context of credal networks.

4.1 POTENTIALS AND THEIR APPROXIMATIONS

Unlike in Bayesian networks, variable elimination schemes for the credal MAP tasks must operate on
sets of probability functions called potentials (Maud & Cozmanl 2020; Marinescu et al., [2023)):

Definition 4 (potential). Given a set of variables Y, a potential ¢p(Y) is a set of non-negative
real-valued functions p(Y) on Y. The product of two potentials (Y) and v(Z) is ¢(Y) - Y(Z) =
{p-q:pe€ dY),q € W(Z)}. The max-marginal maxz, $(Y) of a potential $(Y') with respect to a
subset of variables Z C'Y is defined by maxz ¢(Y) = {maxz p(Y) : p € ¢(Y)}.

A non-negative probability function p(Y') defined over variables Y can be viewed as a vector in R™,
where Q(Y) is the Cartesian product of the domains of the variables in Y, and m = |Q(Y)] is its
cardinality. We say that p(Y') < ¢(Y) ifand only if Vy € Q(Y),p(y) < q(y). Clearly, < is a partial
order. Therefore, a pruning operator max ¢(Y) that selects the maximal elements of a potential ¢(Y)
is defined relative to < as: max ¢(Y) = {p(Y) € ¢(Y) : q(Y) € ¢(Y),p(Y) < q(Y)}.

Furthermore, since the multiplication operator can significantly increase the size of potentials, we
require a potential to have a restricted cardinality, at most M (> 1). Therefore, we need an operator
that takes the potential ¢(Y), with |¢(Y)| > M, and reduces it to a smaller potential ¢’(Y) with
cardinality at most M, while ensuring that ¢'('Y) provides an upper bound on ¢(Y). Specifically, for
every p(Y) € ¢(Y) there exists ¢(Y) € ¢'(Y) such that p(Y) < ¢(Y). To achieve this, we utilize
the Pareto Least Upper Bound (PLUB) of vectors in R™, defined as follows:

Definition 5 (PLUB). The Pareto Least Upper Bound (PLUB) v € R"™ of a set of k vectors
{U1, ..., } € R™ is given by U = maxg‘?:l U, where the max is applied point-wise.

A simple procedure to compute the upper bound ¢'(Y) of ¢(Y) is to group the elements of ¢(Y)
into M clusters based on minimizing the Manhattan distance to each cluster’s centroid (i.e., minimize
Z?il |p; — 7i|, where p; and r; are the i-th components of p and r, respectively). Then, for each
cluster we replace its components with their Pareto least upper bound.

4.2 THE MAXIMAX MAP CASE

Algorithm [adapts the mini-bucket approximation scheme developed for Bayesian MAP (Dechter &
Rish} [2003) to the maximax MAP task in credal networks. Specifically, the MBMM(:) algorithm
partitions large buckets into smaller subsets, called mini-buckets, each containing at most ¢ distinct

Under review as a conference paper at ICLR 2026

Algorithm 2 Mini-Buckets with Moment-Matching for Maximax MAP

1: procedure MBMM(C = (X, D, K), i, M) 14: Let g, = PLUB(H%QM ¢, M)

2: Initialize I" + 0 15: Let Yy = vars(Qur) \ Xx

3 for all variable X € X do 16: > Moment-matching on max marginals
4 Let or = {p: p € ext(K(Xi|Ilk))} 17: Let p, = PLUB(maxy, ¢, 1)

5: UpdateI' =T U {PLUB(¢x, M)} 18 Letu— G

6: Create elimination ordering o : X1,..., X, ’ etu = (IL, 1)

7: for all variable X € o do 19: Update ¢, = Prr - (HL,)

8 > Create bucket I'x, and mini-buckets Qxr 2(: > Compute the downward messages
9: Letl'v = {¢: ¢ €', X € vars(¢)} 21: forall7 = 1to Rdo
10: Update I' = '\ I 22: Let \F = PLUB(maxx, ¢ur, M)
11: > Create mini-buckets Qg1, ..., Qrr 73. Update T' = T U {*}

12: Partition Ty, into {Qx1, - - ., Qkr}

13: forallr = 1to R do 24 return max([[, @)

variables (aka the ¢-bound). The mini-buckets are processed separately by maximizing out the bucket
variable from the combination of potentials within each mini-bucket. Furthermore, the algorithm
avoids generating prohibitively large potentials at each elimination step by approximating both the
intermediate and the original potentials with their Pareto least upper bounds of size M.

While the PLUB-based approximation of potentials may result in a looser overall upper bound, this
bound can be tightened further using a moment-matching re-parameterization scheme inspired by
(Thler et al.l 2012)). Consider the following simple example with three variables A, B, C' and two
binary potentials ¢(A, B) and ¢(A, C). In this case, we can rewrite the mini-bucket upper bound as:

max [9(A, B) - 6(4,C)] = max [6(4, B) - M (4) - 6(4,C) - 2o(A)]

< max [6(A, B) - M (A)] - max [6(4,C) - (4]
where A\j (A) and A2 (A) are two auxiliary positive functions such that A (4) - A2(A) = 1. A simple
choice for the A functions is to use the max-marginals on A. Let ¢1(A) = maxp ¢(A, B) and
v2(A) = maxc ¢(A4, C) be the max-marginal potentials on A, and let 11 (A) and p2(A) be their
PLUB approximations of size 1. If u(A) = \/u1(A) - p2(A) is their geometric mean, then for our

re-parameterization we can use: A;(A) = :1(&)) and A\o(A) = ;‘2 ((AA)), respectively. We have that:

Theorem 2 (complexity). Algorithm MBMM(i) computes an upper bound on the optimal maximax
MAP value. The time and space complexity is O(n - M? - d*), where i is the i-bound, n is the number
of variables, d bounds the domain sizes and M bounds the cardinality of the potentials.

4.3 THE MAXIMIN MAP CASE

For the maximin MAP task, we define the pruning operator min ¢(Y) to identify the minimal
elements of a potential ¢(Y) according to the same partial order < used in the maximax MAP
scenario, as follows: min(¢(Y)) = {p(Y) € ¢(Y) : Pq(Y) € ¢(Y),q(Y) < p(Y)}}.

However, the max and min operators in Equation] do not commute. As a result, the variable
elimination scheme that uses the min pruning operator is not exact anymore and only yields an upper
bound on the optimal maximin MAP value. Even when the mini-bucket approximation is enhanced
with cost-shifting via moment matching, it continues to provide an upper bound — though these are
generally much looser than those obtained in the maximax MAP setting. Our experimental results
clearly demonstrate that the mini-bucket bounds for maximin MAP are substantially weaker, and the
associated search algorithms face significant challenges as a result.

5 EXPERIMENTS

We evaluate the proposed branch-and-bound search algorithms for maximax and maximin MAP on
random credal networks and credal networks derived from real-world applications. All competing
algorithms were implemented in C++ and the experiments were run on a machine with a 16-core
3GHz CPU and 128GB of RAM running Ubuntu Linux 24.04.

Under review as a conference paper at ICLR 2026

Table 1: Quality of Heuristics for Maximax MAP on 100 variables random networks. Average CPU
time (sec) and number of nodes expanded using ¢-bounds from 2 to 10. Time limit 1 hour.

size | algorithm i=2 i=4 | i=6 i=8 i=10
time nodes | time nodes \ time nodes time nodes time nodes
AOBB+MB(i,1) 290 29603 | 0.99 13934 0.54 6877 0.25 5280 0.18 2352
AOBB+MB(i,10) 3.06 29603 | 1.47 13934 18.65 6877 501.36 5834 809.46 2582
100 | AOBB+MB(,50) 325 29603 | 2.07 13934 | 55829 7609 | 2781.15 2492 | 3284.57 251
AOBB+MBMM(4,1) 225 21057 | 0.39 8316 040 4448 0.15 3544 0.20 1807
AOBB+MBMM(i,10) | 1.97 21057 | 0.75 8316 15.99 4448 488.84 3906 | 797.66 1978
AOBB+MBMM(:,50) | 2.22 21057 | 1.04 8316 | 548.81 4910 | 2800.54 1633 | 3312.94 108
AOBB+MB(7) 2.87 29603 | 2.77 13934 | 97237 7336 - - - -

Table 2: Results for Maximax MAP on random and grid credal networks. Average CPU time
(sec) and number of nodes expanded using mini-bucket ¢-bounds from 2 to 10. Time limit 1 hour.

size

(w,h)

algorithm 1=2 i=4 | i=6 1=8 i=10
time nodes time nodes | time nodes time nodes time nodes

random credal networks

BB-+MB(i) 352520 40136432 | 101436 6399801 | 1789.33 123229 - - - -
100 BB+MBMM(i, 1) 248197 34115031 | 15477 1717539 | 29.81 362314 1.00 33382 0.86 15106
(18,28) | AOBB+MB(i) 2.87 29603 277 13934 | 972.37 7336 - - - -

AOBB+MBMM(i, 1) 2.25 21057 0.39 8316 0.40 4448 0.15 3544 0.20 1807

BB-+MB(i) - - - - - - - - -
200 BB+MBMM(i, 1) - - - - - - [2780.10 41392520 | 234275 37828931
(36,48) | AOBB+MB(i) 1555.37 8510209 | 112637 4969424 | 228598 813793 | 3458.96 96389

AOBB+MBMM(i,1) | 1155.54 8448489 | 1108.73 7985450 | 197.49 2193611 224.53 1974790 | 364.89 2768420

grid credal networks

BB+MB(i) - - - - - - - - - -
100 BB+MBMM(i, 1) - - | 3287.93 45186026 | 36259 5259684 0.07 699 0.13 123
(14,38) | AOBB+MB(i) 3.82 65648 0.23 2138 - - - - - -
AOBB+MBMM(i, 1) 0.74 19531 0.30 2138 0.06 1235 0.07 226 0.21 107
BB-+MB(i) - - - - - - - - -
196 BB+MBMM(i, 1) - - - - - - 324010 39599609 | 1072.23 16685172
(20,57) | AOBB+MB(i) 961.58 10746465 1.54 32950 | 3478.82 32950 - -

AOBB+MBMM(,1) | 395.68 4201397 2.19 32950 1.03 31339 1.18 24508 1.83 32948

Algorithms. Our proposed AND/OR Branch and Bound (AOBB) algorithm is equipped with the
following versions of the mini-bucket heuristics: (1) mini-buckets without potential approximation
and moment-matching denoted by AOBB+MB(%), (2) mini-buckets with potential approximation of
size M only, denoted by AOBB+MB(z, M), and (3) mini-buckets with both potential approximation
and moment-matching, denoted by AOBB+MBMM(i, M). For comparison, we also ran the OR
Branch and Bound (BB) counterparts guided by the same heuristic schemes, denoted by BB+MB(%),
BB+MB(i, M), and BB+MBMM(i, M). Unlike the former methods, the latter ones are not sensitive
to the underlying problem structure. For reference, we also ran the brute-force depth-first search
denoted by DFS that exhaustively enumerates all possible MAP assignments (see Appendix).

Benchmarks. For our purpose, we generate random and m-by-m grid credal networks. Specif-
ically, for random networks, we vary the number of variables n € {100, 150,200} and, for grids,
we choose m € {10, 14,16}, respectively. For each problem size, we generate 10 random problem
instances. In all cases, the maximum domain size is set to 2 and the local conditional credal sets are
generated uniformly at random as probability intervals. In addition, we consider a set of 15 credal
networks derived from real-world Bayesian networksﬂ by converting the probability values in the
conditional probability tables into probability intervals. For all our problem instances, we ensure that
the difference between the lower and upper bounds of the probability intervals was at most 0.3. The
problem sizes were deliberately chosen to ensure they could be solved exactly within the specified
time limit. Finally, we experiment with maximax and maximin MAP tasks with no evidence.

Measures of Performance. In all of our experiments, we report the CPU time in seconds and the
number of nodes expanded during the search. We also record the number of variables (n), the induced
width (w) and the height of the pseudo trees (h) for all of our benchmarks. The best performance
points are highlighted. All competing algorithms were allocated a 1 hour time limit and 10GB of
memory. The "-" symbol indicates that the respective algorithm exceeded its time or memory budget.

Quality of Heuristics. Table |I| shows the average CPU time in seconds and number of nodes
expanded by AOBB when guided by the MB(7), MB(z, M) and MBMM(i, M) heuristics for solving

! Available at https://www.bnlearn.com/bnrepository/

Under review as a conference paper at ICLR 2026

Table 3: Results for Maximax MAP on real-world credal networks. CPU time (sec) and number of
nodes expanded using mini-bucket i-bounds from 2 to 10. Time limit 1 hour.

instance algorithm | i=2 | i=4 i=6 ’ i=8 ’ i=10
(n, w, h) time nodes ‘ time nodes time nodes time nodes time nodes
BB+MB(i) 2030.54 150170 3.98 50 5.67 39 6.07 39 3.87 39
alarm BB+MBMM(i, 1) 5.52 4535 3.77 39 3.99 39 4.92 39 5.36 39
(374,12) AOBB+MB(%) 5.78 85 4.81 42 5.25 39 7.64 39 6.60 39
AOBB+MBMM(3,1) 2.62 52 2.82 39 2.80 39 5.38 39 2.80 39
BB+MB()) - - - - - - - - - -
link BB+MBMM(i,1) - - - - - - - - - -
(724,1543) | AOBB+MB(7) 23.09 67424 374 1772 - - - - - -
AOBB+MBMM(i,1) 9.77 33603 297 1004 2.99 978 2.79 978 2.58 793
BB+MB(i) - B B - - B B B
mastermindl | BB#MBMM(i, 1) - - - - - - - - - -
(1220,20,56) | AOBB+MB(7) - - | 102.60 34669 - - - - - -
AOBB+MBMM(i,1) - - | 26.64 34493 9.96 17619 9.97 17619 9.83 17619
BB+MB(i) B B B - - B B B B -
mastermind3 | BB+MBMM(i, 1) - - - - - - - - - -
(3692,39,92) | AOBB+MB(%) - - - - - - - - - -
AOBB+MBMM(i,1) - - - - | 3264.92 2180932 | 3088.55 2172466 | 3036.91 2167200

Table 4: Results for Maximin MAP on real-world credal networks. CPU time (sec) and number of
nodes expanded using mini-bucket i-bounds from 2 to 12. Time limit 1 hour.

instance algorithm =2 i=4 i=6 i=8 i=10 i=12

(n, w, h) time nodes time nodes time nodes time nodes ’ time nodes time nodes
BB+MB(i) 128.78 2522160 110.17 2522160 96.03 2522160 98.37 2522160 77.19 2522160 81.93 2522160

alarm BB+MBMM(i,1) 126.35 2522160 106.60 2522160 | 101.46 2522160 97.39 2522160 89.28 2522160 63.16 2522160

(37.4,12) AOBB+MB(i) 6.90 460 3.86 348 6.79 348 5.60 348 5.68 348 5.49 348
AOBB+MBMM(i,1) 6.96 394 3.77 348 7.11 348 6.64 348 6.17 348 6.91 348
BB+MB(i)

link BB+MBMM(, 1) - - - - - - - - - - - -

(724,1543) | AOBB+MB(7) - - | 1663.40 7820555 | 1245.14 7448824 | 1180.95 7427647 | 1139.88 7405547 | 1072.66 7405953
AOBB+MBMM(i,1) - - | 1538.40 7455392 | 1245.57 7406117 | 1188.28 7386176 | 1122.29 7383818 | 995.99 6862912
BB+MB(i)

mastermindl | BB+MBMM(i,1) - - - - - - - - - - - -

(1220,20,56) | AOBB+MB(7) 49.00 64081 49.14 64240 34.42 62281 3235 61822 28.90 61189 30.69 60236
AOBB+MBMM(i.1) | 47.79 64081 49.17 64259 34.04 62281 32.14 61737 3229 61275 30.17 61245
BB+MB(i)

mastermind3 | BB+MBMM(i, 1) - - - - - - - - - - - -

(3692,39.92) | AOBB+MB(7) - - - - | 1200.00 1357913 | 1099.27 1357053 | 1092.61 1362794 | 1103.99 1370757
AOBB+MBMM(i,1) - - - - | 1205.83 1358178 | 1083.09 1360571 | 1077.06 1365064 | 1049.79 1367606

maximax MAP on random credal networks with 100 variables. The columns are indexed by the
i-bound, and we varied M between 1 and 50, respectively. We can see that all of the mini-bucket
heuristics are competitive for the smallest z-bounds and all values of M because the intermediate
potentials do not grow too large in this case and, therefore, the computational overhead is reduced.
However, as the i-bound and M value increase, the size of intermediate potentials grows significantly
due to much larger scope sizes, which eventually translates into increased overhead. We notice that
using M = 1 yields the most cost-effective heuristics, especially for larger i-bounds which produce
more accurate bounds that prune the search space very effectively (Marinescu & Dechter, 2009). The
moment-matching cost-shifting scheme further tightens the heuristics, almost always leading to time
savings, as previously observed for Bayesian networks (Ihler et al.,[2012; Marinescu et al., 2014).

Results for Maximax MAP. Table 2] summarizes the results obtained on the random and grid
credal networks with the search algorithms guided by the MB(7) and MBMM(¢, M = 1) heuristics. As
before, algorithm AOBB+MB(%) is competitive only at the smallest i-bounds due to the computational
overhead associated with the larger intermediate potentials that are generated at larger ¢-bounds.
Furthermore, the AND/OR search algorithms that exploit the problem structure and are guided by the
MBMM(i, M = 1) heuristics improve dramatically over their OR search counterparts, in some cases
by up to 5 orders of magnitude, especially at relatively smaller i-bounds (e.g., © = 4 on 10-by-10
grids). As the i-bound increases, the corresponding heuristics tend to be more accurate, and this
often translates into additional time savings for the AOBB+MBMM(:, M = 1) algorithm. However,
when the i-bound increases even further, the running time of AOBB+MBMM(:, M = 1) starts to
increase slightly because of the overhead associated with compiling the heuristics. The brute-force
DFS algorithm could only solve problems with up to 20 variables, and therefore is omitted. These
results are consistent with those obtained previously on Bayesian MAP (Marinescu & Dechter, [2009).

Table [3] reports the CPU time in seconds and number of nodes expanded on 4 real-world credal
networks. The results show a similar pattern as before where the AND/OR search algorithm equipped
with mini-buckets using moment-matching and potential approximation of size 1 outperforms dra-

Under review as a conference paper at ICLR 2026

matically its competitors, at all reported ¢-bounds. Furthermore, AOBB+MBMM(:, M = 1) is the
only algorithm that scales to problems with more than 3000 variables (e.g., mastermind3) and
proves the optimality of the solutions obtained.

Results for Maximin MAP. Table 4| shows the results for maximin MAP on real-world networks.
As with maximax MAP, AND/OR search algorithms consistently outperform their OR counterparts
across all ¢-bounds. However, maximin MAP proves significantly more challenging, primarily due to
weaker heuristics that lead to larger search spaces and reduced performance.

Exact versus Local Search. In Table[5we report

the average CPU time obtained with the recent lo- Typje 5: Average CPU time in seconds for exact
cal search algorithms from Marinescu et al.| (2023) s Jocal search algorithms. Time limit 1 hour.
which we adapted to maximax MAP. Specifically,

we ran each of the Stochastic Local Search (SLS), _size | AOBB+MBMMG,1) | SLS| TS| SA| GLS
Taboo Search (TS), Simulated Annealing (SA) and random credal networks

: : 20 0.00 | 49.60 | 4634 | 3361 | 55.83
Guided Local Search (GLS) algorithms for a to- Pt 001 | 18246 | 1005 | o804 | 1560

tal of 10 iterations (i.e., random restarts) with a 100
maximum of 100K flips per iteration. The random '

=

1
6.

=

372775 | 188.92 | 196.96 | 352.78
565.95 | 223.03 | 300.46 | 529.20

‘ g

(3]

' N i 200 109.25 | 681.60 | 438.32 | 326.83 | 563.61

flip probablhty was set to Q.l, the taboo list .ha'lq a 21 credal networks

maximum size of 1000, while the alpha and initial —; 001 | 5321 | 4477 | 3820 | 5995

temperature used by SA were set to 0.1 and 100, 49 0.01 | 186.56 | 68.27 | 59.30 | 169.44
. oo 100 0.05 | 350.69 | 171.27 | 164.97 | 327.31

respectively. We can see clearly that in this case the |44 0.09 | 42120 | 20342 | 20758 | 424.90

=

.14 | 572.15 | 312.78 | 362.54 | 456.23

exact algorithm AOBB+MBMM(i, 1) dominates 19
the other competitors while proving the optimality
of the solutions obtained.

While this paper primarily focuses on proving solution optimality, we note that our search schemes
can be readily extended to efficient anytime algorithms, following the approach in|Otten & Dechter
(2011)), to provide the best solution found so far at any point during the search. Furthermore, since the
optimal maximax/maximin MAP assignment may not be unique, the proposed AND/OR algorithms
can be equipped with a book-keeping mechanism similar to the one developed for the k-best MAP
task in Bayesian networks (Dechter et al.,2012) to enable the enumeration of all optimal assignments.

6 RELATED WORK

Bayesian MAP has been extensively investigated over the years and several exact and approximate
algorithmic frameworks have been developed such as stochastic local search (Kask & Dechter, [1999;
Park, 2002; Hutter et al., [2005), variational approximation and message-passing schemes (Pearl,
1988; Dechter et al., [2002; Dechter & Rishl 2003} |Wainwright et al.| 2005} |Kolmogorovl [2006; |Ihler
et al.| 2012)), or heuristic search (Kask & Dechter, |1999; [Larrosa & Schiexl, |2003; Marinescu &
Dechter, [2009; |Otten & Dechter,, |2011)). More recently, neural network based approximate solvers
without solution guarantees have also been proposed (Arya et al.| [2024; [2025). Credal MAP has
received limited attention with some prior work on MAP inference in specialized models such as
hidden Markov models with set-valued parameters (Maua et al., 2016) and the approximate solvers
for credal Marginal MAP developed recently by Marinescu et al.| (2023). In contrast, our contribution
addresses exact credal MAP inference with guarantees in general high-dimensional credal networks.

7 CONCLUSION

This paper significantly advances the field of MAP inference in credal networks by introducing
novel depth-first branch-and-bound search algorithms. These algorithms leverage the AND/OR
search space to effectively exploit the problem structure, and are further enhanced with a partitioning-
based heuristic that combines potential approximations with cost-shifting strategies. Our empirical
evaluations demonstrate that these new methods not only improve computational efficiency but also
scale to large problems with over 3000 variables while guaranteeing optimality of solutions. Thus,
our proposed approach addresses critical limitations of the state-of-the-art, providing robust and
efficient solutions for MAP inference tasks in credal networks. Potential future directions include
improving the mini-bucket heuristics for maximin MAP by developing tighter approximations.

Under review as a conference paper at ICLR 2026

REFERENCES

Alessandro Antonucci, Yi Sun, Cassio P De Campos, and Marco Zaffalon. Generalized loopy 2u: A
new algorithm for approximate inference in credal networks. International Journal of Approximate
Reasoning, 51(5):474—484, 2010.

Shivvrat Arya, Tahrima Rahman, and Vibhav Gogate. A neural network approach for effi-
ciently answering most probable explanation queries in probabilistic models. In A. Glober-
son, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.),
Advances in Neural Information Processing Systems, volume 37, pp. 33538-33601. Cur-
ran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/
3ae2d3297891cad0c56dd12d60ff7dde-Paper- Conference.pdf.

Shivvrat Arya, Tahrima Rahman, and Vibhav Giridhar Gogate. SINE: Scalable MPE inference for
probabilistic graphical models using advanced neural embeddings. In Yingzhen Li, Stephan Mandt,
Shipra Agrawal, and Emtiyaz Khan (eds.), Proceedings of The 28th International Conference on
Artificial Intelligence and Statistics, volume 258 of Proceedings of Machine Learning Research,
pp. 4465-4473. PMLR, 03-05 May 2025. URL https://proceedings.mlr.press/v258/arya25a.html.

Cassio Campos and Fabio Cozman. The inferential complexity of Bayesian and credal networks. In
International Joint Conference on Artificial Intelligence (IJCAI), pp. 1313-1318, 2005.

Andrés Cano, Manuel Gémez, Serafin Moral, and Joaquin Abell4dn. Hill-climbing and branch-and-
bound algorithms for exact and approximate inference in credal networks. International Journal of
Approximate Reasoning, 44(3):261-280, 2007.

Fabio Cozman. Credal networks. Artificial Intelligence, 120(2):199-233, 2000.

R. Dechter, R. Mateescu, and K. Kask. Iterative join-graph propagation. In Proceedings of the
Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI’02), pp. 128-136, 2002.

Rina Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence, 113:
41-85, 1999.

Rina Dechter and Robert Mateescu. AND/OR search spaces for graphical models. Artificial
Intelligence, 171(2-3):73-106, 2007.

Rina Dechter and Irina Rish. Mini-buckets: A general scheme of approximating inference. Journal
of ACM, 50(2):107-153, 2003.

Rina Dechter, Natalia Flerova, and Radu Marinescu. Search algorithms for m best solutions for
graphical models. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence,
AAAT 12, pp. 1895-1901. AAAI Press, 2012.

Eugene Freuder and Michael Quinn. Taking advantage of stable sets of variables in constraint
satisfaction problems. In International Joint Conference on Artificial Intelligence (IJCAI), pp.
1076-1078, 1985.

Frank Hutter, Holger Hoos, and Thomas Stutzle. Efficient stochastic local search for MPE solving.
In International Joint Conference on Artificial Intelligence (IJCAI), pp. 169—174, 2005.

Alex Thler, Natalia Flerova, Rina Dechter, and Lars Otten. Join-graph based cost-shifting schemes. In
Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI), pp. 397-406, 2012.

Kalev Kask and Rina Dechter. Stochastic local search for Bayesian networks. In Workshop on Al
and Statistics, pp. 113-122, 1999.

Kalev Kask and Rina Dechter. A general scheme for automatic generation of search heuristics from
specification dependencies. Artificial Intelligence, 129(1-2):91-131, 2001.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT
Press, 2009.

Vladimir Kolmogorov. Convergent tree-reweighted message passing for energy minimization. /EEE
Transactions on Pattern Analysis and Machine Intelligence, 28(10):1568-1583, 2006.

10

https://proceedings.neurips.cc/paper_files/paper/2024/file/3ae2d3297891cad0c56dd12d60ff7dde-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/3ae2d3297891cad0c56dd12d60ff7dde-Paper-Conference.pdf
https://proceedings.mlr.press/v258/arya25a.html

Under review as a conference paper at ICLR 2026

Johan Kwisthout. Most probable explanations in Bayesian networks: Complexity and tractability.
International Journal of Approximate Reasoning, 52(1):1452-1469, 2011.

Javier Larrosa and Thomas Schiex. In the quest of the best form of local consistency for weighted
CSP. In International Joint Conference in Artificial Intelligence (IJCAI-2003), pp. 631-637, 2003.

Isaac Levi. The Enterprise of Knowledge. MIT Press, 1980.

Radu Marinescu and Rina Dechter. AND/OR branch-and-bound search for combinatorial optimization
in graphical models. Artificial Intelligence, 173(16-17):1457-1491, 20009.

Radu Marinescu, Rina Dechter, and Alexander Ihler. AND/OR search for marginal MAP. In
Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI), pp. 563-572, 2014.

Radu Marinescu, Debarun Bhattacharjya, Junkyu Lee, Fabio Cozman, and Alexander G. Gray. Credal
marginal MAP. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=yCBgKTvYe9.

Denis Maud and Fabio Cozman. Thirty years of credal networks: Specifications, algorithms and
complexity. International Journal of Approximate Reasoning, 1(126):133-137, 2020.

Denis Maud, Alessandro Antonucci, and Cassio Polpo de Campos. Hidden Markov models with
set-valued parameters. Neurocomputing, 180:94-107, 2016.

Lars Otten and Rina Dechter. Anytime AND/OR depth-first search for combinatorial optimization.
In International Symposium on Combinatorial Search, pp. 117-702, 2011.

James Park. Using weighted MAX-SAT engines to solve MPE. In National Conference on Artificial
Intelligence (AAAI), 2002.

Judea Pearl. Heuristics: Intelligent Search Strategies. Addison-Wesley, 1984.
Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

Solomon Eyal Shimony. Finding maps for belief networks is NP-hard. Artificial Intelligence, 68(2):
399-410, 1994.

Martin J. Wainwright, Tommi S. Jaakkola, and Alan S. Willsky. MAP estimation via agreement on
trees: Message-passing and linear programming. IEEE Transactions on Information Theory, 51
(11):3697-3717, 2005.

Peter Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London, UK,
1991.

Hjalmar Wijk, Benjie Wang, and Marta Kwiatkowska. Robustness guarantees for credal Bayesian
networks via constraint relaxation over probabilistic circuits. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), pp. 4885—4892, 2022.

Marco Zaffalon, Alessandro Antonucci, and Rafael Cabanas. Structural causal models are (solvable
by) credal networks. In Proceedings of the International Conference on Probabilistic Graphical
Models (PGM), pp. 581-592. PMLR, 2020.

A APPENDIX

B DEPTH-FIRST SEARCH FOR MAXIMAX AND MAXIMIN MAP

The simplest approach to solve exactly the maximax and maximin MAP tasks in credal networks is
to perform a depth-first search in the space of partial assignments to the variables (called the OR
search space), and, for each complete assignment denoted by X, evaluate its score as the exact upper
(resp., lower) probability P(x) = []_, P(x;|m;) (resp. P(x) = [[;—, P(z;|m;)) where z; and 7
are the values of X; and its parents I1; in X, respectively, and P(z;|m;) = max ext(K (z;|m;)) (resp.
P(x;|m;) = minext(K (z;|m;))). In this way, the optimal solution x* corresponds to the assignment

11

https://openreview.net/forum?id=yCBqKTvYe9

Under review as a conference paper at ICLR 2026

Figure 2: The OR search tree corresponding to the credal network from Figure

with the highest score (i.e., the maximum upper probability for maximax MAP, and maximum lower
probability for maximin MAP, respectively). Although complete, the algorithm is inefficient because
it enumerates all possible configurations of the variables. Therefore, its time complexity is bounded
by O(k™), where n is the number of variables and k bounds their domain sizes, but it can operate in
linear space (Pearl, |1984).

Example 4. Figure [2] shows the OR search tree explored by the depth-first search algorithm
when solving the maximax MAP task for the credal network in Figure [la] A solution path cor-
responding to the assignment X : (A = 1,B = 1,C = 0,D = 0,F = 1) is highlighted

in red and its maximum MAP value is g(x) = ﬁ(A =1)-PB =14 = 1) P(C =
0)A =1)-P(D =0B=1C =1)-P(E = 1D = 0) = 0.21504, where, for exam-
{06,08}) = 0.8 and P(B = 1|A = 1) =

ple, P(A = 1) = maxext(K(A = 1)) = max(
maxext(K(B=1/A=1)) = max({O 5,0.7, 0 0.
and maximin MAP solutions are in this case X* A
0.26244 andx*: (A=1,B=1,C=1,D = 1 E

\]

}) = 0.7, respectively. The optimal maximax
0,B=0,C=1,D=1,E = 0) with value
O) with value 0.0504, respectively.

5
X

C BUCKET ELIMINATION FOR MAXIMAX MAP

The Maximax MAP task defined by Equation [3]can be solved exactly using a bucket elimination
procedure (Dechter,[1999) that extends the Credal Variable Elimination (CVE) algorithm developed
for marginal inference in credal networks (Maud & Cozman, 2020). The algorithm relies on the
notion of a potential as well as combination and marginalization operators over potentials which are
defined as follows.

Definition 6 (potential). Given a set of variables Y, a potential ¢p(Y) is a set of non-negative
real-valued functions p(Y) on Y. The product of two potentials ¢(Y) and ¢ (Z) is defined by
dY) - Pp(Z)={p-q:p € dY),q € P(Z)}. The max-marginal maxz, ¢(Y) of a potential $(Y)
with respect to a subset of variables Z C Y is defined by maxz ¢(Y) = {maxz p(Y) : p € ¢(Y)}.

Since the multiplication operator may grow the size of potentials dramatically, we introduce an
additional pruning operation that can reduces the cardinality of a potential. Specifically, the operator
max ¢(Y) returns the set of non-zero maximal elements of ¢(Y), under the partial order < defined
component-wise as p(Y) < ¢(Y) iff Vy € Qvy, p(y) < q(y) where QY is the cartesian product of
the domains of the variables in Y: max ¢(Y) = {p(Y)) Bq(Y) € ¢(Y),p(Y) < q(Y)}.

Definition 7 (dominance). Let ¢(Y) and ¢ (Y) be two potenttals deﬁned on the subset of variables Y .

Then we say that (Y) < (Y) if and only if Vp(Y) € ¢(Y), Iq € Y(Y) such that p(Y) < q(Y),
where the latter corresponds to component-wise < defined above.

Proposition 1 (commuting max operators). Let ¢(X;, X;) and (X;, Xy,) be two potentials such
that ¢ = {p1,p2,...,pn} and psi = {q1,q2, ..., qm}. Then, the max-marginal operator and the
max-pruning operator commute, and the following equality holds:

X Xj) (X, X)) = X, X5) (X, Xg), (5
mex omax 9() Y(k) p(zwx,;}?é%(z\{xi})“}?‘ixﬂ)), (5)

where Z = {X;} UX; UXy, K(Z) is the credal set for $(X;,X;) - (X;, Xy), and K'(Z \ {X;})
is the credal set for maxx, ¢(X;, X;) - (X;, Xy).

12

Under review as a conference paper at ICLR 2026

#(A):{p.(4),p2(A)} @ (4, B): {p1(B|A), p2(B|4), p3(B|A), p4(B|A)}
A @ A | pa) R R L N N S N G I S N PG
0 0.4 0 0.2 0 0 0.9 0 0 0.9 0 0 0.7 0 0 0.7
1 0.6 1 0.8 0 1 0.1 0 1 0.1 0 1 0.3 0 1 0.3
1 0 0.5 1 0 0.3 1 0 0.5 1 0 0.3
1 1 0.5 1 1 0.7 1 1 0.5 1 1 0.7

Figure 3: Examples of potentials for the credal network from Figure

Algorithm 3 Bucket Elimination for Maximax MAP

1: procedure CBE(C = (X, D, K)) 9: > Create bucket I'y, for variable X,
2: > Create the potentials 10: LetT'y, = {¢: ¢ € T, X}, € vars(d)}

3: Initialize ' + () 11: UpdateI' =T\ T

4: for all variable X}, € X do 12: > Compute the downward message
50 Letgr = {p:p € ext(K(Xy|l))} 13- Let \F ()

o UpdateT 210 (60} : max makXXk [lser, @

7: Create elimination ordering o : X1,..., X, 14 Update I' = I'U {A"}

8: for all variable X}, € o do 15: return max (H¢ep ¢7>

Proof. Since maxp(z)cr(z) prunes the credal set by finding the dominating function,
X, X5) (X, X
P(ZI§1€aI)(((Z)¢((3 J) 1/}(79 k)
max X, X
P(Z\X1) €Ky (Z\Xx) P %)

where p*(X;,X;) and ¢*(X;, X}) are the dominating function in the credal set K(Z \ Xj) and
Ky (Z)\ X;), respectively.

w(Xiv Xk)

. max
P(Z\X;)e Ky (Z\X;)

By commuting max-marginal operator,

Xi7X’ X17X
e P(zr?gz)(((z)(é(2L k)

- X’MX X“X
P(Z\{Xi?el?(}s(Z\{Xi})H}gxqs()Y(k)

X, X;) - q(Xi, X)) [Vp € 6,q €
P (xR ey PP Xo) 00 X0 VR € 6, € 0}

= maxp” (X, X;) - ¢"(Xi, Xp)-

O

Example 5. Consider again the credal network from Figure In Figure[3|we show the potentials
d(A) and $(A, B) corresponding to the sets of extreme points of the local conditional credal sets
K(A) and K(B|A), respectively. We can see that, for example, $(A, B) has 4 extreme points
represented by the distributions p1(B|A), p2(B|A), p3(B|A) and py(B|A), respectively.

Algorithm [3|describes the bucket elimination procedure called CBE that can be used to solve Equation
E} Leto: X1, X5, ..., X, be an ordering of the variables X such that X; is eliminated first, then X5
and so on. First, the algorithm creates a set of potentials I' from the input local conditional credal
sets K (X;|II; = m;;). Each potential ¢, contains the set of all conditional probability distributions
P(Xk|Hk) such that P(Ik‘ﬂ'kj) = P(Xk = Ik‘Hk = ij) S E.Z‘t(K(Xk|Hk = ij), where T is
the j-th configuration of the variables II.

The algorithm then eliminates each variable X, by maximization from the combination of potentials
that contain X}, in their scope, namely it computes a new potential * = max (max x, 11 bETy gi)) .

The resulting potential A* is pruned by removing its non-maximal elements. Finally, the optimal
maximax MAP value is obtained after eliminating the last variable in the ordering.

13

Under review as a conference paper at ICLR 2026

A:p(4) ¢4 B) ¢(40)

v A4(B, €) = max(max(¢(4) - ¢(4,B) - ¢(4,()))
C: ¢(B,C,D) 14(B,0) A

A¢(B,D) = max (max(¢(B, C,D) - 4(B, C)))
c

B: A°(B, vD)
AU 2AB(D) = max (max(A¢(B, D)))
B
E: ¢(D,E) AE(D) = max (max(¢(D, E)))
v v E
D: AB(D) AE(D) Maximax MAP = max(maxp (A8 (D) - AE(D)))

max (mgx max(max ¢(D, E)) - max (max max (mcax ¢(B,C,D) - max(mAaX(qb(A) -¢p(4,B) - d(4, C))))))
B

Figure 4: Schematic bucket elimination for maximax MAP on the credal network from Figure

Algorithm 4 Mini-Buckets for Maximax MAP

> Create bucket I';, and mini-buckets Qr, g. Update I' = T' U {\F}
LetTy, ={¢: ¢ €T, X} € vars(¢)} "
Update ' =T\ Ty,

1: procedure MB(C = (X, D, K), i-bound) 11: > Create mini-buckets Qg1, ..., QxR
2: Initialize T' < () 12: Partition I'y, into {Qg1, ..., Qkr}

3: for all variable X, € X do 13: forallr =1to Rdo

4: Letop ={p:p € ext(K(Xp|I))} 14: Let ¢r = [4cq,, @

5: Update I'=T'U {¢x} 15: > Compute the downward messages
6: Create elimination orderingo : X1,..., X, 16: forallr = 1to R do

7: for all variable X; € o do 17: Let \¥ « max (maxx, ¢p,)

8: '

9:

0:

19: return max([[, ¢)

—

Example 6. Figure [d| shows the schematic bucket elimination for maximax MAP on the credal
network from Figure[ld| In this case, the variable ordering is: o : A,C, B, E, D. The intermediate
potentials denoted by \ are shown in red.

Theorem 3 (complexity). Given a credal network C = (X, D, K), the CBE algorithm computes the
optimal maximum MAP value of C. The time and space complexity is bounded by O(n - M? - v),
where n is the number of variables, d is the maximum domain size, and M bounds the cardinality of
the potentials.

Proof. Clearly, the pruning operator max commutes with the max-marginalization operator in
Equation [3] Therefore, eliminating first a variable and subsequently pruning the non-maximal
elements from the resulting potential is equivalent to eliminating the variable from the maximizing
distribution in Equation 3] O

C.1 MINI-BUCKETS FOR MAXIMAX MAP

The CBE algorithm is exact for Maximax MAP but time and space exponential in the induced width
of the credal network. We describe next a mini-bucket approximation for maximax MAP which we
enhance further with a cost-shifting scheme based on moment matching.

Algorithm 4] and adapts the mini-bucket partitioning scheme developed for graphical models (Dechter
& Rish, [2003) to the maximax MAP task in credal networks. Specifically, algorithm MB(¢) which
approximates CBE is parameterized by an ¢-bound ¢ and works by partitioning large buckets into
smaller subsets, called mini-buckets, each containing at most ¢ distinct variables. The mini-buckets
are processed separately by maximizing out the bucket variable from the combination of potentials in
the respective mini-bucket. Based on previous work (Dechter & Rish, [2003)), it is possible to show
that MB(%) outputs an upper bound on the optimal maximax MAP value from Equation 3]

Proposition 2 (mini-bucket bound). Let ¢(X;,X;) and ¢¥(X;,Xy) be two potentials such that
¢ = {p1,p2, .-y Dn} and ¥ = {q1, q2, ..., @m }, respectively. Then, the following inequality holds:

14

Under review as a conference paper at ICLR 2026

Ap(4) ¢(4,B) ¢>({1. ©) A4(B) = max(m/:lix(q,')(A) - $(4,B)))

~

C: ¢(BCD) AAtC) A(C) = max(max ¢ (4, C))

| ! A€(B, D) = max (max(¢(B, C,D) - 14(C)))
B: A4(B) 1°(B,D) ¢

AB(D) = max (max(A4(B) - (B, D)))
E: ¢(D,E) ’

v

D: 2%(D) A5(D) Upper Bound = max(m[:;lx(/lB (D) - 2£(D)))

AE(D) = max (max(¢(D, E)))
E

max (m;;;lx(cp(A) - d(4,B) - (A, C))) < max (mj\x(tp(A) - $(A,B)) - max p (4, C))

Figure 5: Schematic execution of MB(2) on the credal network from Figure

Algorithm 5 Bucket Elimination for Maximin MAP

1: procedure CBE(C = (X, D, K)) 9: > Create bucket I'y, for variable X,
2: > Create the potentials 10: LetTy = {¢: ¢ € T, Xj, € vars(¢)}
3: Initialize T < 0 11: UpdateI' =T \T}
4: for all variable X}, € X do 12: > Compute the downward message
50 Let¢y = {p:p € ext(K(X|II;))} 13- Let \F < min (ma)
6: UpdateI' =T U {¢} . ' ZX’“ Hser, ¢
7. Create elimination ordering o : X1,..., X, 14: Update I' = I'U {A"}
8: for all variable X € o do 15: return min (H¢€1‘ ¢)
max [¢(Xi, X;) - ¢h(Xi, X)] < [max o(Xy, X;)] - [maxdp(Xy, X)) (6)

Proof. Let A = maxx, ¢(X;, X;)-9(X;, Xg) and let a = maxx, pt(X;, X;)-¢-(X;, X;) be one of
its components. Clearly, maxx, p(X;, X;) - ¢-(X;, X;) < maxx, p:(X;, X;) - maxx, ¢-(X;, X;).
Let b = p;(X;) = maxx, pi(X;, X;) and ¢ = ¢ (Xg) = maxy, ¢-(X;,Xy) and let B =
maxx, ¢(X;,X;) and C = maxx, ¥(X;, Xy), respectively. Therefore, a < b - c. Then it fol-
lows that for every a € A, we can identify an element of ' € B - C such that a < a/. O

Example 7. Figure[5|shows the schematic execution of algorithm MB(i = 2) on the credal network
from Figure @] In this case, the elimination ordering is A, C, B, E, D, namely variable A is
eliminated first, then C' and so on. After eliminating the last variable D, we obtain an upper bound
on the optimal maximax MAP value.

Proposition 3. Algorithm MB(i) computes an upper bound on the optimal maximax MAP value.

Proof. The result follows easily by applying Proposition 2] O

D BUCKET ELIMINATION FOR MAXIMIN MAP

For maximin MAP, we define a min pruning operator that returns the minimal elements of a po-
tential ¢(Y) relative to the same partial order <, namely min(¢(Y)) = {p(Y) € ¢(Y) : fg €
$(Y),q(Y) < p(Y)}.

15

Under review as a conference paper at ICLR 2026

Proposition 4 (commuting max-marginal and min-pruning operators). Let ¢(X;,X;) and
(X5, Xy) be two potentials such that ¢ = {p1,pa,...,pn} and psi = {q1,q2,-..,qm}. Then,
commuting the max-marginal operator and the min-pruning operator yields the following inequality:

i X’L7X : X’L7X S i Xi7X' . Xi7X)
max | AR 5y P X)X Ke) S L By T K X)X, X

where Z = {X,;} UX; UXy, K(Z) is the credal set for p(X;,X;) - (X;, Xg), and K'(Z\ {X;})
is the credal set for maxx, ¢(X;, X;) - (X5, Xy).

Proof. The left-hand side of the inequalty can be written as,
(X3, X;) - (X, Xk)
=max

X; P(Z\Xk)rglf?<f>(z\xk)¢() P
:II;?,XP*(X“XJ) . Q*(X7,7Xk)7

max min
X; P(Z)eK(Z)

w(Xw Xk)

min
(Z\X;)e Ky (Z\X;)

where p. (X;,X;) and g, (X;, X},) are the dominated function in the credal set Ky(Z \ X}) and
Ky(Z\ X;), respectively.

By commuting max-marginal and min-pruning operator,

Pt gy RO X)P, X

_ - X, X,) - (Xi, Xe)|Vp € 6,q €
p(Z\{Xi}rgglfw\{xi}){n}gXp(i) -l KIVp € ¢,q €V}

=1 (X, Xg) > H}?}XP*(Xqu) g (X, X)),
where r,.(X;, X}) is the dominated function in the set {maxx, p - q|Vp € ¢,q € ¥}. O

Algorithm [5] describes the bucket elimination procedure called CBE that can be used to solve
Equation[d However, unlike maximax MAP, in this case CBE is no longer exact and only computes
an upper bound on the optimal maximin MAP value. It is easy to see that max and min do not
commute in Equation 4} We illustrate with a simple example that by pushing the outside max
inside the min operator yields an upper bound: max(min(3,1), min(3,2)) = max(1,2) = 2 <
min(max(3,1), max(3,2)) = min(3,3) = 3.

Leto: X1, Xs,...,X, be an ordering of the variables X such that X; is eliminated first, then Xo
and so on. First, the algorithm creates a set of potentials I" from the input local conditional credal
sets K (X;|I; = m;x). Each potential ¢, contains the set of all conditional probability distributions
P(X}|Ii) such that P(zg|mg;) = P(Xy = xx |y = mg;) € ext(K (Xg|g = mx;). The algorithm
then eliminates each variable X by maximization from the combination of potentials that contain
X}, in their scope, namely it computes a new potential * = min (max x;. 11 $€Tx qS). The resulting

potential \¥ is pruned by removing its non-minimal elements. After eliminating the last variable in
the ordering, the resulting value is an upper bound on the optimal maximin MAP value.

E ADDITIONAL EXPERIMENTS

In this section we include additional experiments and details that were omitted from the main paper.
We note that in all of our experiments, we did not consider any evidence.

E.1 RESULTS FOR MAXIMAX MAP

Tables [7] and [§] summarize the results obtained on the random, and grid credal networks. The
columns are indexed by the mini-bucket ¢-bound, and in each cell we show the average CPU time
in seconds, and the average number of nodes expanded by the respective algorithm. We ran the
OR and AND/OR branch and bound algorithms guided by mini-bucket heuristics without poten-
tial approximation and moment-matching (i.e., BB+MB(i), AOBB+MB(i)), mini-bucket heuristics
with potential approximation of size 1 only (i.e., BB+MB(i,1), AOBB+MB(i,1)), and mini-bucket

16

Under review as a conference paper at ICLR 2026

Table 6: Results for Maximax MAP on 100 variables random networks. Average CPU time in
seconds and number of nodes expanded using mini-bucket ¢-bounds from 2 to 12. Time limit 1 hour.

i=4
time nodes

i=6 i=38 i=10 i=12
time nodes time nodes time nodes time nodes

size | algorithm | i=2
time nodes

random credal networks

AOBB+MB(i,1) 290 29603 | 0.99 13934 0.54 6877 025 5280 0.18 2352 0.09 1438
AOBB+MB(%,10) 3.06 29603 | 1.47 13934 18.65 6877 | 501.36 5834 | 809.46 2582 | 1405.00 1931
AOBB+MB(,30) 325 29603 | 1.72 13934 | 555.51 7609 | 2731.54 3462 | 3153.93 209 - -
AOBB+MB(i,50) 325 29603 | 2.07 13934 | 55829 7609 | 2781.15 2492 | 3284.57 251

100 [AOBB+MBMM(;,1) | 2.25 21057 | 039 8316 040 4448 0.15 3544 020 1807 0.10 773
AOBB+MBMM(;,10) | 1.97 21057 | 0.75 8316 1599 4448 | 488.84 3906 | 797.66 1978 | 1770.41 1204
AOBB+MBMM(;,30) | 2.12 21057 | 0.94 8316 | 541.91 4910 | 2708.84 2162 | 3189.16 105 - -
AOBB+MBMM(;,50) | 2.22 21057 | 1.04 8316 | 548.81 4910 | 2800.54 1633 | 3312.94 108 - -
AOBB+MB(1) 2.87 29603 | 2.77 13934 | 972.37 7336 - - - - - -

Table 7: Results for Maximax MAP on random credal networks. Average CPU time (sec) and
number of nodes expanded using mini-bucket i-bounds from 2 to 12. Time limit 1 hour.

size algorithm i=2 i=4 i=6 i=8 i =10 i=12

(w*,h) time nodes time nodes time nodes time nodes time nodes time nodes
DFS 18.55 2097152

20 BB+MB(i) 0.01 204 0.01 49 | 77478 22 | 775.56 22 | 77653 22| 774.82 22

4,9) BB+MB(,1) 0.01 204 0.01 49 0.00 22 0.00 22 0.01 22 0.00 22
BB+MBMM(,1) 0.01 58 0.01 24 0.00 22 0.00 22 0.01 22 0.00 22
AOBB+MB(i) 0.01 50 0.01 25 | 775.00 22 | 776.64 22 | 776.20 22 | 77458 22
AOBB+MB(,1) 0.01 50 0.01 25 0.01 22 0.01 22 0.01 22 0.01 22
AOBB+MBMM(,1) 0.01 36 0.00 23 0.02 22 0.00 22 0.02 22 0.01 22
DFS - -

50 BB+MB(i) 1.15 40301 0.57 9672 863.27 1009 | 3331.72 62 - - - -

9.,17) BB+MB(,1) 1.08 40301 0.45 9672 0.05 947 0.01 117 0.02 57 0.02 52
BB+MBMM(i, 1) 0.16 5178 0.07 818 0.02 276 0.01 56 0.02 52 0.02 52
AOBB+MB(i) 0.03 298 0.04 188 | 818.48 101 | 3333.34 55 - - - -
AOBB+MB(,1) 0.03 298 0.02 188 0.03 106 0.01 78 0.04 54 0.02 52
AOBB+MBMM(i,1) 0.03 169 0.01 107 0.06 94 0.01 53 0.07 52 0.02 52
DFS - -

100 BB+MB(i) 352520 40136432 | 1014.36 6399801 | 1789.33 123229 - - - - - -

(18,28) | BB+MB(i,l) 3444.32 46208835 | 576.28 6399801 21.88 348970 1.92 64725 0.39 10498 0.35 10254
BB+MBMM(i,1) 2481.97 34115031 15477 1717539 29.81 362314 1.00 33382 0.86 15106 0.30 5205
AOBB+MB(i) 2.87 29603 277 13934 | 972.37 7336 - - - - - -
AOBB+MB(i,1) 2.90 29603 0.99 13934 0.54 6877 0.25 5280 0.18 2352 0.09 1438
AOBB+MBMM(,1) 2.25 21057 0.39 8316 0.40 4448 0.15 3544 0.20 1807 0.10 773
DFS - -

150 BB+MB(i) - - - - - - - - - - - -

(27,38) | BB+MB(i,1) - - - - | 2373.35 37994389 | 1408.44 21780102 | 1104.19 18280501 | 35227 6721585
BB+MBMM(,1) - - | 3253.52 35114767 | 1119.96 15193688 | 1046.74 16149075 389.39 4938087 21.37 459902
AOBB+MB(i) 156.22 1452909 71.77 492383 | 1275.38 419109 | 3252.94 411225 - - - -
AOBB+MB(i,1) 151.57 1452909 41.20 492383 30.97 351672 21.04 279360 22.17 281745 11.02 176409
AOBB+MBMM(,1) 68.48 612721 23.95 323892 11.55 158230 6.56 148781 8.43 133786 2.62 47718
DFS - -

200 BB+MB(i) - - - - - - - - - - - -

(36,48) | BB+MB(i,1) - - - - - - - - | 345890 56460524 | 2639.46 58444711
BB+MBMM(,1) - - - - - - | 2780.10 41392520 | 2342.75 37828931 | 1495.49 29931863
AOBB+MB(i) 155537 8510209 | 1126.37 4969424 | 2285.98 813793 | 3458.96 96389 - - - -
AOBB+MB(,1) 1537.41 9957428 | 1112.31 7572102 | 979.05 9370560 | 738.42 7390775 | 433.13 3553045 | 113.94 1407589
AOBB+MBMM(,1) | 1155.54 8448489 | 1108.73 7985450 | 197.49 2193611 | 224.53 1974790 | 364.89 2768420 | 109.25 1344753

heuristics with potential approximation of size 1 and moment-matching (i.e., BB+MBMM(,1),
AOBB+MBMM(j, 1)), respectively. In addition to the branch-and-bound algorithms, we also ran the
brute force depth-first search algorithm denoted by DFS.

E.2 RESULTS FOR MAXIMIN MAP

Tables [T0] and [TT] summarize the results obtained on the random and grid credal networks for
the Maximin MAP task. In addition, Table @ shows the results obtained on the real-world credal
networks. As before, we report the average CPU time in seconds and average number of nodes
expanded during search, across various mini-bucket 7-bounds. We can see again that the AND/OR
Branch and Bound algorithms that exploit the problem structure dramatically outperform their OR
search counterparts, across all reported i-bounds.

However, unlike the Maximax MAP case, the Maximin MAP task appears to be much more difficult
to solve by the proposed AND/OR search algorithm. This is primarily due to the much weaker
mini-bucket heuristics compiled for Maximin MAP compared to those compiled for Maximax MAP.
Indeed, we recall that the variable elimination procedure described by Algorithm 3]is not exact for
Maximin MAP and only outputs an upper bound on the optimal Maximin MAP value. Consequently,
the mini-bucket approximation of this bound turns out to be much looser even if we try to tighten it
with the moment-matching scheme.

17

Under review as a conference paper at ICLR 2026

Table 8: Results for Maximax MAP on grid credal networks. Average CPU time (sec) and number
of nodes expanded using mini-bucket ¢-bounds from 2 to 12. Time limit 1 hour.

size algorithm i=2 i=4 i=6 i=8 i =10 =12

(w*,h) time nodes time nodes time nodes time nodes time nodes time nodes
DFS 1051.72 67108864

25 BB+MB(i) 0.06 3664 0.05 242 | 3275.18 27 | 3288.28 27 | 3283.06 27 | 3287.40 27

(5,15) | BB+MB(,1) 0.07 3664 0.01 242 0.00 27 0.01 27 0.01 27 0.01 27
BB+MBMM(,1) 0.06 1436 0.01 88 0.00 27 0.01 27 0.04 27 0.01 27
AOBB+MB(i) 0.01 122 0.05 50 | 3278.58 27 | 3286.95 27 | 3283.82 27 | 3289.09 27
AOBB+MB(i,1) 0.01 122 0.01 50 0.01 27 0.01 27 0.04 27 0.01 27
AOBB+MBMM(,1) 0.01 97 0.04 32 0.01 27 0.02 27 0.06 27 0.01 27
DFS - -

49 BB+MB(i) 141.09 4454273 5.10 53819 | 3524.41 498 - - - - - -

(9,25) BB+MB(i,1) 189.40 4454273 223 53819 0.02 708 0.01 74 0.04 51 0.02 51
BB+MBMM(i, 1) 80.93 1728866 1.01 20768 0.01 96 0.02 53 0.06 51 0.03 51
AOBB+MB(i) 0.03 562 0.11 266 | 3392.24 132 - - - - - -
AOBB+MB(,1) 0.03 562 0.03 266 0.01 144 0.03 63 0.06 51 0.03 51
AOBB+MBMM(i,1) 0.02 299 0.07 227 0.01 67 0.03 52 0.10 51 0.02 51
DFS

100 BB+MB(i) - - - - - - - - - - - -

(14,38) | BB+MB(,1) - - - - | 2069.82 32793488 51.48 1342799 0.17 4123 0.06 783
BB+MBMM(i,1) - - | 3287.93 45186026 | 362.59 5259684 0.07 699 0.13 123 0.07 102
AOBB-+MB(i) 3.82 65648 0.23 2138 - - - - - - - -
AOBB+MB(i,1) 3.56 65648 0.13 2138 0.07 1930 0.09 1277 0.24 477 0.05 233
AOBB+MBMM(i, 1) 0.74 19531 0.30 2138 0.06 1235 0.07 226 0.21 107 0.05 102
DFS

144 BB+MB(i) - - - - - - - - - - - -

(18,49) | BB+MB(i,1) - - - - - - | 2882.01 51081184 | 986.25 23294052 5.44 184268
BB+MBMM(i,1) - - - - | 3244.43 38700863 38.68 736998 0.35 1810 0.16 1787
AOBB+MB(i) 33.80 524460 0.42 8355 - - - - - - - -
AOBB+MB(i,1) 43.48 524460 0.46 8355 0.28 8324 0.33 7073 0.74 5710 0.15 2278
AOBB+MBMM(i,1) 18.45 247311 0.73 8325 0.27 7413 0.11 1046 0.32 327 0.09 243
DFS

196 BB+MB(i) - - - - - - - - - - - -

(20,57) | BB+MB(,1) - - - - - - - - - - | 2243.14 53048783
BB+MBMM(,1) - - - - - - | 3240.10 39599609 | 1072.23 16685172 0.24 1060
AOBB+MB(i) 961.58 10746465 1.54 32950 | 3478.82 32950 - - - - - -
AOBB+MB(,1) 1162.59 10746465 1.92 32950 1.31 32950 1.62 32945 2.22 32950 1.01 25366
AOBB+MBMM(,1) | 395.68 4201397 2.19 32950 1.03 31339 1.18 24508 1.83 32948 0.14 480

Consequently, the AND/OR branch and bound algorithms for Maximin MAP guided by the mini-
bucket heuristics with potential approximation of size 1 and moment-matching can only solve random
problems with up to 150 variables.

We observe however that AOBB+MB(i) with relatively small ¢-bounds (i.e., 2 or 4) performs quite
well and is able to solve the problems relatively efficiently. This indicates that the corresponding
mini-bucket bounds without potential approximation and moment-matching are tighter than those
involving the Pareto least upper bound. Unfortunately, compiling the MB(i) heuristics for higher
i-bounds is not feasible because of the computational overhead. Therefore, a possible direction of
future work is to study of the mini-bucket heuristics for Maximin MAP and develop new ways to
tighten them even further.

F COMPARISON WITH LOCAL SEARCH ALGORITHMS

We also extended the local search algorithms developed previously for credal Marginal MAP (Mari-
nescu et al., 2023) to solving the credal maximax and maximin MAP tasks as well. Specifically, we
developed the following algorithms: Stochastic Local Search (SLS), Taboo Search (TS), Simulated
Annealing (SA) and Guided Local Search (GLS), respectively. In all our experiments, we ran the
algorithms for a total of 10 iterations (i.e., random restarts) with a maximum of 100,000 flips per
iterations. The random flip probability was set to 0.1, the taboo list had a maximum size of 1,000,
while the alpha and initial temperature used by SA were set to 0.1 and 100, respectively. As before,
the time limit was set to 1 hour.

Tables[T3|and[T5]present the results for the Maximax MAP task on both random and real-world credal
networks. Similarly, Tables[T4]and [T report the results for the Maximin MAP task on the same set
of problem instances.

G SUMMARY OF THE CONTRIBUTION

This paper presents significant advancements in the field of MAP inference for credal networks.
While MAP inference has been extensively studied in Bayesian networks over the past decades, its
counterpart in credal networks has received comparatively limited attention. To date, there exists no
established algorithmic framework for solving credal MAP tasks in practical settings.

18

Under review as a conference paper at ICLR 2026

Table 9: Results for Maximax MAP on real-world credal networks. CPU time (sec) and number of
nodes expanded using mini-bucket i-bounds from 2 to 12. Time limit 1 hour.

instance algorithm i=2 i=4 i=6 i=8 i=10 i=12
(n, w, h) time nodes time nodes time nodes time nodes time nodes time nodes
BB+MB(7) 2030.54 150170 3.98 50 5.67 39 6.07 39 3.87 39 9.33 39
alarm BB+MBMM(i,1) 5.52 4535 3.77 39 3.99 39 4.92 39 5.36 39 545 39
(37.4,12) AOBB+MB(i) 5.78 85 4.81 42 5.25 39 7.64 39 6.60 39 6.56 39
AOBB+MBMM(i,1) 2.62 52 2.82 39 2.80 39 5.38 39 2.80 39 2.75 39
BB+MB(7) 0.02 77 0.00 72 0.00 72 0.00 72 0.00 72 0.04 72
child BB+MBMM(i,1) 0.00 73 0.00 72 0.01 72 0.01 72 0.00 72 0.01 72
(20,3.6) AOBB+MB(i) 0.01 24 0.02 22 0.00 22 0.00 22 0.01 22 0.01 22
AOBB+MBMM(i,1) 0.00 23 0.00 22 0.00 22 0.00 22 0.00 22 0.00 22
BB+MB(7) - - 8.67 174 - - - - - - - -
hailfinder BB+MBMM(i, 1) - - 12.70 168 11.31 58 10.96 58 11.77 58 10.87 58
(56,5,11) AOBB+MB(i) 11.57 80 10.26 62 - - - - - - - -
AOBB+MBMM(i,1) 11.08 84 11.31 62 11.64 58 11.02 58 10.74 58 11.22 58
BB+MB(7) 1.05 4829 112 4199 - - - - - - - -
insurance BB+MBMM(i,1) 0.47 2230 0.13 534 0.12 250 0.09 170 0.07 170 0.10 170
(27,7.11) AOBB+MB(i) 0.08 89 0.08 86 - - - - - - - -
AOBB+MBMM(i,1) 0.07 87 0.07 78 0.06 57 0.06 56 0.07 56 0.08 56
BB+MB(7) - - - - - - - - - - - -
link BB+MBMM(i,1) - - - - - - - - - - - -
(724,15,43) AOBB+MB(i) 23.09 67424 3.74 1772 - - - - - - - -
AOBB+MBMM(i,1) 9.77 33603 2.97 1004 2.99 978 2.79 978 2.58 793 2.88 735
BB+MB(7) - - - - - - -
mastermind1 BB+MBMM(i,1) - - - - - - - -
(1220,20,56) | AOBB+MB(i) - 102.60 34669 - - - - - - - -
AOBB+MBMM(i,1) - 26.64 34493 9.96 17619 9.97 17619 9.83 17619 9.67 17619

BB+MB(i)
mastermind3 BB+MBMM(i,1)
(3692,39.92) | AOBB+MB(i)
AOBB+MBMM(i,1)

3264.92 2180932 | 3088.55 2172466 | 3036.91 2167200 | 3010.41 2167117

BB+MB(7) 5877 349847 0.87 42 1.44 37 1.40 37 1.25 37 1.92 37
mildew BB+MBMM(i,1) 3.14 23006 0.10 37 0.11 37 0.11 37 0.11 37 0.12 37
(35.4,15) AOBB+MB(i) 0.13 112 0.73 41 1.85 37 1.81 37 1.27 37 1.44 37
AOBB+MBMM(i,1) 0.08 67 0.13 37 0.11 37 0.11 37 0.12 37 0.12 37
BB+MB(7) - - - - - - - - - - - -
munin BB+MBMM(i,1) - - - - 3585 88721 7.71 1056 7.47 1043 7.04 1043
(1041.8,26) AOBB+MB(7) 2.11 1311 3.10 1076 - - - - - - - -
AOBB+MBMM(i,1) 1.96 1127 1.72 1076 1.78 1044 1.74 1043 1.62 1043 1.59 1043
BB+MB(7) - - - - - - - - - - - -
pedigreel BB+MBMM(i,1) - - - - - - - - - - 93.25 974000
(334,21.47) AOBB+MB(7) 1699.58 8389182 33.27 131390 | 158.79 131390 - - - - - -
AOBB+MBMM(i,1) | 1543.91 8389051 34.84 131390 29.64 84817 29.90 104772 23.39 12259 22.50 466
BB+MB(7) - - - - - -
pedigree7 BB+MBMM(i,1) - - - - - -

(1068,44,88) | AOBB+MB(7) - -
AOBB+MBMM(i,1) - -

BB+MB(i)

pedigree9 BB+MBMM(i,1) - -
(1118,33,106) | AOBB+MB(i) - -

2876.21 16663195 289.24 1907613 7435 547430

- - | 3004.43 132421 - - - - - -
3126.56 16782641 55.63 121021 12.69 25684 8.96 15477 16.43 32946

AOBB+MBMM(i, 1)
BB+MB(i) - - - - 16572 415 | 11947 415 | 191.26 415 | 166.74 415
xdiabetes BB+MBMM(i, 1) - - - - 052 415 0.56 415 0.58 415 0.57 415
(413,4,44) AOBB+MB(i) 0.40 529 1.04 426 | 158.02 415 | 179.66 415 | 163.06 415 | 114.08 415
AOBB+MBMM(i, 1) 0.19 495 0.12 426 021 415 021 415 0.26 415 0.25 415
BB+MB(i) 325520 589618 | 17.32 819 - - - - - - - -
zbarley BB+MBMM(i, 1) 8.67 3897 7.89 74| 1571 50 | 1582 50| 16.92 50| 17.35 50
(48,7.21) AOBB+MB(i) 2224 170 | 13.44 76 - - - - . s . -
AOBB+MBMM(i, 1) 7.97 82 7.66 57| 1553 50 | 1611 50| 16.99 50| 1693 50
BB+MB(i) - - | 257816 3730772 | 223.00 1076 - - B B B .
2pigs BB+MBMM(i, 1) - - 1.33 13235 0.79 463 0.69 443 0.73 443 0.77 443
(441,1025) | AOBB+MB(i) 0.37 535 0.64 463 | 232,95 456 - - - - - -
AOBB+MBMM(i, 1) 0.19 480 0.16 454 021 444 035 443 0.33 443 0.35 443

Recently, [Marinescu et al.|(2023) pioneered the study of Marginal MAP inference in credal networks
— a generalization of pure MAP inference. They introduced several stochastic local search algorithms
alongside an exact brute-force depth-first search method. However, their empirical evaluation revealed
that these approaches are either limited to very small problem instances or lack guarantees regarding
the quality of the solutions produced.

In response to these limitations, we propose a novel branch-and-bound search framework designed to
address two critical challenges: (1) scalability to larger and more complex credal networks, and (2)
provision of solution quality guarantees, particularly optimality. Our approach leverages the AND/OR
search space to exploit the underlying problem structure efficiently. This is further enhanced by a
partitioning-based heuristic that integrates potential approximations with cost-shifting strategies. The
AND/OR search space, previously shown to yield substantial time savings in Bayesian networks, is
here extended to credal networks and to both maximax and maximin MAP tasks.

Given that mini-bucket approximations of variable elimination in credal networks often incur high
computational costs due to very large potentials, we introduce a novel approximation scheme. This
scheme utilizes the Pareto least upper bound concept for multi-dimensional vectors to manage
potential complexity effectively.

19

Under review as a conference paper at ICLR 2026

Table 10: Results for Maximin MAP on random credal networks. Average CPU time (sec) and
number of nodes expanded using mini-bucket i-bounds from 2 to 12. Time limit 1 hour.

size algorithm i=2 i=6 i=8 i=10 i=12

(w*,h) time nodes time nodes time nodes time nodes time nodes time nodes
DFS 18.55 2097152

20 BB+MB(i) 0.10 2432 0.06 1453 0.05 1219 0.05 1219 0.05 1219 0.05 1219

4,9) BB+MB(,1) 0.10 2432 0.06 1453 0.05 1219 0.05 1219 0.05 1219 0.05 1219
BB+MBMM(,1) 0.10 1776 0.07 1268 0.11 1219 0.10 1219 0.20 1219 0.22 1219
AOBB+MB(i) 0.01 62 0.01 48 769.29 41 783.35 40 781.64 41 781.84 41
AOBB+MB(i,1) 0.01 93 0.01 73 0.00 69 0.00 69 0.00 69 0.00 69
AOBB+MBMM(,1) 0.01 85 0.01 71 0.01 69 0.01 69 0.01 69 0.01 69
DFS - -

50 BB+MB(i) 2197.76 50789183 | 2235.78 59543636 | 2466.74 49480309 - - - - - -

9,17) BB+MB(i,1) 2695.59 50966426 | 2374.55 47802338 | 2073.88 43649700 | 2307.14 48401873 | 2415.52 50355186 | 2383.77 48786553
BB+MBMM(i, 1) 2462.65 46982744 | 2166.87 43940482 | 2184.39 45607376 | 2405.55 50088103 | 2411.81 50116876 | 2390.75 48487153
AOBB+MB(i) 0.03 511 0.05 407 | 1564.38 297 | 3257.63 591 - - - -
AOBB+MB(,1) 0.06 992 0.04 767 0.03 674 0.04 697 0.04 777 0.03 683
AOBB+MBMM(i,1) 0.06 816 0.05 678 0.04 610 0.06 702 0.06 689 0.05 683
DFS - -

100 BB+MB(i) - - - - - - - - - - - -

(18,28) | BB+MB(,1) - - - - - - - - - - - -
BB+MBMM(i,1) - - - - - - - - - - - -
AOBB-+MB(i) 321.81 2288083 | 339.53 1490415 | 2335.24 686105 - - - - - -
AOBB+MB(i,1) 370.60 2519857 | 343.64 2403898 | 31594 2380625 | 310.87 2385030 | 296.38 2348286 | 297.56 2356143
AOBB+MBMM(i, 1) 360.05 2510757 349.68 2488775 314.74 2381402 307.27 2380974 306.49 2370181 297.10 2363219
DFS - -

150 BB+MB(i) 3241.73 24284657 | 3244.87 25909874 | 3251.83 8188419 - - - - - -

(27,38) | BB+MB(i,1) 3241.71 23719408 | 3241.20 27381745 | 3241.03 30027153 | 3240.94 30044581 | 3240.74 30979810 | 3240.63 40077583
BB+MBMM(i,1) 3241.64 23573902 | 3241.23 26682191 | 3241.07 29702609 | 3240.90 30399636 | 3240.69 33921616 | 3240.45 39299760
AOBB+MB(i) 2536.15 10771808 | 2293.90 7957842 | 3248.25 1112588 - - - - - -
AOBB+MB(i,1) 3242.14 16470814 | 2498.93 15012036 | 2825.31 18955066 | 2990.98 19312663 | 2299.04 16106412 | 2450.80 20333769
AOBB+MBMM(i,1) | 3099.09 15395878 | 2951.84 16626578 | 2216.77 16053772 | 2299.99 15835166 | 2546.68 19344809 | 2605.07 19840368
DFS - -

200 BB+MB(i) - - - - - - - - - - - -

(36,48) | BB+MB(i,1) - - - - - - - - - - - -
BB+MBMM(i, 1) - - - - - - - - - - - -
AOBB+MB(i) - - - - - - - - - - - -
AOBB+MB(,1) - - - - - - - - - - - -
AOBB+MBMM(,1) - - - - - - - - - - - -

Table 11: Results for Maximin MAP on grid credal networks. Average CPU time (sec) and number
of nodes expanded using mini-bucket ¢-bounds from 2 to 12. Time limit 1 hour.

size algorithm i=2 i=4 i=6 i=8 i=10 =12

(w*,h) time nodes time nodes time nodes time nodes time nodes time nodes
DFS 1051.72 67108864

25 BB+MB(i) 0.06 3664 0.05 242 | 3275.18 27 | 3288.28 27 | 3283.06 27 | 3287.40 27

(5,15) BB+MB(i,1) 51.33 2139003 54.13 2101943 53.70 2083684 53.78 2083684 53.24 2083684 52.73 2083684
BB+MBMM(i,1) 45.17 2142018 42.65 2092694 41.02 2083684 41.61 2083684 42.52 2083684 38.19 2083684
AOBB+MB(i) 0.01 122 0.05 50 | 3278.58 27 | 3286.95 27 | 3283.82 27 | 3289.09 27
AOBB+MB(i,1) 0.06 3680 0.06 3509 0.06 3496 0.05 3496 0.05 3496 0.05 3496
AOBB+MBMM(i,1) 0.10 3653 0.10 3506 0.10 3496 0.10 3496 0.09 3496 0.09 3496
DFS - -

49 BB+MB(i) 141.09 4454273 5.10 53819 | 3524.41 498 - - - - - -

(9,25) BB+MB(,1) - - - - | 3469.28 110049922 | 3555.44 129042447 | 3552.79 135249370 | 3579.86 141018196
BB+MBMM(i,1) - - 1352294 120903523 | 3593.77 130957532 | 2880.00 137553732 - - - -
AOBB+MB(i) 0.03 562 0.11 266 | 3392.24 132 - - - - - -
AOBB+MB(i,1) 1.30 65652 0.63 40579 0.92 39381 1.03 39748 1.02 39624 1.02 39624
AOBB+MBMM(i,1) 2.76 67608 1.28 39705 1.26 40029 1.23 39650 1.20 39624 1.27 39624
DFS - -

100 BB+MB(i) 3410.80 45573423 - - - - - - - - - -

(14,38) | BB+MB(,1) - - - - - - - - - - - -
BB+MBMM(i,1) - - - - - - | 2880.00 86787865 - - - -
AOBB+MB(i) 75.49 32883 79.54 1126 | 3428.01 102 | 3427.41 102 - - - -
AOBB+MB(i,1) 390.56 10949062 364.18 10424997 363.35 11333724 362.88 11541125 362.84 10914068 362.85 11132756
AOBB+MBMM(i,1) 384.44 8520856 365.06 8545588 364.31 9051579 363.55 9057851 362.98 9007334 363.20 9076567

DFS - -
144 BB+MB(i) - - - - - - - - - - - -
(20,57) | BB+MB(,1) - - - - - - - -
BB+MBMM(i, 1) - - - - - - | 2880.01 56234017
AOBB-+MB(i) 3380 524460 0.42 8355 - - - - - - -
AOBB+MB(i, 1) - - | 1897.99 61463739 | 145534 52054673 | 1455.18 52062183 | 1451.04 52765048 | 1451.10 55655798
AOBB+MBMM(i,1) | 3034.07 58071151 | 1729.59 45653311 | 1457.68 44054565 | 145540 44027607 | 1453.50 44223628 | 1452.31 48988157

DFS - -
196 BB+MB(i) - - . - B - . . B .))
(18,49) | BB+MB(, 1) - - , . . .

BB+MBMM(, 1)

2880.02 58543756

AOBB+MB(i) 961.58 10746465 1.54 32950 | 3478.82 32950 - - - - - -
AOBB+MB(i,1) - - | 2279.84 31996332 | 2279.38 35298631 | 2248.19 38894634 | 1931.02 36055993 - -
AOBB+MBMM(, 1) - - | 1670.52 20372342 | 1960.68 25768210 | 2259.95 32030876 | 1638.70 ~ 27250308 | 2249.21 37315455

Our empirical results obtained on both synthetic and more realistic credal networks demonstrate that
the proposed methods not only enhance computational efficiency but also scale to large networks
with over 1,000 variables, all while guaranteeing the optimality of the solutions.

Finally, we observed that Maximin MAP is much more difficult to solve by our proposed algorithms
than Maximax MAP. This is because the mini-bucket based heuristic upper bounds for Maximin
MAP are significantly weaker than those compiled for Maximax MAP. Therefore, another avenue for
future work is to explore new ways to tighten the mini-bucket heuristics for Maximim MAP.

20

Under review as a conference paper at ICLR 2026

Table 12: Results for Maximin MAP on real-world credal networks. CPU time (sec) and number of
nodes expanded using mini-bucket i-bounds from 2 to 12. Time limit 1 hour.

instance algorithm i=2 i=4 i=6 i=8 i =10 i=12
(n, w, h) time nodes time nodes time nodes time nodes time nodes time nodes
BB+MB(i) 128.78 2522160 | 110.17 2522160 96.03 2522160 98.37 2522160 77.19 2522160 81.93 2522160
alarm BB+MBMM(i,1) 126.35 2522160 | 106.60 2522160 | 101.46 2522160 97.39 2522160 89.28 2522160 63.16 2522160
(37,4,12) AOBB+MB(i) 6.90 460 3.86 348 6.79 348 5.60 348 5.68 348 5.49 348
AOBB+MBMM(i,1) 6.96 394 3.77 348 7.11 348 6.64 348 6.17 348 6.91 348
BB+MB(i) 0.06 1792 0.04 1786 0.05 1786 0.08 1786 0.05 1786 0.04 1786
child BB+MBMM(i,1) 0.06 1790 0.05 1786 0.04 1786 0.04 1786 0.03 1786 0.04 1786
(20,3,6) AOBB+MB(i) 0.00 28 0.00 27 0.00 27 0.00 27 0.00 27 0.01 27
AOBB+MBMM(i,1) 0.00 27 0.00 27 0.00 27 0.00 27 0.00 27 0.00 27
BB+MB(i) - - - - - - - - - - - -
hailfinder BB+MBMM(i, 1) - - - - - - - - - - - -
(56.5.11) AOBB+MB(7) 10.79 411 10.24 389 10.61 389 8.66 389 9.63 389 9.64 389
AOBB+MBMM(i,1) | 10.47 408 10.14 389 10.29 389 10.07 389 10.09 389 9.37 389
BB+MB(i) 1322 158023 1432 155472 1134 135918 11.14 135918 8.63 135918 1257 135918
insurance BB+MBMM(i,1) 1545 191919 13.12 140051 1223 135918 10.79 135918 7.80 135918 12.63 135918
(27,7,11) AOBB+MB(i) 0.07 367 0.06 295 0.05 212 0.03 207 0.05 207 0.06 207
AOBB+MBMM(i,1) 0.07 315 0.07 268 0.06 212 0.05 207 0.03 207 0.06 207
BB+MB(7) - - - - - - - - - -
link BB+MBMM(i,1) - - - - - - - -

1663.40 7820555 | 1245.14 7448824 | 1180.95 7427647 | 1139.88 7405547 | 1072.66 7405953
- | 1538.40 7455392 | 1245.57 7406117 | 1188.28 7386176 | 1122.29 7383818 | 995.99 6862912

(724,15,43) AOBB+MB(7)
AOBB+MBMM(i,1)

BB+MB(i) R B R B R R B R _ B R N
mastermindl | BB+MBMM(,1) - - - - - - - - - - - -
(1220,20,56) | AOBB+MB(i) 49.00 64081 49.14 64240 3442 62281 32.35 61822 28.90 61189 30.69 60236

AOBB+MBMM(i,1) | 47.79 64081 49.17 64259 34.04 62281 32.14 61737 3229 61275 30.17 61245

BB+MB(i) - - - - - - - -

1200.00 1357913 | 1099.27 1357053 | 1092.61 1362794 | 1103.99 1370757

mastermind3 | BB+MBMM(i, 1) - - - -
- - - | 1205.83 1358178 | 1083.09 1360571 | 1077.06 1365064 | 1049.79 1367606

(3692,39.92) | AOBB+MB(i)
AOBB+MBMM(i, 1)

BB+MB(i) 0.09 5376 0.18 5376 0.17 5376 0.15 5376 0.10 5376 0.09 5376
mildew BB+MBMM(i,1) 0.15 5376 0.17 5376 0.19 5376 0.10 5376 0.19 5376 0.15 5376
(35.4,15) AOBB+MB(7) 0.22 1563 0.17 984 0.10 970 0.14 970 0.08 970 0.15 970
AOBB+MBMM(i,1) 0.20 1128 0.19 972 0.15 970 0.21 970 0.20 970 0.12 970
BB+MB(i) 0.58 2048 0.57 2048 0.51 2048 0.38 2048 0.32 2048 0.46 2048
zpigs BB+MBMM(,1) 0.56 2048 0.51 2048 0.48 2048 0.33 2048 0.47 2048 0.46 2048
(441,10,25) AOBB+MB(7) 0.58 2245 1.02 2192 0.88 2282 1.00 2282 0.88 2282 0.77 2282
AOBB+MBMM(i,1) 0.62 2282 1.01 2282 0.75 2282 0.85 2282 0.90 2282 0.99 2282

Table 13: Results for Maximax MAP on random and grid networks. Average CPU time in seconds
for systematic vs non-systematic search algorithms. Time limit 1 hour.

size \ AOBB+MBMM(i,1) \ SLS \ TS \ SA \ GLS
random networks
20 0.00 49.60 46.34 33.61 55.83
50 0.01 | 184.46 107.5 98.24 | 175.69
100 0.10 | 372.75 | 188.92 | 196.96 | 352.78
150 2.62 | 565.95 | 223.03 | 300.46 | 529.20
200 109.25 | 681.60 | 438.32 | 326.83 | 563.61
grid networks
25 0.01 53.21 44.77 38.20 59.95
49 0.01 | 186.56 68.27 59.30 | 169.44
100 0.05 | 350.69 | 171.27 | 164.97 | 327.31
144 0.09 | 421.20 | 203.42 | 207.58 | 424.90
196 0.14 | 572.15 | 312.78 | 362.54 | 456.23

21

Under review as a conference paper at ICLR 2026

Table 14: Results for Maximin MAP on random and grid networks. Average CPU time in seconds

for systematic vs non-systematic search algorithms. Time limit 1 hour.

size \ AOBB+MBMM(i, 1) \ SLS \ TS \ SA \ GLS
random networks
20 0.01 51.34 49.47 35.47 59.17
50 0.04 | 232.09 | 103.47 72.94 | 139.67
100 297.10 | 349.30 | 175.27 | 149.91 | 272.30
150 2216.77 | 471.92 | 311.40 | 198.21 | 384.21
200 - | 576.57 | 380.96 | 262.67 | 435.96
grid networks
25 0.09 61.80 46.19 39.46 62.67
49 1.20 | 178.29 73.36 63.61 | 120.19
100 362.98 | 355.03 | 213.00 | 114.30 | 258.98
144 1452.31 | 401.44 | 257.59 | 171.27 | 327.11
196 1638.70 | 508.97 | 277.42 | 245.27 | 466.84

Table 15: Results for Maximax MAP on the real-world credal networks. CPU time in seconds for
systematic vs non-systematic search algorithms. Time limit 1 hour.

instance | AOBB+MBMM(i,1) | SLS | TS | SA | GLS
alarm 2.62 | 3600.05 | 3600.00 | 3600.02 | 3600.02
child 0.00 23.22 28.96 8.88 14.99
hailfinder 10.74 | 3600.05 | 3600.05 | 3600.05 | 3600.05
insurance 0.06 296.68 219.52 146.25 145.71
link 2.58 | 3600.01 | 3600.01 | 3600.01 | 3600.01
mastermind1 9.67 | 3543.37 874.84 | 1056.13 | 2629.90
mastermind3 3010.41 | 3600.02 | 3600.02 | 3600.02 | 3600.02
mildew 0.08 | 242.49 128.90 124.13 257.74
munin 1.59 | 3600.00 | 1678.61 | 2563.09 | 3600.01
pedigreel 22.50 | 3600.00 | 3600.25 | 3600.25 | 3600.25
pedigree7 74.35 | 3600.00 | 3600.25 | 3600.25 | 3600.25
pedigree9 8.96 | 3600.00 | 3600.25 | 3600.25 | 3600.25
xdiabetes 0.12 | 44532 | 726.82 | 62227 688.75
zbarley 7.66 | 3600.08 | 3600.08 | 3600.08 | 3600.08
Zpigs 0.19 | 2478.80 638.01 673.14 | 1813.44

Table 16: Results for Maximin MAP on the real-world credal networks. CPU time in seconds for

systematic vs non-systematic search algorithms. Time limit 1 hour.

instance \ AOBB+MBMM(i,1) \ SLS \ TS \ SA \ GLS
alarm 3.77 | 3600.05 | 3600.00 | 3600.02 | 3600.02
child 0.00 25.54 19.07 6.43 31.67
hailfinder 9.37 | 3600.15 | 3600.04 | 3600.06 | 3600.05
insurance 0.03 | 447.66 113.53 98.23 196.98
link 995.99 | 3600.01 | 3600.02 | 3600.01 | 3600.03
mastermind 1 30.17 | 1965.99 | 94896 | 1237.18 | 2295.69
mastermind3 1049.79 | 3600.02 | 3600.02 | 3076.61 | 3600.02
mildew 0.12 | 741.58 557.08 190.81 240.82
zpigs 0.62 | 89496 | 282.35 257.57 542.11

22

	Introduction
	Background
	Bayesian Networks
	Credal Networks

	Branch-and-Bound Search for Credal MAP
	AND/OR Search Spaces for Credal Networks
	AND/OR Branch-and-Bound Search for Credal MAP

	Mini-Buckets for Credal MAP
	Potentials and Their Approximations
	The Maximax MAP Case
	The Maximin MAP Case

	Experiments
	Related Work
	Conclusion
	Appendix
	Depth-First Search for Maximax and Maximin MAP
	Bucket Elimination for Maximax MAP
	Mini-Buckets for Maximax MAP

	Bucket Elimination for Maximin MAP
	Additional Experiments
	Results for Maximax MAP
	Results for Maximin MAP

	Comparison with Local Search Algorithms
	Summary of the Contribution

