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Abstract—This paper proposes a novel framework for learning
skills from one or a few demonstrations and generalizing skills
to unseen objects, environments, and robots. The proposed
learning-from-demonstration method, named “PRobabilistically-
Informed Motion Primitives (PRIMP)”, captures motion features
by learning the probability distribution of the end effector
trajectories in the 6D workspace that includes both positions
and orientations. The learned trajectory distribution can adapt
to new situations, such as novel via points and changes in the
viewing frame. The method itself is robot-agnostic, in that the
learned distribution can be transferred to another robot with
the adaptation to its workspace density. The learned trajectory
distribution is then used to guide an optimization-based motion
planning algorithm to further help the robot avoid novel obstacles
that are unseen during demonstrations while keeping the learned
motion features. The proposed method is evaluated by several
sets of benchmark experiments. PRIMP runs more than 5 times
faster than existing state-of-the-art methods while generalizing
trajectories more than twice as close to both the demonstrations
and novel via points. It is then combined with our lab’s robot
imagination method that learns object affordances, illustrating
the applicability of PRIMP to learn tool use through physical
experiments.

I. INTRODUCTION

For a robot to be truly intelligent to function in the real
world, it needs the ability to learn from prior knowledge
while adapting to unseen scenarios. The prior knowledge can
be some simple pre-programmed feasible trajectories that are
hard-coded, like in a structured factory environment. Prior
knowledge can also be from human-demonstrated motions,
which are difficult to pre-program but are ubiquitous in house-
hold environments, like scooping powder (as in Figure 1). The
latter case is much more challenging and related to a popular
field in robot learning, namely Learning-from-Demonstration
(LfD) [1] or Programming-by-Demonstration (PbD) [2].

Many works on LfD encode trajectory models in the Eu-
clidean space. Analytic methods like Dynamical movement
primitives (DMP) [3] or reinforcement learning-based meth-
ods [4] [5] are able to encode the position, velocity, and
acceleration of demonstrated motions, suitable for high-speed
motions like hitting a ball. Another class of LfD method
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uses probabilistic models to handle the inherent uncertainty
and variability in demonstrations, such as the probabilistic
movement primitives (ProMP) [6] and the kernelized move-
ment primitives (KMP) [7]. Recently, probabilistic methods
have been extended to the probability distribution within a
manifold to include the motion features of orientation, such
as the Orientation-KMP [8], which includes orientation by
quaternions. The learned probability distribution of the motion
primitive can be generalized to novel via points and new
scenarios. However, the performance of existing probabilistic
methods relies on the choice of basis functions or kernels.

Robotic manipulation tasks, like scooping cereals, have
complex and implicit constraints for the motion of the
robot end-effector in the workspace. Consequently, our work
focuses on the robot workspace and proposes a novel
method using probability densities on Lie groups, denoted
as PRobabilistically-Informed Motion Primitives (PRIMP).
The mathematical model is inspired by a concept initially
introduced in our group more than 25 years ago and the
concept of loop entropy [9], [10] and more recent work on
inverse reachability mapping [11], [12]. It is further extended
here into LfD with via points conditioning as compared to
only subjecting to end constraints. The learned knowledge
is robot-agnostic but can be adapted to the workspace of a
specific robot. It is also able to deal with extrapolation cases
and model with a few or even a single demonstration.

Demonstrations are usually conducted in a scene with only
the robot and the objects with which it interacts. When adapt-
ing to a novel scene with unseen obstacles, only using LfD
methods cannot guarantee a collision-free trajectory. Guided
motion planning, which combines LfD and motion planning,
has become popular in the recent decade [13]–[16]. The goal
is to make the motion collision-free while keeping the critical
features from the learned trajectory as many as possible. In
this work, an optimization-based planner, Stochastic Trajectory
Optimization for Motion Planning (STOMP) [17], is applied as
the base framework. The reference trajectory is the mean of the
learned trajectory distribution via PRIMP. Then, a novel cost
function with respect to this reference distribution is proposed
to guide the planning process. Instead of joint space, the cost
function is based on the workspace of the robot end effector.
Therefore, the planner is named as Workspace-STOMP.

Apart from novel obstacles, the object that the robot in-
teracts with might also be unseen or even from different
categories. For example, the pouring task is demonstrated by
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Fig. 1: Illustration for the general idea of this work. The robot
arm is asked to use a spoon to scoop from an unseen bowl in
a new environment. With the help of human demonstrations,
imagination of object affordance, learning skills from the
demonstrations, and motion planning, the robot is able to fulfill
the task in a novel scene with unseen obstacles.

pouring powders from a cup to a bowl. Here, the cup is treated
as a tool for pouring, and the bowl has the affordance of
containing powders. In a new scenario, the tool for pouring
might be changed into a spoon, and the object might become
a vase, which has the same affordance of containing. The
learned trajectory distribution should be able to adapt to this
new situation, even when the appearances and categories of the
tool and object are totally different. In order to fulfill similar
tasks intelligently, the understanding of object functionality
and affordance is a key aspect [18]. Recent works proposed
methods to learn object affordance, like pouring, via physics-
based simulation [19], [20]. Our work applies this idea to
learn the key pose of a task, i.e., the pouring pose, which
is used as a new goal or key pose for re-production. A new
task that learns the affordance of scooping is proposed and
implemented in the simulation environment. The affordance
learning of an object using simulation is then combined into a
robotic system with PRIMP and Workspace-STOMP through
physical experiments.

The contributions of our work are listed as follows.

• A learning-from-demonstration method, PRIMP, is pro-
posed to generate reference workspace trajectory distri-
bution for basic motion primitives;

• By proposing a novel cost function related to the refer-
ence distribution, Workspace-STOMP is proposed to keep
the shape of the trajectory similar while maintaining the
feasibility of the plan.

• A novel robotic system that combines LfD, motion plan-
ning, and affordance-based simulation is proposed and
physically demonstrated in a robot manipulator platform.

II. PROBABILISTICALLY-INFORMED MOTION PRIMITIVES

This section introduces the proposed LfD method, namely
PRobabilistically-Informed Motion Primitives (PRIMP). This
is a probabilistic method to encode the trajectory that involves
both the position and orientation of the robot end effector. The
trajectory is represented discretely by a number of time steps
(i.e., Nstep). Each pose in the 6D workspace is modeled as an
element in Lie group G. Therefore, the full state is considered
in a product space G × ... ×G, resulting in a state vector of
dimension 6Nstep. Consider a set of demonstrated trajectories{
g
(k)
0 , g

(k)
1 , ..., .g

(k)
n

}
, where g

(k)
i ∈ SE(3) is the ith step in

the kth demonstration. The goal is to compute a probability
distribution of the given demonstrations as a reference to guide
the future executions of the robot for a similar task.

A. General framework of PRIMP

Firstly, all the demonstrated trajectories are temporally
aligned into the same time scale. After alignment, the probabil-
ity distribution of the (i+1)th pose with respect to the ith pose
is approximated using a Lie-theoretic method (Sec. II-C). The
computed initial mean and covariance is then encoded into the
joint distribution of the whole trajectory (Sec. II-D). Several
types of adaptations to novel scenarios are then introduced
(Sec. II-E):

• when an intermediate pose is different from the given
mean and has some uncertainties, a posterior distribution
is computed to adapt to this new situation (Sec. II-E1);

• when there is a change of viewing frame, the encoded
distribution can be adapted in the sense of equivariance
(Sec. II-E2);

• when another robot is operated for the same task, the
learned distribution can be further conditioned to the high
density region of the new workspace (Sec. II-E3).

B. Temporal Alignment for Demonstrations using Globally
Optimal Reparameterization Algorithm (GORA)

Different demonstrations might have different speeds of
execution, even when the trajectories have the same shape
[21]. Speed differences among demonstrations may cause the
same feature to be parameterized at different time steps.
This misalignment in the temporal axis makes probabilistic
modeling difficult. Therefore, a temporal reparameterization
to align all the demonstrated trajectories into the same time
scale is essential. In our work, a variational calculus technique
is applied to align multiple trajectories with global optimality
in the temporal axis, which is named as Globally Optimal
Reparameterization Algorithm (GORA) [22].

Suppose an SE(3) sequence g(τ) is parameterized by
τ ∈ [0, 1]. Here τ(t) : [0, 1] → [0, 1] is a one-dimensional
monotonic function that parameterizes time. The total variation
of the whole sequence can be computed as the sum of the
squared derivative with respect to time t, i.e.,

J =

∫ 1

0

g(τ) τ̇2 dt , (1)



Algorithm 1: Globally Optimal Reparameterization
Algorithm (GORA) for SE(3) sequence [22]

Inputs : g(τ): Input SE(3) sequence
Parameter: Nstep: Number of time steps
Outputs : g(τ∗): Optimal reparameterized sequence

τ∗(t): Optimal temporal parameter
1 Initialize τ and t as uniform sampling within [0, 1];
2 Compute g(τ) from Eq. (2);
3 for time step i do
4 F (τi) = Integration(g

1
2 (τi), [0, τi]);

5 end
6 Normalize F (τ∗) = F (τ)

F (1) ;
7 Invert F (τ∗) into τ∗(t) = Interpolation(F (τ∗), t);
8 Reparameterize as g(τ∗) = Interpolation(τ∗, g(τ));

where τ̇ = dτ/dt. The expression of g(τ) in the integrand is
defined based on the body velocity of an SE(3) trajectory, i.e.,

g(τ)
.
=

∥∥∥∥g−1 ∂g

∂τ

∥∥∥∥2
W

, (2)

where ∥·∥W denotes the weighted Frobenius norm defined
such that for any A ∈ R4×4, ∥A∥W =

√
tr (ATWA), for

some symmetric matrix

W
.
=

(
1
2 tr(I)I3 − I 0

0T 1

)
∈ R4×4 ,

where I is the 3× 3 diagonal inertia tensor corresponding to
a solid sphere of unit mass and I3 is the 3×3 identity matrix.

With the integrated form as Eq. 2 and the boundary condi-
tions τ(0) = 0 and τ(1) = 1, Eq. 1 has global minimization
[22] [23]. The minimizer is τ∗(t) = F−1(t), where F−1(·) is
the inverse function of

F (τ∗) =

∫ τ∗

0
g

1
2 (σ) dσ∫ 1

0
g

1
2 (σ) dσ

= t . (3)

Algorithm 1 summarizes the workflow of GORA for SE(3)
sequences. Line 1 initializes the temporal parameter τ and the
original time scale t uniformly within [0, 1]. The numbers of
time steps of t and τ equal the length of the input sequence
and a user-defined number (Nstep) for the reparameterized
sequence, respectively. Line 2 computes g(τ) using Eq. (2).
Both Lines 4 and 6 are the core computations of the algo-
rithm, i.e., Eq. (3). Here, the trapezoidal rule is applied for
numerical integration because of its simplicity. F (τ) is then
normalized by dividing the last element, i.e., F (1). Line 7
obtains the global minimizer τ∗(t) by inverting F (τ∗), which
is numerically conducted by interpolating t with respect to
F (τ∗). Finally, the input data sequence is reparameterized by
τ∗ by numerical interpolation in SE(3) in Line 8.

C. Computation of relative pose distribution

For a set of poses
{
g
(k)
i

}
in SE(3) at each step i, the sample

mean µi ∈ SE(3), is given by
∑m

k=1 log(µ
−1
i g

(k)
i ) = O,

which can be iteratively solved [24]. Here, log(·) is the matrix
logarithm. The mean trajectory can be directly computed from
the demonstration set.

The initial covariance Σi,i+1 encodes the uncertainty of
(i + 1)th step given the ith step. It is estimated by the set

of relative poses, i.e.,
{
∆

(k)
i,i+1 =

(
g
(k)
i

)−1

g
(k)
i+1

}
. With this

set, the sample covariance can be computed as Σi,i+1 =
1
m

∑m
k=1 log

∨
(
µ−1
i,i+1∆

(k)
i,i+1

)
log∨T

(
µ−1
i,i+1∆

(k)
i,i+1

)
, where

µi,i+1 can be computed similar to µi but replace g
(k)
i with the

relative poses ∆
(k)
i,i+1. The ∨ operator extracts the Lie algebra

coefficients into a vector (as defined in [25]).

D. Probabilistic encoding of joint distribution on SE(3) tra-
jectories

After computing the trajectory distribution with mean
{µ0, µ1, ..., µn}, µi ∈ SE(3) and covariance between adjacent
steps {Σ0,1,Σ1,2, ...,Σn−1,n}, Σi,i+1 ∈ R6×6 from Sec. II-C,
the joint distributions of the whole trajectory can be computed.
Assuming the variation of ith pose only depends on its two
neighboring poses and g0 = µ0 is fixed, the joint probability
density can be expressed as

ρ(g1, g2, ..., gn) =

n−1∏
i=0

ρ(gi+1|gi) , (4)

where n = Nstep, and ρ(gi+1|gi) is the conditional probability
of the (i+ 1)th pose given the ith pose.

Because the ρ(gi) is subjected to the Gaussian distribution
with small variation, ρ(g1, g2, ..., gn) is also Gaussian dis-
tributed with joint variable xT

1,...,n, where xi = log∨(µ−1
i gi),

and joint covariance Σ1,...,n ∈ R6n×6n, where the (i, i)th

block is expressed as Σ1,...,n(i, i). The non-zero blocks of
Σ−1

1,...,n are

Σ−1
1,...,n(i, i) =

{
Σ−1

i−1,i + Σ̃−1
i,i+1 (i ̸= n)

Σ−1
i−1,i (i = n)

Σ−1
1,...,n(i, i+ 1) = −Ad−T

i,i+1Σ
−1
i,i+1 (i ̸= n)

Σ−1
1,...,n(i+ 1, i) = −Σ−1

i,i+1Ad−1
i,i+1 (i ̸= n) .

(5)

Ad(g) is the adjoint matrix for the element g in a Lie
group, defined as Ad(g)x = (gx̂g−1)∨, where ·̂ is the inverse
operation of ∨ that maps a vector space into the Lie algebra.
Adi,i+1

.
= Ad(µ−1

i µi+1) is for the relative mean poses
between adjacent time steps. The covariance between adjacent
time steps is Σ̃i,i+1 = Adi,i+1Σi,i+1AdTi,i+1 [25].

E. Adaptation to novel situations

One of the most essential abilities of an LfD method is its
adaptability to novel and unseen situations.

1) Adaptation to via points with uncertainties: Suppose
that the robot is asked to pass a via point g∗i ∈ SE(3) with
uncertainty, which is described by covariance matrix Σ∗

i . The
posterior distribution, as shown in Figure 2, can be computed
using an observation mode.
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goal pose
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Fig. 2: Examples of the adaptation to new via points with
uncertainties. The solid blue and magenta curves are the
mean of the encoded joint prior and posterior distribution,
respectively. Dashed magenta curves are the random trajectory
samples from the probability distribution.

(a) Encoded joint distribution. (b) Distribution after conditioning
on a via point.

Fig. 3: The equivariance property under the change of viewing
frame. The samples as viewed in the original frame O are
shown in magenta, and samples after the change of view are
shown in cyan (trajectories are sampled as viewed in the new
frame A but transformed back to frame O for each pose for
illustration purpose).

2) Equivariant adaptation to the change of view: To change
the viewing frame, a group action is applied. Suppose h ∈
SE(3) is the relative transformation from the current frame (O)
to a new frame (A), then the pose g viewed in frame O can be
switched to be viewed in frame A as go = h−1gh [26]. The
conditional probability between two adjacent frames after the
change of view can be computed as xo

i = log∨(h−1µ−1
i gih) =

Ad−1(h)xi. The distribution of the whole trajectory as viewed
in frame A can be obtained by the equivariance property under
the change of view.

3) Adaptation to robot-specific workspace density: PRIMP
learns motions in the workspace of the robot instead of joint
space, which makes skill transfer among different robots easy.
In other words, the demonstrations are conducted using one
robot, and the learned workspace distribution can be used by
another robot with a different kinematic structure. However,
an important issue to consider is the adaptation to robot-
specific workspace limits and reachability. Previous work has
extensively investigated the density of the robot workspaces,

(a) Franka Emika Panda (b) Kinova Gen3

Fig. 4: Fusion with robot-specific workspace density. Thin
cyan curves are the demonstrated trajectories using Franka
robot; solid thick blue and magenta curves are the mean
trajectory without and with the fusion, respectively. The end
effector is placed at a random intermediate step along the fused
trajectory mean.

in which the more reachable space of the end effector has
a higher probability [9], [27]. Workspace density can be
approximated by the convolution of Gaussian distribution on
SE(3) [28]. In this work, the workspace density is used to
inform the learned trajectory distribution, to stay closer to
the higher probability region within the robot workspace. The
distribution of each intermediate pose along the trajectory is
conditioned by this density function, which can be viewed as a
fully observable model. The posterior probability distribution
based on the respective workspace density of Franka Emika
Panda and Kinova Gen3 robots is shown in Figure 4.

III. MOTION PLANNING GUIDED BY PRIMP

This section introduces Workspace-STOMP, a novel guided
motion planning algorithm using the trajectory distribution
computed by PRIMP. A cost function for the end effector
trajectory is proposed to guide the STOMP algorithm. The cost
is computed based on the distance metric in SE(3) between
each rollout trajectory at each iteration and the workspace
trajectory distribution learned by PRIMP.

At each iteration, STOMP defines a set of random samples
in joint space, each of which is denoted as a “rollout”, i.e.,
q. To compute the distance metric of each rollout with the
learned trajectory distribution, the trajectory of the end effector
is computed via forward kinematics, denoted as g(q, t) ∈
SE(3) × T . Then, a number of mr random samples from
the reference trajectory distribution are generated, denoted as
g
(k)
r =

(
R

(k)
r , t

(k)
r

)
. And the cost function c(qi, ti) for ith

time step is computed as

c(qi, ti) =
1

mr

mr∑
k=1

(
wrot

∥∥∥log∨ (
RT (qi, ti)R

(k)
r (ti)

)∥∥∥
+wtran

∥∥∥t(qi, ti)− t(k)r (ti)
∥∥∥) .

(6)



Algorithm 2: Cost function for Workspace-STOMP
based on trajectory distribution

Inputs : q: Rollout joint angles;{
g
(k)
r (t)

}
: Sampled trajectories from the

distribution learned by PRIMP
Parameters: wrot, wtran: Weights for rotation and

translation parts in the distance function
Outputs : c(q, t): Cost value for each rollout

1 for time step i do
2 g(qi, ti) = ForwardKinematics(qi);
3 Compute c(qi, ti) using Eq. (6) ;
4 end

Planned trajectorySampled trajectories from 

reference distribution Obstacle

Fig. 5: Motion planning using Workspace-STOMP to follow
the learned trajectory distribution from PRIMP.

The weights wrot and wtran for rotation and translation parts
in the distance function are set by users. The computational
process is shown in Alg. 2.

The planner is initialized by the mean trajectory of the
learned distribution. Then, a plug-in package of the proposed
cost function is implemented in MoveIt! platform [29]. Simu-
lations of writing letters “N”, “U” and “S” using the proposed
Workspace-STOMP are shown in Figure 5.

IV. INTEGRATED ROBOTIC SYSTEM

The proposed motion primitives learning and motion plan-
ning methods are integrated into a robotic system, with other
components including environment perception, tasks prior
knowledge, and key pose detection by either marker or robot
imagination for unseen objects.

A. Workflow

The workflow of the system is shown in Figure 6. For
each motion primitive, human operators first conduct several
demonstrations by dragging the robot end effector to fulfill
the specific task. The trajectory of the end effector poses
for each demonstration is recorded for trajectory probability
distribution generation by PRIMP. For a new planning request,
the new scenario is obtained by 3D reconstructions using an
RGB+D camera. Then key poses for the task are generated
based on task prior knowledge, as shown in Table. I. A set of
key pose candidates are then fed into PRIMP to condition the
trajectory probabilistic distribution. The posterior distribution
is used to guide the STOMP planner with new planning scenes,

TABLE I: Prior knowledge of key pose generation methods
for different tasks.

Task ID Key pose t ∈ [0, 1] Generation method

1. Pouring Start 0.0 Certain distance above object
Pouring 1.0 Pouring imagination

2. Transporting Start 0.0 ArUco tag
Goal 1.0 ArUco tag

3. Scooping
Start 0.0 Certain distance above object

Scooping 0.5 Scooping imagination
Goal 1.0 Certain distance above object

4. Opening-sliding Start 0.0 ArUco tag
Goal 1.0 Computed from object geometry

5. Opening-rotating Start 0.0 ArUco tag
Goal 1.0 Computed from object geometry

which include novel obstacles. Once a feasible trajectory is
found by Workspace-STOMP, the robot executes the planned
motion to fulfill the designated task. If there is no feasible
trajectory, more key pose candidates are generated for re-
planning.

B. Task prior knowledge

Key pose generation methods are defined by the operator
and stored as the prior knowledge for different tasks, as listed
in Table I. Key poses are defined for the end-effector and can
be viewed as constraints for a task to be successfully fulfilled,
i.e., the pouring task needs to be informed of the target pouring
pose that varies based on the shape and location of a container.
The number and time steps of key poses for each task may
differ, i.e., the scooping task needs the scooping pose to fulfill
the scoop action, and the scooping pose is assumed to be in
the middle during scooping.

Key poses can be obtained by two methods, either by
reading ArUco tags or robot imagination. The former one
is used for tasks including transporting and door opening.
For door opening, the goal pose is further subjected to the
geometry constraint of the door. The latter method is useful
for tasks like pouring and scooping, where the key poses
are conditioned based on the shape and pose of the object.
Instead of defining priori all possible key pose candidates
for each object, this work used robot imagination, which
detects object affordance through physical simulation with
pre-defined motions and finds object functional poses for
later robot manipulation. Robot imagination allows extending
skills to unseen objects. This is first proposed for the pouring
affordance for unseen containers in [19]. This work proposed
scooping imagination, as shown in Figure 7, which has a
similar pipeline as the pouring imagination to find scooping
pose candidates. The reconstructed mesh of the object is first
loaded into the simulation environment, and red particles are
dropped into the object based on the location and size of
its bounding box. The spoon model is used for conducting
the pre-defined scooping action. Each time, the initial pose
of the spoon is sampled based on the bounding box of the
object. The scooping pose at time step t = 0.5 depends on
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Fig. 6: Workflow of the proposed robotic system including PRIMP, Workspace-STOMP and robot imagination.

Fig. 7: The robot imagination process for scooping. The white
meshed object represents the container that is unseen during
demonstration.

the position of the lowest particle among particles contained
by the object. If the spoon successfully scoops any particle,
the scooping pose is recorded as a possible key pose for the
object. Both pouring and scooping simulations were conducted
in the Gazebo physics simulator.

V. PHYSICAL EXPERIMENTS AND EVALUATION

Physical experiments using the Franka Emika Panda robot
are conducted. Human operator demonstrates each skill by
dragging the end-effector for 5-10 trials (Fig. 8)

A. Benchmarks among learning-from-demonstration methods

The proposed PRIMP method is compared with ProMP [6]
and Orientation-KMP [8], both probabilistic LfD methods. For
Orientation-KMP, different levels of magnitude for the kernel
parameter are varied. With manually defining 50 different pairs
of goals and via poses, different LfD algorithms are applied to
re-produce the task. The results are shown in Table II and Table
III. Table II evaluates the similarity between demonstrated
trajectories and learned trajectories in terms of distances of

TABLE II: Benchmark results of similarity to demonstrations
among LfD methods in real-world tasks.

Task ID Rotation Translation

PRIMP KMP PRIMP KMP ProMP

1 0.522 1.45 0.0448 0.200 0.103
2 0.313 0.669 0.0406 0.289 0.0812
3 0.201 0.508 0.0377 0.278 0.0527
4 0.275 0.372 0.0168 0.134 0.0293
5 0.106 1.61 0.00852 2.20 0.0133

rotation and translation parts. Table III compares the distance
between the designated via point µ∗

i and learned poses gi
sampled from the posterior trajectory distribution.

Table II shows that PRIMP learns the core features from
the demonstration for both orientation and translation, i.e.,
Task 1 and 5 require objects rotating along a fixed axis in
the space, and PRIMP learns this core features while KMP
fails. Table III demonstrates the ability to adapt the learned
trajectory distribution by PRIMP to new via points, especially
the rotation part. Benchmark results show that PRIMP outper-
forms other probabilistic methods in terms of similarity metric
for the whole trajectory as well as the distance to the desired
via point.

B. Comparisons on guided motion planning

Benchmarks for motion planning are conducted, which
include three manually defined environments in simulation for
the 5 daily tasks. Environment types include sparse, cluttered,
and dense, depending on the difficulty of motion planning.
We compare the proposed Workspace-STOMP planner with
(1) STOMP [17] without guidance and (2) Cartesian-guided
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Fig. 8: Kinesthetic demonstrations for different tasks.

TABLE III: Benchmark results of adaptation to via points
among LfD methods in real-world tasks.

Task ID Rotation Translation

PRIMP KMP PRIMP KMP ProMP

1 0.00748 0.0869 0.00515 0.0626 0.00438
2 0.00775 0.0753 0.00407 0.0802 0.00564
3 0.00647 0.0970 0.00381 0.0816 0.00432
4 0.00714 0.0868 0.00498 0.116 0.00277
5 0.0175 0.523 0.00495 0.369 0.00578

TABLE IV: Comparisons for expected task solving time
(Etask, in seconds) among planners.

Scene Task Workspace-STOMP STOMP Cartesian-STOMP

Sparse

1 0.5122 1.6200 8.2734
2 1.3139 2.3398 4.0865
3 0.6177 0.6324 28.7984
4 0.4601 1.8083 0.9933
5 2.2603 1.6806 7.9418

Cluttered

1 1.9570 2.8787 85.4277
2 0.5930 3.1904 3.0109
3 2.2612 2.9259 ∞
4 0.9289 0.8243 1.0676
5 0.8002 1.0744 21.7385

Dense

1 2.6300 6.9544 35.7064
2 1.9358 1.2964 2.7239
3 54.5261 ∞ ∞
4 0.4813 0.6114 0.6362
5 0.7046 0.9586 16.4923

STOMP [16]. The initial conditions for all planners are set
to be the mean of the learned distribution from PRIMP and
converted to joint space using inverse kinematics.

Table IV shows the expected task solving time by consid-
ering the task success rate [30], i.e.,

Eplan
.
=

T plan

ρtask
, (7)

where T plan is the averaged planning time among all the trials.
This metric provides a trade-off between the planning time and
success rate, i.e., a method for a task is desirable if it can solve
in a short time with high success rate. Even if the method is
able to solve the problem for many trials, but have to spend
quite a long time, the expected time might still be long. When
all the trials are failed, the expected solving time is infinity.

In general, our proposed Workspace-STOMP runs much
faster and has less deviations among multiple trials than the

other guided planner Cartesian-STOMP. In some cases, the
vanilla STOMP without guidance runs the fastest since it
does not include the trajectory similarity cost. When further
considering the task success rate, ours performs much better
in terms of the expected problem solving time. In many cases,
e.g., tasks 1 in all the scenes, tasks 3 and 5 in the dense
scene, ours takes the lead with large margin. Also, for task 3
in the dense scene, both compared baselines fail to complete
the task after planning, but ours is able to solve the problem
successfully in some trials.

VI. CONCLUSION

This article presents PRobabilistically-Informed Motion
Primitives (PRIMP), a learning-from-demonstration method
that computes the probability distribution in the robot
workspace with taught trajectories and simulation-informed
actions. It only requires a few or even a single demonstration
and is able to adapt to new via points (including start, goal,
and any point in between), a change of viewing frame,
and robot-specific workspace density. The learned trajectory
distribution is then used to guide the STOMP motion planner
to avoid novel obstacles, resulting in the Workspace-STOMP
planner. Benchmark studies show the superiority among dif-
ferent popular LfD methods and guided motion planners. The
applicability is demonstrated experimentally in a novel robotic
system with the study of object affordance. For future works,
the proposed skills learning and motion planning framework
can be extended to more applications, i.e., object flipping or
stacking. The learned motion primitives can also be combined
with high-level task planning for long-horizon manipulations.
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