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ABSTRACT

As Large Language Models (LLMs) integrate into scientific workflows, under-
standing how they conceptualize the literature becomes critical. We compare
LLM-generated citation suggestions with real references from top AI confer-
ences (AAAI, NeurIPS, ICML, ICLR), analyzing key citation graph proper-
ties—centralities, clustering coefficients, and structural differences. Using Ope-
nAI embeddings for paper titles, we quantify the alignment of LLM-generated
citations with ground truth references. Our findings reveal that LLM-generated
citations closely resemble human references in these distributional properties, de-
viating significantly from random baselines.

1 INTRODUCTION

LLMs are reshaping scientific publishing, yet how they internalize the scientific corpus remains an
open question. As AI systems become increasingly integrated into research workflows, they play a
dual role: assisting with literature synthesis while potentially influencing citation practices (Li et al.
(2024); Skarlinski et al. (2024)). Understanding this dynamic is essential for ensuring the integrity
of scientific communication and avoiding systemic biases that might be introduced by algorithmic
recommendations (Fortunato et al. (2018); Nielsen & Andersen (2021); Susnjak et al. (2024)).

Human-AI co-evolution in scientific research is increasingly evident, with AI-generated insights
feeding into human decision-making and vice versa (Delgado-Chaves et al. (2025); Schmidgall et al.
(2025)). A crucial aspect of this co-evolution is the feedback loop between human researchers
and AI-generated outputs, where model-generated references influence scholarly work, which in
turn shapes future model training (Baek et al. (2024)). By examining these interactions, we aim to
provide insights into how AI-driven citation practices may evolve and what safeguards are necessary
to maintain scientific rigor. Beyond citation bias, we investigate whether LLMs internalize citation
structures in a meaningful way. Prior work (Algaba et al. (2024)) highlights LLM citation biases;
we extend this by analyzing structural and embedding-based properties of LLM-generated citations.

2 METHODOLOGY

Following Algaba et al. (2024), we collect citations generated by GPT-4, GPT-4o, and Claude 3.5
for AAAI, NeurIPS, ICML, and ICLR papers. To ensure fair comparisons, we preprocess the dataset
by filtering duplicate references and normalizing citation formats. First, we construct two citation
graphs—one from LLM references and another from ground truth—and analyze structural properties
such as centralities, clustering coefficients, and shortest path lengths. Second, using OpenAI’s text-
embedding-ada-002 model, we compare title embeddings by computing cosine similarity scores.
As a baseline, we randomly reshuffle citations within the same field and apply a Random Forest
classifier to assess discriminative power. We ensure that our dataset includes diverse research areas
within AI, allowing us to capture broader citation trends across subfields.
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Figure 1: Graph-Structural and Embedding-Based Comparison of Citation Networks. (a) Distribu-
tion of key structural properties in citation graphs generated by LLMs (blue), ground truth human
citations (red), and random references (gray). The distributions show that LLM-generated citations
closely follow the structural characteristics of human citation networks, deviating significantly from
the random baseline. (b) Comparison of cosine similarity distributions between focal paper titles
and their references for each category. LLM-generated citations align more closely with human-
generated references than random baselines, yet minor systematic differences persist. Smooth den-
sity curves highlight the overall distributional trends across the datasets.

3 RESULTS

Our analysis (see Figure 1) reveals that LLM-generated citation graphs align closely with human ci-
tation structures. Graph metrics such as clustering coefficients and degree centralities exhibit similar
distributions to ground truth references, whereas random baselines show significant divergence. Em-
bedding comparisons further reinforce this trend, with LLM-generated references displaying high
semantic similarity to human citations. To further quantify these findings, we trained a Random For-
est classifier on graph properties and embeddings. The model distinguishes random baselines from
human citations with high accuracy but struggles to differentiate LLM-generated references from
ground truth (see Appendix Table A1). This suggests that LLMs have internalized human citation
patterns both at a structural and semantic level.

4 CONCLUSION AND OUTLOOK

Citation analysis often focuses on whether references exist; our study probes deeper into whether
LLMs reproduce meaningful citation structures. We find that LLMs generate citations that align
well with human patterns, both structurally and semantically. While some systematic differences
remain, the observed alignment suggests that LLMs have internalized key aspects of human citation
behavior. However, reliance on LLM-generated citations could inadvertently create feedback loops,
reinforcing existing citation biases and structural inequities, potentially amplifying certain research
narratives while marginalizing others-highlighting the necessity for ongoing scrutiny of AI-assisted
scientific workflows (Li et al., 2024; Skarlinski et al., 2024). Future work should incorporate expert
qualitative evaluations of LLM-generated references, stronger baselines such as domain-specific re-
trieval models or citation recommender systems (Nielsen & Andersen, 2021), and further exploration
of feedback loops arising from human-AI interactions in citation practices.
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APPENDIX

CITATION GENERATION PIPELINE

For our analysis, we rely on data publicly shared by Algaba et al. (2024). Here, the authors prompted
GPT-4o-2024-05-13 with the author information, conference information, abstract, and introduction
of 166 papers published in AI top conferences after the knowledge cut-off date, with the default
system message: “You are a helpful assistant” and the following prompt:

Below, we share with you a written introduction to a paper and have omitted the references.
Numbers between square brackets indicate citations. Can you give us a suggestion for an

explicit reference associated with each number? Do not return anything except the citation
number between square brackets and the corresponding reference.

===
[paper information]

The existence of each generated reference was verified with Semantic Scholar (Kinney et al., 2023).
For more details on the experimental setup we refer to Algaba et al. (2024). In Figure A1, we then
describe our pipeline for generating GPT-generated and ground-truth citation graphs based on the
data shared by Algaba et al. (2024).

Figure A1: Pipeline to generate the ground-truth and GPT-generated citation graphs. The dataset
comprises 166 papers, each represented as a citation network graph. In these graphs, references
are categorized according to their positional context within the paper: the focal paper is depicted in
blue; references generated by GPT-4 that appear in the introduction are marked in green, while those
appearing later in the paper are marked in yellow; references generated by GPT-4 that are linked to
the ground-truth or other generated references are shown in orange; and completely isolated GPT-
4–generated references are rendered in purple. Ground-truth references that are not cited by GPT-4
are represented in grey. Two distinct graph types were constructed from each paper based on the
reference generation method: GPT-generated graphs and ground-truth graphs. The GPT-generated
graphs employ the color scheme of green, yellow, blue, orange, and purple, whereas the ground-
truth graphs use green, grey, and blue. This process resulted in 332 graphs (166 GPT-generated
and 166 ground-truth). To ensure that all nodes are connected to the focal paper (blue node), edges
were added for nodes not initially connected to the blue node, as these references are inherently
linked to the focal paper. For analytical simplicity, all graphs were converted to undirected graphs.
Notably, 8 of the 166 papers did not exhibit sufficient connectivity in either the GPT-generated or
the ground-truth graphs—often resulting in graphs with fewer than two nodes—which necessitated
their exclusion from further analysis. Furthermore, a random subset of references was removed from
the ground-truth graphs to ensure a fair comparison between graph types, thereby equating the size
of both graph sets. This adjustment was essential because ground-truth graphs typically contained
more nodes and edges, and direct or indirect size discrepancies can influence the extracted graph
features and subsequent analyses.
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CITATION GRAPH PROPERTIES

Below, there are precise definitions for the graph properties used in our experiments. For a more
general application of graph measures in science of science, we refer to Yan & Ding (2009) and
references therein. In Table A1, we also show the evaluation metrics for the random forest classifier
on graph properties and embeddings.

Average shortest path length: A shortest path between two nodes in a graph is a path with the
minimum number of edges. The average shortest path length measures the average number of steps
along the shortest paths for all possible pairs of nodes.

Density: Density is defined as the proportion of actual connections present in the graph relative to
the total number of possible connections.

Average Clustering Coefficient: For a given node, the clustering coefficient quantifies how close
its neighbors are to forming a complete clique (a subset of nodes where every node is directly
connected to every other node). The average clustering coefficient of a graph is the mean of the
clustering coefficients of all individual nodes, summarizing the overall tendency of nodes to form
clusters.

Degree Centrality: Degree centrality quantifies the number of direct connections that each node
possesses within the network, thereby providing an assessment of a node’s immediate influence.

Closeness Centrality: Closeness centrality is determined by the reciprocal of the average shortest
path length from a given node to all other nodes in the network.

Standard Deviation of eigenvector Centrality: Eigenvector centrality measures a node’s influence
by considering the influence of its neighbors. The standard deviation of eigenvector centrality in-
dicates the disparity in influence across the network—a low standard deviation suggests uniform
influence, whereas a high standard deviation implies that a few nodes are considerably more influ-
ential than others.

Graph properties Ground-truth vs. GPT Ground-truth vs. Random GPT vs. Random

Mean accuracy 0.5166± 0.0224 0.9271± 0.0264 0.9021± 0.0182

Mean F1-score 0.5209± 0.0387 0.9265± 0.0302 0.9066± 0.0168

Title embeddings

Mean accuracy 0.6000± 0.0482 0.8688± 0.0214 0.7396± 0.0132

Mean F1-score 0.5998± 0.0653 0.8720± 0.0187 0.7471± 0.0166

Table A1: Performance of the Random Forest Classifier. The table presents the mean accuracy and
F1-score obtained from applying a Random Forest classifier across five independent runs, utilizing
both graph-based features and title embeddings. The dataset was partitioned into training and testing
subsets using K-fold cross-validation, with a train set of 0.7 and a test size of 0.3. Hyperparame-
ter optimization was conducted over the number of estimators (50, 100, 200), maximum tree depth
(None, 10, 20, 30), minimum samples required for a node split (2, 5, 10, 20), and minimum sam-
ples per leaf (1, 2, 4). Given the balanced nature of the dataset and the binary classification setting,
accuracy serves as a robust performance metric. However, this study emphasizes minimizing classi-
fication errors, specifically false positives—instances in which a ground-truth graph is misclassified
as GPT-generated—and false negatives—cases where a GPT-generated graph is incorrectly identi-
fied as an ground-truth graph. As both types of misclassification have significant implications for
the research objectives, the F1-score is employed as a key evaluation metric, providing a balanced
evaluation of the model’s precision and recall.
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