BRANCH-AND-BOUND SEARCH FOR EXACT MAP INFERENCE IN CREDAL NETWORKS

Anonymous authorsPaper under double-blind review

ABSTRACT

Credal networks extend Bayesian networks by incorporating imprecise probabilities through convex sets of probability distributions known as credal sets. MAP inference in credal networks, which seeks the most probable variable assignment given evidence, becomes inherently more difficult than in Bayesian networks because it involves computations over a complex joint credal set. In this paper, we introduce two tasks called *maximax* and *maximin* MAP, and develop depth-first branch-and-bound search algorithms for solving them *exactly*. The algorithms exploit problem decomposition by exploring an AND/OR search space and use a partitioning-based heuristic function enhanced with a cost-shifting scheme to effectively guide the search. Our experimental results obtained on both random and realistic credal networks clearly demonstrate the effectiveness of the proposed algorithms as they scale to large and complex problem instances.

1 Introduction

Credal networks (Cozman, 2000) are probabilistic graphical models that generalize Bayesian networks (Pearl, 1988) by allowing imprecise probabilities. Instead precise probability mass functions, they utilize convex sets of probability distributions known as credal sets to represent the local models for network variables given their parents. This enables a more flexible and robust treatment of uncertainty compared with Bayesian networks, accommodating severe uncertainty, unreliable data or conflicting information (Mauá & Cozman, 2020). Credal networks are especially valuable when precise probability estimates are difficult or undesirable to obtain. Moreover, credal networks are obtained in partially identifiable structural causal models with non-observed latent variables, as often met in causal discovery and inference (Zaffalon et al., 2020).

Over the past decades, research has primarily focused on developing marginal inference algorithms to efficiently compute the upper and lower probability bounds of a query variable given evidence in a credal network (Mauá & Cozman, 2020; Cano et al., 2007; Antonucci et al., 2010; Wijk et al., 2022). Maximum a Posteriori or MAP inference tasks for credal networks, which aim to identify the most probable value assignments to the variables given evidence, have received relatively little attention from the community. This stands in stark contrast to Bayesian network MAP, which has been extensively investigated over the years (Koller & Friedman, 2009).

MAP inference in credal networks is substantially more challenging than in Bayesian networks due to computations over the joint credal set. Despite its difficulty, it remains relevant for explaining evidence, whether or not hidden variables are involved. Some recent work has proposed a variety of exact and approximate algorithms for Marginal MAP inference in credal networks, including variable elimination, exhaustive depth-first search and stochastic local search (Marinescu et al., 2023). Although these methods can be trivially extended to credal MAP inference they often scale poorly, limiting applicability to small models or offering no guarantees on solution quality.

Contributions: This paper advances recent research on MAP inference in credal networks. In particular, we focus on two MAP tasks called *maximax* and *maximin* MAP, defined as finding an assignment to the network variables that is consistent with the evidence and has a maximum *upper* and, respectively, *lower probability*. We introduce new depth-first branch-and-bound search algorithms for solving these tasks *exactly* in practice. The methods leverage an AND/OR search space associated with the credal network, effectively exploiting the underlying problem structure during search. The proposed AND/OR search for credal networks extends the approach previously developed

for Bayesian networks (Dechter & Mateescu, 2007). Furthermore, we enhance these algorithms with a novel partitioning-based heuristic that combines potential approximations with cost-shifting strategies to produce effective search heuristics. We empirically evaluate the new MAP inference algorithms on random credal networks with various graph topologies and on a collection of credal networks derived from real-world applications. Our experimental results demonstrate that our algorithms significantly improve computational efficiency, scaling effectively to large problems with over 3000 variables while guaranteeing the optimality of the solutions found. Thus, our proposed approach addresses two major shortcomings of previous methods for MAP inference in credal networks: the lack of solution quality guarantees and the inability to solve large and complex problems. The Appendix includes additional details, experimental results, code and benchmarks.

2 BACKGROUND

2.1 BAYESIAN NETWORKS

A Bayesian network (BN) (Pearl, 1988) is defined by a tuple $\langle \mathbf{X}, \mathbf{D}, \mathbf{P}, G \rangle$, where $\mathbf{X} = \{X_1, \dots, X_n\}$ is a set of variables over multi-valued domains $\mathbf{D} = \{D_1, \dots, D_n\}$, G is a directed acyclic graph (DAG) over \mathbf{X} as nodes, and $\mathbf{P} = \{P_i\}$ where $P_i = P(X_i | \Pi_i)$ are conditional probability tables (CPTs) associated with each variable X_i and $\Pi_i \subseteq \mathbf{X}$ are the parents of X_i in G. A Bayesian network represents a joint probability distribution over \mathbf{X} , given by $P(\mathbf{X}) = \prod_{i=1}^n P(X_i | \Pi_i)$.

Given evidence e on a subset of variables $\mathbf{E} \subseteq \mathbf{X}$, the MAP task seeks an assignment $\mathbf{y}^* = (y_1^*, \dots, y_m^*)$ to the remaining variables $\mathbf{Y} = \mathbf{X} \setminus \mathbf{E}$ that has a maximum probability:

$$\mathbf{y}^* = \underset{\mathbf{y} \in \Omega(\mathbf{Y})}{\arg \max} P(\mathbf{y}, \mathbf{e}) = \underset{\mathbf{y} \in \Omega(\mathbf{Y})}{\arg \max} \prod_{i=1}^n P(x_i | \pi_i)$$
(1)

where $\Omega(\mathbf{Y})$ denotes the Cartesian product of the domains of the variables in \mathbf{Y} , while x_i and π_i are the configurations of X_i and X_i 's parents Π_i in the assignment $\mathbf{x} = (\mathbf{y}, \mathbf{e})$ consistent with \mathbf{e} .

MAP is known to be NP-hard in general (Shimony, 1994; Kwisthout, 2011). However, in recent decades, several algorithmic schemes have been developed to solve MAP exactly (Kask & Dechter, 1999; Larrosa & Schiex, 2003; Marinescu & Dechter, 2009; Otten & Dechter, 2011).

2.2 CREDAL NETWORKS

A set of probability distributions for variable X is called a *credal set* and is denoted by K(X) (Levi, 1980). Similarly, a *conditional credal set* is a set of conditional distributions, obtained by applying Bayes rule to each distribution in a credal set of joint distributions (Walley, 1991). We consider credal sets that are closed and convex with a finite number of vertices. Two credal sets $K(X|Y=y_1)$ and $K(X|Y=y_2)$, where $y_1 \neq y_2$ are two values in variable Y's domain, are called *separately specified* if there is no constraint on the first set that is based on the properties of the second set.

A credal network (CN) (Cozman, 2000) is defined by a tuple $\langle \mathbf{X}, \mathbf{D}, \mathbf{K}, G \rangle$, where $\mathbf{X} = \{X_1, \dots, X_n\}$ is a set of discrete variables with finite domains $\mathbf{D} = \{D_1, \dots, D_n\}$, G is a directed acyclic graph (DAG) over \mathbf{X} as nodes, and $\mathbf{K} = \{K(X_i | \Pi_i = \pi_{ik})\}$ is a set of separately specified conditional credal sets for each variable X_i and each k-th configuration π_{ik} of its parents Π_i in G. The strong extension $K(\mathbf{X})$ of a credal network is the convex hull (denoted CH) of all joint distributions that satisfy the following Markov property: every variable is strongly independent of its non-descendants conditional on its parents (see Cozman (2000) for more details).

$$K(\mathbf{X}) = CH\{P(\mathbf{X}) : P(\mathbf{X}) = \prod_{i=1}^{n} P(X_i | \pi_{ik}), P(X_i | \pi_{ik}) \text{ is a vertex of } K(X_i | \Pi_i = \pi_{ik})\}$$
 (2)

It can be shown that the strong extension $K(\mathbf{X})$ can be built from the extreme points of the conditional local credal sets denoted by $\text{ext}(K(X_i|\Pi_i=\pi_{ik}))$ (Mauá & Cozman, 2020).

Example 1. Figure 1a shows a simple credal network with five bi-valued variables $\{A, B, C, D, E\}$. The local conditional credal sets are given by closed probability intervals. For example, we have that $0.1 \le P(B=1|A=0) \le 0.3$ and $0.5 \le P(B=1|A=1) \le 0.7$, respectively.

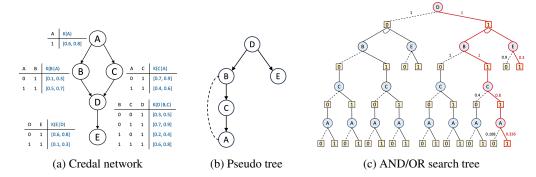


Figure 1: Example of a credal network and its AND/OR search space.

In credal networks, there may be multiple distributions that admit maximal assignments (Mauá & Cozman, 2020). Therefore, we define the following *maximax* and *maximin* credal MAP tasks:

Definition 1 (maximax MAP). Given a credal network $C = \langle \mathbf{X}, \mathbf{D}, \mathbf{K}, G \rangle$ and evidence \mathbf{e} on $\mathbf{E} \subseteq \mathbf{X}$, the maximax MAP task is finding the assignment $\overline{\mathbf{y}}^*$ to $\mathbf{Y} = \mathbf{X} \setminus \mathbf{E}$ with maximum upper probability:

$$\overline{\mathbf{y}}^* = \underset{\mathbf{y} \in \Omega(\mathbf{Y})}{\operatorname{arg max}} \max_{P(\mathbf{Y}, \mathbf{e}) \in K(\mathbf{X})} \prod_{i=1}^n P(X_i | \Pi_i)$$
(3)

Definition 2 (maximin MAP). Given a credal network $C = \langle \mathbf{X}, \mathbf{D}, \mathbf{K}, G \rangle$ and evidence \mathbf{e} on $\mathbf{E} \subseteq \mathbf{X}$, the maximin MAP task is finding the assignment \mathbf{y}^* to $\mathbf{Y} = \mathbf{X} \setminus \mathbf{E}$ with maximum lower probability:

$$\underline{\mathbf{y}}^* = \underset{\mathbf{y} \in \Omega(\mathbf{Y})}{\operatorname{arg \, max}} \min_{P(\mathbf{Y}, \mathbf{e}) \in K(\mathbf{X})} \prod_{i=1}^n P(X_i | \Pi_i)$$
(4)

It is easy to see that the upper probability (or value) of an assignment $\mathbf{x}=(x_1,\ldots,x_n)$ to \mathbf{X} can be calculated as $\overline{P}(\mathbf{x})=\prod_{i=1}^n\overline{P}(x_i|\pi_i)$, where x_i and π_i are X_i and Π_i 's configurations in \mathbf{x} , and $\overline{P}(x_i|\pi_i)=\max \operatorname{ext}(K(x_i|\pi_i))$ is the extreme point of $K(x_i|\pi_i)$ with the highest value. Similarly, the lower probability of \mathbf{x} is $\underline{P}(\mathbf{x})=\prod_{i=1}^n\underline{P}(x_i|\pi_i)$, where $\underline{P}(x_i|\pi_i)=\min \operatorname{ext}(K(x_i|\pi_i))$ is the extreme point of $K(x_i|\pi_i)$ with the smallest value.

Example 2. Consider again the credal network from Figure 1a and let $\mathbf{x}=(1,1,0,0,0)$ be a complete assignment to variables A, B, C, D and E. In this case, the conditional local credal sets K(A=1) and K(B=1|A=1) have 2 unique extreme points each, i.e., $ext(K(A=1))=\{0.6,0.8\}$ and $ext(K(B=1|A=1))=\{0.5,0.7\}$, respectively. The lower and upper probabilities of the assignment can be computed as $\underline{P}(\mathbf{x})=0.0144$ and $\overline{P}(\mathbf{x})=0.10752$, respectively.

MAP inference in credal networks can also be shown to be NP-hard (Kwisthout, 2011; Campos & Cozman, 2005). Despite sharing the same complexity class as Bayesian MAP, credal MAP involves an optimization step over the extreme points of the joint credal set, making it significantly more challenging to solve in practice. However, unlike Bayesian MAP, currently there are no established algorithmic frameworks for *exact* MAP inference in credal networks.

3 Branch-and-Bound Search for Credal MAP

We present now the first depth-first branch-and-bound search algorithms to exactly solve the *maximax* and *maximin* MAP tasks in credal networks. These algorithms explore an AND/OR representation of the search space which exploits the problem structure and has led to significant improvements in the search for MAP explanations in Bayesian networks (Marinescu & Dechter, 2009).

3.1 AND/OR SEARCH SPACES FOR CREDAL NETWORKS

The AND/OR search space which is defined relative to a *pseudo tree* capturing problem decomposition (Freuder & Quinn, 1985) has never been considered in the context of credal networks. Here, we extend and leverage it to facilitate the credal maximax and maximin MAP inference tasks.

163

164

165

166

167

168

169

170

171

172

173 174

175

176

177

178 179

180

181

182 183

184

185

186

187

188

189

190

191

192

193

195

196

197

199

200

201202

203204

205

206

207

208

209

210

211

212

213

214

215

Algorithm 1 AND/OR Branch-and-Bound Search for Maximax/Maximin Credal MAP

```
1: procedure AOBB(C = \langle \mathbf{X}, \mathbf{D}, \mathbf{K}, \rangle, \mathbf{e}, T)
                                                                                   12:
                                                                                               if f(\mathbf{x}_k) > S then
2:
      if X = \emptyset then
                                                                                   13:
                                                                                                 Initialize v(X_k, x_k) \leftarrow 1
        return 1
                                                                                   14.
                                                                                                 for all children X_q of X_k in T do
 3:
 4:
       else
                                                                                   15:
                                                                                                  val \leftarrow AOBB(\mathcal{C}_q, \mathbf{e}, T)
 5:
         X_k \leftarrow \text{SELECTVAR}(\mathbf{X}) according to T
                                                                                   16:
                                                                                                   v(X_k, x_k) \leftarrow v(X_k, x_k) \cdot val
         if X_k is evidence variable then
                                                                                   17:
 7:
           D_k = \{x_k\} such that x_k \in \mathbf{e}
                                                                                   18:
                                                                                                 Set v(X_k, x_k) \leftarrow 0
 8:
         Initialize v(X_k) \leftarrow 0
                                                                                   19:
                                                                                               \hat{\mathbf{x}}_k \leftarrow \hat{\mathbf{x}}_k \setminus \{X_k = x_k\}
9:
         for all values x_k \in D_k do
                                                                                               val \leftarrow w(X_k, x_k) \cdot v(X_k, v_k)
                                                                                   20:
10:
           \hat{\mathbf{x}}_k \leftarrow \hat{\mathbf{x}}_k \cup \{X_k = x_k\}
                                                                                   21:
                                                                                               Update v(X_k) \leftarrow \max(v(X_k), val)
11:
           Evaluate f(\hat{\mathbf{x}}_k)
                                                                                   22:
                                                                                             return v(X_k)
```

Definition 3 (pseudo tree). A pseudo tree of an undirected graph G = (V, E) is a directed rooted tree T = (V, E') such that every arc of G not included in E' is a back-arc in T, namely, it connects a node in T to one of its ancestors. The arcs in E' may not all be included in E.

Given a credal network $\langle \mathbf{X}, \mathbf{D}, \mathbf{K}, G \rangle$ and pseudo tree T of G, the AND/OR search tree S_T based on T has alternating levels of OR nodes corresponding to the variables and AND nodes corresponding to the values of the OR parent's variable, with edges weighted according to the extreme point of the conditional local credal sets in \mathbf{K} . The size of the AND/OR search tree is bounded exponentially by the depth of the pseudo tree rather than the number of variables (Dechter & Mateescu, 2007).

A solution tree $\hat{\mathbf{x}}$ of S_T is a subtree that: (1) contains the root of S_T ; (2) if an internal OR node $n \in S_T$ is in $\hat{\mathbf{x}}$ then n is labeled by a variable and exactly one of its children is in $\hat{\mathbf{x}}$; (3) if an internal AND node $n \in S_T$ is in $\hat{\mathbf{x}}$ then all its OR children labeled variables are in $\hat{\mathbf{x}}$.

Each edge from an OR node X_i to its AND child $\langle X_i, x_i \rangle$ is associated with a weight $w(X_i, x_i)$. For maximax MAP, the weight is defined by the product of the upper probabilities corresponding to the extreme points of the conditional local credal sets $K(X_j|\pi_{jk})$ whose scopes mention variable X_i and are completely instantiated along the path from the root of S_T to $\langle X_i, x_i \rangle$. For maximin MAP, we consider the lower probabilities instead. Each node n in S_T is associated with a value v(n) that captures the optimal maximax or maximin MAP value of the conditioned subproblem rooted at n. Clearly, v(n) can be computed recursively based on the values of n's successors and the corresponding edge weights: OR nodes by maximization and AND nodes by multiplication. The value of the optimal solution is therefore given by the value v(s) of the root node s of s.

Example 3. Figure 1c we show the AND/OR search tree of the credal network from Figure 1a relative to the pseudo tree given in Figure 1b. The solution tree $\hat{\mathbf{x}}$ corresponding to the assignment (A=1,B=1,C=1,D=1,E=1) is highlighted, and its maximax MAP value, for example, is obtained by multiplying the weights associated with the OR-to-AND edges in $\hat{\mathbf{x}}$. In this case, the weight w(A,1) of the edge from A to (A,1) in $\hat{\mathbf{x}}$ is $w(A,1)=\overline{P}(A=1)\cdot \overline{P}(B=1|A=1)\cdot \overline{P}(C=1|A=1)=0.336$, where $\overline{P}(A=1)=\max ext(K(A=1))=0.8$, $\overline{P}(B=1|A=1)=\max ext(K(B=1|A=1))=0.7$ and $\overline{P}(C=1|A=1)=\max ext(K(C=1|A=1))=0.6$, respectively.

3.2 AND/OR BRANCH-AND-BOUND SEARCH FOR CREDAL MAP

We present an AND/OR Branch and Bound algorithm designed to solve the maximax and maximin MAP tasks. This algorithm builds upon recent AND/OR search schemes developed for MAP inference in Bayesian networks (Marinescu & Dechter, 2009), extending them to credal networks.

Algorithm 1 outlines the AND/OR Branch and Bound (AOBB) approach for solving the maximax MAP problem in credal networks. We denote the current partial solution, the evidence and the value of the best solution found so far as $\hat{\mathbf{x}}$, \mathbf{e} , and S respectively. The algorithm assumes that variables are selected statically based on a pseudo tree T. A heuristic evaluation function, $f(\hat{\mathbf{x}})$, computes an upper bound on the optimal maximax MAP extension of $\hat{\mathbf{x}}$. For the maximin MAP task, only the computation of edge weights and the heuristic evaluation function needs to be adjusted.

If the set X is empty, the result is trivially computed (line 3). Otherwise, AOBB selects the next variable X_k in T and iterates over its domain values (i.e., its AND successors) to compute the OR node value $v(X_k)$ (lines 8-20). Subsequently, the algorithm attempts to prune unpromising domain

values by comparing the upper bound $f(\hat{\mathbf{x}})$ of the current partial solution tree $\bar{\mathbf{x}}$ to the value S of the current best solution tree found which is maintained by the root node s of the search space (line 12). For each domain value x_k of X_k , the problem rooted by the AND node labeled $\langle X_k, x_k \rangle$ is decomposed into r independent subproblems $\mathcal{C}_q = \langle \mathbf{X}_q, \mathbf{D}_q, \mathbf{K}_q \rangle$, one for each child X_q of X_k in T. Note that if X_k is an evidence variable then its domain is just $D_k = \{x_k\}$ where $x_k \in e$ (lines 6-7). These problems are then solved independently and their results are accumulated by the AND node value $v(X_k, x_k)$ (lines 14–15). After trying all possible values of variable X_k , the maximax MAP value of the subproblem rooted by X_k is $v(X_k)$ and is returned (line 21). Finally, the optimal maximax MAP value for the original problem is returned by the root node s of the search space.

AOBB computes its guided heuristic function $f(\hat{\mathbf{x}})$ using an improved mini-bucket based bounding scheme which we will describe in detail in Section 4. The heuristic can be pre-compiled along the reverse order of a depth-first traversal of the pseudo tree (which corresponds to an elimination order).

Theorem 1 (complexity). Given a credal network $C = \langle \mathbf{X}, \mathbf{D}, \mathbf{K}, G \rangle$ and evidence \mathbf{e} , the time and space complexities of algorithm AOBB are $O(n \cdot d^h)$ and O(n), respectively, where h is the depth of the pseudo tree T of G, n is the number of variables and d bounds their domain sizes.

4 MINI-BUCKETS FOR CREDAL MAP

We next describe novel partitioning-based bounds (aka mini-bucket bounds) that are compatible with AOBB search for both maximax and maximin MAP. Although the mini-bucket bounds have proven effective in guiding search algorithms for MAP in Bayesian networks (Kask & Dechter, 2001; Marinescu & Dechter, 2009), they have not yet been explored in the context of credal networks.

4.1 POTENTIALS AND THEIR APPROXIMATIONS

Unlike in Bayesian networks, variable elimination schemes for the credal MAP tasks must operate on sets of probability functions called *potentials* (Mauá & Cozman, 2020; Marinescu et al., 2023):

Definition 4 (potential). Given a set of variables \mathbf{Y} , a potential $\phi(\mathbf{Y})$ is a set of non-negative real-valued functions $p(\mathbf{Y})$ on \mathbf{Y} . The product of two potentials $\phi(\mathbf{Y})$ and $\psi(\mathbf{Z})$ is $\phi(\mathbf{Y}) \cdot \psi(\mathbf{Z}) = \{p \cdot q : p \in \phi(\mathbf{Y}), q \in \psi(\mathbf{Z})\}$. The max-marginal $\max_{\mathbf{Z}} \phi(\mathbf{Y})$ of a potential $\phi(\mathbf{Y})$ with respect to a subset of variables $\mathbf{Z} \subseteq \mathbf{Y}$ is defined by $\max_{\mathbf{Z}} \phi(\mathbf{Y}) = \{\max_{\mathbf{Z}} p(\mathbf{Y}) : p \in \phi(\mathbf{Y})\}$.

A non-negative probability function $p(\mathbf{Y})$ defined over variables \mathbf{Y} can be viewed as a vector in \mathbb{R}^m , where $\Omega(\mathbf{Y})$ is the Cartesian product of the domains of the variables in \mathbf{Y} , and $m = |\Omega(\mathbf{Y})|$ is its cardinality. We say that $p(\mathbf{Y}) \leq q(\mathbf{Y})$ if and only if $\forall \mathbf{y} \in \Omega(\mathbf{Y}), p(\mathbf{y}) \leq q(\mathbf{y})$. Clearly, \leq is a partial order. Therefore, a pruning operator $\max \phi(\mathbf{Y})$ that selects the maximal elements of a potential $\phi(\mathbf{Y})$ is defined relative to \leq as: $\max \phi(\mathbf{Y}) = \{p(\mathbf{Y}) \in \phi(\mathbf{Y}) : \nexists q(\mathbf{Y}) \in \phi(\mathbf{Y}), p(\mathbf{Y}) \leq q(\mathbf{Y})\}$.

Furthermore, since the multiplication operator can significantly increase the size of potentials, we require a potential to have a restricted cardinality, at most $M (\geq 1)$. Therefore, we need an operator that takes the potential $\phi(\mathbf{Y})$, with $|\phi(\mathbf{Y})| > M$, and reduces it to a smaller potential $\phi'(\mathbf{Y})$ with cardinality at most M, while ensuring that $\phi'(\mathbf{Y})$ provides an upper bound on $\phi(\mathbf{Y})$. Specifically, for every $p(\mathbf{Y}) \in \phi(\mathbf{Y})$ there exists $q(\mathbf{Y}) \in \phi'(\mathbf{Y})$ such that $p(\mathbf{Y}) \leq q(\mathbf{Y})$. To achieve this, we utilize the Pareto Least Upper Bound (PLUB) of vectors in \mathbb{R}^m , defined as follows:

Definition 5 (PLUB). The Pareto Least Upper Bound (PLUB) $\vec{v} \in \mathbb{R}^m$ of a set of k vectors $\{\vec{v}_1,...,\vec{v}_k\} \in \mathbb{R}^m$ is given by $\vec{v} = \max_{j=1}^k \vec{v}_j$, where the max is applied point-wise.

A simple procedure to compute the upper bound $\phi'(\mathbf{Y})$ of $\phi(\mathbf{Y})$ is to group the elements of $\phi(\mathbf{Y})$ into M clusters based on minimizing the Manhattan distance to each cluster's centroid (i.e., minimize $\sum_{i=1}^{m} |p_i - r_i|$, where p_i and r_i are the i-th components of p and r, respectively). Then, for each cluster we replace its components with their Pareto least upper bound.

4.2 THE MAXIMAX MAP CASE

Algorithm 4 adapts the mini-bucket approximation scheme developed for Bayesian MAP (Dechter & Rish, 2003) to the maximax MAP task in credal networks. Specifically, the MBMM(i) algorithm partitions large buckets into smaller subsets, called *mini-buckets*, each containing at most i distinct

271

272

273

274

275

276

277

278

279

281

283

284

285

287

289

290

291 292

293

295296

297

298

299300301

302

303

304 305

306 307

308

309

310

311

312

313

314

315

316

317318

319 320 321

322

323

Algorithm 2 Mini-Buckets with Moment-Matching for Maximax MAP

```
Let \phi_{kr} = \text{PLUB}(\prod_{\phi \in Q_{kr}} \phi, M)
 1: procedure MBMM(C = \langle \mathbf{X}, \mathbf{D}, \mathbf{K} \rangle, i, M)
                                                                              14:
      Initialize \Gamma \leftarrow \emptyset
                                                                                         Let \mathbf{Y}_k = vars(Q_{kr}) \setminus X_k
                                                                              15:
      for all variable X_k \in \mathbf{X} do
3:
                                                                              16:
                                                                                                   ▶ Moment-matching on max marginals
 4:
        Let \phi_k = \{p : p \in ext(K(X_k|\Pi_k))\}
                                                                                       Let \mu_r = \text{PLUB}(\max_{\mathbf{Y}_r} \phi_{kr}, 1)
                                                                              17:
        Update \Gamma = \Gamma \cup \{PLUB(\phi_k, M)\}
                                                                                       Let \mu = \left(\prod_r \mu_r\right)^{1/R}
                                                                              18:
6:
       Create elimination ordering o: X_1, \ldots, X_n
                                                                                       Update \phi_{kr} = \phi_{kr} \cdot \left(\frac{\mu}{\mu_r}\right)
                                                                              19:
      for all variable X_k \in o do
7:
               \triangleright Create bucket \Gamma_k and mini-buckets Q_{kr}
 8:
                                                                              20:
                                                                                                      9:
         Let \Gamma_k = \{ \phi : \phi \in \Gamma, X_k \in vars(\phi) \}
                                                                                        for all r=1 to R do
                                                                              21:
10:
         Update \Gamma = \Gamma \setminus \Gamma_k
                                                                                         Let \lambda_r^k = \text{PLUB}(\max_{X_k} \phi_{kr}, M)
                                                                              22:
11:
                      \triangleright Create mini-buckets Q_{k1}, \ldots, Q_{kR}
                                                                                          Update \Gamma = \Gamma \cup \{\lambda_r^k\}
                                                                              23:
12:
         Partition \Gamma_k into \{Q_{k1}, \ldots, Q_{kR}\}
                                                                              24:
                                                                                      return \max(\prod_{\phi \in \Gamma} \phi)
         for all r=1 to R do
13:
```

variables (aka the i-bound). The mini-buckets are processed separately by maximizing out the bucket variable from the combination of potentials within each mini-bucket. Furthermore, the algorithm avoids generating prohibitively large potentials at each elimination step by approximating both the intermediate and the original potentials with their Pareto least upper bounds of size M.

While the PLUB-based approximation of potentials may result in a looser overall upper bound, this bound can be tightened further using a moment-matching re-parameterization scheme inspired by (Ihler et al., 2012). Consider the following simple example with three variables A, B, C and two binary potentials $\phi(A, B)$ and $\phi(A, C)$. In this case, we can rewrite the mini-bucket upper bound as:

$$\max_{A} \left[\phi(A, B) \cdot \phi(A, C) \right] = \max_{A} \left[\phi(A, B) \cdot \lambda_{1}(A) \cdot \phi(A, C) \cdot \lambda_{2}(A) \right]$$
$$\leq \max_{A} \left[\phi(A, B) \cdot \lambda_{1}(A) \right] \cdot \max_{A} \left[\phi(A, C) \cdot \lambda_{2}(A) \right]$$

where $\lambda_1(A)$ and $\lambda_2(A)$ are two auxiliary positive functions such that $\lambda_1(A) \cdot \lambda_2(A) = 1$. A simple choice for the λ functions is to use the max-marginals on A. Let $\varphi_1(A) = \max_B \phi(A,B)$ and $\varphi_2(A) = \max_C \phi(A,C)$ be the max-marginal potentials on A, and let $\mu_1(A)$ and $\mu_2(A)$ be their PLUB approximations of size 1. If $\mu(A) = \sqrt{\mu_1(A) \cdot \mu_2(A)}$ is their geometric mean, then for our re-parameterization we can use: $\lambda_1(A) = \frac{\mu(A)}{\mu_1(A)}$ and $\lambda_2(A) = \frac{\mu(A)}{\mu_2(A)}$, respectively. We have that:

Theorem 2 (complexity). Algorithm MBMM(i) computes an upper bound on the optimal maximax MAP value. The time and space complexity is $O(n \cdot M^2 \cdot d^i)$, where i is the i-bound, n is the number of variables, d bounds the domain sizes and M bounds the cardinality of the potentials.

4.3 THE MAXIMIN MAP CASE

For the maximin MAP task, we define the pruning operator $\min \phi(\mathbf{Y})$ to identify the minimal elements of a potential $\phi(\mathbf{Y})$ according to the same partial order \leq used in the maximax MAP scenario, as follows: $\min(\phi(\mathbf{Y})) = \{p(\mathbf{Y}) \in \phi(\mathbf{Y}) : \nexists q(\mathbf{Y}) \in \phi(\mathbf{Y}), q(\mathbf{Y}) \leq p(\mathbf{Y})\}\}.$

However, the max and min operators in Equation 4 do not commute. As a result, the variable elimination scheme that uses the min pruning operator is not exact anymore and only yields an upper bound on the optimal maximin MAP value. Even when the mini-bucket approximation is enhanced with cost-shifting via moment matching, it continues to provide an upper bound – though these are generally much looser than those obtained in the maximax MAP setting. Our experimental results clearly demonstrate that the mini-bucket bounds for maximin MAP are substantially weaker, and the associated search algorithms face significant challenges as a result.

5 EXPERIMENTS

We evaluate the proposed branch-and-bound search algorithms for maximax and maximin MAP on random credal networks and credal networks derived from real-world applications. All competing algorithms were implemented in C++ and the experiments were run on a machine with a 16-core 3GHz CPU and 128GB of RAM running Ubuntu Linux 24.04.

Table 1: Quality of Heuristics for Maximax MAP on 100 variables random networks. Average CPU time (sec) and number of nodes expanded using *i*-bounds from 2 to 10. Time limit 1 hour.

size	algorithm	i	=2	i	=4	i =	- 6	i =	8	i =	10
		time	nodes	time	nodes	time	nodes	time	nodes	time	nodes
	AOBB+MB(i,1)	2.90	29603	0.99	13934	0.54	6877	0.25	5280	0.18	2352
	AOBB+MB(i,10)	3.06	29603	1.47	13934	18.65	6877	501.36	5834	809.46	2582
100	AOBB+MB(i,50)	3.25	29603	2.07	13934	558.29	7609	2781.15	2492	3284.57	251
	AOBB+MBMM(i,1)	2.25	21057	0.39	8316	0.40	4448	0.15	3544	0.20	1807
	AOBB+MBMM(i,10)	1.97	21057	0.75	8316	15.99	4448	488.84	3906	797.66	1978
	AOBB+MBMM(i,50)	2.22	21057	1.04	8316	548.81	4910	2800.54	1633	3312.94	108
	AOBB+MB(i)	2.87	29603	2.77	13934	972.37	7336	-	-	-	-

Table 2: Results for Maximax MAP on random and grid credal networks. Average CPU time (sec) and number of nodes expanded using mini-bucket *i*-bounds from 2 to 10. Time limit 1 hour.

size	algorithm	i	i = 2 time nodes		= 4	i =	= 6	l i	= 8	i =	= 10
(w,h)		time	nodes	time	nodes	time	nodes	time	nodes	time	nodes
				ran	dom credal ne	etworks					
	BB+MB(i)	3525.20	40136432	1014.36	6399801	1789.33	123229	-	-	-	-
100	BB+MBMM(i,1)	2481.97	34115031	154.77	1717539	29.81	362314	1.00	33382	0.86	15106
(18,28)	AOBB+MB(i)	2.87	29603	2.77	13934	972.37	7336	-	-	-	-
	AOBB+MBMM(i,1)	2.25	21057	0.39	8316	0.40	4448	<u>0.15</u>	3544	0.20	1807
	BB+MB(i)	-	-	-	-	-	-	-	-	-	-
200	BB+MBMM(i,1)	-	-	-	-	-	-	2780.10	41392520	2342.75	37828931
(36,48)	AOBB+MB(i)	1555.37	8510209	1126.37	4969424	2285.98	813793	3458.96	96389	-	-
	AOBB+MBMM(i,1)	1155.54	8448489	1108.73	7985450	<u>197.49</u>	2193611	224.53	1974790	364.89	2768420
				gr	id credal net	works					
	BB+MB(i)	-	-	-	-	-	-	-	-	-	-
100	BB+MBMM(i,1)	-	-	3287.93	45186026	362.59	5259684	0.07	699	0.13	123
(14,38)	AOBB+MB(i)	3.82	65648	0.23	2138	-	-	-	-	-	-
	AOBB+MBMM(i,1)	0.74	19531	0.30	2138	<u>0.06</u>	1235	0.07	226	0.21	107
	BB+MB(i)	-	-	l -	-	-	-	-	-	-	-
196	BB+MBMM(i,1)	-	-	-	-	-	-	3240.10	39599609	1072.23	16685172
(20,57)	AOBB+MB(i)	961.58	10746465	1.54	32950	3478.82	32950	-	-	-	-
	AOBB+MBMM(i,1)	395.68	4201397	2.19	32950	1.03	31339	1.18	24508	1.83	32948

Algorithms. Our proposed AND/OR Branch and Bound (AOBB) algorithm is equipped with the following versions of the mini-bucket heuristics: (1) mini-buckets without potential approximation and moment-matching denoted by AOBB+MB(i), (2) mini-buckets with potential approximation of size M only, denoted by AOBB+MB(i, M), and (3) mini-buckets with both potential approximation and moment-matching, denoted by AOBB+MBMM(i, M). For comparison, we also ran the OR Branch and Bound (BB) counterparts guided by the same heuristic schemes, denoted by BB+MB(i), BB+MB(i, M), and BB+MBMM(i, M). Unlike the former methods, the latter ones are not sensitive to the underlying problem structure. For reference, we also ran the brute-force depth-first search denoted by DFS that exhaustively enumerates all possible MAP assignments (see Appendix).

Benchmarks. For our purpose, we generate random and m-by-m grid credal networks. Specifically, for random networks, we vary the number of variables $n \in \{100, 150, 200\}$ and, for grids, we choose $m \in \{10, 14, 16\}$, respectively. For each problem size, we generate 10 random problem instances. In all cases, the maximum domain size is set to 2 and the local conditional credal sets are generated uniformly at random as probability intervals. In addition, we consider a set of 15 credal networks derived from real-world Bayesian networks 1 by converting the probability values in the conditional probability tables into probability intervals. For all our problem instances, we ensure that the difference between the lower and upper bounds of the probability intervals was at most 0.3. The problem sizes were deliberately chosen to ensure they could be solved exactly within the specified time limit. Finally, we experiment with maximax and maximin MAP tasks with no evidence.

Measures of Performance. In all of our experiments, we report the CPU time in seconds and the number of nodes expanded during the search. We also record the number of variables (n), the induced width (w) and the height of the pseudo trees (h) for all of our benchmarks. The best performance points are highlighted. All competing algorithms were allocated a 1 hour time limit and 10GB of memory. The "-" symbol indicates that the respective algorithm exceeded its time or memory budget.

Quality of Heuristics. Table 1 shows the average CPU time in seconds and number of nodes expanded by AOBB when guided by the MB(i), MB(i, M) and MBMM(i, M) heuristics for solving

¹Available at https://www.bnlearn.com/bnrepository/

Table 3: Results for Maximax MAP on real-world credal networks. CPU time (sec) and number of nodes expanded using mini-bucket *i*-bounds from 2 to 10. Time limit 1 hour.

instance	algorithm	i =	= 2	i =	= 4	i =	= 6	i =	= 8	i =	= 10
(n, w, h)	_	time	nodes	time	nodes	time	nodes	time	nodes	time	nodes
	BB+MB(i)	2030.54	150170	3.98	50	5.67	39	6.07	39	3.87	39
alarm	BB+MBMM(i,1)	5.52	4535	3.77	39	3.99	39	4.92	39	5.36	39
(37,4,12)	AOBB+MB(i)	5.78	85	4.81	42	5.25	39	7.64	39	6.60	39
	AOBB+MBMM(i,1)	2.62	52	2.82	39	2.80	39	5.38	39	2.80	39
	BB+MB(i)	-	-	l -	-	-	-	l -	-	-	-
link	BB+MBMM(i,1)	-	-	-	-	-	-	-	-	-	-
(724, 15, 43)	AOBB+MB(i)	23.09	67424	3.74	1772	-	-	-	-	-	-
	AOBB+MBMM(i,1)	9.77	33603	2.97	1004	2.99	978	2.79	978	2.58	793
	BB+MB(i)	-	-	-	-	-	-	-	-	-	-
mastermind1	BB+MBMM(i,1)	-	-	-	-	-	-	-	-	-	-
(1220, 20, 56)	AOBB+MB(i)	-	-	102.60	34669	-	-	-	-	-	-
	AOBB+MBMM(i,1)	-	-	26.64	34493	9.96	17619	9.97	17619	9.83	17619
	BB+MB(i)	-	-	l -	-	l -	-	-	-	-	-
mastermind3	BB+MBMM(i,1)	-	-	-	-	-	-	-	-	-	-
(3692,39,92)	AOBB+MB(i)	-	-	-	-	-	-	-	-	-	-
	AOBB+MBMM(i,1)	-	-	-	-	3264.92	2180932	3088.55	2172466	3036.91	2167200

Table 4: Results for Maximin MAP on real-world credal networks. CPU time (sec) and number of nodes expanded using mini-bucket *i*-bounds from 2 to 12. Time limit 1 hour.

instance	algorithm		= 2		= 4	1	= 6	1	= 8	1	= 10		: 12
(n, w, h)		time	nodes	time	nodes	time	nodes	time	nodes	time	nodes	time	nodes
alarm	BB+MB(i) BB+MBMM(i,1)	128.78 126.35	2522160 2522160	110.17 106.60	2522160 2522160	96.03 101.46	2522160 2522160	98.37 97.39	2522160 2522160	77.19 89.28	2522160 2522160	81.93 63.16	2522160 2522160
(37,4,12)	AOBB+MB(i) AOBB+MBMM(i,1)	6.90 6.96	460 394	3.86 <u>3.77</u>	348 348	6.79 7.11	348 348	5.60 6.64	348 348	5.68 6.17	348 348	5.49 6.91	348 348
link	BB+MB(i) BB+MBMM(i,1)	-	-	-	-	-	-	-	-	-	-	-	-
(724,15,43)	AOBB+MB(i) AOBB+MBMM(i,1)	-	-	1663.40 1538.40	7820555 7455392	1245.14 1245.57	7448824 7406117	1180.95 1188.28	7427647 7386176	1139.88 1122.29	7405547 7383818	1072.66 995.99	7405953 6862912
mastermind1	BB+MB(i) BB+MBMM(i,1)	-	-	-	-	-	-	-	-	-	-	-	-
(1220,20,56)	AOBB+MB(i) AOBB+MBMM(i,1)	49.00 47.79	64081 64081	49.14 49.17	64240 64259	34.42 34.04	62281 62281	32.35 32.14	61822 61737	28.90 32.29	61189 61275	30.69 30.17	60236 61245
mastermind3	BB+MB(i) BB+MBMM(i,1)	-	-	-	-	-	-	-	-	-	-	-	
(3692,39,92)	AOBB+MB(i) AOBB+MBMM(i,1)	-	-	-	-	1200.00 1205.83	1357913 1358178	1099.27 1083.09	1357053 1360571	1092.61 1077.06	1362794 1365064	1103.99 1049.79	1370757 1367606

maximax MAP on random credal networks with 100 variables. The columns are indexed by the i-bound, and we varied M between 1 and 50, respectively. We can see that all of the mini-bucket heuristics are competitive for the smallest i-bounds and all values of M because the intermediate potentials do not grow too large in this case and, therefore, the computational overhead is reduced. However, as the i-bound and M value increase, the size of intermediate potentials grows significantly due to much larger scope sizes, which eventually translates into increased overhead. We notice that using M=1 yields the most cost-effective heuristics, especially for larger i-bounds which produce more accurate bounds that prune the search space very effectively (Marinescu & Dechter, 2009). The moment-matching cost-shifting scheme further tightens the heuristics, almost always leading to time savings, as previously observed for Bayesian networks (Ihler et al., 2012; Marinescu et al., 2014).

Results for Maximax MAP. Table 2 summarizes the results obtained on the random and grid credal networks with the search algorithms guided by the $\mathrm{MB}(i)$ and $\mathrm{MBMM}(i, M=1)$ heuristics. As before, algorithm AOBB+MB(i) is competitive only at the smallest i-bounds due to the computational overhead associated with the larger intermediate potentials that are generated at larger i-bounds. Furthermore, the AND/OR search algorithms that exploit the problem structure and are guided by the MBMM(i, M=1) heuristics improve dramatically over their OR search counterparts, in some cases by up to 5 orders of magnitude, especially at relatively smaller i-bounds (e.g., i=4 on 10-by-10 grids). As the i-bound increases, the corresponding heuristics tend to be more accurate, and this often translates into additional time savings for the AOBB+MBMM(i, M=1) algorithm. However, when the i-bound increases even further, the running time of AOBB+MBMM(i, M=1) starts to increase slightly because of the overhead associated with compiling the heuristics. The brute-force DFS algorithm could only solve problems with up to 20 variables, and therefore is omitted. These results are consistent with those obtained previously on Bayesian MAP (Marinescu & Dechter, 2009).

Table 3 reports the CPU time in seconds and number of nodes expanded on 4 real-world credal networks. The results show a similar pattern as before where the AND/OR search algorithm equipped with mini-buckets using moment-matching and potential approximation of size 1 outperforms dra-

matically its competitors, at all reported i-bounds. Furthermore, AOBB+MBMM(i, M = 1) is the only algorithm that scales to problems with more than 3000 variables (e.g., mastermind3) and proves the optimality of the solutions obtained.

Results for Maximin MAP. Table 4 shows the results for maximin MAP on real-world networks. As with maximax MAP, AND/OR search algorithms consistently outperform their OR counterparts across all *i*-bounds. However, maximin MAP proves significantly more challenging, primarily due to weaker heuristics that lead to larger search spaces and reduced performance.

Exact versus Local Search. In Table 5 we report the average CPU time obtained with the recent local search algorithms from Marinescu et al. (2023) which we adapted to maximax MAP. Specifically, we ran each of the Stochastic Local Search (SLS), Taboo Search (TS), Simulated Annealing (SA) and Guided Local Search (GLS) algorithms for a total of 10 iterations (i.e., random restarts) with a maximum of 100K flips per iteration. The random flip probability was set to 0.1, the taboo list had a maximum size of 1000, while the alpha and initial temperature used by SA were set to 0.1 and 100, respectively. We can see clearly that in this case the exact algorithm AOBB+MBMM(i, 1) dominates the other competitors while proving the optimality of the solutions obtained.

Table 5: Average CPU time in seconds for exact vs local search algorithms. Time limit 1 hour.

size	$AOBB+MBMM(i,\!1)$	SLS	TS	SA	GLS									
	randor	n credal ne	etworks											
20	0.00	49.60	46.34	33.61	55.83									
50	0.01	184.46	107.5	98.24	175.69									
100	0.10	372.75	188.92	196.96	352.78									
150	2.62	565.95	223.03	300.46	529.20									
200	<u>109.25</u>	681.60	438.32	326.83	563.61									
	grid credal networks													
25	0.01	53.21	44.77	38.20	59.95									
49	0.01	186.56	68.27	59.30	169.44									
100	0.05	350.69	171.27	164.97	327.31									
144	0.09	421.20	203.42	207.58	424.90									
196	0.14	572.15	312.78	362.54	456.23									

While this paper primarily focuses on proving solution optimality, we note that our search schemes can be readily extended to efficient anytime algorithms, following the approach in Otten & Dechter (2011), to provide the best solution found so far at any point during the search. Furthermore, since the optimal maximax/maximin MAP assignment may not be unique, the proposed AND/OR algorithms can be equipped with a book-keeping mechanism similar to the one developed for the *k*-best MAP task in Bayesian networks (Dechter et al., 2012) to enable the enumeration of all optimal assignments.

6 RELATED WORK

Bayesian MAP has been extensively investigated over the years and several exact and approximate algorithmic frameworks have been developed such as stochastic local search (Kask & Dechter, 1999; Park, 2002; Hutter et al., 2005), variational approximation and message-passing schemes (Pearl, 1988; Dechter et al., 2002; Dechter & Rish, 2003; Wainwright et al., 2005; Kolmogorov, 2006; Ihler et al., 2012), or heuristic search (Kask & Dechter, 1999; Larrosa & Schiex, 2003; Marinescu & Dechter, 2009; Otten & Dechter, 2011). More recently, neural network based approximate solvers without solution guarantees have also been proposed (Arya et al., 2024; 2025). Credal MAP has received limited attention with some prior work on MAP inference in specialized models such as hidden Markov models with set-valued parameters (Mauá et al., 2016) and the approximate solvers for credal Marginal MAP developed recently by Marinescu et al. (2023). In contrast, our contribution addresses *exact* credal MAP inference with guarantees in general high-dimensional credal networks.

7 Conclusion

This paper significantly advances the field of MAP inference in credal networks by introducing novel depth-first branch-and-bound search algorithms. These algorithms leverage the AND/OR search space to effectively exploit the problem structure, and are further enhanced with a partitioning-based heuristic that combines potential approximations with cost-shifting strategies. Our empirical evaluations demonstrate that these new methods not only improve computational efficiency but also scale to large problems with over 3000 variables while guaranteeing optimality of solutions. Thus, our proposed approach addresses critical limitations of the state-of-the-art, providing robust and efficient solutions for MAP inference tasks in credal networks. Potential future directions include improving the mini-bucket heuristics for maximin MAP by developing tighter approximations.

REFERENCES

- Alessandro Antonucci, Yi Sun, Cassio P De Campos, and Marco Zaffalon. Generalized loopy 2u: A new algorithm for approximate inference in credal networks. *International Journal of Approximate Reasoning*, 51(5):474–484, 2010.
- Shivvrat Arya, Tahrima Rahman, and Vibhav Gogate. A neural network approach for efficiently answering most probable explanation queries in probabilistic models. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing Systems*, volume 37, pp. 33538–33601. Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/3ae2d3297891cad0c56dd12d60ff7dde-Paper-Conference.pdf.
- Shivvrat Arya, Tahrima Rahman, and Vibhav Giridhar Gogate. SINE: Scalable MPE inference for probabilistic graphical models using advanced neural embeddings. In Yingzhen Li, Stephan Mandt, Shipra Agrawal, and Emtiyaz Khan (eds.), *Proceedings of The 28th International Conference on Artificial Intelligence and Statistics*, volume 258 of *Proceedings of Machine Learning Research*, pp. 4465–4473. PMLR, 03–05 May 2025. URL https://proceedings.mlr.press/v258/arya25a.html.
- Cassio Campos and Fabio Cozman. The inferential complexity of Bayesian and credal networks. In *International Joint Conference on Artificial Intelligence (IJCAI)*, pp. 1313–1318, 2005.
- Andrés Cano, Manuel Gómez, Serafín Moral, and Joaquín Abellán. Hill-climbing and branch-and-bound algorithms for exact and approximate inference in credal networks. *International Journal of Approximate Reasoning*, 44(3):261–280, 2007.
- Fabio Cozman. Credal networks. Artificial Intelligence, 120(2):199-233, 2000.
- R. Dechter, R. Mateescu, and K. Kask. Iterative join-graph propagation. In *Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI'02)*, pp. 128–136, 2002.
- Rina Dechter. Bucket elimination: A unifying framework for reasoning. *Artificial Intelligence*, 113: 41–85, 1999.
- Rina Dechter and Robert Mateescu. AND/OR search spaces for graphical models. *Artificial Intelligence*, 171(2-3):73–106, 2007.
- Rina Dechter and Irina Rish. Mini-buckets: A general scheme of approximating inference. *Journal of ACM*, 50(2):107–153, 2003.
- Rina Dechter, Natalia Flerova, and Radu Marinescu. Search algorithms for m best solutions for graphical models. In *Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence*, AAAI'12, pp. 1895–1901. AAAI Press, 2012.
- Eugene Freuder and Michael Quinn. Taking advantage of stable sets of variables in constraint satisfaction problems. In *International Joint Conference on Artificial Intelligence (IJCAI)*, pp. 1076–1078, 1985.
- Frank Hutter, Holger Hoos, and Thomas Stutzle. Efficient stochastic local search for MPE solving. In *International Joint Conference on Artificial Intelligence (IJCAI)*, pp. 169–174, 2005.
- Alex Ihler, Natalia Flerova, Rina Dechter, and Lars Otten. Join-graph based cost-shifting schemes. In *Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 397–406, 2012.
- Kalev Kask and Rina Dechter. Stochastic local search for Bayesian networks. In *Workshop on AI* and *Statistics*, pp. 113–122, 1999.
- Kalev Kask and Rina Dechter. A general scheme for automatic generation of search heuristics from specification dependencies. *Artificial Intelligence*, 129(1-2):91–131, 2001.
- Daphne Koller and Nir Friedman. *Probabilistic Graphical Models: Principles and Techniques*. MIT Press, 2009.
 - Vladimir Kolmogorov. Convergent tree-reweighted message passing for energy minimization. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 28(10):1568–1583, 2006.

- Johan Kwisthout. Most probable explanations in Bayesian networks: Complexity and tractability. *International Journal of Approximate Reasoning*, 52(1):1452–1469, 2011.
- Javier Larrosa and Thomas Schiex. In the quest of the best form of local consistency for weighted CSP. In *International Joint Conference in Artificial Intelligence (IJCAI-2003)*, pp. 631–637, 2003.
 - Isaac Levi. The Enterprise of Knowledge. MIT Press, 1980.
 - Radu Marinescu and Rina Dechter. AND/OR branch-and-bound search for combinatorial optimization in graphical models. *Artificial Intelligence*, 173(16-17):1457–1491, 2009.
 - Radu Marinescu, Rina Dechter, and Alexander Ihler. AND/OR search for marginal MAP. In *Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 563–572, 2014.
 - Radu Marinescu, Debarun Bhattacharjya, Junkyu Lee, Fabio Cozman, and Alexander G. Gray. Credal marginal MAP. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=yCBqKTvYe9.
 - Denis Mauá and Fabio Cozman. Thirty years of credal networks: Specifications, algorithms and complexity. *International Journal of Approximate Reasoning*, 1(126):133–137, 2020.
 - Denis Mauá, Alessandro Antonucci, and Cassio Polpo de Campos. Hidden Markov models with set-valued parameters. *Neurocomputing*, 180:94–107, 2016.
 - Lars Otten and Rina Dechter. Anytime AND/OR depth-first search for combinatorial optimization. In *International Symposium on Combinatorial Search*, pp. 117–702, 2011.
 - James Park. Using weighted MAX-SAT engines to solve MPE. In *National Conference on Artificial Intelligence (AAAI)*, 2002.
 - Judea Pearl. Heuristics: Intelligent Search Strategies. Addison-Wesley, 1984.
 - Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.
 - Solomon Eyal Shimony. Finding maps for belief networks is NP-hard. *Artificial Intelligence*, 68(2): 399–410, 1994.
 - Martin J. Wainwright, Tommi S. Jaakkola, and Alan S. Willsky. MAP estimation via agreement on trees: Message-passing and linear programming. *IEEE Transactions on Information Theory*, 51 (11):3697–3717, 2005.
 - Peter Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London, UK, 1991.
 - Hjalmar Wijk, Benjie Wang, and Marta Kwiatkowska. Robustness guarantees for credal Bayesian networks via constraint relaxation over probabilistic circuits. In *Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI)*, pp. 4885–4892, 2022.
 - Marco Zaffalon, Alessandro Antonucci, and Rafael Cabañas. Structural causal models are (solvable by) credal networks. In *Proceedings of the International Conference on Probabilistic Graphical Models (PGM)*, pp. 581–592. PMLR, 2020.

A APPENDIX

B DEPTH-FIRST SEARCH FOR MAXIMAX AND MAXIMIN MAP

The simplest approach to solve exactly the *maximax* and *maximin* MAP tasks in credal networks is to perform a depth-first search in the space of partial assignments to the variables (called the OR search space), and, for each complete assignment denoted by $\hat{\mathbf{x}}$, evaluate its score as the exact upper (resp., lower) probability $\overline{P}(\hat{\mathbf{x}}) = \prod_{i=1}^n \overline{P}(x_i|\pi_i)$ (resp. $\underline{P}(\hat{\mathbf{x}}) = \prod_{i=1}^n \underline{P}(x_i|\pi_i)$) where x_i and π_i are the values of X_i and its parents Π_i in $\hat{\mathbf{x}}$, respectively, and $\overline{P}(x_i|\pi_i) = \max \text{ext}(K(x_i|\pi_i))$ (resp. $\underline{P}(x_i|\pi_i) = \min \text{ext}(K(x_i|\pi_i))$). In this way, the optimal solution \mathbf{x}^* corresponds to the assignment

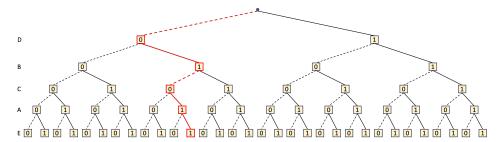


Figure 2: The OR search tree corresponding to the credal network from Figure 1a.

with the highest score (i.e., the maximum upper probability for maximax MAP, and maximum lower probability for maximin MAP, respectively). Although complete, the algorithm is inefficient because it enumerates all possible configurations of the variables. Therefore, its time complexity is bounded by $O(k^n)$, where n is the number of variables and k bounds their domain sizes, but it can operate in linear space (Pearl, 1984).

Example 4. Figure 2 shows the OR search tree explored by the depth-first search algorithm when solving the maximax MAP task for the credal network in Figure 1a. A solution path corresponding to the assignment $\hat{\mathbf{x}}: (A=1,B=1,C=0,D=0,E=1)$ is highlighted in red and its maximum MAP value is $g(\hat{\mathbf{x}}) = \overline{P}(A=1) \cdot \overline{P}(B=1|A=1) \cdot \overline{P}(C=0|A=1) \cdot \overline{P}(D=0|B=1,C=1) \cdot \overline{P}(E=1|D=0) = 0.21504$, where, for example, $\overline{P}(A=1) = \max \exp(K(A=1)) = \max(\{0.6,0.8\}) = 0.8$ and $\overline{P}(B=1|A=1) = \max \exp(K(B=1|A=1)) = \max(\{0.5,0.7,0.5,0.7\}) = 0.7$, respectively. The optimal maximax and maximin MAP solutions are in this case $\overline{\mathbf{x}}^*: (A=0,B=0,C=1,D=1,E=0)$ with value 0.26244 and $\underline{\mathbf{x}}^*: (A=1,B=1,C=1,D=1,E=0)$ with value 0.0504, respectively.

C BUCKET ELIMINATION FOR MAXIMAX MAP

The Maximax MAP task defined by Equation 3 can be solved exactly using a bucket elimination procedure (Dechter, 1999) that extends the Credal Variable Elimination (CVE) algorithm developed for marginal inference in credal networks (Mauá & Cozman, 2020). The algorithm relies on the notion of a *potential* as well as combination and marginalization operators over potentials which are defined as follows.

Definition 6 (potential). Given a set of variables \mathbf{Y} , a potential $\phi(\mathbf{Y})$ is a set of non-negative real-valued functions $p(\mathbf{Y})$ on \mathbf{Y} . The product of two potentials $\phi(\mathbf{Y})$ and $\psi(\mathbf{Z})$ is defined by $\phi(\mathbf{Y}) \cdot \psi(\mathbf{Z}) = \{p \cdot q : p \in \phi(\mathbf{Y}), q \in \psi(\mathbf{Z})\}$. The max-marginal $\max_{\mathbf{Z}} \phi(\mathbf{Y})$ of a potential $\phi(\mathbf{Y})$ with respect to a subset of variables $\mathbf{Z} \subseteq \mathbf{Y}$ is defined by $\max_{\mathbf{Z}} \phi(\mathbf{Y}) = \{\max_{\mathbf{Z}} p(\mathbf{Y}) : p \in \phi(\mathbf{Y})\}$.

Since the multiplication operator may grow the size of potentials dramatically, we introduce an additional pruning operation that can reduces the cardinality of a potential. Specifically, the operator $\max \phi(\mathbf{Y})$ returns the set of non-zero maximal elements of $\phi(\mathbf{Y})$, under the partial order \leq defined component-wise as $p(\mathbf{Y}) \leq q(\mathbf{Y})$ iff $\forall \mathbf{y} \in \Omega_{\mathbf{Y}}, p(\mathbf{y}) \leq q(\mathbf{y})$, where $\Omega_{\mathbf{Y}}$ is the cartesian product of the domains of the variables in \mathbf{Y} : $\max \phi(\mathbf{Y}) = \{p(\mathbf{Y}) \in \phi(\mathbf{Y}) : \nexists q(\mathbf{Y}) \in \phi(\mathbf{Y}), p(\mathbf{Y}) \leq q(\mathbf{Y})\}$.

Definition 7 (dominance). Let $\phi(\mathbf{Y})$ and $\psi(\mathbf{Y})$ be two potentials defined on the subset of variables \mathbf{Y} . Then we say that $\phi(\mathbf{Y}) \leq \psi(\mathbf{Y})$ if and only if $\forall p(\mathbf{Y}) \in \phi(\mathbf{Y})$, $\exists q \in \psi(\mathbf{Y})$ such that $p(\mathbf{Y}) \leq q(\mathbf{Y})$, where the latter corresponds to component-wise \leq defined above.

Proposition 1 (commuting max operators). Let $\phi(X_i, \mathbf{X}_j)$ and $\psi(X_i, \mathbf{X}_k)$ be two potentials such that $\phi = \{p_1, p_2, \dots, p_n\}$ and $psi = \{q_1, q_2, \dots, q_m\}$. Then, the max-marginal operator and the max-pruning operator commute, and the following equality holds:

$$\max_{X_i} \max_{P(\mathbf{Z}) \in K(\mathbf{Z})} \phi(X_i, \mathbf{X}_j) \cdot \psi(X_i, \mathbf{X}_k) = \max_{P(\mathbf{Z} \setminus \{X_i\}) \in K'(\mathbf{Z} \setminus \{X_i\})} \max_{X_i} \phi(X_i, \mathbf{X}_j) \cdot \psi(X_i, \mathbf{X}_k),$$
(5)

where $\mathbf{Z} = \{X_i\} \cup \mathbf{X}_j \cup \mathbf{X}_k$, $K(\mathbf{Z})$ is the credal set for $\phi(X_i, \mathbf{X}_j) \cdot \psi(X_i, \mathbf{X}_k)$, and $K'(\mathbf{Z} \setminus \{X_i\})$ is the credal set for $\max_{X_i} \phi(X_i, \mathbf{X}_j) \cdot \psi(X_i, \mathbf{X}_k)$.

656 657

658 659

661

662

663

664

665

667 668 669

670

671 672

673 674

675

676

677 678

684

685 686

687

688

690

691 692

693

694

696

697 698

699

700

701

$\phi(A)$	$A):\{p_{1}(x_{1})\}$	Α), μ	$o_2(A)$			$\phi(A,B)$: { <i>p</i> ₁	(B	$ A), p_2(A)$	$B A\rangle$	p_3	$_{3}(B A)$, $_{1}$	$o_4(E$	B A)}
Α	$p_1(A)$	Α	p ₂ (A)	Α	В	$p_1(B A)$	Α	В	$p_2(B A)$	Α	В	$p_3(B A)$	А	В	$p_4(B A)$
0	0.4	0	0.2	0	0	0.9	0	0	0.9	0	0	0.7	0	0	0.7
1	0.6	1	0.8	0	1	0.1	0	1	0.1	0	1	0.3	0	1	0.3
				1	0	0.5	1	0	0.3	1	0	0.5	1	0	0.3
					1	0.5	1	1	0.7	1	1	0.5	1	1	0.7

Figure 3: Examples of potentials for the credal network from Figure 1a.

Algorithm 3 Bucket Elimination for Maximax MAP

```
\triangleright Create bucket \Gamma_k for variable X_k
1: procedure CBE(C = \langle \mathbf{X}, \mathbf{D}, \mathbf{K} \rangle)
                                                                           9:
                                                                                   Let \Gamma_k = \{ \phi : \phi \in \Gamma, X_k \in vars(\phi) \}
2:
                                    10:
                                                                                   Update \Gamma = \Gamma \setminus \Gamma_k
                                                                          11:
3:
      Initialize \Gamma \leftarrow \emptyset
      for all variable X_k \in \mathbf{X} do
                                                                                             > Compute the downward message
                                                                          12:
       Let \phi_k = \{p : p \in \text{ext}(K(X_k|\Pi_k))\}
5:
                                                                                   Let \lambda^k \leftarrow \max\left(\max_{X_k} \prod_{\phi \in \Gamma_k} \phi\right)
                                                                          13:
        Update \Gamma = \Gamma \cup \{\phi_k\}
6:
                                                                                   Update \Gamma = \Gamma \cup \{\lambda^k\}
      Create elimination ordering o: X_1, \ldots, X_n
                                                                          15: return max (\prod_{\phi \in \Gamma} \phi)
      for all variable X_k \in o do
```

Proof. Since $\max_{P(\mathbf{Z}) \in K(\mathbf{Z})}$ prunes the credal set by finding the dominating function,

$$\max_{P(\mathbf{Z}) \in K(\mathbf{Z})} \phi(X_i, \mathbf{X}_j) \cdot \psi(X_i, \mathbf{X}_k)$$

$$= \max_{P(\mathbf{Z} \setminus \mathbf{X}_k) \in K_{\phi}(\mathbf{Z} \setminus \mathbf{X}_k)} \phi(X_i, \mathbf{X}_j) \cdot \max_{P(\mathbf{Z} \setminus \mathbf{X}_j) \in K_{\psi}(\mathbf{Z} \setminus \mathbf{X}_j)} \psi(X_i, \mathbf{X}_k)$$

$$= p^*(X_i, \mathbf{X}_j) \cdot q^*(X_i, \mathbf{X}_k),$$

where $p^*(X_i, \mathbf{X}_j)$ and $q^*(X_i, \mathbf{X}_k)$ are the dominating function in the credal set $K_{\phi}(\mathbf{Z} \setminus \mathbf{X}_k)$ and $K_{\psi}(\mathbf{Z} \setminus \mathbf{X}_j)$, respectively.

By commuting max-marginal operator,

$$\max_{X_i} \max_{P(\mathbf{Z}) \in K(\mathbf{Z})} \phi(X_i, \mathbf{X}_j) \psi(X_i, \mathbf{X}_k)$$

$$= \max_{P(\mathbf{Z} \setminus \{X_i\} \in K'(\mathbf{Z} \setminus \{X_i\}))} \max_{X_i} \phi(X_i, \mathbf{X}_j) \psi(X_i, \mathbf{X}_k)$$

$$= \max_{P(\mathbf{Z} \setminus \{X_i\} \in K'(\mathbf{Z} \setminus \{X_i\}))} \{\max_{X_i} p(X_i, \mathbf{X}_j) \cdot q(X_i, \mathbf{X}_k) | \forall p \in \phi, q \in \psi\}$$

$$= \max_{X_i} p^*(X_i, \mathbf{X}_j) \cdot q^*(X_i, \mathbf{X}_k).$$

Example 5. Consider again the credal network from Figure 1a. In Figure 3 we show the potentials $\phi(A)$ and $\phi(A,B)$ corresponding to the sets of extreme points of the local conditional credal sets K(A) and K(B|A), respectively. We can see that, for example, $\phi(A,B)$ has 4 extreme points represented by the distributions $p_1(B|A)$, $p_2(B|A)$, $p_3(B|A)$ and $p_4(B|A)$, respectively.

Algorithm 3 describes the bucket elimination procedure called CBE that can be used to solve Equation 3. Let $o: X_1, X_2, \ldots, X_n$ be an ordering of the variables \mathbf{X} such that X_1 is eliminated first, then X_2 and so on. First, the algorithm creates a set of potentials Γ from the input local conditional credal sets $K(X_i|\Pi_i=\pi_{ij})$. Each potential ϕ_k contains the set of all conditional probability distributions $P(X_k|\Pi_k)$ such that $P(x_k|\pi_{kj}) = P(X_k=x_k|\Pi_k=\pi_{kj}) \in ext(K(X_k|\Pi_k=\pi_{kj}))$, where π_{kj} is the j-th configuration of the variables Π_k .

The algorithm then eliminates each variable X_k by maximization from the combination of potentials that contain X_k in their scope, namely it computes a new potential $\lambda^k = \max\left(\max_{X_k} \prod_{\phi \in \Gamma_k} \phi\right)$.

The resulting potential λ^k is pruned by removing its non-maximal elements. Finally, the optimal maximax MAP value is obtained after eliminating the last variable in the ordering.

704

705

706

708

710

711 712

713 714

715 716

717 718 719

720

721

722

723

724

725

726

727

728729730

731

732

733

734

735

736

737 738

739

740

741

742 743

744

745

746

747 748

749

750

751

752

753

754

755

```
A: \phi(A) \phi(A, B) \phi(A, C)

\downarrow \qquad \qquad \qquad \lambda^{A}(B, C) = \max(\max_{A}(\phi(A) \cdot \phi(A, B) \cdot \phi(A, C)))
C: \phi(B, C, D) \lambda^{A}(B, C)
\downarrow \qquad \qquad \lambda^{C}(B, D) = \max(\max_{A}(\phi(B, C, D) \cdot \lambda^{A}(B, C)))
B: \lambda^{C}(B, D) = \max(\max_{C}(\lambda^{C}(B, D)))
E: \phi(D, E)
\downarrow \qquad \qquad \lambda^{B}(D) = \max(\max_{B}(\lambda^{C}(B, D)))
D: \lambda^{B}(D) = \max(\max_{C}(\max_{C}(A, C)))
Maximax MAP = \max(\max_{C}(\phi(A, C)) \cdot \lambda^{C}(D))
```

 $\max_{D} \left(\max_{E} \max((A, E)) \cdot \max_{E} \left(\max_{B} \max((B, C, D)) \cdot \max_{A} \left(\max_{B} (A, C) \right) \right) \right) \right)$

Figure 4: Schematic bucket elimination for maximax MAP on the credal network from Figure 1a.

Algorithm 4 Mini-Buckets for Maximax MAP

```
\triangleright Create mini-buckets Q_{k1}, \ldots, Q_{kR}
 1: procedure MB(\mathcal{C} = \langle \mathbf{X}, \mathbf{D}, \mathbf{K} \rangle, i-bound)
                                                                           11:
                                                                                    Partition \Gamma_k into \{Q_{k1}, \ldots, Q_{kR}\}
      Initialize \Gamma \leftarrow \emptyset
                                                                           12:
 3:
       for all variable X_k \in \mathbf{X} do
                                                                                    for all r=1 to R do
                                                                           13:
 4:
        Let \phi_k = \{p : p \in ext(K(X_k|\Pi_k))\}
                                                                                      Let \phi_{kr} = \prod_{\phi \in Q_{kr}} \phi
                                                                           14:
 5:
         Update \Gamma = \Gamma \cup \{\phi_k\}
                                                                           15:
                                                                                             6:
       Create elimination ordering o: X_1, \ldots, X_n
                                                                                    for all r = 1 to R do
                                                                           16:
 7:
       for all variable X_k \in o do
                                                                                     Let \lambda_r^k \leftarrow \max(\max_{X_k} \phi_{kr})
Update \Gamma = \Gamma \cup \{\lambda_r^k\}
                                                                           17:
        \triangleright Create bucket \Gamma_k and mini-buckets Q_{kr}
 8:
                                                                           18:
 9:
         Let \Gamma_k = \{ \phi : \phi \in \Gamma, X_k \in vars(\phi) \}
                                                                           19:
                                                                                  return \max(\prod_{\phi \in \Gamma} \phi)
         Update \Gamma = \Gamma \setminus \Gamma_k
10:
```

Example 6. Figure 4 shows the schematic bucket elimination for maximax MAP on the credal network from Figure 1a. In this case, the variable ordering is: o: A, C, B, E, D. The intermediate potentials denoted by λ are shown in red.

Theorem 3 (complexity). Given a credal network $C = \langle \mathbf{X}, \mathbf{D}, \mathbf{K} \rangle$, the CBE algorithm computes the optimal maximum MAP value of C. The time and space complexity is bounded by $O(n \cdot M^2 \cdot d^{w^*})$, where n is the number of variables, d is the maximum domain size, and M bounds the cardinality of the potentials.

Proof. Clearly, the pruning operator max commutes with the max-marginalization operator in Equation 3. Therefore, eliminating first a variable and subsequently pruning the non-maximal elements from the resulting potential is equivalent to eliminating the variable from the maximizing distribution in Equation 3.

C.1 MINI-BUCKETS FOR MAXIMAX MAP

The CBE algorithm is exact for Maximax MAP but time and space exponential in the induced width of the credal network. We describe next a mini-bucket approximation for maximax MAP which we enhance further with a cost-shifting scheme based on moment matching.

Algorithm 4 and adapts the mini-bucket partitioning scheme developed for graphical models (Dechter & Rish, 2003) to the maximax MAP task in credal networks. Specifically, algorithm MB(i) which approximates CBE is parameterized by an i-bound i and works by partitioning large buckets into smaller subsets, called mini-buckets, each containing at most i distinct variables. The mini-buckets are processed separately by maximizing out the bucket variable from the combination of potentials in the respective mini-bucket. Based on previous work (Dechter & Rish, 2003), it is possible to show that MB(i) outputs an upper bound on the optimal maximax MAP value from Equation 3.

Proposition 2 (mini-bucket bound). Let $\phi(X_i, \mathbf{X}_j)$ and $\psi(X_i, \mathbf{X}_k)$ be two potentials such that $\phi = \{p_1, p_2, ..., p_n\}$ and $\psi = \{q_1, q_2, ..., q_m\}$, respectively. Then, the following inequality holds:

759

760

761

762

764

765 766

768769770

771 772

773 774

775776777

778

779

781

782

783

789 790 791

792

793

794

795796797

798

799

800

801

802 803

804 805

806 807

808

809

A:
$$\phi(A)$$
 $\phi(A,B)$ $\phi(A,C)$
$$\lambda^{A}(B) = \max(\max_{A}(\phi(A) \cdot \phi(A,B)))$$
C: $\phi(B,C,D)$ $\lambda^{A}(C)$
$$\lambda^{A}(C) = \max(\max_{A}\phi(A,C))$$

$$\lambda^{C}(B,D) = \max(\max_{A}(\phi(B,C,D) \cdot \lambda^{A}(C)))$$
E: $\phi(D,E)$
$$\lambda^{B}(D) = \max(\max_{B}(\lambda^{A}(B) \cdot \lambda^{C}(B,D)))$$
D: $\lambda^{B}(D)$ Upper Bound = $\max(\max_{D}(\lambda^{B}(D) \cdot \lambda^{E}(D)))$

$$\max\left(\max_{A} \left(\phi(A) \cdot \phi(A, B) \cdot \phi(A, C)\right)\right) \leq \max\left(\max_{A} \left(\phi(A) \cdot \phi(A, B)\right) \cdot \max_{A} \phi(A, C)\right)$$

Figure 5: Schematic execution of MB(2) on the credal network from Figure 1a

Algorithm 5 Bucket Elimination for Maximin MAP

```
1: procedure CBE(\mathcal{C} = \langle \mathbf{X}, \mathbf{D}, \mathbf{K} \rangle)
                                                                         9:
                                                                                           \triangleright Create bucket \Gamma_k for variable X_k
                                   10:
                                                                                 Let \Gamma_k = \{ \phi : \phi \in \Gamma, X_k \in vars(\phi) \}
                                                                                 Update \Gamma = \Gamma \setminus \Gamma_k
3:
      Initialize \Gamma \leftarrow \emptyset
                                                                        11:
4:
      for all variable X_k \in \mathbf{X} do
                                                                        12:
                                                                                           5:
       Let \phi_k = \{p : p \in \text{ext}(K(X_k|\Pi_k))\}
                                                                                 Let \lambda^k \leftarrow \min \left( \max_{X_k} \prod_{\phi \in \Gamma_k} \phi \right)
                                                                        13:
        Update \Gamma = \Gamma \cup \{\phi_k\}
                                                                                  Update \Gamma = \Gamma \cup \{\lambda^k\}
                                                                        14:
      Create elimination ordering o: X_1, \ldots, X_n
                                                                                return min (\prod_{\phi \in \Gamma} \phi)
      for all variable X_k \in o do
                                                                        15:
```

$$\max_{X_i} \left[\phi(X_i, \mathbf{X}_j) \cdot \psi(X_i, \mathbf{X}_k) \right] \le \left[\max_{X_i} \phi(X_i, \mathbf{X}_j) \right] \cdot \left[\max_{X_i} \psi(X_i, \mathbf{X}_k) \right] \tag{6}$$

Proof. Let $A = \max_{X_i} \phi(X_i, \mathbf{X}_j) \cdot \psi(X_i, \mathbf{X}_k)$ and let $a = \max_{X_i} p_t(X_i, \mathbf{X}_j) \cdot q_r(X_i, \mathbf{X}_j)$ be one of its components. Clearly, $\max_{X_i} p_t(X_i, \mathbf{X}_j) \cdot q_r(X_i, \mathbf{X}_j) \leq \max_{X_i} p_t(X_i, \mathbf{X}_j) \cdot \max_{X_i} q_r(X_i, \mathbf{X}_j)$. Let $b = p_t^*(\mathbf{X}_j) = \max_{X_i} p_t(X_i, \mathbf{X}_j)$ and $c = q_r^*(\mathbf{X}_k) = \max_{X_i} q_r(X_i, \mathbf{X}_k)$ and let $B = \max_{X_i} \phi(X_i, \mathbf{X}_j)$ and $C = \max_{X_i} \psi(X_i, \mathbf{X}_k)$, respectively. Therefore, $a \leq b \cdot c$. Then it follows that for every $a \in A$, we can identify an element of $a' \in B \cdot C$ such that $a \leq a'$.

Example 7. Figure 5 shows the schematic execution of algorithm MB(i=2) on the credal network from Figure 1a. In this case, the elimination ordering is A, C, B, E, D, namely variable A is eliminated first, then C and so on. After eliminating the last variable D, we obtain an upper bound on the optimal maximax MAP value.

Proposition 3. Algorithm MB(i) computes an upper bound on the optimal maximax MAP value.

Proof. The result follows easily by applying Proposition 2.

D BUCKET ELIMINATION FOR MAXIMIN MAP

For maximin MAP, we define a min pruning operator that returns the minimal elements of a potential $\phi(\mathbf{Y})$ relative to the same partial order \leq , namely $\min(\phi(\mathbf{Y})) = \{p(\mathbf{Y}) \in \phi(\mathbf{Y}) : \nexists q \in \phi(\mathbf{Y}), q(\mathbf{Y}) \leq p(\mathbf{Y})\}.$

Proposition 4 (commuting max-marginal and min-pruning operators). Let $\phi(X_i, \mathbf{X}_j)$ and $\psi(X_i, \mathbf{X}_k)$ be two potentials such that $\phi = \{p_1, p_2, \dots, p_n\}$ and $psi = \{q_1, q_2, \dots, q_m\}$. Then, commuting the max-marginal operator and the min-pruning operator yields the following inequality:

$$\max_{X_i} \min_{P(\mathbf{Z}) \in K(\mathbf{Z})} \phi(X_i, \mathbf{X}_j) \cdot \psi(X_i, \mathbf{X}_k) \leq \min_{P(\mathbf{Z} \setminus \{X_i\}) \in K'(\mathbf{Z} \setminus \{X_i\})} \max_{X_i} \phi(X_i, \mathbf{X}_j) \cdot \psi(X_i, \mathbf{X}_k),$$

where $\mathbf{Z} = \{X_i\} \cup \mathbf{X}_j \cup \mathbf{X}_k$, $K(\mathbf{Z})$ is the credal set for $\phi(X_i, \mathbf{X}_j) \cdot \psi(X_i, \mathbf{X}_k)$, and $K'(\mathbf{Z} \setminus \{X_i\})$ is the credal set for $\max_{X_i} \phi(X_i, \mathbf{X}_j) \cdot \psi(X_i, \mathbf{X}_k)$.

Proof. The left-hand side of the inequalty can be written as,

$$\begin{aligned} & \max_{X_i} \min_{P(\mathbf{Z}) \in K(\mathbf{Z})} \phi(X_i, \mathbf{X}_j) \cdot \psi(X_i, \mathbf{X}_k) \\ &= \max_{X_i} \min_{P(\mathbf{Z} \setminus \mathbf{X}_k) \in K_{\phi}(\mathbf{Z} \setminus \mathbf{X}_k)} \phi(X_i, \mathbf{X}_j) \cdot \min_{P(\mathbf{Z} \setminus \mathbf{X}_j) \in K_{\psi}(\mathbf{Z} \setminus \mathbf{X}_j)} \psi(X_i, \mathbf{X}_k) \\ &= \max_{X_i} p_*(X_i, \mathbf{X}_j) \cdot q_*(X_i, \mathbf{X}_k), \end{aligned}$$

where $p_*(X_i, \mathbf{X}_j)$ and $q_*(X_i, \mathbf{X}_k)$ are the dominated function in the credal set $K_{\phi}(\mathbf{Z} \setminus \mathbf{X}_k)$ and $K_{\psi}(\mathbf{Z} \setminus \mathbf{X}_j)$, respectively.

By commuting max-marginal and min-pruning operator,

$$\begin{split} & \min_{P(\mathbf{Z} \setminus \{X_i\} \in K'(\mathbf{Z} \setminus \{X_i\})} \max_{X_i} \phi(X_i, \mathbf{X}_j) \psi(X_i, \mathbf{X}_k) \\ &= \min_{P(\mathbf{Z} \setminus \{X_i\} \in K'(\mathbf{Z} \setminus \{X_i\})} \{\max_{X_i} p(X_i, \mathbf{X}_j) \cdot q(X_i, \mathbf{X}_k) | \forall p \in \phi, q \in \psi\} \\ &= r_*(\mathbf{X}_j, \mathbf{X}_k) \geq \max_{X_i} p_*(X_i, \mathbf{X}_j) \cdot q_*(X_i, \mathbf{X}_k), \end{split}$$

where $r_*(\mathbf{X}_i, \mathbf{X}_k)$ is the dominated function in the set $\{\max_{X_i} p \cdot q | \forall p \in \phi, q \in \psi\}$.

Algorithm 5 describes the bucket elimination procedure called CBE that can be used to solve Equation 4. However, unlike maximax MAP, in this case CBE is no longer exact and only computes an upper bound on the optimal maximin MAP value. It is easy to see that max and min do not commute in Equation 4. We illustrate with a simple example that by pushing the outside max inside the min operator yields an upper bound: $\max(\min(3,1), \min(3,2)) = \max(1,2) = 2 \le \min(\max(3,1), \max(3,2)) = \min(3,3) = 3$.

Let $o: X_1, X_2, \ldots, X_n$ be an ordering of the variables \mathbf{X} such that X_1 is eliminated first, then X_2 and so on. First, the algorithm creates a set of potentials Γ from the input local conditional credal sets $K(X_i|\Pi_i=\pi_{ik})$. Each potential ϕ_k contains the set of all conditional probability distributions $P(X_k|\Pi_k)$ such that $P(x_k|\pi_{kj}) = P(X_k=x_k|\Pi_k=\pi_{kj}) \in \text{ext}(K(X_k|\Pi_k=\pi_{kj}))$. The algorithm then eliminates each variable X_k by maximization from the combination of potentials that contain X_k in their scope, namely it computes a new potential $\lambda^k = \min\left(\max_{X_k} \prod_{\phi \in \Gamma_k} \phi\right)$. The resulting potential λ^k is pruned by removing its non-minimal elements. After eliminating the last variable in the ordering, the resulting value is an upper bound on the optimal maximin MAP value.

E ADDITIONAL EXPERIMENTS

In this section we include additional experiments and details that were omitted from the main paper. We note that in all of our experiments, we did not consider any evidence.

E.1 RESULTS FOR MAXIMAX MAP

Tables 7 and 8 summarize the results obtained on the random, and grid credal networks. The columns are indexed by the mini-bucket *i*-bound, and in each cell we show the average CPU time in seconds, and the average number of nodes expanded by the respective algorithm. We ran the OR and AND/OR branch and bound algorithms guided by mini-bucket heuristics without potential approximation and moment-matching (i.e., BB+MB(i), AOBB+MB(i)), mini-bucket heuristics with potential approximation of size 1 only (i.e., BB+MB(i,1), AOBB+MB(i,1)), and mini-bucket

Table 6: Results for Maximax MAP on 100 variables random networks. Average CPU time in seconds and number of nodes expanded using mini-bucket *i*-bounds from 2 to 12. Time limit 1 hour.

size	algorithm	i	=2	i	= 4	i =	6	i =	8	i =	10	i = 1	12
		time	nodes	time	nodes	time	nodes	time	nodes	time	nodes	time	nodes
		rand	om credal	networks	S								
	AOBB+MB(i,1)	2.90	29603	0.99	13934	0.54	6877	0.25	5280	0.18	2352	0.09	1438
	AOBB+MB(i,10)	3.06	29603	1.47	13934	18.65	6877	501.36	5834	809.46	2582	1405.00	1931
	AOBB+MB(i,30)	3.25	29603	1.72	13934	555.51	7609	2731.54	3462	3153.93	209	-	-
	AOBB+MB(i,50)	3.25	29603	2.07	13934	558.29	7609	2781.15	2492	3284.57	251	-	-
100	AOBB+MBMM(i,1)	2.25	21057	0.39	8316	0.40	4448	0.15	3544	0.20	1807	0.10	773
	AOBB+MBMM(i,10)	1.97	21057	0.75	8316	15.99	4448	488.84	3906	797.66	1978	1770.41	1204
	AOBB+MBMM(i,30)	2.12	21057	0.94	8316	541.91	4910	2708.84	2162	3189.16	105	-	-
	AOBB+MBMM(i,50)	2.22	21057	1.04	8316	548.81	4910	2800.54	1633	3312.94	108	-	-
	AOBB+MB(i)	2.87	29603	2.77	13934	972.37	7336	-	-	-	-	-	-

Table 7: Results for Maximax MAP on random credal networks. Average CPU time (sec) and number of nodes expanded using mini-bucket *i*-bounds from 2 to 12. Time limit 1 hour.

size	algorithm	i	= 2	l i	= 4	l i	= 6	l i	= 8	i :	= 10	i =	= 12
(w^*,h)	_	time	nodes										
	DFS	18.55	2097152	1		1		1		1		1	
20	BB+MB(i)	0.01	204	0.01	49	774.78	22	775.56	22	776.53	22	774.82	22
(4,9)	BB+MB(i,1)	0.01	204	0.01	49	0.00	22	0.00	22	0.01	22	0.00	22
	BB+MBMM(i,1)	0.01	58	0.01	24	0.00	22	0.00	22	0.01	22	0.00	22
	AOBB+MB(i)	0.01	50	0.01	25	775.00	22	776.64	22	776.20	22	774.58	22
	AOBB+MB(i,1)	0.01	50	0.01	25	0.01	22	0.01	22	0.01	22	0.01	22
	AOBB+MBMM(i,1)	0.01	36	0.00	23	0.02	22	0.00	22	0.02	22	0.01	22
	DFS	-	_	l		l						l	
50	BB+MB(i)	1.15	40301	0.57	9672	863.27	1009	3331.72	62	-	-	-	-
(9,17)	BB+MB(i,1)	1.08	40301	0.45	9672	0.05	947	0.01	117	0.02	57	0.02	52
	BB+MBMM(i,1)	0.16	5178	0.07	818	0.02	276	0.01	56	0.02	52	0.02	52
	AOBB+MB(i)	0.03	298	0.04	188	818.48	101	3333.34	55	-	-	-	-
	AOBB+MB(i,1)	0.03	298	0.02	188	0.03	106	0.01	78	0.04	54	0.02	52
	AOBB+MBMM(i,1)	0.03	169	0.01	107	0.06	94	0.01	53	0.07	52	0.02	52
	DFS	-	_	I		I		1		1		I	
100	BB+MB(i)	3525.20	40136432	1014.36	6399801	1789.33	123229	-	_	-	_	-	_
(18,28)	BB+MB(i,1)	3444.32	46208835	576.28	6399801	21.88	348970	1.92	64725	0.39	10498	0.35	10254
	BB+MBMM(i,1)	2481.97	34115031	154.77	1717539	29.81	362314	1.00	33382	0.86	15106	0.30	5205
	AOBB+MB(i)	2.87	29603	2.77	13934	972.37	7336	-	-	-	-	-	-
	AOBB+MB(i,1)	2.90	29603	0.99	13934	0.54	6877	0.25	5280	0.18	2352	0.09	1438
	AOBB+MBMM(i,1)	2.25	21057	0.39	8316	0.40	4448	0.15	3544	0.20	1807	0.10	773
	DFS	_	_	1		1		1		1		1	
150	BB+MB(i)	-	-	-	_	-	-	-	_	-	-	-	-
(27,38)	BB+MB(i,1)	-	-	-	_	2373.35	37994389	1408.44	21780102	1104.19	18280501	352.27	6721585
	BB+MBMM(i,1)	-	-	3253.52	35114767	1119.96	15193688	1046.74	16149075	389.39	4938087	21.37	459902
	AOBB+MB(i)	156.22	1452909	77.77	492383	1275.38	419109	3252.94	411225	-	-	-	-
	AOBB+MB(i,1)	151.57	1452909	41.20	492383	30.97	351672	21.04	279360	22.17	281745	11.02	176409
	AOBB+MBMM(i,1)	68.48	612721	23.95	323892	11.55	158230	6.56	148781	8.43	133786	2.62	47718
	DFS	-	_	I		I		1		1		I	
200	BB+MB(i)	-	_	-	_	-	_	-	_	-	_	-	_
(36,48)	BB+MB(i,1)	-	-	-	_	-	_	-	_	3458.90	56460524	2639.46	58444711
	BB+MBMM(i,1)	-	-	-	-	-	-	2780.10	41392520	2342.75	37828931	1495.49	29931863
	AOBB+MB(i)	1555.37	8510209	1126.37	4969424	2285.98	813793	3458.96	96389	-	-	-	-
	AOBB+MB(i,1)	1537.41	9957428	1112.31	7572102	979.05	9370560	738.42	7390775	433.13	3553045	113.94	1407589
	AOBB+MBMM(i,1)	1155.54	8448489	1108.73	7985450	197.49	2193611	224.53	1974790	364.89	2768420	109.25	1344753

heuristics with potential approximation of size 1 and moment-matching (i.e., BB+MBMM(i,1), AOBB+MBMM(i,1)), respectively. In addition to the branch-and-bound algorithms, we also ran the brute force depth-first search algorithm denoted by DFS.

E.2 RESULTS FOR MAXIMIN MAP

Tables 10 and 11 summarize the results obtained on the random and grid credal networks for the Maximin MAP task. In addition, Table 12 shows the results obtained on the real-world credal networks. As before, we report the average CPU time in seconds and average number of nodes expanded during search, across various mini-bucket i-bounds. We can see again that the AND/OR Branch and Bound algorithms that exploit the problem structure dramatically outperform their OR search counterparts, across all reported i-bounds.

However, unlike the Maximax MAP case, the Maximin MAP task appears to be much more difficult to solve by the proposed AND/OR search algorithm. This is primarily due to the much weaker mini-bucket heuristics compiled for Maximin MAP compared to those compiled for Maximax MAP. Indeed, we recall that the variable elimination procedure described by Algorithm 3 is not exact for Maximin MAP and only outputs an upper bound on the optimal Maximin MAP value. Consequently, the mini-bucket approximation of this bound turns out to be much looser even if we try to tighten it with the moment-matching scheme.

Table 8: Results for Maximax MAP on grid credal networks. Average CPU time (sec) and number of nodes expanded using mini-bucket *i*-bounds from 2 to 12. Time limit 1 hour.

size	algorithm	l i	= 2	l i	= 4	l i	= 6	i	= 8	i :	= 10	i :	= 12
(w^*,h)		time	nodes	time	nodes	time	nodes	time	nodes	time	nodes	time	nodes
	DFS	1051.72	67108864	Ì		Ì		Ī		Ì		ĺ	
25	BB+MB(i)	0.06	3664	0.05	242	3275.18	27	3288.28	27	3283.06	27	3287.40	27
(5,15)	BB+MB(i,1)	0.07	3664	0.01	242	0.00	27	0.01	27	0.01	27	0.01	27
	BB+MBMM(i,1)	0.06	1436	0.01	88	0.00	27	0.01	27	0.04	27	0.01	27
	AOBB+MB(i)	0.01	122	0.05	50	3278.58	27	3286.95	27	3283.82	27	3289.09	27
	AOBB+MB(i,1)	0.01	122	0.01	50	0.01	27	0.01	27	0.04	27	0.01	27
	AOBB+MBMM(i,1)	0.01	97	0.04	32	0.01	27	0.02	27	0.06	27	0.01	27
	DFS	-	-										
49	BB+MB(i)	141.09	4454273	5.10	53819	3524.41	498	-	-	-	-	-	-
(9,25)	BB+MB(i,1)	189.40	4454273	2.23	53819	0.02	708	0.01	74	0.04	51	0.02	51
	BB+MBMM(i,1)	80.93	1728866	1.01	20768	0.01	96	0.02	53	0.06	51	0.03	51
	AOBB+MB(i)	0.03	562	0.11	266	3392.24	132	-	-	-	-	-	-
	AOBB+MB(i,1)	0.03	562	0.03	266	0.01	144	0.03	63	0.06	51	0.03	51
	AOBB+MBMM(i,1)	0.02	299	0.07	227	0.01	67	0.03	52	0.10	51	0.02	51
	DFS	-	-					1				1	
100	BB+MB(i)	-	-	-	-	-	-	-	-	-	-	-	-
(14,38)	BB+MB(i,1)	-	-	-	-	2069.82	32793488	51.48	1342799	0.17	4123	0.06	783
	BB+MBMM(i,1)	-	-	3287.93	45186026	362.59	5259684	0.07	699	0.13	123	0.07	102
	AOBB+MB(i)	3.82	65648	0.23	2138		-		-	-	-	- 0.05	-
	AOBB+MB(i,1)	3.56	65648	0.13	2138	0.07	1930	0.09	1277	0.24	477	0.05	233
	AOBB+MBMM(i,1)	0.74	19531	0.30	2138	0.06	1235	0.07	226	0.21	107	0.05	102
	DFS	-											
144	BB+MB(i)	-	-	-	-	-	-	-	-	-	-	-	-
(18,49)	BB+MB(i,1)	-	-	-	-			2882.01	51081184	986.25	23294052	5.44	184268
	BB+MBMM(i,1)		524460		-	3244.43	38700863	38.68	736998	0.35	1810	0.16	1787
	AOBB+MB(i) AOBB+MB(i,1)	33.80 43.48	524460	0.42 0.46	8355 8355	0.28	8324	0.33	7073	0.74	5710	0.15	2278
	AOBB+MB(i,1)	18.45	247311	0.46	8325	0.28	7413	0.33	1046	0.74	327	0.13	243
	. (,,,	18.43	24/311	0.73	8323	0.27	/413	0.11	1046	0.52	321	0.09	243
100	DFS	-	-										
196	BB+MB(i)	-	-	-	-	-	-	-	-	-	-		-
(20,57)	BB+MB(i,1)	-	-	-	-	-	-	2240 10	20500000	1072 22	16605172	2243.14	53048783
	BB+MBMM(i,1)	061.59	10746465	1.54	32950	3478.82	32950	3240.10	39599609	1072.23	16685172	0.24	1060
	AOBB+MB(i) AOBB+MB(i,1)	961.58 1162.59	10746465	1.54 1.92	32950 32950	1.31	32950 32950	1.62	32945	2.22	32950	1.01	25366
	AOBB+MB(1,1) AOBB+MBMM(i,1)	395.68	4201397	2.19	32950	1.03	31339	1.02	24508	1.83	32930	0.14	480
	ACDDTIVIDIVINI(I,I)	393.00	4201397	2.19	32930	1.03	31339	1.10	24306	1.05	32940	0.14	400

Consequently, the AND/OR branch and bound algorithms for Maximin MAP guided by the minibucket heuristics with potential approximation of size 1 and moment-matching can only solve random problems with up to 150 variables.

We observe however that AOBB+MB(i) with relatively small *i*-bounds (i.e., 2 or 4) performs quite well and is able to solve the problems relatively efficiently. This indicates that the corresponding mini-bucket bounds without potential approximation and moment-matching are tighter than those involving the Pareto least upper bound. Unfortunately, compiling the MB(i) heuristics for higher *i*-bounds is not feasible because of the computational overhead. Therefore, a possible direction of future work is to study of the mini-bucket heuristics for Maximin MAP and develop new ways to tighten them even further.

F COMPARISON WITH LOCAL SEARCH ALGORITHMS

We also extended the local search algorithms developed previously for credal Marginal MAP (Marinescu et al., 2023) to solving the credal maximax and maximin MAP tasks as well. Specifically, we developed the following algorithms: Stochastic Local Search (SLS), Taboo Search (TS), Simulated Annealing (SA) and Guided Local Search (GLS), respectively. In all our experiments, we ran the algorithms for a total of 10 iterations (i.e., random restarts) with a maximum of 100,000 flips per iterations. The random flip probability was set to 0.1, the taboo list had a maximum size of 1,000, while the alpha and initial temperature used by SA were set to 0.1 and 100, respectively. As before, the time limit was set to 1 hour.

Tables 13 and 15 present the results for the Maximax MAP task on both random and real-world credal networks. Similarly, Tables 14 and 16 report the results for the Maximin MAP task on the same set of problem instances.

G SUMMARY OF THE CONTRIBUTION

This paper presents significant advancements in the field of MAP inference for credal networks. While MAP inference has been extensively studied in Bayesian networks over the past decades, its counterpart in credal networks has received comparatively limited attention. To date, there exists no established algorithmic framework for solving credal MAP tasks in practical settings.

Table 9: Results for Maximax MAP on real-world credal networks. CPU time (sec) and number of nodes expanded using mini-bucket *i*-bounds from 2 to 12. Time limit 1 hour.

instance	algorithm		= 2		= 4		= 6		= 8		= 10		: 12
(n, w, h)		time	nodes	time	nodes	time	nodes	time	nodes	time	nodes	time	nodes
alarm	BB+MB(i) BB+MBMM(i,1)	2030.54 5.52	150170 4535	3.98 3.77	50 39	5.67 3.99	39 39	6.07 4.92	39 39	3.87 5.36	39 39	9.33 5.45	39 39
(37,4,12)	AOBB+MB(i)	5.78	85	4.81	42	5.25	39	7.64	39	6.60	39	6.56	39
	AOBB+MBMM(i,1)	2.62	52	2.82	39	2.80	39	5.38	39	2.80	39	2.75	39
	BB+MB(i)	0.02	77	0.00	72	0.00	72	0.00	72	0.00	72	0.04	72
child (20,3,6)	BB+MBMM(i,1) AOBB+MB(i)	0.00 0.01	73 24	0.00 0.02	72 22	0.01 0.00	72 22	0.01 0.00	72 22	0.00 0.01	72 22	0.01 0.01	72 22
(20,3,6)	AOBB+MB(i,1)	0.01	24	0.02	22	0.00	22	0.00	22	0.01	22	0.01	22
	BB+MB(i)	I -	-	8.67	174	I -	-	<u> </u>	-	-	-	-	
hailfinder	BB+MBMM(i,1)	-	-	12.70	168	11.31	58	10.96	58	11.77	58	10.87	58
(56,5,11)	AOBB+MB(i) AOBB+MBMM(i,1)	11.57 11.08	80 84	10.26 11.31	62 62	11.64	58	11.02	58	10.74	58	11.22	58
	BB+MB(i)	1.05	4829	1.12	4199	1 -		1 -	-	10.71			
insurance	BB+MBMM(i,1)	0.47	2230	0.13	534	0.12	250	0.09	170	0.07	170	0.10	170
(27,7,11)	AOBB+MB(i)	0.08	89	0.08	86								
	AOBB+MBMM(i,1)	0.07	87	0.07	78	0.06	57	0.06	56	0.07	56	0.08	56
link	BB+MB(i) BB+MBMM(i,1)		-	-	-	-	-	[-	-	-	-	-
(724,15,43)	AOBB+MB(i)	23.09	67424	3.74	1772	-	-	-	-	-	-	-	-
	AOBB+MBMM(i,1)	9.77	33603	2.97	1004	2.99	978	2.79	978	2.58	793	2.88	735
mastermind1	BB+MB(i) BB+MBMM(i,1)	-	-	-	-	-	-	-	-	-	-	-	-
(1220,20,56)	AOBB+MB(i)	_	-	102.60	34669		-		-	-	_		-
, , , ,	AOBB+MBMM(i,1)	-	-	26.64	34493	9.96	17619	9.97	17619	9.83	17619	9.67	17619
	BB+MB(i)	-	-	-	-	-	-	-	-	-	-	-	-
mastermind3 (3692,39,92)	BB+MBMM(i,1) AOBB+MB(i)	-	-	-	-	-	-	-	-	-	-	-	-
(3092,39,92)	AOBB+MBMM(i,1)	-	-	_	-	3264.92	2180932	3088.55	2172466	3036.91	2167200	3010.41	2167117
	BB+MB(i)	58.77	349847	0.87	42	1.44	37	1.40	37	1.25	37	1.92	37
mildew	BB+MBMM(i,1)	3.14	23006	0.10	37	0.11	37	0.11	37	0.11	37	0.12	37
(35,4,15)	AOBB+MB(i) AOBB+MBMM(i,1)	0.13 0.08	112 67	0.73 0.13	41 37	1.85 0.11	37 37	1.81 0.11	37 37	1.27 0.12	37 37	1.44 0.12	37 37
	BB+MB(i)	I -	-	-	-	<u> </u>	-	<u> </u>	-	-	_	-	
munin	BB+MBMM(i,1)					35.85	88721	7.71	1056	7.47	1043	7.04	1043
(1041,8,26)	AOBB+MB(i) AOBB+MBMM(i,1)	2.11 1.96	1311 1127	3.10 1.72	1076 1076	1.78	1044	1.74	1043	1.62	1043	1.59	1043
	BB+MB(i)	1.50	-	1.72	-	1.70	-	1 -	-	1.02	-	-	
pedigree1	BB+MBMM(i,1)	-	-	-	-	-	-	-	-	-	-	93.25	974000
(334,21,47)	AOBB+MB(i)	1699.58	8389182	33.27	131390	158.79	131390	20.00	104772	22.20	12250	22.50	466
	AOBB+MBMM(i,1)	1543.91	8389051	34.84	131390	29.64	84817	29.90	104772	23.39	12259	22.50	466
pedigree7	BB+MB(i) BB+MBMM(i,1)	[-		-	[-	[-	_	-		-
(1068,44,88)	AOBB+MB(i)	-	-	-	-	-	-	- 2076 21	16662167	200.2:	1007612	-	-
	AOBB+MBMM(i,1)	-	-	-	-	-	-	2876.21	16663195	289.24	1907613	74.35	547430
pedigree9	BB+MB(i) BB+MBMM(i,1)		-	-	-	-	-	-	-	-	-	-	-
(1118,33,106)	AOBB+MB(i)	-	-	-	-	3004.43	132421	:	-	-		-	-
	AOBB+MBMM(i,1)	-	-	3126.56	16782641	55.63	121021	12.69	25684	8.96	15477	16.43	32946
xdiabetes	BB+MB(i)	-	-	-	-	165.72	415	119.47	415	191.26 0.58	415	166.74	415
(413,4,44)	BB+MBMM(i,1) AOBB+MB(i)	0.40	529	1.04	426	0.52 158.02	415 415	0.56 179.66	415 415	163.06	415 415	0.57 114.08	415 415
,.,,	AOBB+MBMM(i,1)	0.19	495	0.12	426	0.21	415	0.21	415	0.26	415	0.25	415
	BB+MB(i)	3255.20	589618	17.32	819				-	-	-		
zbarley (48,7,21)	BB+MBMM(i,1) AOBB+MB(i)	8.67 22.24	3897 170	7.89 13.44	74 76	15.71	50	15.82	50	16.92	50	17.35	50
(13,7,21)	AOBB+MBMM(i,1)	7.97	82	7.66	57	15.53	50	16.11	50	16.99	50	16.93	50
	BB+MB(i)	-	-	2578.16	3730772	223.00	1076	-	-	-	-	-	-
zpigs (441,10,25)	BB+MBMM(i,1)	0.37	535	1.33 0.64	13235 463	0.79 232.95	463 456	0.69	443	0.73	443	0.77	443
(441,10,23)	AOBB+MB(i) AOBB+MBMM(i,1)	0.37	480	0.64	463 454	0.21	456 444	0.35	443	0.33	443	0.35	443
	1 (-,-)												

Recently, Marinescu et al. (2023) pioneered the study of Marginal MAP inference in credal networks – a generalization of pure MAP inference. They introduced several stochastic local search algorithms alongside an exact brute-force depth-first search method. However, their empirical evaluation revealed that these approaches are either limited to very small problem instances or lack guarantees regarding the quality of the solutions produced.

In response to these limitations, we propose a novel branch-and-bound search framework designed to address two critical challenges: (1) scalability to larger and more complex credal networks, and (2) provision of solution quality guarantees, particularly optimality. Our approach leverages the AND/OR search space to exploit the underlying problem structure efficiently. This is further enhanced by a partitioning-based heuristic that integrates potential approximations with cost-shifting strategies. The AND/OR search space, previously shown to yield substantial time savings in Bayesian networks, is here extended to credal networks and to both maximax and maximin MAP tasks.

Given that mini-bucket approximations of variable elimination in credal networks often incur high computational costs due to very large potentials, we introduce a novel approximation scheme. This scheme utilizes the Pareto least upper bound concept for multi-dimensional vectors to manage potential complexity effectively.

Table 10: Results for Maximin MAP on random credal networks. Average CPU time (sec) and number of nodes expanded using mini-bucket *i*-bounds from 2 to 12. Time limit 1 hour.

size	algorithm	i	= 2	i	= 4	i	= 6	l i	= 8	i :	= 10	i :	= 12
(w^*,h)	_	time	nodes	time	nodes	time	nodes	time	nodes	time	nodes	time	nodes
20 (4,9)	DFS BB+MB(i) BB+MB(i,1) BB+MBMM(i,1) AOBB+MB(i)	18.55 0.10 0.10 0.10 0.10 0.01	2097152 2432 2432 1776 62	0.06 0.06 0.07 0.01	1453 1453 1268 48	0.05 0.05 0.11 769.29	1219 1219 1219 41	0.05 0.05 0.10 783.35	1219 1219 1219 40	0.05 0.05 0.20 781.64	1219 1219 1219 41	0.05 0.05 0.22 781.84	1219 1219 1219 41
	AOBB+MB(i,1) AOBB+MBMM(i,1)	0.01 0.01	93 85	0.01 0.01	73 71	0.00 0.01	69 69	0.00 0.01	69 69	0.00 0.01	69 69	0.00 0.01	69 69
50 (9,17)	DFS BB+MB(i) BB+MB(i,1) BB+MBMM(i,1) AOBB+MB(i) AOBB+MB(i,1) AOBB+MBMM(i,1)	2197.76 2695.59 2462.65 0.03 0.06 0.06	50789183 50966426 46982744 511 992 816	2235.78 2374.55 2166.87 0.05 0.04 0.05	59543636 47802338 43940482 407 767 678	2466.74 2073.88 2184.39 1564.38 0.03 0.04	49480309 43649700 45607376 297 674 610	2307.14 2405.55 3257.63 0.04 0.06	48401873 50088103 591 697 702	2415.52 2411.81 - 0.04 0.06	50355186 50116876 - 777 689	2383.77 2390.75 0.03 0.05	48786553 48487153 - 683 683
100 (18,28)	DFS BB+MB(i) BB+MB(i,1) BB+MBMM(i,1) AOBB+MB(i) AOBB+MB(i,1) AOBB+MBMM(i,1)	321.81 370.60 360.05	2288083 2519857 2510757	339.53 343.64 349.68	1490415 2403898 2488775	2335.24 315.94 314.74	686105 2380625 2381402	310.87 307.27	2385030 2380974	296.38 306.49	2348286 2370181	297.56 297.10	2356143 2363219
150 (27,38)	DFS BB+MB(i) BB+MB(i,1) BB+MBMM(i,1) AOBB+MB(i) AOBB+MB(i,1) AOBB+MBMM(i,1)	3241.73 3241.71 3241.64 2536.15 3242.14 3099.09	24284657 23719408 23573902 10771808 16470814 15395878	3244.87 3241.20 3241.23 2293.90 2498.93 2951.84	25909874 27381745 26682191 7957842 15012036 16626578	3251.83 3241.03 3241.07 3248.25 2825.31 2216.77	8188419 30027153 29702609 1112588 18955066 16053772	3240.94 3240.90 - 2990.98 2299.99	30044581 30399636 - 19312663 15835166	3240.74 3240.69 - 2299.04 2546.68	30979810 33921616 - 16106412 19344809	3240.63 3240.45 - 2450.80 2605.07	40077583 39299760 20333769 19840368
200 (36,48)	DFS BB+MB(i) BB+MB(i,1) BB+MBMM(i,1) AOBB+MB(i) AOBB+MB(i,1) AOBB+MBMM(i,1)	- - - - -	- - - - -	- - - - -	-	- - - - -	-	- - - - -	-	- - - - -	-	- - - - -	- - - - -

Table 11: Results for Maximin MAP on grid credal networks. Average CPU time (sec) and number of nodes expanded using mini-bucket *i*-bounds from 2 to 12. Time limit 1 hour.

size	algorithm	i	= 2	l i	= 4	l i	= 6	i	= 8	i	= 10	l i	= 12
(w^*,h)	_	time	nodes	time	nodes	time	nodes	time	nodes	time	nodes	time	nodes
	DFS	1051.72	67108864	Ì				ĺ				ĺ	
25	BB+MB(i)	0.06	3664	0.05	242	3275.18	27	3288.28	27	3283.06	27	3287.40	27
(5,15)	BB+MB(i,1)	51.33	2139003	54.13	2101943	53.70	2083684	53.78	2083684	53.24	2083684	52.73	2083684
	BB+MBMM(i,1)	45.17	2142018	42.65	2092694	41.02	2083684	41.61	2083684	42.52	2083684	38.19	2083684
	AOBB+MB(i)	0.01	122	0.05	50	3278.58	27	3286.95	27	3283.82	27	3289.09	27
	AOBB+MB(i,1)	0.06	3680	0.06	3509	0.06	3496	0.05	3496	0.05	3496	0.05	3496
	AOBB+MBMM(i,1)	0.10	3653	0.10	3506	0.10	3496	0.10	3496	0.09	3496	0.09	3496
	DFS	-	-					1					
49	BB+MB(i)	141.09	4454273	5.10	53819	3524.41	498	-	-	-	-	-	-
(9,25)	BB+MB(i,1)	-	-	-	-	3469.28	110049922	3555.44	129042447	3552.79	135249370	3579.86	141018196
	BB+MBMM(i,1)	-	-	3522.94	120903523	3593.77	130957532	2880.00	137553732	-	-	-	-
	AOBB+MB(i)	0.03	562	0.11	266	3392.24	132	-	-	-	-	-	-
	AOBB+MB(i,1)	1.30	65652	0.63	40579	0.92	39381	1.03	39748	1.02	39624	1.02	39624
	AOBB+MBMM(i,1)	2.76	67608	1.28	39705	1.26	40029	1.23	39650	1.20	39624	1.27	39624
	DFS	-	-	1									
100	BB+MB(i)	3410.80	45573423	-	-	-	-	-	-	-	-	-	-
(14,38)	BB+MB(i,1)	-	-	-	-	-	-	-	-	-	-	-	-
	BB+MBMM(i,1)					-		2880.00	86787865	-	-	-	-
	AOBB+MB(i)	75.49	32883	79.54	1126	3428.01	102	3427.41	102	-	-	-	-
	AOBB+MB(i,1)	390.56	10949062	364.18	10424997	363.35	11333724	362.88	11541125	362.84	10914068	362.85	11132756
	AOBB+MBMM(i,1)	384.44	8520856	365.06	8545588	364.31	9051579	363.55	9057851	362.98	9007334	363.20	9076567
	DFS	-	-										
144	BB+MB(i)	-	-	-	-	-	-	-	-	-	-	-	-
(20,57)	BB+MB(i,1)	-	-	-	-	-	-	-	-	-	-	-	-
	BB+MBMM(i,1)	-	-	-	-	-	-	2880.01	56234017				
	AOBB+MB(i) AOBB+MB(i,1)	33.80	524460	0.42 1897.99	8355 61463739	1455.34	52054673	1455.18	52062183	1451.04	52765048	1451.10	55655798
	AOBB+MB(1,1) AOBB+MBMM(i,1)	3034.07	58071151	1729.59	45653311	1455.54	44054565	1455.40	44027607	1451.04	44223628	1451.10	48988157
		3034.07	360/1131	1729.39	43033311	1437.06	44034303	1433.40	44027007	1433.39	44223026	1432.31	40900137
40.0	DFS	-	-										
196	BB+MB(i)	-	-	-	-	-	-	-	-	-	-	-	-
(18,49)	BB+MB(i,1)	-	-	-	-	-	-	2000 02	50540756	-	-	-	-
	BB+MBMM(i,1) AOBB+MB(i)	961.58	10746465	1.54	32950	3478.82	32950	2880.02	58543756				
	AOBB+MB(i,1)	801.38	10740403	2279.84	31996332	2279.38	35298631	2248.19	38894634	1931.02	36055993	_	-
	AOBB+MBMM(i,1)	1 :	-	1670.52	20372342	1960.68	25768210	2259.95	32030876	1638.70	27250308	2249.21	37315455
				1 -0.0.02	200,2042	.,00.00	25,00210	1 -2007.75	32030070	1 -050.70	2,255566	1 -2	2,310.00

Our empirical results obtained on both synthetic and more realistic credal networks demonstrate that the proposed methods not only enhance computational efficiency but also scale to large networks with over 1,000 variables, all while guaranteeing the optimality of the solutions.

Finally, we observed that Maximin MAP is much more difficult to solve by our proposed algorithms than Maximax MAP. This is because the mini-bucket based heuristic upper bounds for Maximin MAP are significantly weaker than those compiled for Maximax MAP. Therefore, another avenue for future work is to explore new ways to tighten the mini-bucket heuristics for Maximin MAP.

Table 12: Results for Maximin MAP on real-world credal networks. CPU time (sec) and number of nodes expanded using mini-bucket *i*-bounds from 2 to 12. Time limit 1 hour.

instance	algorithm	i	= 2	i :	= 4	i :	= 6	i =	= 8	i =	= 10	i =	= 12
(n, w, h)		time	nodes	time	nodes	time	nodes	time	nodes	time	nodes	time	nodes
alarm (37,4,12)	BB+MB(i)	128.78	2522160	110.17	2522160	96.03	2522160	98.37	2522160	77.19	2522160	81.93	2522160
	BB+MBMM(i,1)	126.35	2522160	106.60	2522160	101.46	2522160	97.39	2522160	89.28	2522160	63.16	2522160
	AOBB+MB(i)	6.90	460	3.86	348	6.79	348	5.60	348	5.68	348	5.49	348
	AOBB+MBMM(i,1)	6.96	394	3.77	348	7.11	348	6.64	348	6.17	348	6.91	348
	BB+MB(i)	0.06	1792	0.04	1786	0.05	1786	0.08	1786	0.05	1786	0.04	1786
child	BB+MBMM(i,1)	0.06	1790	0.05	1786	0.04	1786	0.04	1786	0.03	1786	0.04	1786
(20,3,6)	AOBB+MB(i)	0.00	28 27	0.00	27 27	0.00	27 27	0.00	27 27	0.00	27 27	0.01	27 27
	AOBB+MBMM(i,1)	0.00	21	0.00	21	0.00	21	0.00	21	0.00	21	0.00	21
	BB+MB(i)	-	-	-	-	-	-	-	-	-	-	-	-
hailfinder	BB+MBMM(i,1)	10.70	411	10.24	200	10.61	200	0.66	200	0.62	200	0.64	200
(56,5,11)	AOBB+MB(i) AOBB+MBMM(i,1)	10.79 10.47	411 408	10.24 10.14	389 389	10.61 10.29	389 389	8.66 10.07	389 389	9.63 10.09	389 389	9.64 9.37	389 389
	1												
	BB+MB(i)	13.22	158023	14.32 13.12	155472 140051	11.34	135918 135918	11.14 10.79	135918	8.63	135918 135918	12.57 12.63	135918
insurance (27,7,11)	BB+MBMM(i,1) AOBB+MB(i)	15.45 0.07	191919 367	0.06	295	12.23 0.05	212	0.03	135918 207	7.80 0.05	207	0.06	135918 207
	AOBB+MBMM(i,1)	0.07	315	0.06	268	0.03	212	0.03	207	0.03	207	0.06	207
	1					0.00		0.05		0.05		0.00	207
link	BB+MB(i) BB+MBMM(i,1)	-	-	-	-	-	-	-	-	-	-	-	-
(724,15,43)	AOBB+MB(i)	-	-	1663.40	7820555	1245.14	7448824	1180.95	7427647	1139.88	7405547	1072.66	7405953
(724,13,43)	AOBB+MBMM(i,1)]		1538.40	7455392	1245.57	7406117	1188.28	7386176	1122.29	7383818	995.99	6862912
	BB+MB(i)	<u> </u>				1		1		1		1	
mastermind1	BB+MBMM(i,1)	-	-	-	-	-	-	-	-	-	-	-	-
(1220,20,56)	AOBB+MB(i)	49.00	64081	49.14	64240	34.42	62281	32.35	61822	28.90	61189	30,69	60236
(,,)	AOBB+MBMM(i,1)	47.79	64081	49.17	64259	34.04	62281	32.14	61737	32.29	61275	30.17	61245
	BB+MB(i)	<u> </u>		_		I				i			
mastermind3	BB+MBMM(i,1)	[_	_	_]		[]	
(3692,39,92)	AOBB+MB(i)	-	_	_	_	1200.00	1357913	1099.27	1357053	1092.61	1362794	1103.99	1370757
(, , , , , ,	AOBB+MBMM(i,1)	-	-	-	-	1205.83	1358178	1083.09	1360571	1077.06	1365064	1049.79	1367606
mildew (35,4,15)	BB+MB(i)	0.09	5376	0.18	5376	0.17	5376	0.15	5376	0.10	5376	0.09	5376
	BB+MBMM(i,1)	0.15	5376	0.17	5376	0.19	5376	0.10	5376	0.19	5376	0.15	5376
	AOBB+MB(i)	0.22	1563	0.17	984	0.10	970	0.14	970	0.08	970	0.15	970
	AOBB+MBMM(i,1)	0.20	1128	0.19	972	0.15	970	0.21	970	0.20	970	0.12	970
	BB+MB(i)	0.58	2048	0.57	2048	0.51	2048	0.38	2048	0.32	2048	0.46	2048
zpigs	BB+MBMM(i,1)	0.56	2048	0.51	2048	0.48	2048	0.33	2048	0.47	2048	0.46	2048
(441,10,25)	AOBB+MB(i)	0.58	2245	1.02	2192	0.88	2282	1.00	2282	0.88	2282	0.77	2282
	AOBB+MBMM(i,1)	0.62	2282	1.01	2282	0.75	2282	0.85	2282	0.90	2282	0.99	2282

Table 13: Results for Maximax MAP on random and grid networks. Average CPU time in seconds for systematic vs non-systematic search algorithms. Time limit 1 hour.

size	AOBB+MBMM(i,1)	SLS	TS	SA	GLS			
random networks								
20	0.00	49.60	46.34	33.61	55.83			
50	$\underline{0.01}$	184.46	107.5	98.24	175.69			
100	0.10	372.75	188.92	196.96	352.78			
150	<u>2.62</u>	565.95	223.03	300.46	529.20			
200	<u>109.25</u>	681.60	438.32	326.83	563.61			
grid networks								
25	0.01	53.21	44.77	38.20	59.95			
49	0.01	186.56	68.27	59.30	169.44			
100	0.05	350.69	171.27	164.97	327.31			
144	<u>0.09</u>	421.20	203.42	207.58	424.90			
196	<u>0.14</u>	572.15	312.78	362.54	456.23			

Table 14: Results for Maximin MAP on random and grid networks. Average CPU time in seconds for systematic vs non-systematic search algorithms. Time limit 1 hour.

size	AOBB+MBMM $(i, 1)$	SLS	TS	SA	GLS			
random networks								
20	0.01	51.34	49.47	35.47	59.17			
50	0.04	232.09	103.47	72.94	139.67			
100	297.10	349.30	175.27	<u>149.91</u>	272.30			
150	2216.77	471.92	311.40	<u>198.21</u>	384.21			
200	-	576.57	380.96	<u>262.67</u>	435.96			
grid networks								
25	0.09	61.80	46.19	39.46	62.67			
49	<u>1.20</u>	178.29	73.36	63.61	120.19			
100	362.98	355.03	213.00	<u>114.30</u>	258.98			
144	1452.31	401.44	257.59	<u>171.27</u>	327.11			
196	1638.70	508.97	277.42	<u>245.27</u>	466.84			

Table 15: Results for Maximax MAP on the real-world credal networks. CPU time in seconds for systematic vs non-systematic search algorithms. Time limit 1 hour.

instance	AOBB+MBMM $(i,1)$	SLS	TS	SA	GLS
alarm	2.62	3600.05	3600.00	3600.02	3600.02
child	0.00	23.22	28.96	8.88	14.99
hailfinder	<u>10.74</u>	3600.05	3600.05	3600.05	3600.05
insurance	<u>0.06</u>	296.68	219.52	146.25	145.71
link	<u>2.58</u>	3600.01	3600.01	3600.01	3600.01
mastermind1	<u>9.67</u>	3543.37	874.84	1056.13	2629.90
mastermind3	<u>3010.41</u>	3600.02	3600.02	3600.02	3600.02
mildew	0.08	242.49	128.90	124.13	257.74
munin	<u>1.59</u>	3600.00	1678.61	2563.09	3600.01
pedigree1	<u>22.50</u>	3600.00	3600.25	3600.25	3600.25
pedigree7	<u>74.35</u>	3600.00	3600.25	3600.25	3600.25
pedigree9	<u>8.96</u>	3600.00	3600.25	3600.25	3600.25
xdiabetes	<u>0.12</u>	445.32	726.82	622.27	688.75
zbarley	<u>7.66</u>	3600.08	3600.08	3600.08	3600.08
zpigs	<u>0.19</u>	2478.80	638.01	673.14	1813.44

Table 16: Results for Maximin MAP on the real-world credal networks. CPU time in seconds for systematic vs non-systematic search algorithms. Time limit 1 hour.

instance	AOBB+MBMM $(i,1)$	SLS	TS	SA	GLS
alarm	3.77	3600.05	3600.00	3600.02	3600.02
child	0.00	25.54	19.07	6.43	31.67
hailfinder	<u>9.37</u>	3600.15	3600.04	3600.06	3600.05
insurance	<u>0.03</u>	447.66	113.53	98.23	196.98
link	<u>995.99</u>	3600.01	3600.02	3600.01	3600.03
mastermind1	<u>30.17</u>	1965.99	948.96	1237.18	2295.69
mastermind3	<u>1049.79</u>	3600.02	3600.02	3076.61	3600.02
mildew	<u>0.12</u>	741.58	557.08	190.81	240.82
zpigs	<u>0.62</u>	894.96	282.35	257.57	542.11