
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BRANCH-AND-BOUND SEARCH FOR EXACT MAP
INFERENCE IN CREDAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Credal networks extend Bayesian networks by incorporating imprecise probabili-
ties through convex sets of probability distributions known as credal sets. MAP
inference in credal networks, which seeks the most probable variable assignment
given evidence, becomes inherently more difficult than in Bayesian networks be-
cause it involves computations over a complex joint credal set. In this paper, we
introduce two tasks called maximax and maximin MAP, and develop depth-first
branch-and-bound search algorithms for solving them exactly. The algorithms
exploit problem decomposition by exploring an AND/OR search space and use
a partitioning-based heuristic function enhanced with a cost-shifting scheme to
effectively guide the search. Our experimental results obtained on both random
and realistic credal networks clearly demonstrate the effectiveness of the proposed
algorithms as they scale to large and complex problem instances.

1 INTRODUCTION

Credal networks (Cozman, 2000) are probabilistic graphical models that generalize Bayesian networks
(Pearl, 1988) by allowing imprecise probabilities. Instead precise probability mass functions, they
utilize convex sets of probability distributions known as credal sets to represent the local models
for network variables given their parents. This enables a more flexible and robust treatment of
uncertainty compared with Bayesian networks, accommodating severe uncertainty, unreliable data
or conflicting information (Mauá & Cozman, 2020). Credal networks are especially valuable when
precise probability estimates are difficult or undesirable to obtain. Moreover, credal networks are
obtained in partially identifiable structural causal models with non-observed latent variables, as often
met in causal discovery and inference (Zaffalon et al., 2020).

Over the past decades, research has primarily focused on developing marginal inference algorithms
to efficiently compute the upper and lower probability bounds of a query variable given evidence
in a credal network (Mauá & Cozman, 2020; Cano et al., 2007; Antonucci et al., 2010; Wijk et al.,
2022). Maximum a Posteriori or MAP inference tasks for credal networks, which aim to identify
the most probable value assignments to the variables given evidence, have received relatively little
attention from the community. This stands in stark contrast to Bayesian network MAP, which has
been extensively investigated over the years (Koller & Friedman, 2009).

MAP inference in credal networks is substantially more challenging than in Bayesian networks due
to computations over the joint credal set. Despite its difficulty, it remains relevant for explaining
evidence, whether or not hidden variables are involved. Some recent work has proposed a variety
of exact and approximate algorithms for Marginal MAP inference in credal networks, including
variable elimination, exhaustive depth-first search and stochastic local search (Marinescu et al., 2023).
Although these methods can be trivially extended to credal MAP inference they often scale poorly,
limiting applicability to small models or offering no guarantees on solution quality.

Contributions: This paper advances recent research on MAP inference in credal networks. In
particular, we focus on two MAP tasks called maximax and maximin MAP, defined as finding
an assignment to the network variables that is consistent with the evidence and has a maximum
upper and, respectively, lower probability. We introduce new depth-first branch-and-bound search
algorithms for solving these tasks exactly in practice. The methods leverage an AND/OR search space
associated with the credal network, effectively exploiting the underlying problem structure during
search. The proposed AND/OR search for credal networks extends the approach previously developed

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

for Bayesian networks (Dechter & Mateescu, 2007). Furthermore, we enhance these algorithms with a
novel partitioning-based heuristic that combines potential approximations with cost-shifting strategies
to produce effective search heuristics. We empirically evaluate the new MAP inference algorithms on
random credal networks with various graph topologies and on a collection of credal networks derived
from real-world applications. Our experimental results demonstrate that our algorithms significantly
improve computational efficiency, scaling effectively to large problems with over 3000 variables
while guaranteeing the optimality of the solutions found. Thus, our proposed approach addresses two
major shortcomings of previous methods for MAP inference in credal networks: the lack of solution
quality guarantees and the inability to solve large and complex problems. The Appendix includes
additional details, experimental results, code and benchmarks.

2 BACKGROUND

2.1 BAYESIAN NETWORKS

A Bayesian network (BN) (Pearl, 1988) is defined by a tuple ⟨X,D,P, G⟩, where X =
{X1, . . . , Xn} is a set of variables over multi-valued domains D = {D1, . . . , Dn}, G is a di-
rected acyclic graph (DAG) over X as nodes, and P = {Pi} where Pi = P (Xi|Πi)) are con-
ditional probability tables (CPTs) associated with each variable Xi and Πi ⊆ X are the parents
of Xi in G. A Bayesian network represents a joint probability distribution over X, given by
P (X) =

∏n
i=1 P (Xi|Πi).

Given evidence e on a subset of variables E ⊆ X, the MAP task seeks an assignment y∗ =
(y∗1 , . . . , y

∗
m) to the remaining variables Y = X \E that has a maximum probability:

y∗ = argmax
y∈Ω(Y)

P (y, e) = argmax
y∈Ω(Y)

n∏
i=1

P (xi|πi) (1)

where Ω(Y) denotes the Cartesian product of the domains of the variables in Y, while xi and πi are
the configurations of Xi and Xi’s parents Πi in the assignment x = (y, e) consistent with e.

MAP is known to be NP-hard in general (Shimony, 1994; Kwisthout, 2011). However, in recent
decades, several algorithmic schemes have been developed to solve MAP exactly (Kask & Dechter,
1999; Larrosa & Schiex, 2003; Marinescu & Dechter, 2009; Otten & Dechter, 2011).

2.2 CREDAL NETWORKS

A set of probability distributions for variable X is called a credal set and is denoted by K(X) (Levi,
1980). Similarly, a conditional credal set is a set of conditional distributions, obtained by applying
Bayes rule to each distribution in a credal set of joint distributions (Walley, 1991). We consider credal
sets that are closed and convex with a finite number of vertices. Two credal sets K(X|Y = y1) and
K(X|Y = y2), where y1 ̸= y2 are two values in variable Y ’s domain, are called separately specified
if there is no constraint on the first set that is based on the properties of the second set.

A credal network (CN) (Cozman, 2000) is defined by a tuple ⟨X,D,K, G⟩, where X =
{X1, . . . , Xn} is a set of discrete variables with finite domains D = {D1, . . . , Dn}, G is a di-
rected acyclic graph (DAG) over X as nodes, and K = {K(Xi|Πi = πik)} is a set of separately
specified conditional credal sets for each variable Xi and each k-th configuration πik of its parents
Πi in G. The strong extension K(X) of a credal network is the convex hull (denoted CH) of all joint
distributions that satisfy the following Markov property: every variable is strongly independent of its
non-descendants conditional on its parents (see Cozman (2000) for more details).

K(X) = CH{P (X) : P (X) =

n∏
i=1

P (Xi|πik), P (Xi|πik) is a vertex of K(Xi|Πi = πik)} (2)

It can be shown that the strong extensionK(X) can be built from the extreme points of the conditional
local credal sets denoted by ext(K(Xi|Πi = πik)) (Mauá & Cozman, 2020).
Example 1. Figure 1a shows a simple credal network with five bi-valued variables {A,B,C,D,E}.
The local conditional credal sets are given by closed probability intervals. For example, we have that
0.1 ≤ P (B = 1|A = 0) ≤ 0.3 and 0.5 ≤ P (B = 1|A = 1) ≤ 0.7, respectively.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) Credal network (b) Pseudo tree (c) AND/OR search tree

Figure 1: Example of a credal network and its AND/OR search space.

In credal networks, there may be multiple distributions that admit maximal assignments (Mauá &
Cozman, 2020). Therefore, we define the following maximax and maximin credal MAP tasks:
Definition 1 (maximax MAP). Given a credal network C = ⟨X,D,K, G⟩ and evidence e on E ⊆ X,
the maximax MAP task is finding the assignment y∗ to Y = X \E with maximum upper probability:

y∗ = argmax
y∈Ω(Y)

max
P (Y,e)∈K(X)

n∏
i=1

P (Xi|Πi) (3)

Definition 2 (maximin MAP). Given a credal network C = ⟨X,D,K, G⟩ and evidence e on E ⊆ X,
the maximin MAP task is finding the assignment y∗ to Y = X \E with maximum lower probability:

y∗ = argmax
y∈Ω(Y)

min
P (Y,e)∈K(X)

n∏
i=1

P (Xi|Πi) (4)

It is easy to see that the upper probability (or value) of an assignment x = (x1, . . . , xn) to X can
be calculated as P (x) =

∏n
i=1 P (xi|πi), where xi and πi are Xi and Πi’s configurations in x, and

P (xi|πi) = max ext(K(xi|πi)) is the extreme point of K(xi|πi) with the highest value. Similarly,
the lower probability of x is P (x) =

∏n
i=1 P (xi|πi), where P (xi|πi) = min ext(K(xi|πi)) is the

extreme point of K(xi|πi) with the smallest value.
Example 2. Consider again the credal network from Figure 1a and let x = (1, 1, 0, 0, 0) be a
complete assignment to variables A, B, C, D and E. In this case, the conditional local credal
sets K(A = 1) and K(B = 1|A = 1) have 2 unique extreme points each, i.e., ext(K(A = 1)) =
{0.6, 0.8} and ext(K(B = 1|A = 1)) = {0.5, 0.7}, respectively. The lower and upper probabilities
of the assignment can be computed as P (x) = 0.0144 and P (x) = 0.10752, respectively.

MAP inference in credal networks can also be shown to be NP-hard (Kwisthout, 2011; Campos &
Cozman, 2005). Despite sharing the same complexity class as Bayesian MAP, credal MAP involves
an optimization step over the extreme points of the joint credal set, making it significantly more
challenging to solve in practice. However, unlike Bayesian MAP, currently there are no established
algorithmic frameworks for exact MAP inference in credal networks.

3 BRANCH-AND-BOUND SEARCH FOR CREDAL MAP

We present now the first depth-first branch-and-bound search algorithms to exactly solve the maximax
and maximin MAP tasks in credal networks. These algorithms explore an AND/OR representation of
the search space which exploits the problem structure and has led to significant improvements in the
search for MAP explanations in Bayesian networks (Marinescu & Dechter, 2009).

3.1 AND/OR SEARCH SPACES FOR CREDAL NETWORKS

The AND/OR search space which is defined relative to a pseudo tree capturing problem decomposition
(Freuder & Quinn, 1985) has never been considered in the context of credal networks. Here, we
extend and leverage it to facilitate the credal maximax and maximin MAP inference tasks.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 AND/OR Branch-and-Bound Search for Maximax/Maximin Credal MAP

1: procedure AOBB(C = ⟨X,D,K, ⟩, e, T)
2: if X = ∅ then
3: return 1
4: else
5: Xk ← SELECTVAR(X) according to T
6: if Xk is evidence variable then
7: Dk = {xk} such that xk ∈ e

8: Initialize v(Xk)← 0
9: for all values xk ∈ Dk do

10: x̂k ← x̂k ∪ {Xk = xk}
11: Evaluate f(x̂k)

12: if f(xk) > S then
13: Initialize v(Xk, xk)← 1
14: for all children Xq of Xk in T do
15: val← AOBB(Cq, e, T)
16: v(Xk, xk)← v(Xk, xk) · val
17: else
18: Set v(Xk, xk)← 0

19: x̂k ← x̂k \ {Xk = xk}
20: val← w(Xk, xk) · v(Xk, vk)
21: Update v(Xk)← max(v(Xk), val)

22: return v(Xk)

Definition 3 (pseudo tree). A pseudo tree of an undirected graph G = (V,E) is a directed rooted
tree T = (V,E′) such that every arc of G not included in E′ is a back-arc in T , namely, it connects
a node in T to one of its ancestors. The arcs in E′ may not all be included in E.

Given a credal network ⟨X,D,K, G⟩ and pseudo tree T of G, the AND/OR search tree ST based on
T has alternating levels of OR nodes corresponding to the variables and AND nodes corresponding
to the values of the OR parent’s variable, with edges weighted according to the extreme point of the
conditional local credal sets in K. The size of the AND/OR search tree is bounded exponentially by
the depth of the pseudo tree rather than the number of variables (Dechter & Mateescu, 2007).

A solution tree x̂ of ST is a subtree that: (1) contains the root of ST ; (2) if an internal OR node
n ∈ ST is in x̂ then n is labeled by a variable and exactly one of its children is in x̂; (3) if an internal
AND node n ∈ ST is in x̂ then all its OR children labeled variables are in x̂.

Each edge from an OR node Xi to its AND child ⟨Xi, xi⟩ is associated with a weight w(Xi, xi).
For maximax MAP, the weight is defined by the product of the upper probabilities corresponding to
the extreme points of the conditional local credal sets K(Xj |πjk) whose scopes mention variable
Xi and are completely instantiated along the path from the root of ST to ⟨Xi, xi⟩. For maximin
MAP, we consider the lower probabilities instead. Each node n in ST is associated with a value
v(n) that captures the optimal maximax or maximin MAP value of the conditioned subproblem
rooted at n. Clearly, v(n) can be computed recursively based on the values of n’s successors and the
corresponding edge weights: OR nodes by maximization and AND nodes by multiplication. The
value of the optimal solution is therefore given by the value v(s) of the root node s of ST .
Example 3. Figure 1c we show the AND/OR search tree of the credal network from Figure 1a
relative to the pseudo tree given in Figure 1b. The solution tree x̂ corresponding to the assignment
(A = 1, B = 1, C = 1, D = 1, E = 1) is highlighted, and its maximax MAP value, for example, is
obtained by multiplying the weights associated with the OR-to-AND edges in x̂. In this case, the weight
w(A, 1) of the edge fromA to ⟨A, 1⟩ in x̂ is w(A, 1) = P (A = 1) ·P (B = 1|A = 1) ·P (C = 1|A =
1) = 0.336, where P (A = 1) = max ext(K(A = 1)) = 0.8, P (B = 1|A = 1) = max ext(K(B =
1|A = 1)) = 0.7 and P (C = 1|A = 1) = max ext(K(C = 1|A = 1)) = 0.6, respectively.

3.2 AND/OR BRANCH-AND-BOUND SEARCH FOR CREDAL MAP

We present an AND/OR Branch and Bound algorithm designed to solve the maximax and maximin
MAP tasks. This algorithm builds upon recent AND/OR search schemes developed for MAP inference
in Bayesian networks (Marinescu & Dechter, 2009), extending them to credal networks.

Algorithm 1 outlines the AND/OR Branch and Bound (AOBB) approach for solving the maximax
MAP problem in credal networks. We denote the current partial solution, the evidence and the value
of the best solution found so far as x̂, e, and S respectively. The algorithm assumes that variables
are selected statically based on a pseudo tree T . A heuristic evaluation function, f(x̂), computes an
upper bound on the optimal maximax MAP extension of x̂. For the maximin MAP task, only the
computation of edge weights and the heuristic evaluation function needs to be adjusted.

If the set X is empty, the result is trivially computed (line 3). Otherwise, AOBB selects the next
variable Xk in T and iterates over its domain values (i.e., its AND successors) to compute the OR
node value v(Xk) (lines 8-20). Subsequently, the algorithm attempts to prune unpromising domain

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

values by comparing the upper bound f(x̂) of the current partial solution tree x̄ to the value S of
the current best solution tree found which is maintained by the root node s of the search space (line
12). For each domain value xk of Xk, the problem rooted by the AND node labeled ⟨Xk, xk⟩ is
decomposed into r independent subproblems Cq = ⟨Xq,Dq,Kq⟩, one for each child Xq of Xk in
T . Note that if Xk is an evidence variable then its domain is just Dk = {xk} where xk ∈ e (lines
6-7). These problems are then solved independently and their results are accumulated by the AND
node value v(Xk, xk) (lines 14–15). After trying all possible values of variable Xk, the maximax
MAP value of the subproblem rooted by Xk is v(Xk) and is returned (line 21). Finally, the optimal
maximax MAP value for the original problem is returned by the root node s of the search space.

AOBB computes its guided heuristic function f(x̂) using an improved mini-bucket based bounding
scheme which we will describe in detail in Section 4. The heuristic can be pre-compiled along the
reverse order of a depth-first traversal of the pseudo tree (which corresponds to an elimination order).
Theorem 1 (complexity). Given a credal network C = ⟨X,D,K, G⟩ and evidence e, the time and
space complexities of algorithm AOBB are O(n · dh) and O(n), respectively, where h is the depth of
the pseudo tree T of G, n is the number of variables and d bounds their domain sizes.

4 MINI-BUCKETS FOR CREDAL MAP

We next describe novel partitioning-based bounds (aka mini-bucket bounds) that are compatible
with AOBB search for both maximax and maximin MAP. Although the mini-bucket bounds have
proven effective in guiding search algorithms for MAP in Bayesian networks (Kask & Dechter, 2001;
Marinescu & Dechter, 2009), they have not yet been explored in the context of credal networks.

4.1 POTENTIALS AND THEIR APPROXIMATIONS

Unlike in Bayesian networks, variable elimination schemes for the credal MAP tasks must operate on
sets of probability functions called potentials (Mauá & Cozman, 2020; Marinescu et al., 2023):
Definition 4 (potential). Given a set of variables Y, a potential ϕ(Y) is a set of non-negative
real-valued functions p(Y) on Y. The product of two potentials ϕ(Y) and ψ(Z) is ϕ(Y) · ψ(Z) =
{p · q : p ∈ ϕ(Y), q ∈ ψ(Z)}. The max-marginal maxZ ϕ(Y) of a potential ϕ(Y) with respect to a
subset of variables Z ⊆ Y is defined by maxZ ϕ(Y) = {maxZ p(Y) : p ∈ ϕ(Y)}.

A non-negative probability function p(Y) defined over variables Y can be viewed as a vector in Rm,
where Ω(Y) is the Cartesian product of the domains of the variables in Y, and m = |Ω(Y)| is its
cardinality. We say that p(Y) ≤ q(Y) if and only if ∀y ∈ Ω(Y), p(y) ≤ q(y). Clearly,≤ is a partial
order. Therefore, a pruning operator maxϕ(Y) that selects the maximal elements of a potential ϕ(Y)
is defined relative to ≤ as: maxϕ(Y) = {p(Y) ∈ ϕ(Y) : ∄q(Y) ∈ ϕ(Y), p(Y) ≤ q(Y)}.
Furthermore, since the multiplication operator can significantly increase the size of potentials, we
require a potential to have a restricted cardinality, at most M (≥ 1). Therefore, we need an operator
that takes the potential ϕ(Y), with |ϕ(Y)| > M , and reduces it to a smaller potential ϕ′(Y) with
cardinality at most M , while ensuring that ϕ′(Y) provides an upper bound on ϕ(Y). Specifically, for
every p(Y) ∈ ϕ(Y) there exists q(Y) ∈ ϕ′(Y) such that p(Y) ≤ q(Y). To achieve this, we utilize
the Pareto Least Upper Bound (PLUB) of vectors in Rm, defined as follows:
Definition 5 (PLUB). The Pareto Least Upper Bound (PLUB) v⃗ ∈ Rm of a set of k vectors
{v⃗1, ..., v⃗k} ∈ Rm is given by v⃗ = maxkj=1 v⃗j , where the max is applied point-wise.

A simple procedure to compute the upper bound ϕ′(Y) of ϕ(Y) is to group the elements of ϕ(Y)
into M clusters based on minimizing the Manhattan distance to each cluster’s centroid (i.e., minimize∑m
i=1 |pi − ri|, where pi and ri are the i-th components of p and r, respectively). Then, for each

cluster we replace its components with their Pareto least upper bound.

4.2 THE MAXIMAX MAP CASE

Algorithm 4 adapts the mini-bucket approximation scheme developed for Bayesian MAP (Dechter &
Rish, 2003) to the maximax MAP task in credal networks. Specifically, the MBMM(i) algorithm
partitions large buckets into smaller subsets, called mini-buckets, each containing at most i distinct

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2 Mini-Buckets with Moment-Matching for Maximax MAP

1: procedure MBMM(C = ⟨X,D,K⟩, i, M)
2: Initialize Γ← ∅
3: for all variable Xk ∈ X do
4: Let ϕk = {p : p ∈ ext(K(Xk|Πk))}
5: Update Γ = Γ ∪ {PLUB(ϕk,M)}
6: Create elimination ordering o : X1, . . . , Xn

7: for all variable Xk ∈ o do
8: ▷ Create bucket Γk and mini-buckets Qkr

9: Let Γk = {ϕ : ϕ ∈ Γ, Xk ∈ vars(ϕ)}
10: Update Γ = Γ \ Γk

11: ▷ Create mini-buckets Qk1, . . . , QkR

12: Partition Γk into {Qk1, . . . , QkR}
13: for all r = 1 to R do

14: Let ϕkr = PLUB(
∏

ϕ∈Qkr
ϕ,M)

15: Let Yk = vars(Qkr) \Xk

16: ▷ Moment-matching on max marginals
17: Let µr = PLUB(maxYr ϕkr, 1)

18: Let µ =
(∏

r µr

)1/R
19: Update ϕkr = ϕkr ·

(
µ
µr

)
20: ▷ Compute the downward messages
21: for all r = 1 to R do
22: Let λk

r = PLUB(maxXk ϕkr,M)

23: Update Γ = Γ ∪ {λk
r}

24: return max(
∏

ϕ∈Γ ϕ)

variables (aka the i-bound). The mini-buckets are processed separately by maximizing out the bucket
variable from the combination of potentials within each mini-bucket. Furthermore, the algorithm
avoids generating prohibitively large potentials at each elimination step by approximating both the
intermediate and the original potentials with their Pareto least upper bounds of size M .

While the PLUB-based approximation of potentials may result in a looser overall upper bound, this
bound can be tightened further using a moment-matching re-parameterization scheme inspired by
(Ihler et al., 2012). Consider the following simple example with three variables A,B,C and two
binary potentials ϕ(A,B) and ϕ(A,C). In this case, we can rewrite the mini-bucket upper bound as:

max
A

[ϕ(A,B) · ϕ(A,C)] = max
A

[ϕ(A,B) · λ1(A) · ϕ(A,C) · λ2(A)]

≤ max
A

[ϕ(A,B) · λ1(A)] ·max
A

[ϕ(A,C) · λ2(A)]

where λ1(A) and λ2(A) are two auxiliary positive functions such that λ1(A) · λ2(A) = 1. A simple
choice for the λ functions is to use the max-marginals on A. Let φ1(A) = maxB ϕ(A,B) and
φ2(A) = maxC ϕ(A,C) be the max-marginal potentials on A, and let µ1(A) and µ2(A) be their
PLUB approximations of size 1. If µ(A) =

√
µ1(A) · µ2(A) is their geometric mean, then for our

re-parameterization we can use: λ1(A) =
µ(A)
µ1(A) and λ2(A) =

µ(A)
µ2(A) , respectively. We have that:

Theorem 2 (complexity). Algorithm MBMM(i) computes an upper bound on the optimal maximax
MAP value. The time and space complexity is O(n ·M2 · di), where i is the i-bound, n is the number
of variables, d bounds the domain sizes and M bounds the cardinality of the potentials.

4.3 THE MAXIMIN MAP CASE

For the maximin MAP task, we define the pruning operator minϕ(Y) to identify the minimal
elements of a potential ϕ(Y) according to the same partial order ≤ used in the maximax MAP
scenario, as follows: min(ϕ(Y)) = {p(Y) ∈ ϕ(Y) : ∄q(Y) ∈ ϕ(Y), q(Y) ≤ p(Y)}}.
However, the max and min operators in Equation 4 do not commute. As a result, the variable
elimination scheme that uses the min pruning operator is not exact anymore and only yields an upper
bound on the optimal maximin MAP value. Even when the mini-bucket approximation is enhanced
with cost-shifting via moment matching, it continues to provide an upper bound – though these are
generally much looser than those obtained in the maximax MAP setting. Our experimental results
clearly demonstrate that the mini-bucket bounds for maximin MAP are substantially weaker, and the
associated search algorithms face significant challenges as a result.

5 EXPERIMENTS

We evaluate the proposed branch-and-bound search algorithms for maximax and maximin MAP on
random credal networks and credal networks derived from real-world applications. All competing
algorithms were implemented in C++ and the experiments were run on a machine with a 16-core
3GHz CPU and 128GB of RAM running Ubuntu Linux 24.04.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Quality of Heuristics for Maximax MAP on 100 variables random networks. Average CPU
time (sec) and number of nodes expanded using i-bounds from 2 to 10. Time limit 1 hour.

size algorithm i = 2 i = 4 i = 6 i = 8 i = 10
time nodes time nodes time nodes time nodes time nodes

AOBB+MB(i,1) 2.90 29603 0.99 13934 0.54 6877 0.25 5280 0.18 2352
AOBB+MB(i,10) 3.06 29603 1.47 13934 18.65 6877 501.36 5834 809.46 2582
AOBB+MB(i,50) 3.25 29603 2.07 13934 558.29 7609 2781.15 2492 3284.57 251
AOBB+MBMM(i,1) 2.25 21057 0.39 8316 0.40 4448 0.15 3544 0.20 1807
AOBB+MBMM(i,10) 1.97 21057 0.75 8316 15.99 4448 488.84 3906 797.66 1978
AOBB+MBMM(i,50) 2.22 21057 1.04 8316 548.81 4910 2800.54 1633 3312.94 108

100

AOBB+MB(i) 2.87 29603 2.77 13934 972.37 7336 - - - -

Table 2: Results for Maximax MAP on random and grid credal networks. Average CPU time
(sec) and number of nodes expanded using mini-bucket i-bounds from 2 to 10. Time limit 1 hour.

size algorithm i = 2 i = 4 i = 6 i = 8 i = 10
(w,h) time nodes time nodes time nodes time nodes time nodes

random credal networks
BB+MB(i) 3525.20 40136432 1014.36 6399801 1789.33 123229 - - - -

100 BB+MBMM(i,1) 2481.97 34115031 154.77 1717539 29.81 362314 1.00 33382 0.86 15106
(18,28) AOBB+MB(i) 2.87 29603 2.77 13934 972.37 7336 - - - -

AOBB+MBMM(i,1) 2.25 21057 0.39 8316 0.40 4448 0.15 3544 0.20 1807

BB+MB(i) - - - - - - - - - -
200 BB+MBMM(i,1) - - - - - - 2780.10 41392520 2342.75 37828931
(36,48) AOBB+MB(i) 1555.37 8510209 1126.37 4969424 2285.98 813793 3458.96 96389 - -

AOBB+MBMM(i,1) 1155.54 8448489 1108.73 7985450 197.49 2193611 224.53 1974790 364.89 2768420
grid credal networks

BB+MB(i) - - - - - - - - - -
100 BB+MBMM(i,1) - - 3287.93 45186026 362.59 5259684 0.07 699 0.13 123
(14,38) AOBB+MB(i) 3.82 65648 0.23 2138 - - - - - -

AOBB+MBMM(i,1) 0.74 19531 0.30 2138 0.06 1235 0.07 226 0.21 107

BB+MB(i) - - - - - - - - - -
196 BB+MBMM(i,1) - - - - - - 3240.10 39599609 1072.23 16685172
(20,57) AOBB+MB(i) 961.58 10746465 1.54 32950 3478.82 32950 - - - -

AOBB+MBMM(i,1) 395.68 4201397 2.19 32950 1.03 31339 1.18 24508 1.83 32948

Algorithms. Our proposed AND/OR Branch and Bound (AOBB) algorithm is equipped with the
following versions of the mini-bucket heuristics: (1) mini-buckets without potential approximation
and moment-matching denoted by AOBB+MB(i), (2) mini-buckets with potential approximation of
size M only, denoted by AOBB+MB(i, M), and (3) mini-buckets with both potential approximation
and moment-matching, denoted by AOBB+MBMM(i, M). For comparison, we also ran the OR
Branch and Bound (BB) counterparts guided by the same heuristic schemes, denoted by BB+MB(i),
BB+MB(i, M), and BB+MBMM(i, M). Unlike the former methods, the latter ones are not sensitive
to the underlying problem structure. For reference, we also ran the brute-force depth-first search
denoted by DFS that exhaustively enumerates all possible MAP assignments (see Appendix).

Benchmarks. For our purpose, we generate random and m-by-m grid credal networks. Specif-
ically, for random networks, we vary the number of variables n ∈ {100, 150, 200} and, for grids,
we choose m ∈ {10, 14, 16}, respectively. For each problem size, we generate 10 random problem
instances. In all cases, the maximum domain size is set to 2 and the local conditional credal sets are
generated uniformly at random as probability intervals. In addition, we consider a set of 15 credal
networks derived from real-world Bayesian networks1 by converting the probability values in the
conditional probability tables into probability intervals. For all our problem instances, we ensure that
the difference between the lower and upper bounds of the probability intervals was at most 0.3. The
problem sizes were deliberately chosen to ensure they could be solved exactly within the specified
time limit. Finally, we experiment with maximax and maximin MAP tasks with no evidence.

Measures of Performance. In all of our experiments, we report the CPU time in seconds and the
number of nodes expanded during the search. We also record the number of variables (n), the induced
width (w) and the height of the pseudo trees (h) for all of our benchmarks. The best performance
points are highlighted. All competing algorithms were allocated a 1 hour time limit and 10GB of
memory. The "-" symbol indicates that the respective algorithm exceeded its time or memory budget.

Quality of Heuristics. Table 1 shows the average CPU time in seconds and number of nodes
expanded by AOBB when guided by the MB(i), MB(i, M) and MBMM(i, M) heuristics for solving

1Available at https://www.bnlearn.com/bnrepository/

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Results for Maximax MAP on real-world credal networks. CPU time (sec) and number of
nodes expanded using mini-bucket i-bounds from 2 to 10. Time limit 1 hour.

instance algorithm i = 2 i = 4 i = 6 i = 8 i = 10
(n, w, h) time nodes time nodes time nodes time nodes time nodes

BB+MB(i) 2030.54 150170 3.98 50 5.67 39 6.07 39 3.87 39
alarm BB+MBMM(i,1) 5.52 4535 3.77 39 3.99 39 4.92 39 5.36 39
(37,4,12) AOBB+MB(i) 5.78 85 4.81 42 5.25 39 7.64 39 6.60 39

AOBB+MBMM(i,1) 2.62 52 2.82 39 2.80 39 5.38 39 2.80 39

BB+MB(i) - - - - - - - - - -
link BB+MBMM(i,1) - - - - - - - - - -
(724,15,43) AOBB+MB(i) 23.09 67424 3.74 1772 - - - - - -

AOBB+MBMM(i,1) 9.77 33603 2.97 1004 2.99 978 2.79 978 2.58 793

BB+MB(i) - - - - - - - - - -
mastermind1 BB+MBMM(i,1) - - - - - - - - - -
(1220,20,56) AOBB+MB(i) - - 102.60 34669 - - - - - -

AOBB+MBMM(i,1) - - 26.64 34493 9.96 17619 9.97 17619 9.83 17619

BB+MB(i) - - - - - - - - - -
mastermind3 BB+MBMM(i,1) - - - - - - - - - -
(3692,39,92) AOBB+MB(i) - - - - - - - - - -

AOBB+MBMM(i,1) - - - - 3264.92 2180932 3088.55 2172466 3036.91 2167200

Table 4: Results for Maximin MAP on real-world credal networks. CPU time (sec) and number of
nodes expanded using mini-bucket i-bounds from 2 to 12. Time limit 1 hour.

instance algorithm i = 2 i = 4 i = 6 i = 8 i = 10 i = 12
(n, w, h) time nodes time nodes time nodes time nodes time nodes time nodes

BB+MB(i) 128.78 2522160 110.17 2522160 96.03 2522160 98.37 2522160 77.19 2522160 81.93 2522160
alarm BB+MBMM(i,1) 126.35 2522160 106.60 2522160 101.46 2522160 97.39 2522160 89.28 2522160 63.16 2522160
(37,4,12) AOBB+MB(i) 6.90 460 3.86 348 6.79 348 5.60 348 5.68 348 5.49 348

AOBB+MBMM(i,1) 6.96 394 3.77 348 7.11 348 6.64 348 6.17 348 6.91 348

BB+MB(i) - - - - - - - - - - - -
link BB+MBMM(i,1) - - - - - - - - - - - -
(724,15,43) AOBB+MB(i) - - 1663.40 7820555 1245.14 7448824 1180.95 7427647 1139.88 7405547 1072.66 7405953

AOBB+MBMM(i,1) - - 1538.40 7455392 1245.57 7406117 1188.28 7386176 1122.29 7383818 995.99 6862912

BB+MB(i) - - - - - - - - - - - -
mastermind1 BB+MBMM(i,1) - - - - - - - - - - - -
(1220,20,56) AOBB+MB(i) 49.00 64081 49.14 64240 34.42 62281 32.35 61822 28.90 61189 30.69 60236

AOBB+MBMM(i,1) 47.79 64081 49.17 64259 34.04 62281 32.14 61737 32.29 61275 30.17 61245

BB+MB(i) - - - - - - - - - - - -
mastermind3 BB+MBMM(i,1) - - - - - - - - - - - -
(3692,39,92) AOBB+MB(i) - - - - 1200.00 1357913 1099.27 1357053 1092.61 1362794 1103.99 1370757

AOBB+MBMM(i,1) - - - - 1205.83 1358178 1083.09 1360571 1077.06 1365064 1049.79 1367606

maximax MAP on random credal networks with 100 variables. The columns are indexed by the
i-bound, and we varied M between 1 and 50, respectively. We can see that all of the mini-bucket
heuristics are competitive for the smallest i-bounds and all values of M because the intermediate
potentials do not grow too large in this case and, therefore, the computational overhead is reduced.
However, as the i-bound and M value increase, the size of intermediate potentials grows significantly
due to much larger scope sizes, which eventually translates into increased overhead. We notice that
using M = 1 yields the most cost-effective heuristics, especially for larger i-bounds which produce
more accurate bounds that prune the search space very effectively (Marinescu & Dechter, 2009). The
moment-matching cost-shifting scheme further tightens the heuristics, almost always leading to time
savings, as previously observed for Bayesian networks (Ihler et al., 2012; Marinescu et al., 2014).

Results for Maximax MAP. Table 2 summarizes the results obtained on the random and grid
credal networks with the search algorithms guided by the MB(i) and MBMM(i,M = 1) heuristics. As
before, algorithm AOBB+MB(i) is competitive only at the smallest i-bounds due to the computational
overhead associated with the larger intermediate potentials that are generated at larger i-bounds.
Furthermore, the AND/OR search algorithms that exploit the problem structure and are guided by the
MBMM(i, M = 1) heuristics improve dramatically over their OR search counterparts, in some cases
by up to 5 orders of magnitude, especially at relatively smaller i-bounds (e.g., i = 4 on 10-by-10
grids). As the i-bound increases, the corresponding heuristics tend to be more accurate, and this
often translates into additional time savings for the AOBB+MBMM(i, M = 1) algorithm. However,
when the i-bound increases even further, the running time of AOBB+MBMM(i, M = 1) starts to
increase slightly because of the overhead associated with compiling the heuristics. The brute-force
DFS algorithm could only solve problems with up to 20 variables, and therefore is omitted. These
results are consistent with those obtained previously on Bayesian MAP (Marinescu & Dechter, 2009).

Table 3 reports the CPU time in seconds and number of nodes expanded on 4 real-world credal
networks. The results show a similar pattern as before where the AND/OR search algorithm equipped
with mini-buckets using moment-matching and potential approximation of size 1 outperforms dra-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

matically its competitors, at all reported i-bounds. Furthermore, AOBB+MBMM(i, M = 1) is the
only algorithm that scales to problems with more than 3000 variables (e.g., mastermind3) and
proves the optimality of the solutions obtained.

Results for Maximin MAP. Table 4 shows the results for maximin MAP on real-world networks.
As with maximax MAP, AND/OR search algorithms consistently outperform their OR counterparts
across all i-bounds. However, maximin MAP proves significantly more challenging, primarily due to
weaker heuristics that lead to larger search spaces and reduced performance.

Table 5: Average CPU time in seconds for exact
vs local search algorithms. Time limit 1 hour.

size AOBB+MBMM(i,1) SLS TS SA GLS
random credal networks

20 0.00 49.60 46.34 33.61 55.83
50 0.01 184.46 107.5 98.24 175.69

100 0.10 372.75 188.92 196.96 352.78
150 2.62 565.95 223.03 300.46 529.20
200 109.25 681.60 438.32 326.83 563.61

grid credal networks

25 0.01 53.21 44.77 38.20 59.95
49 0.01 186.56 68.27 59.30 169.44

100 0.05 350.69 171.27 164.97 327.31
144 0.09 421.20 203.42 207.58 424.90
196 0.14 572.15 312.78 362.54 456.23

Exact versus Local Search. In Table 5 we report
the average CPU time obtained with the recent lo-
cal search algorithms from Marinescu et al. (2023)
which we adapted to maximax MAP. Specifically,
we ran each of the Stochastic Local Search (SLS),
Taboo Search (TS), Simulated Annealing (SA) and
Guided Local Search (GLS) algorithms for a to-
tal of 10 iterations (i.e., random restarts) with a
maximum of 100K flips per iteration. The random
flip probability was set to 0.1, the taboo list had a
maximum size of 1000, while the alpha and initial
temperature used by SA were set to 0.1 and 100,
respectively. We can see clearly that in this case the
exact algorithm AOBB+MBMM(i, 1) dominates
the other competitors while proving the optimality
of the solutions obtained.

While this paper primarily focuses on proving solution optimality, we note that our search schemes
can be readily extended to efficient anytime algorithms, following the approach in Otten & Dechter
(2011), to provide the best solution found so far at any point during the search. Furthermore, since the
optimal maximax/maximin MAP assignment may not be unique, the proposed AND/OR algorithms
can be equipped with a book-keeping mechanism similar to the one developed for the k-best MAP
task in Bayesian networks (Dechter et al., 2012) to enable the enumeration of all optimal assignments.

6 RELATED WORK

Bayesian MAP has been extensively investigated over the years and several exact and approximate
algorithmic frameworks have been developed such as stochastic local search (Kask & Dechter, 1999;
Park, 2002; Hutter et al., 2005), variational approximation and message-passing schemes (Pearl,
1988; Dechter et al., 2002; Dechter & Rish, 2003; Wainwright et al., 2005; Kolmogorov, 2006; Ihler
et al., 2012), or heuristic search (Kask & Dechter, 1999; Larrosa & Schiex, 2003; Marinescu &
Dechter, 2009; Otten & Dechter, 2011). More recently, neural network based approximate solvers
without solution guarantees have also been proposed (Arya et al., 2024; 2025). Credal MAP has
received limited attention with some prior work on MAP inference in specialized models such as
hidden Markov models with set-valued parameters (Mauá et al., 2016) and the approximate solvers
for credal Marginal MAP developed recently by Marinescu et al. (2023). In contrast, our contribution
addresses exact credal MAP inference with guarantees in general high-dimensional credal networks.

7 CONCLUSION

This paper significantly advances the field of MAP inference in credal networks by introducing
novel depth-first branch-and-bound search algorithms. These algorithms leverage the AND/OR
search space to effectively exploit the problem structure, and are further enhanced with a partitioning-
based heuristic that combines potential approximations with cost-shifting strategies. Our empirical
evaluations demonstrate that these new methods not only improve computational efficiency but also
scale to large problems with over 3000 variables while guaranteeing optimality of solutions. Thus,
our proposed approach addresses critical limitations of the state-of-the-art, providing robust and
efficient solutions for MAP inference tasks in credal networks. Potential future directions include
improving the mini-bucket heuristics for maximin MAP by developing tighter approximations.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Alessandro Antonucci, Yi Sun, Cassio P De Campos, and Marco Zaffalon. Generalized loopy 2u: A
new algorithm for approximate inference in credal networks. International Journal of Approximate
Reasoning, 51(5):474–484, 2010.

Shivvrat Arya, Tahrima Rahman, and Vibhav Gogate. A neural network approach for effi-
ciently answering most probable explanation queries in probabilistic models. In A. Glober-
son, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.),
Advances in Neural Information Processing Systems, volume 37, pp. 33538–33601. Cur-
ran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/
3ae2d3297891cad0c56dd12d60ff7dde-Paper-Conference.pdf.

Shivvrat Arya, Tahrima Rahman, and Vibhav Giridhar Gogate. SINE: Scalable MPE inference for
probabilistic graphical models using advanced neural embeddings. In Yingzhen Li, Stephan Mandt,
Shipra Agrawal, and Emtiyaz Khan (eds.), Proceedings of The 28th International Conference on
Artificial Intelligence and Statistics, volume 258 of Proceedings of Machine Learning Research,
pp. 4465–4473. PMLR, 03–05 May 2025. URL https://proceedings.mlr.press/v258/arya25a.html.

Cassio Campos and Fabio Cozman. The inferential complexity of Bayesian and credal networks. In
International Joint Conference on Artificial Intelligence (IJCAI), pp. 1313–1318, 2005.

Andrés Cano, Manuel Gómez, Serafín Moral, and Joaquín Abellán. Hill-climbing and branch-and-
bound algorithms for exact and approximate inference in credal networks. International Journal of
Approximate Reasoning, 44(3):261–280, 2007.

Fabio Cozman. Credal networks. Artificial Intelligence, 120(2):199–233, 2000.

R. Dechter, R. Mateescu, and K. Kask. Iterative join-graph propagation. In Proceedings of the
Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI’02), pp. 128–136, 2002.

Rina Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence, 113:
41–85, 1999.

Rina Dechter and Robert Mateescu. AND/OR search spaces for graphical models. Artificial
Intelligence, 171(2-3):73–106, 2007.

Rina Dechter and Irina Rish. Mini-buckets: A general scheme of approximating inference. Journal
of ACM, 50(2):107–153, 2003.

Rina Dechter, Natalia Flerova, and Radu Marinescu. Search algorithms for m best solutions for
graphical models. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence,
AAAI’12, pp. 1895–1901. AAAI Press, 2012.

Eugene Freuder and Michael Quinn. Taking advantage of stable sets of variables in constraint
satisfaction problems. In International Joint Conference on Artificial Intelligence (IJCAI), pp.
1076–1078, 1985.

Frank Hutter, Holger Hoos, and Thomas Stutzle. Efficient stochastic local search for MPE solving.
In International Joint Conference on Artificial Intelligence (IJCAI), pp. 169–174, 2005.

Alex Ihler, Natalia Flerova, Rina Dechter, and Lars Otten. Join-graph based cost-shifting schemes. In
Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI), pp. 397–406, 2012.

Kalev Kask and Rina Dechter. Stochastic local search for Bayesian networks. In Workshop on AI
and Statistics, pp. 113–122, 1999.

Kalev Kask and Rina Dechter. A general scheme for automatic generation of search heuristics from
specification dependencies. Artificial Intelligence, 129(1-2):91–131, 2001.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT
Press, 2009.

Vladimir Kolmogorov. Convergent tree-reweighted message passing for energy minimization. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 28(10):1568–1583, 2006.

10

https://proceedings.neurips.cc/paper_files/paper/2024/file/3ae2d3297891cad0c56dd12d60ff7dde-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/3ae2d3297891cad0c56dd12d60ff7dde-Paper-Conference.pdf
https://proceedings.mlr.press/v258/arya25a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Johan Kwisthout. Most probable explanations in Bayesian networks: Complexity and tractability.
International Journal of Approximate Reasoning, 52(1):1452–1469, 2011.

Javier Larrosa and Thomas Schiex. In the quest of the best form of local consistency for weighted
CSP. In International Joint Conference in Artificial Intelligence (IJCAI-2003), pp. 631–637, 2003.

Isaac Levi. The Enterprise of Knowledge. MIT Press, 1980.

Radu Marinescu and Rina Dechter. AND/OR branch-and-bound search for combinatorial optimization
in graphical models. Artificial Intelligence, 173(16-17):1457–1491, 2009.

Radu Marinescu, Rina Dechter, and Alexander Ihler. AND/OR search for marginal MAP. In
Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI), pp. 563–572, 2014.

Radu Marinescu, Debarun Bhattacharjya, Junkyu Lee, Fabio Cozman, and Alexander G. Gray. Credal
marginal MAP. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=yCBqKTvYe9.

Denis Mauá and Fabio Cozman. Thirty years of credal networks: Specifications, algorithms and
complexity. International Journal of Approximate Reasoning, 1(126):133–137, 2020.

Denis Mauá, Alessandro Antonucci, and Cassio Polpo de Campos. Hidden Markov models with
set-valued parameters. Neurocomputing, 180:94–107, 2016.

Lars Otten and Rina Dechter. Anytime AND/OR depth-first search for combinatorial optimization.
In International Symposium on Combinatorial Search, pp. 117–702, 2011.

James Park. Using weighted MAX-SAT engines to solve MPE. In National Conference on Artificial
Intelligence (AAAI), 2002.

Judea Pearl. Heuristics: Intelligent Search Strategies. Addison-Wesley, 1984.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

Solomon Eyal Shimony. Finding maps for belief networks is NP-hard. Artificial Intelligence, 68(2):
399–410, 1994.

Martin J. Wainwright, Tommi S. Jaakkola, and Alan S. Willsky. MAP estimation via agreement on
trees: Message-passing and linear programming. IEEE Transactions on Information Theory, 51
(11):3697–3717, 2005.

Peter Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London, UK,
1991.

Hjalmar Wijk, Benjie Wang, and Marta Kwiatkowska. Robustness guarantees for credal Bayesian
networks via constraint relaxation over probabilistic circuits. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), pp. 4885–4892, 2022.

Marco Zaffalon, Alessandro Antonucci, and Rafael Cabañas. Structural causal models are (solvable
by) credal networks. In Proceedings of the International Conference on Probabilistic Graphical
Models (PGM), pp. 581–592. PMLR, 2020.

A APPENDIX

B DEPTH-FIRST SEARCH FOR MAXIMAX AND MAXIMIN MAP

The simplest approach to solve exactly the maximax and maximin MAP tasks in credal networks is
to perform a depth-first search in the space of partial assignments to the variables (called the OR
search space), and, for each complete assignment denoted by x̂, evaluate its score as the exact upper
(resp., lower) probability P (x̂) =

∏n
i=1 P (xi|πi) (resp. P (x̂) =

∏n
i=1 P (xi|πi)) where xi and πi

are the values of Xi and its parents Πi in x̂, respectively, and P (xi|πi) = max ext(K(xi|πi)) (resp.
P (xi|πi) = min ext(K(xi|πi))). In this way, the optimal solution x∗ corresponds to the assignment

11

https://openreview.net/forum?id=yCBqKTvYe9

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Figure 2: The OR search tree corresponding to the credal network from Figure 1a.

with the highest score (i.e., the maximum upper probability for maximax MAP, and maximum lower
probability for maximin MAP, respectively). Although complete, the algorithm is inefficient because
it enumerates all possible configurations of the variables. Therefore, its time complexity is bounded
by O(kn), where n is the number of variables and k bounds their domain sizes, but it can operate in
linear space (Pearl, 1984).

Example 4. Figure 2 shows the OR search tree explored by the depth-first search algorithm
when solving the maximax MAP task for the credal network in Figure 1a. A solution path cor-
responding to the assignment x̂ : (A = 1, B = 1, C = 0, D = 0, E = 1) is highlighted
in red and its maximum MAP value is g(x̂) = P (A = 1) · P (B = 1|A = 1) · P (C =
0|A = 1) · P (D = 0|B = 1, C = 1) · P (E = 1|D = 0) = 0.21504, where, for exam-
ple, P (A = 1) = max ext(K(A = 1)) = max({0.6, 0.8}) = 0.8 and P (B = 1|A = 1) =
max ext(K(B = 1|A = 1)) = max({0.5, 0.7, 0.5, 0.7}) = 0.7, respectively. The optimal maximax
and maximin MAP solutions are in this case x∗ : (A = 0, B = 0, C = 1, D = 1, E = 0) with value
0.26244 and x∗ : (A = 1, B = 1, C = 1, D = 1, E = 0) with value 0.0504, respectively.

C BUCKET ELIMINATION FOR MAXIMAX MAP

The Maximax MAP task defined by Equation 3 can be solved exactly using a bucket elimination
procedure (Dechter, 1999) that extends the Credal Variable Elimination (CVE) algorithm developed
for marginal inference in credal networks (Mauá & Cozman, 2020). The algorithm relies on the
notion of a potential as well as combination and marginalization operators over potentials which are
defined as follows.

Definition 6 (potential). Given a set of variables Y, a potential ϕ(Y) is a set of non-negative
real-valued functions p(Y) on Y. The product of two potentials ϕ(Y) and ψ(Z) is defined by
ϕ(Y) · ψ(Z) = {p · q : p ∈ ϕ(Y), q ∈ ψ(Z)}. The max-marginal maxZ ϕ(Y) of a potential ϕ(Y)
with respect to a subset of variables Z ⊆ Y is defined by maxZ ϕ(Y) = {maxZ p(Y) : p ∈ ϕ(Y)}.

Since the multiplication operator may grow the size of potentials dramatically, we introduce an
additional pruning operation that can reduces the cardinality of a potential. Specifically, the operator
maxϕ(Y) returns the set of non-zero maximal elements of ϕ(Y), under the partial order ≤ defined
component-wise as p(Y) ≤ q(Y) iff ∀y ∈ ΩY, p(y) ≤ q(y), where ΩY is the cartesian product of
the domains of the variables in Y: maxϕ(Y) = {p(Y) ∈ ϕ(Y) : ∄q(Y) ∈ ϕ(Y), p(Y) ≤ q(Y)}.
Definition 7 (dominance). Let ϕ(Y) and ψ(Y) be two potentials defined on the subset of variables Y.
Then we say that ϕ(Y) ≤ ψ(Y) if and only if ∀p(Y) ∈ ϕ(Y), ∃q ∈ ψ(Y) such that p(Y) ≤ q(Y),
where the latter corresponds to component-wise ≤ defined above.

Proposition 1 (commuting max operators). Let ϕ(Xi,Xj) and ψ(Xi,Xk) be two potentials such
that ϕ = {p1, p2, . . . , pn} and psi = {q1, q2, . . . , qm}. Then, the max-marginal operator and the
max-pruning operator commute, and the following equality holds:

max
Xi

max
P (Z)∈K(Z)

ϕ(Xi,Xj) ·ψ(Xi,Xk) = max
P (Z\{Xi})∈K′(Z\{Xi})

max
Xi

ϕ(Xi,Xj) ·ψ(Xi,Xk), (5)

where Z = {Xi} ∪Xj ∪Xk, K(Z) is the credal set for ϕ(Xi,Xj) · ψ(Xi,Xk), and K ′(Z \ {Xi})
is the credal set for maxXi ϕ(Xi,Xj) · ψ(Xi,Xk).

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 3: Examples of potentials for the credal network from Figure 1a.

Algorithm 3 Bucket Elimination for Maximax MAP

1: procedure CBE(C = ⟨X,D,K⟩)
2: ▷ Create the potentials
3: Initialize Γ← ∅
4: for all variable Xk ∈ X do
5: Let ϕk = {p : p ∈ ext(K(Xk|Πk))}
6: Update Γ = Γ ∪ {ϕk}
7: Create elimination ordering o : X1, . . . , Xn

8: for all variable Xk ∈ o do

9: ▷ Create bucket Γk for variable Xk

10: Let Γk = {ϕ : ϕ ∈ Γ, Xk ∈ vars(ϕ)}
11: Update Γ = Γ \ Γk
12: ▷ Compute the downward message
13: Let λk ← max

(
maxXk

∏
ϕ∈Γk

ϕ
)

14: Update Γ = Γ ∪ {λk}
15: return max

(∏
ϕ∈Γ ϕ

)

Proof. Since maxP (Z)∈K(Z) prunes the credal set by finding the dominating function,

max
P (Z)∈K(Z)

ϕ(Xi,Xj) · ψ(Xi,Xk)

= max
P (Z\Xk)∈Kϕ(Z\Xk)

ϕ(Xi,Xj) · max
P (Z\Xj)∈Kψ(Z\Xj)

ψ(Xi,Xk)

=p∗(Xi,Xj) · q∗(Xi,Xk),

where p∗(Xi,Xj) and q∗(Xi,Xk) are the dominating function in the credal set Kϕ(Z \Xk) and
Kψ(Z \Xj), respectively.

By commuting max-marginal operator,
max
Xi

max
P (Z)∈K(Z)

ϕ(Xi,Xj)ψ(Xi,Xk)

= max
P (Z\{Xi}∈K′(Z\{Xi})

max
Xi

ϕ(Xi,Xj)ψ(Xi,Xk)

= max
P (Z\{Xi}∈K′(Z\{Xi})

{max
Xi

p(Xi,Xj) · q(Xi,Xk)|∀p ∈ ϕ, q ∈ ψ}

=max
Xi

p∗(Xi,Xj) · q∗(Xi,Xk).

Example 5. Consider again the credal network from Figure 1a. In Figure 3 we show the potentials
ϕ(A) and ϕ(A,B) corresponding to the sets of extreme points of the local conditional credal sets
K(A) and K(B|A), respectively. We can see that, for example, ϕ(A,B) has 4 extreme points
represented by the distributions p1(B|A), p2(B|A), p3(B|A) and p4(B|A), respectively.

Algorithm 3 describes the bucket elimination procedure called CBE that can be used to solve Equation
3. Let o : X1, X2, . . . , Xn be an ordering of the variables X such that X1 is eliminated first, then X2

and so on. First, the algorithm creates a set of potentials Γ from the input local conditional credal
sets K(Xi|Πi = πij). Each potential ϕk contains the set of all conditional probability distributions
P (Xk|Πk) such that P (xk|πkj) = P (Xk = xk|Πk = πkj) ∈ ext(K(Xk|Πk = πkj), where πkj is
the j-th configuration of the variables Πk.

The algorithm then eliminates each variable Xk by maximization from the combination of potentials
that contain Xk in their scope, namely it computes a new potential λk = max

(
maxXk

∏
ϕ∈Γk

ϕ
)

.

The resulting potential λk is pruned by removing its non-maximal elements. Finally, the optimal
maximax MAP value is obtained after eliminating the last variable in the ordering.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 4: Schematic bucket elimination for maximax MAP on the credal network from Figure 1a.

Algorithm 4 Mini-Buckets for Maximax MAP

1: procedure MB(C = ⟨X,D,K⟩, i-bound)
2: Initialize Γ← ∅
3: for all variable Xk ∈ X do
4: Let ϕk = {p : p ∈ ext(K(Xk|Πk))}
5: Update Γ = Γ ∪ {ϕk}
6: Create elimination ordering o : X1, . . . , Xn

7: for all variable Xk ∈ o do
8: ▷ Create bucket Γk and mini-buckets Qkr
9: Let Γk = {ϕ : ϕ ∈ Γ, Xk ∈ vars(ϕ)}

10: Update Γ = Γ \ Γk

11: ▷ Create mini-buckets Qk1, . . . , QkR
12: Partition Γk into {Qk1, . . . , QkR}
13: for all r = 1 to R do
14: Let ϕkr =

∏
ϕ∈Qkr ϕ

15: ▷ Compute the downward messages
16: for all r = 1 to R do
17: Let λkr ← max (maxXk ϕkr)
18: Update Γ = Γ ∪ {λkr}
19: return max(

∏
ϕ∈Γ ϕ)

Example 6. Figure 4 shows the schematic bucket elimination for maximax MAP on the credal
network from Figure 1a. In this case, the variable ordering is: o : A,C,B,E,D. The intermediate
potentials denoted by λ are shown in red.
Theorem 3 (complexity). Given a credal network C = ⟨X,D,K⟩, the CBE algorithm computes the
optimal maximum MAP value of C. The time and space complexity is bounded by O(n ·M2 · dw∗

),
where n is the number of variables, d is the maximum domain size, and M bounds the cardinality of
the potentials.

Proof. Clearly, the pruning operator max commutes with the max-marginalization operator in
Equation 3. Therefore, eliminating first a variable and subsequently pruning the non-maximal
elements from the resulting potential is equivalent to eliminating the variable from the maximizing
distribution in Equation 3.

C.1 MINI-BUCKETS FOR MAXIMAX MAP

The CBE algorithm is exact for Maximax MAP but time and space exponential in the induced width
of the credal network. We describe next a mini-bucket approximation for maximax MAP which we
enhance further with a cost-shifting scheme based on moment matching.

Algorithm 4 and adapts the mini-bucket partitioning scheme developed for graphical models (Dechter
& Rish, 2003) to the maximax MAP task in credal networks. Specifically, algorithm MB(i) which
approximates CBE is parameterized by an i-bound i and works by partitioning large buckets into
smaller subsets, called mini-buckets, each containing at most i distinct variables. The mini-buckets
are processed separately by maximizing out the bucket variable from the combination of potentials in
the respective mini-bucket. Based on previous work (Dechter & Rish, 2003), it is possible to show
that MB(i) outputs an upper bound on the optimal maximax MAP value from Equation 3.
Proposition 2 (mini-bucket bound). Let ϕ(Xi,Xj) and ψ(Xi,Xk) be two potentials such that
ϕ = {p1, p2, ..., pn} and ψ = {q1, q2, ..., qm}, respectively. Then, the following inequality holds:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 5: Schematic execution of MB(2) on the credal network from Figure 1a

Algorithm 5 Bucket Elimination for Maximin MAP

1: procedure CBE(C = ⟨X,D,K⟩)
2: ▷ Create the potentials
3: Initialize Γ← ∅
4: for all variable Xk ∈ X do
5: Let ϕk = {p : p ∈ ext(K(Xk|Πk))}
6: Update Γ = Γ ∪ {ϕk}
7: Create elimination ordering o : X1, . . . , Xn

8: for all variable Xk ∈ o do

9: ▷ Create bucket Γk for variable Xk

10: Let Γk = {ϕ : ϕ ∈ Γ, Xk ∈ vars(ϕ)}
11: Update Γ = Γ \ Γk
12: ▷ Compute the downward message
13: Let λk ← min

(
maxXk

∏
ϕ∈Γk

ϕ
)

14: Update Γ = Γ ∪ {λk}
15: return min

(∏
ϕ∈Γ ϕ

)

max
Xi

[ϕ(Xi,Xj) · ψ(Xi,Xk)] ≤ [max
Xi

ϕ(Xi,Xj)] · [max
Xi

ψ(Xi,Xk)] (6)

Proof. LetA = maxXi ϕ(Xi,Xj)·ψ(Xi,Xk) and let a = maxXi pt(Xi,Xj)·qr(Xi,Xj) be one of
its components. Clearly, maxXi pt(Xi,Xj) · qr(Xi,Xj) ≤ maxXi pt(Xi,Xj) ·maxXi qr(Xi,Xj).
Let b = p∗t (Xj) = maxXi pt(Xi,Xj) and c = q∗r (Xk) = maxXi qr(Xi,Xk) and let B =
maxXi ϕ(Xi,Xj) and C = maxXi ψ(Xi,Xk), respectively. Therefore, a ≤ b · c. Then it fol-
lows that for every a ∈ A, we can identify an element of a′ ∈ B · C such that a ≤ a′.

Example 7. Figure 5 shows the schematic execution of algorithm MB(i = 2) on the credal network
from Figure 1a. In this case, the elimination ordering is A, C, B, E, D, namely variable A is
eliminated first, then C and so on. After eliminating the last variable D, we obtain an upper bound
on the optimal maximax MAP value.

Proposition 3. Algorithm MB(i) computes an upper bound on the optimal maximax MAP value.

Proof. The result follows easily by applying Proposition 2.

D BUCKET ELIMINATION FOR MAXIMIN MAP

For maximin MAP, we define a min pruning operator that returns the minimal elements of a po-
tential ϕ(Y) relative to the same partial order ≤, namely min(ϕ(Y)) = {p(Y) ∈ ϕ(Y) : ∄q ∈
ϕ(Y), q(Y) ≤ p(Y)}.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proposition 4 (commuting max-marginal and min-pruning operators). Let ϕ(Xi,Xj) and
ψ(Xi,Xk) be two potentials such that ϕ = {p1, p2, . . . , pn} and psi = {q1, q2, . . . , qm}. Then,
commuting the max-marginal operator and the min-pruning operator yields the following inequality:

max
Xi

min
P (Z)∈K(Z)

ϕ(Xi,Xj) · ψ(Xi,Xk) ≤ min
P (Z\{Xi})∈K′(Z\{Xi})

max
Xi

ϕ(Xi,Xj) · ψ(Xi,Xk),

where Z = {Xi} ∪Xj ∪Xk, K(Z) is the credal set for ϕ(Xi,Xj) · ψ(Xi,Xk), and K ′(Z \ {Xi})
is the credal set for maxXi ϕ(Xi,Xj) · ψ(Xi,Xk).

Proof. The left-hand side of the inequalty can be written as,

max
Xi

min
P (Z)∈K(Z)

ϕ(Xi,Xj) · ψ(Xi,Xk)

=max
Xi

min
P (Z\Xk)∈Kϕ(Z\Xk)

ϕ(Xi,Xj) · min
P (Z\Xj)∈Kψ(Z\Xj)

ψ(Xi,Xk)

=max
Xi

p∗(Xi,Xj) · q∗(Xi,Xk),

where p∗(Xi,Xj) and q∗(Xi,Xk) are the dominated function in the credal set Kϕ(Z \ Xk) and
Kψ(Z \Xj), respectively.

By commuting max-marginal and min-pruning operator,

min
P (Z\{Xi}∈K′(Z\{Xi})

max
Xi

ϕ(Xi,Xj)ψ(Xi,Xk)

= min
P (Z\{Xi}∈K′(Z\{Xi})

{max
Xi

p(Xi,Xj) · q(Xi,Xk)|∀p ∈ ϕ, q ∈ ψ}

=r∗(Xj ,Xk) ≥ max
Xi

p∗(Xi,Xj) · q∗(Xi,Xk),

where r∗(Xj ,Xk) is the dominated function in the set {maxXi p · q|∀p ∈ ϕ, q ∈ ψ}.

Algorithm 5 describes the bucket elimination procedure called CBE that can be used to solve
Equation 4. However, unlike maximax MAP, in this case CBE is no longer exact and only computes
an upper bound on the optimal maximin MAP value. It is easy to see that max and min do not
commute in Equation 4. We illustrate with a simple example that by pushing the outside max
inside the min operator yields an upper bound: max(min(3, 1),min(3, 2)) = max(1, 2) = 2 ≤
min(max(3, 1),max(3, 2)) = min(3, 3) = 3.

Let o : X1, X2, . . . , Xn be an ordering of the variables X such that X1 is eliminated first, then X2

and so on. First, the algorithm creates a set of potentials Γ from the input local conditional credal
sets K(Xi|Πi = πik). Each potential ϕk contains the set of all conditional probability distributions
P (Xk|Πk) such that P (xk|πkj) = P (Xk = xk|Πk = πkj) ∈ ext(K(Xk|Πk = πkj). The algorithm
then eliminates each variable Xk by maximization from the combination of potentials that contain
Xk in their scope, namely it computes a new potential λk = min

(
maxXk

∏
ϕ∈Γk

ϕ
)

. The resulting

potential λk is pruned by removing its non-minimal elements. After eliminating the last variable in
the ordering, the resulting value is an upper bound on the optimal maximin MAP value.

E ADDITIONAL EXPERIMENTS

In this section we include additional experiments and details that were omitted from the main paper.
We note that in all of our experiments, we did not consider any evidence.

E.1 RESULTS FOR MAXIMAX MAP

Tables 7 and 8 summarize the results obtained on the random, and grid credal networks. The
columns are indexed by the mini-bucket i-bound, and in each cell we show the average CPU time
in seconds, and the average number of nodes expanded by the respective algorithm. We ran the
OR and AND/OR branch and bound algorithms guided by mini-bucket heuristics without poten-
tial approximation and moment-matching (i.e., BB+MB(i), AOBB+MB(i)), mini-bucket heuristics
with potential approximation of size 1 only (i.e., BB+MB(i,1), AOBB+MB(i,1)), and mini-bucket

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Results for Maximax MAP on 100 variables random networks. Average CPU time in
seconds and number of nodes expanded using mini-bucket i-bounds from 2 to 12. Time limit 1 hour.

size algorithm i = 2 i = 4 i = 6 i = 8 i = 10 i = 12
time nodes time nodes time nodes time nodes time nodes time nodes

random credal networks
AOBB+MB(i,1) 2.90 29603 0.99 13934 0.54 6877 0.25 5280 0.18 2352 0.09 1438
AOBB+MB(i,10) 3.06 29603 1.47 13934 18.65 6877 501.36 5834 809.46 2582 1405.00 1931
AOBB+MB(i,30) 3.25 29603 1.72 13934 555.51 7609 2731.54 3462 3153.93 209 - -
AOBB+MB(i,50) 3.25 29603 2.07 13934 558.29 7609 2781.15 2492 3284.57 251 - -
AOBB+MBMM(i,1) 2.25 21057 0.39 8316 0.40 4448 0.15 3544 0.20 1807 0.10 773
AOBB+MBMM(i,10) 1.97 21057 0.75 8316 15.99 4448 488.84 3906 797.66 1978 1770.41 1204
AOBB+MBMM(i,30) 2.12 21057 0.94 8316 541.91 4910 2708.84 2162 3189.16 105 - -
AOBB+MBMM(i,50) 2.22 21057 1.04 8316 548.81 4910 2800.54 1633 3312.94 108 - -

100

AOBB+MB(i) 2.87 29603 2.77 13934 972.37 7336 - - - - - -

Table 7: Results for Maximax MAP on random credal networks. Average CPU time (sec) and
number of nodes expanded using mini-bucket i-bounds from 2 to 12. Time limit 1 hour.

size algorithm i = 2 i = 4 i = 6 i = 8 i = 10 i = 12
(w∗,h) time nodes time nodes time nodes time nodes time nodes time nodes

DFS 18.55 2097152
20 BB+MB(i) 0.01 204 0.01 49 774.78 22 775.56 22 776.53 22 774.82 22
(4,9) BB+MB(i,1) 0.01 204 0.01 49 0.00 22 0.00 22 0.01 22 0.00 22

BB+MBMM(i,1) 0.01 58 0.01 24 0.00 22 0.00 22 0.01 22 0.00 22
AOBB+MB(i) 0.01 50 0.01 25 775.00 22 776.64 22 776.20 22 774.58 22
AOBB+MB(i,1) 0.01 50 0.01 25 0.01 22 0.01 22 0.01 22 0.01 22
AOBB+MBMM(i,1) 0.01 36 0.00 23 0.02 22 0.00 22 0.02 22 0.01 22

DFS - -
50 BB+MB(i) 1.15 40301 0.57 9672 863.27 1009 3331.72 62 - - - -
(9,17) BB+MB(i,1) 1.08 40301 0.45 9672 0.05 947 0.01 117 0.02 57 0.02 52

BB+MBMM(i,1) 0.16 5178 0.07 818 0.02 276 0.01 56 0.02 52 0.02 52
AOBB+MB(i) 0.03 298 0.04 188 818.48 101 3333.34 55 - - - -
AOBB+MB(i,1) 0.03 298 0.02 188 0.03 106 0.01 78 0.04 54 0.02 52
AOBB+MBMM(i,1) 0.03 169 0.01 107 0.06 94 0.01 53 0.07 52 0.02 52

DFS - -
100 BB+MB(i) 3525.20 40136432 1014.36 6399801 1789.33 123229 - - - - - -
(18,28) BB+MB(i,1) 3444.32 46208835 576.28 6399801 21.88 348970 1.92 64725 0.39 10498 0.35 10254

BB+MBMM(i,1) 2481.97 34115031 154.77 1717539 29.81 362314 1.00 33382 0.86 15106 0.30 5205
AOBB+MB(i) 2.87 29603 2.77 13934 972.37 7336 - - - - - -
AOBB+MB(i,1) 2.90 29603 0.99 13934 0.54 6877 0.25 5280 0.18 2352 0.09 1438
AOBB+MBMM(i,1) 2.25 21057 0.39 8316 0.40 4448 0.15 3544 0.20 1807 0.10 773

DFS - -
150 BB+MB(i) - - - - - - - - - - - -
(27,38) BB+MB(i,1) - - - - 2373.35 37994389 1408.44 21780102 1104.19 18280501 352.27 6721585

BB+MBMM(i,1) - - 3253.52 35114767 1119.96 15193688 1046.74 16149075 389.39 4938087 21.37 459902
AOBB+MB(i) 156.22 1452909 77.77 492383 1275.38 419109 3252.94 411225 - - - -
AOBB+MB(i,1) 151.57 1452909 41.20 492383 30.97 351672 21.04 279360 22.17 281745 11.02 176409
AOBB+MBMM(i,1) 68.48 612721 23.95 323892 11.55 158230 6.56 148781 8.43 133786 2.62 47718

DFS - -
200 BB+MB(i) - - - - - - - - - - - -
(36,48) BB+MB(i,1) - - - - - - - - 3458.90 56460524 2639.46 58444711

BB+MBMM(i,1) - - - - - - 2780.10 41392520 2342.75 37828931 1495.49 29931863
AOBB+MB(i) 1555.37 8510209 1126.37 4969424 2285.98 813793 3458.96 96389 - - - -
AOBB+MB(i,1) 1537.41 9957428 1112.31 7572102 979.05 9370560 738.42 7390775 433.13 3553045 113.94 1407589
AOBB+MBMM(i,1) 1155.54 8448489 1108.73 7985450 197.49 2193611 224.53 1974790 364.89 2768420 109.25 1344753

heuristics with potential approximation of size 1 and moment-matching (i.e., BB+MBMM(i,1),
AOBB+MBMM(i,1)), respectively. In addition to the branch-and-bound algorithms, we also ran the
brute force depth-first search algorithm denoted by DFS.

E.2 RESULTS FOR MAXIMIN MAP

Tables 10 and 11 summarize the results obtained on the random and grid credal networks for
the Maximin MAP task. In addition, Table 12 shows the results obtained on the real-world credal
networks. As before, we report the average CPU time in seconds and average number of nodes
expanded during search, across various mini-bucket i-bounds. We can see again that the AND/OR
Branch and Bound algorithms that exploit the problem structure dramatically outperform their OR
search counterparts, across all reported i-bounds.

However, unlike the Maximax MAP case, the Maximin MAP task appears to be much more difficult
to solve by the proposed AND/OR search algorithm. This is primarily due to the much weaker
mini-bucket heuristics compiled for Maximin MAP compared to those compiled for Maximax MAP.
Indeed, we recall that the variable elimination procedure described by Algorithm 3 is not exact for
Maximin MAP and only outputs an upper bound on the optimal Maximin MAP value. Consequently,
the mini-bucket approximation of this bound turns out to be much looser even if we try to tighten it
with the moment-matching scheme.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: Results for Maximax MAP on grid credal networks. Average CPU time (sec) and number
of nodes expanded using mini-bucket i-bounds from 2 to 12. Time limit 1 hour.

size algorithm i = 2 i = 4 i = 6 i = 8 i = 10 i = 12
(w∗,h) time nodes time nodes time nodes time nodes time nodes time nodes

DFS 1051.72 67108864
25 BB+MB(i) 0.06 3664 0.05 242 3275.18 27 3288.28 27 3283.06 27 3287.40 27
(5,15) BB+MB(i,1) 0.07 3664 0.01 242 0.00 27 0.01 27 0.01 27 0.01 27

BB+MBMM(i,1) 0.06 1436 0.01 88 0.00 27 0.01 27 0.04 27 0.01 27
AOBB+MB(i) 0.01 122 0.05 50 3278.58 27 3286.95 27 3283.82 27 3289.09 27
AOBB+MB(i,1) 0.01 122 0.01 50 0.01 27 0.01 27 0.04 27 0.01 27
AOBB+MBMM(i,1) 0.01 97 0.04 32 0.01 27 0.02 27 0.06 27 0.01 27

DFS - -
49 BB+MB(i) 141.09 4454273 5.10 53819 3524.41 498 - - - - - -
(9,25) BB+MB(i,1) 189.40 4454273 2.23 53819 0.02 708 0.01 74 0.04 51 0.02 51

BB+MBMM(i,1) 80.93 1728866 1.01 20768 0.01 96 0.02 53 0.06 51 0.03 51
AOBB+MB(i) 0.03 562 0.11 266 3392.24 132 - - - - - -
AOBB+MB(i,1) 0.03 562 0.03 266 0.01 144 0.03 63 0.06 51 0.03 51
AOBB+MBMM(i,1) 0.02 299 0.07 227 0.01 67 0.03 52 0.10 51 0.02 51

DFS - -
100 BB+MB(i) - - - - - - - - - - - -
(14,38) BB+MB(i,1) - - - - 2069.82 32793488 51.48 1342799 0.17 4123 0.06 783

BB+MBMM(i,1) - - 3287.93 45186026 362.59 5259684 0.07 699 0.13 123 0.07 102
AOBB+MB(i) 3.82 65648 0.23 2138 - - - - - - - -
AOBB+MB(i,1) 3.56 65648 0.13 2138 0.07 1930 0.09 1277 0.24 477 0.05 233
AOBB+MBMM(i,1) 0.74 19531 0.30 2138 0.06 1235 0.07 226 0.21 107 0.05 102

DFS -
144 BB+MB(i) - - - - - - - - - - - -
(18,49) BB+MB(i,1) - - - - - - 2882.01 51081184 986.25 23294052 5.44 184268

BB+MBMM(i,1) - - - - 3244.43 38700863 38.68 736998 0.35 1810 0.16 1787
AOBB+MB(i) 33.80 524460 0.42 8355 - - - - - - - -
AOBB+MB(i,1) 43.48 524460 0.46 8355 0.28 8324 0.33 7073 0.74 5710 0.15 2278
AOBB+MBMM(i,1) 18.45 247311 0.73 8325 0.27 7413 0.11 1046 0.32 327 0.09 243

DFS - -
196 BB+MB(i) - - - - - - - - - - - -
(20,57) BB+MB(i,1) - - - - - - - - - - 2243.14 53048783

BB+MBMM(i,1) - - - - - - 3240.10 39599609 1072.23 16685172 0.24 1060
AOBB+MB(i) 961.58 10746465 1.54 32950 3478.82 32950 - - - - - -
AOBB+MB(i,1) 1162.59 10746465 1.92 32950 1.31 32950 1.62 32945 2.22 32950 1.01 25366
AOBB+MBMM(i,1) 395.68 4201397 2.19 32950 1.03 31339 1.18 24508 1.83 32948 0.14 480

Consequently, the AND/OR branch and bound algorithms for Maximin MAP guided by the mini-
bucket heuristics with potential approximation of size 1 and moment-matching can only solve random
problems with up to 150 variables.

We observe however that AOBB+MB(i) with relatively small i-bounds (i.e., 2 or 4) performs quite
well and is able to solve the problems relatively efficiently. This indicates that the corresponding
mini-bucket bounds without potential approximation and moment-matching are tighter than those
involving the Pareto least upper bound. Unfortunately, compiling the MB(i) heuristics for higher
i-bounds is not feasible because of the computational overhead. Therefore, a possible direction of
future work is to study of the mini-bucket heuristics for Maximin MAP and develop new ways to
tighten them even further.

F COMPARISON WITH LOCAL SEARCH ALGORITHMS

We also extended the local search algorithms developed previously for credal Marginal MAP (Mari-
nescu et al., 2023) to solving the credal maximax and maximin MAP tasks as well. Specifically, we
developed the following algorithms: Stochastic Local Search (SLS), Taboo Search (TS), Simulated
Annealing (SA) and Guided Local Search (GLS), respectively. In all our experiments, we ran the
algorithms for a total of 10 iterations (i.e., random restarts) with a maximum of 100,000 flips per
iterations. The random flip probability was set to 0.1, the taboo list had a maximum size of 1,000,
while the alpha and initial temperature used by SA were set to 0.1 and 100, respectively. As before,
the time limit was set to 1 hour.

Tables 13 and 15 present the results for the Maximax MAP task on both random and real-world credal
networks. Similarly, Tables 14 and 16 report the results for the Maximin MAP task on the same set
of problem instances.

G SUMMARY OF THE CONTRIBUTION

This paper presents significant advancements in the field of MAP inference for credal networks.
While MAP inference has been extensively studied in Bayesian networks over the past decades, its
counterpart in credal networks has received comparatively limited attention. To date, there exists no
established algorithmic framework for solving credal MAP tasks in practical settings.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 9: Results for Maximax MAP on real-world credal networks. CPU time (sec) and number of
nodes expanded using mini-bucket i-bounds from 2 to 12. Time limit 1 hour.

instance algorithm i = 2 i = 4 i = 6 i = 8 i = 10 i = 12
(n, w, h) time nodes time nodes time nodes time nodes time nodes time nodes

BB+MB(i) 2030.54 150170 3.98 50 5.67 39 6.07 39 3.87 39 9.33 39
alarm BB+MBMM(i,1) 5.52 4535 3.77 39 3.99 39 4.92 39 5.36 39 5.45 39
(37,4,12) AOBB+MB(i) 5.78 85 4.81 42 5.25 39 7.64 39 6.60 39 6.56 39

AOBB+MBMM(i,1) 2.62 52 2.82 39 2.80 39 5.38 39 2.80 39 2.75 39

BB+MB(i) 0.02 77 0.00 72 0.00 72 0.00 72 0.00 72 0.04 72
child BB+MBMM(i,1) 0.00 73 0.00 72 0.01 72 0.01 72 0.00 72 0.01 72
(20,3,6) AOBB+MB(i) 0.01 24 0.02 22 0.00 22 0.00 22 0.01 22 0.01 22

AOBB+MBMM(i,1) 0.00 23 0.00 22 0.00 22 0.00 22 0.00 22 0.00 22

BB+MB(i) - - 8.67 174 - - - - - - - -
hailfinder BB+MBMM(i,1) - - 12.70 168 11.31 58 10.96 58 11.77 58 10.87 58
(56,5,11) AOBB+MB(i) 11.57 80 10.26 62 - - - - - - - -

AOBB+MBMM(i,1) 11.08 84 11.31 62 11.64 58 11.02 58 10.74 58 11.22 58

BB+MB(i) 1.05 4829 1.12 4199 - - - - - - - -
insurance BB+MBMM(i,1) 0.47 2230 0.13 534 0.12 250 0.09 170 0.07 170 0.10 170
(27,7,11) AOBB+MB(i) 0.08 89 0.08 86 - - - - - - - -

AOBB+MBMM(i,1) 0.07 87 0.07 78 0.06 57 0.06 56 0.07 56 0.08 56

BB+MB(i) - - - - - - - - - - - -
link BB+MBMM(i,1) - - - - - - - - - - - -
(724,15,43) AOBB+MB(i) 23.09 67424 3.74 1772 - - - - - - - -

AOBB+MBMM(i,1) 9.77 33603 2.97 1004 2.99 978 2.79 978 2.58 793 2.88 735

BB+MB(i) - - - - - - - - - - - -
mastermind1 BB+MBMM(i,1) - - - - - - - - - - - -
(1220,20,56) AOBB+MB(i) - - 102.60 34669 - - - - - - - -

AOBB+MBMM(i,1) - - 26.64 34493 9.96 17619 9.97 17619 9.83 17619 9.67 17619

BB+MB(i) - - - - - - - - - - - -
mastermind3 BB+MBMM(i,1) - - - - - - - - - - - -
(3692,39,92) AOBB+MB(i) - - - - - - - - - - - -

AOBB+MBMM(i,1) - - - - 3264.92 2180932 3088.55 2172466 3036.91 2167200 3010.41 2167117

BB+MB(i) 58.77 349847 0.87 42 1.44 37 1.40 37 1.25 37 1.92 37
mildew BB+MBMM(i,1) 3.14 23006 0.10 37 0.11 37 0.11 37 0.11 37 0.12 37
(35,4,15) AOBB+MB(i) 0.13 112 0.73 41 1.85 37 1.81 37 1.27 37 1.44 37

AOBB+MBMM(i,1) 0.08 67 0.13 37 0.11 37 0.11 37 0.12 37 0.12 37

BB+MB(i) - - - - - - - - - - - -
munin BB+MBMM(i,1) - - - - 35.85 88721 7.71 1056 7.47 1043 7.04 1043
(1041,8,26) AOBB+MB(i) 2.11 1311 3.10 1076 - - - - - - - -

AOBB+MBMM(i,1) 1.96 1127 1.72 1076 1.78 1044 1.74 1043 1.62 1043 1.59 1043

BB+MB(i) - - - - - - - - - - - -
pedigree1 BB+MBMM(i,1) - - - - - - - - - - 93.25 974000
(334,21,47) AOBB+MB(i) 1699.58 8389182 33.27 131390 158.79 131390 - - - - - -

AOBB+MBMM(i,1) 1543.91 8389051 34.84 131390 29.64 84817 29.90 104772 23.39 12259 22.50 466

BB+MB(i) - - - - - - - - - - - -
pedigree7 BB+MBMM(i,1) - - - - - - - - - - - -
(1068,44,88) AOBB+MB(i) - - - - - - - - - - - -

AOBB+MBMM(i,1) - - - - - - 2876.21 16663195 289.24 1907613 74.35 547430

BB+MB(i) - - - - - - - - - - - -
pedigree9 BB+MBMM(i,1) - - - - - - - - - - - -
(1118,33,106) AOBB+MB(i) - - - - 3004.43 132421 - - - - - -

AOBB+MBMM(i,1) - - 3126.56 16782641 55.63 121021 12.69 25684 8.96 15477 16.43 32946

BB+MB(i) - - - - 165.72 415 119.47 415 191.26 415 166.74 415
xdiabetes BB+MBMM(i,1) - - - - 0.52 415 0.56 415 0.58 415 0.57 415
(413,4,44) AOBB+MB(i) 0.40 529 1.04 426 158.02 415 179.66 415 163.06 415 114.08 415

AOBB+MBMM(i,1) 0.19 495 0.12 426 0.21 415 0.21 415 0.26 415 0.25 415

BB+MB(i) 3255.20 589618 17.32 819 - - - - - - - -
zbarley BB+MBMM(i,1) 8.67 3897 7.89 74 15.71 50 15.82 50 16.92 50 17.35 50
(48,7,21) AOBB+MB(i) 22.24 170 13.44 76 - - - - - - - -

AOBB+MBMM(i,1) 7.97 82 7.66 57 15.53 50 16.11 50 16.99 50 16.93 50

BB+MB(i) - - 2578.16 3730772 223.00 1076 - - - - - -
zpigs BB+MBMM(i,1) - - 1.33 13235 0.79 463 0.69 443 0.73 443 0.77 443
(441,10,25) AOBB+MB(i) 0.37 535 0.64 463 232.95 456 - - - - - -

AOBB+MBMM(i,1) 0.19 480 0.16 454 0.21 444 0.35 443 0.33 443 0.35 443

Recently, Marinescu et al. (2023) pioneered the study of Marginal MAP inference in credal networks
– a generalization of pure MAP inference. They introduced several stochastic local search algorithms
alongside an exact brute-force depth-first search method. However, their empirical evaluation revealed
that these approaches are either limited to very small problem instances or lack guarantees regarding
the quality of the solutions produced.

In response to these limitations, we propose a novel branch-and-bound search framework designed to
address two critical challenges: (1) scalability to larger and more complex credal networks, and (2)
provision of solution quality guarantees, particularly optimality. Our approach leverages the AND/OR
search space to exploit the underlying problem structure efficiently. This is further enhanced by a
partitioning-based heuristic that integrates potential approximations with cost-shifting strategies. The
AND/OR search space, previously shown to yield substantial time savings in Bayesian networks, is
here extended to credal networks and to both maximax and maximin MAP tasks.

Given that mini-bucket approximations of variable elimination in credal networks often incur high
computational costs due to very large potentials, we introduce a novel approximation scheme. This
scheme utilizes the Pareto least upper bound concept for multi-dimensional vectors to manage
potential complexity effectively.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 10: Results for Maximin MAP on random credal networks. Average CPU time (sec) and
number of nodes expanded using mini-bucket i-bounds from 2 to 12. Time limit 1 hour.

size algorithm i = 2 i = 4 i = 6 i = 8 i = 10 i = 12
(w∗,h) time nodes time nodes time nodes time nodes time nodes time nodes

DFS 18.55 2097152
20 BB+MB(i) 0.10 2432 0.06 1453 0.05 1219 0.05 1219 0.05 1219 0.05 1219
(4,9) BB+MB(i,1) 0.10 2432 0.06 1453 0.05 1219 0.05 1219 0.05 1219 0.05 1219

BB+MBMM(i,1) 0.10 1776 0.07 1268 0.11 1219 0.10 1219 0.20 1219 0.22 1219
AOBB+MB(i) 0.01 62 0.01 48 769.29 41 783.35 40 781.64 41 781.84 41
AOBB+MB(i,1) 0.01 93 0.01 73 0.00 69 0.00 69 0.00 69 0.00 69
AOBB+MBMM(i,1) 0.01 85 0.01 71 0.01 69 0.01 69 0.01 69 0.01 69

DFS - -
50 BB+MB(i) 2197.76 50789183 2235.78 59543636 2466.74 49480309 - - - - - -
(9,17) BB+MB(i,1) 2695.59 50966426 2374.55 47802338 2073.88 43649700 2307.14 48401873 2415.52 50355186 2383.77 48786553

BB+MBMM(i,1) 2462.65 46982744 2166.87 43940482 2184.39 45607376 2405.55 50088103 2411.81 50116876 2390.75 48487153
AOBB+MB(i) 0.03 511 0.05 407 1564.38 297 3257.63 591 - - - -
AOBB+MB(i,1) 0.06 992 0.04 767 0.03 674 0.04 697 0.04 777 0.03 683
AOBB+MBMM(i,1) 0.06 816 0.05 678 0.04 610 0.06 702 0.06 689 0.05 683

DFS - -
100 BB+MB(i) - - - - - - - - - - - -
(18,28) BB+MB(i,1) - - - - - - - - - - - -

BB+MBMM(i,1) - - - - - - - - - - - -
AOBB+MB(i) 321.81 2288083 339.53 1490415 2335.24 686105 - - - - - -
AOBB+MB(i,1) 370.60 2519857 343.64 2403898 315.94 2380625 310.87 2385030 296.38 2348286 297.56 2356143
AOBB+MBMM(i,1) 360.05 2510757 349.68 2488775 314.74 2381402 307.27 2380974 306.49 2370181 297.10 2363219

DFS - -
150 BB+MB(i) 3241.73 24284657 3244.87 25909874 3251.83 8188419 - - - - - -
(27,38) BB+MB(i,1) 3241.71 23719408 3241.20 27381745 3241.03 30027153 3240.94 30044581 3240.74 30979810 3240.63 40077583

BB+MBMM(i,1) 3241.64 23573902 3241.23 26682191 3241.07 29702609 3240.90 30399636 3240.69 33921616 3240.45 39299760
AOBB+MB(i) 2536.15 10771808 2293.90 7957842 3248.25 1112588 - - - - - -
AOBB+MB(i,1) 3242.14 16470814 2498.93 15012036 2825.31 18955066 2990.98 19312663 2299.04 16106412 2450.80 20333769
AOBB+MBMM(i,1) 3099.09 15395878 2951.84 16626578 2216.77 16053772 2299.99 15835166 2546.68 19344809 2605.07 19840368

DFS - -
200 BB+MB(i) - - - - - - - - - - - -
(36,48) BB+MB(i,1) - - - - - - - - - - - -

BB+MBMM(i,1) - - - - - - - - - - - -
AOBB+MB(i) - - - - - - - - - - - -
AOBB+MB(i,1) - - - - - - - - - - - -
AOBB+MBMM(i,1) - - - - - - - - - - - -

Table 11: Results for Maximin MAP on grid credal networks. Average CPU time (sec) and number
of nodes expanded using mini-bucket i-bounds from 2 to 12. Time limit 1 hour.

size algorithm i = 2 i = 4 i = 6 i = 8 i = 10 i = 12
(w∗,h) time nodes time nodes time nodes time nodes time nodes time nodes

DFS 1051.72 67108864
25 BB+MB(i) 0.06 3664 0.05 242 3275.18 27 3288.28 27 3283.06 27 3287.40 27
(5,15) BB+MB(i,1) 51.33 2139003 54.13 2101943 53.70 2083684 53.78 2083684 53.24 2083684 52.73 2083684

BB+MBMM(i,1) 45.17 2142018 42.65 2092694 41.02 2083684 41.61 2083684 42.52 2083684 38.19 2083684
AOBB+MB(i) 0.01 122 0.05 50 3278.58 27 3286.95 27 3283.82 27 3289.09 27
AOBB+MB(i,1) 0.06 3680 0.06 3509 0.06 3496 0.05 3496 0.05 3496 0.05 3496
AOBB+MBMM(i,1) 0.10 3653 0.10 3506 0.10 3496 0.10 3496 0.09 3496 0.09 3496

DFS - -
49 BB+MB(i) 141.09 4454273 5.10 53819 3524.41 498 - - - - - -
(9,25) BB+MB(i,1) - - - - 3469.28 110049922 3555.44 129042447 3552.79 135249370 3579.86 141018196

BB+MBMM(i,1) - - 3522.94 120903523 3593.77 130957532 2880.00 137553732 - - - -
AOBB+MB(i) 0.03 562 0.11 266 3392.24 132 - - - - - -
AOBB+MB(i,1) 1.30 65652 0.63 40579 0.92 39381 1.03 39748 1.02 39624 1.02 39624
AOBB+MBMM(i,1) 2.76 67608 1.28 39705 1.26 40029 1.23 39650 1.20 39624 1.27 39624

DFS - -
100 BB+MB(i) 3410.80 45573423 - - - - - - - - - -
(14,38) BB+MB(i,1) - - - - - - - - - - - -

BB+MBMM(i,1) - - - - - - 2880.00 86787865 - - - -
AOBB+MB(i) 75.49 32883 79.54 1126 3428.01 102 3427.41 102 - - - -
AOBB+MB(i,1) 390.56 10949062 364.18 10424997 363.35 11333724 362.88 11541125 362.84 10914068 362.85 11132756
AOBB+MBMM(i,1) 384.44 8520856 365.06 8545588 364.31 9051579 363.55 9057851 362.98 9007334 363.20 9076567

DFS - -
144 BB+MB(i) - - - - - - - - - - - -
(20,57) BB+MB(i,1) - - - - - - - - - - - -

BB+MBMM(i,1) - - - - - - 2880.01 56234017
AOBB+MB(i) 33.80 524460 0.42 8355 - - - - - - - -
AOBB+MB(i,1) - - 1897.99 61463739 1455.34 52054673 1455.18 52062183 1451.04 52765048 1451.10 55655798
AOBB+MBMM(i,1) 3034.07 58071151 1729.59 45653311 1457.68 44054565 1455.40 44027607 1453.59 44223628 1452.31 48988157

DFS - -
196 BB+MB(i) - - - - - - - - - - - -
(18,49) BB+MB(i,1) - - - - - - - - - - - -

BB+MBMM(i,1) - - - - - - 2880.02 58543756
AOBB+MB(i) 961.58 10746465 1.54 32950 3478.82 32950 - - - - - -
AOBB+MB(i,1) - - 2279.84 31996332 2279.38 35298631 2248.19 38894634 1931.02 36055993 - -
AOBB+MBMM(i,1) - - 1670.52 20372342 1960.68 25768210 2259.95 32030876 1638.70 27250308 2249.21 37315455

Our empirical results obtained on both synthetic and more realistic credal networks demonstrate that
the proposed methods not only enhance computational efficiency but also scale to large networks
with over 1,000 variables, all while guaranteeing the optimality of the solutions.

Finally, we observed that Maximin MAP is much more difficult to solve by our proposed algorithms
than Maximax MAP. This is because the mini-bucket based heuristic upper bounds for Maximin
MAP are significantly weaker than those compiled for Maximax MAP. Therefore, another avenue for
future work is to explore new ways to tighten the mini-bucket heuristics for Maximim MAP.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 12: Results for Maximin MAP on real-world credal networks. CPU time (sec) and number of
nodes expanded using mini-bucket i-bounds from 2 to 12. Time limit 1 hour.

instance algorithm i = 2 i = 4 i = 6 i = 8 i = 10 i = 12
(n, w, h) time nodes time nodes time nodes time nodes time nodes time nodes

BB+MB(i) 128.78 2522160 110.17 2522160 96.03 2522160 98.37 2522160 77.19 2522160 81.93 2522160
alarm BB+MBMM(i,1) 126.35 2522160 106.60 2522160 101.46 2522160 97.39 2522160 89.28 2522160 63.16 2522160
(37,4,12) AOBB+MB(i) 6.90 460 3.86 348 6.79 348 5.60 348 5.68 348 5.49 348

AOBB+MBMM(i,1) 6.96 394 3.77 348 7.11 348 6.64 348 6.17 348 6.91 348

BB+MB(i) 0.06 1792 0.04 1786 0.05 1786 0.08 1786 0.05 1786 0.04 1786
child BB+MBMM(i,1) 0.06 1790 0.05 1786 0.04 1786 0.04 1786 0.03 1786 0.04 1786
(20,3,6) AOBB+MB(i) 0.00 28 0.00 27 0.00 27 0.00 27 0.00 27 0.01 27

AOBB+MBMM(i,1) 0.00 27 0.00 27 0.00 27 0.00 27 0.00 27 0.00 27

BB+MB(i) - - - - - - - - - - - -
hailfinder BB+MBMM(i,1) - - - - - - - - - - - -
(56,5,11) AOBB+MB(i) 10.79 411 10.24 389 10.61 389 8.66 389 9.63 389 9.64 389

AOBB+MBMM(i,1) 10.47 408 10.14 389 10.29 389 10.07 389 10.09 389 9.37 389

BB+MB(i) 13.22 158023 14.32 155472 11.34 135918 11.14 135918 8.63 135918 12.57 135918
insurance BB+MBMM(i,1) 15.45 191919 13.12 140051 12.23 135918 10.79 135918 7.80 135918 12.63 135918
(27,7,11) AOBB+MB(i) 0.07 367 0.06 295 0.05 212 0.03 207 0.05 207 0.06 207

AOBB+MBMM(i,1) 0.07 315 0.07 268 0.06 212 0.05 207 0.03 207 0.06 207

BB+MB(i) - - - - - - - - - - - -
link BB+MBMM(i,1) - - - - - - - - - - - -
(724,15,43) AOBB+MB(i) - - 1663.40 7820555 1245.14 7448824 1180.95 7427647 1139.88 7405547 1072.66 7405953

AOBB+MBMM(i,1) - - 1538.40 7455392 1245.57 7406117 1188.28 7386176 1122.29 7383818 995.99 6862912

BB+MB(i) - - - - - - - - - - - -
mastermind1 BB+MBMM(i,1) - - - - - - - - - - - -
(1220,20,56) AOBB+MB(i) 49.00 64081 49.14 64240 34.42 62281 32.35 61822 28.90 61189 30.69 60236

AOBB+MBMM(i,1) 47.79 64081 49.17 64259 34.04 62281 32.14 61737 32.29 61275 30.17 61245

BB+MB(i) - - - - - - - - - - - -
mastermind3 BB+MBMM(i,1) - - - - - - - - - - - -
(3692,39,92) AOBB+MB(i) - - - - 1200.00 1357913 1099.27 1357053 1092.61 1362794 1103.99 1370757

AOBB+MBMM(i,1) - - - - 1205.83 1358178 1083.09 1360571 1077.06 1365064 1049.79 1367606

BB+MB(i) 0.09 5376 0.18 5376 0.17 5376 0.15 5376 0.10 5376 0.09 5376
mildew BB+MBMM(i,1) 0.15 5376 0.17 5376 0.19 5376 0.10 5376 0.19 5376 0.15 5376
(35,4,15) AOBB+MB(i) 0.22 1563 0.17 984 0.10 970 0.14 970 0.08 970 0.15 970

AOBB+MBMM(i,1) 0.20 1128 0.19 972 0.15 970 0.21 970 0.20 970 0.12 970

BB+MB(i) 0.58 2048 0.57 2048 0.51 2048 0.38 2048 0.32 2048 0.46 2048
zpigs BB+MBMM(i,1) 0.56 2048 0.51 2048 0.48 2048 0.33 2048 0.47 2048 0.46 2048
(441,10,25) AOBB+MB(i) 0.58 2245 1.02 2192 0.88 2282 1.00 2282 0.88 2282 0.77 2282

AOBB+MBMM(i,1) 0.62 2282 1.01 2282 0.75 2282 0.85 2282 0.90 2282 0.99 2282

Table 13: Results for Maximax MAP on random and grid networks. Average CPU time in seconds
for systematic vs non-systematic search algorithms. Time limit 1 hour.

size AOBB+MBMM(i,1) SLS TS SA GLS
random networks

20 0.00 49.60 46.34 33.61 55.83
50 0.01 184.46 107.5 98.24 175.69

100 0.10 372.75 188.92 196.96 352.78
150 2.62 565.95 223.03 300.46 529.20
200 109.25 681.60 438.32 326.83 563.61

grid networks

25 0.01 53.21 44.77 38.20 59.95
49 0.01 186.56 68.27 59.30 169.44

100 0.05 350.69 171.27 164.97 327.31
144 0.09 421.20 203.42 207.58 424.90
196 0.14 572.15 312.78 362.54 456.23

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 14: Results for Maximin MAP on random and grid networks. Average CPU time in seconds
for systematic vs non-systematic search algorithms. Time limit 1 hour.

size AOBB+MBMM(i, 1) SLS TS SA GLS
random networks

20 0.01 51.34 49.47 35.47 59.17
50 0.04 232.09 103.47 72.94 139.67

100 297.10 349.30 175.27 149.91 272.30
150 2216.77 471.92 311.40 198.21 384.21
200 - 576.57 380.96 262.67 435.96

grid networks

25 0.09 61.80 46.19 39.46 62.67
49 1.20 178.29 73.36 63.61 120.19

100 362.98 355.03 213.00 114.30 258.98
144 1452.31 401.44 257.59 171.27 327.11
196 1638.70 508.97 277.42 245.27 466.84

Table 15: Results for Maximax MAP on the real-world credal networks. CPU time in seconds for
systematic vs non-systematic search algorithms. Time limit 1 hour.

instance AOBB+MBMM(i,1) SLS TS SA GLS
alarm 2.62 3600.05 3600.00 3600.02 3600.02
child 0.00 23.22 28.96 8.88 14.99
hailfinder 10.74 3600.05 3600.05 3600.05 3600.05
insurance 0.06 296.68 219.52 146.25 145.71
link 2.58 3600.01 3600.01 3600.01 3600.01
mastermind1 9.67 3543.37 874.84 1056.13 2629.90
mastermind3 3010.41 3600.02 3600.02 3600.02 3600.02
mildew 0.08 242.49 128.90 124.13 257.74
munin 1.59 3600.00 1678.61 2563.09 3600.01
pedigree1 22.50 3600.00 3600.25 3600.25 3600.25
pedigree7 74.35 3600.00 3600.25 3600.25 3600.25
pedigree9 8.96 3600.00 3600.25 3600.25 3600.25
xdiabetes 0.12 445.32 726.82 622.27 688.75
zbarley 7.66 3600.08 3600.08 3600.08 3600.08
zpigs 0.19 2478.80 638.01 673.14 1813.44

Table 16: Results for Maximin MAP on the real-world credal networks. CPU time in seconds for
systematic vs non-systematic search algorithms. Time limit 1 hour.

instance AOBB+MBMM(i,1) SLS TS SA GLS
alarm 3.77 3600.05 3600.00 3600.02 3600.02
child 0.00 25.54 19.07 6.43 31.67
hailfinder 9.37 3600.15 3600.04 3600.06 3600.05
insurance 0.03 447.66 113.53 98.23 196.98
link 995.99 3600.01 3600.02 3600.01 3600.03
mastermind1 30.17 1965.99 948.96 1237.18 2295.69
mastermind3 1049.79 3600.02 3600.02 3076.61 3600.02
mildew 0.12 741.58 557.08 190.81 240.82
zpigs 0.62 894.96 282.35 257.57 542.11

22

	Introduction
	Background
	Bayesian Networks
	Credal Networks

	Branch-and-Bound Search for Credal MAP
	AND/OR Search Spaces for Credal Networks
	AND/OR Branch-and-Bound Search for Credal MAP

	Mini-Buckets for Credal MAP
	Potentials and Their Approximations
	The Maximax MAP Case
	The Maximin MAP Case

	Experiments
	Related Work
	Conclusion
	Appendix
	Depth-First Search for Maximax and Maximin MAP
	Bucket Elimination for Maximax MAP
	Mini-Buckets for Maximax MAP

	Bucket Elimination for Maximin MAP
	Additional Experiments
	Results for Maximax MAP
	Results for Maximin MAP

	Comparison with Local Search Algorithms
	Summary of the Contribution

