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Abstract

We present StreamBridge, a simple yet effective framework that seamlessly trans-
forms offline Video-LLMs into streaming-capable models. It addresses two funda-
mental challenges in adapting existing models into online scenarios: (1) limited
capability for multi-turn real-time understanding, and (2) lack of proactive re-
sponse mechanisms. Specifically, StreamBridge incorporates (1) a memory buffer
combined with a round-decayed compression strategy, supporting long-context
multi-turn interactions, and (2) a decoupled, lightweight activation model that can
be effortlessly integrated into existing Video-LLMs, enabling continuous proactive
responses. To further support StreamBridge, we construct Stream-IT, a large-scale
dataset tailored for streaming video understanding, featuring interleaved video-
text sequences and diverse instruction formats. Extensive experiments show that
StreamBridge significantly improves the streaming understanding capabilities of
offline Video-LLMs across various tasks, outperforming even proprietary models
such as GPT-4o and Gemini 1.5 Pro. Simultaneously, it achieves competitive or
superior performance on standard video understanding benchmarks.

1 Introduction

Video Large Language Models (Video-LLMs) [1; 2; 3; 4; 5] typically process entire pre-recorded
videos at once. However, emerging applications, such as robotics [6; 7] and autonomous driving
[8; 9], require causal perception and interpretation of visual information online. This fundamental
mismatch highlights a critical limitation of current Video-LLMs, as they are not inherently equipped
to operate in streaming scenarios where timely understanding and responsiveness are paramount.

Figure 1 highlights two representative patterns in streaming video understanding, which also cor-
respond to the key challenges in adapting Video-LLMs from offline to streaming scenarios: (1)
multi-turn real-time understanding and (2) proactive response generation. The first pattern involves
multi-turn interactions, where the assistant receives user queries at different timestamps. In each turn,
while keeping accumulated visual and conversational context as historical information, the model
should focus on the most recent video segment. The second pattern emphasizes more human-like,
proactive behaviors. Rather than passively waiting for user prompts, the model actively monitors
the visual stream and generates timely outputs based on unfolding content. For instance, in Figure 1
(bottom), the assistant provides step-by-step guidance as the drawing progresses without being
explicitly asked, simulating continuous support in dynamic environments.

∗Work done during Haibo’s internship at Apple.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



USER
How do I draw this picture?

Draw a house 
and a tree.

Draw a sun and
two clouds.

Color the sun blue and 
the clouds green.

Incoming Frames

What is going on?

A helicopter is flying 
over a mountain.

Where is this?

You are in an airplane 
with rows of seats.

What is written on the sign?

“Change the direction of all 
escalators and travelators”.

USERUSER USER

Figure 1: Illustration of streaming scenarios. Top: Multi-turn interactions. User issues queries at
different timestamps, with each turn involving a new video segment along with accumulated visual
and text history. Bottom: Proactive responses. The assistant actively delivers timely feedback or
guidance based on the incoming visual stream, without requiring explicit user prompts.

To bridge the gap between offline and streaming video understanding, we introduce StreamBridge,
a simple yet effective framework that seamlessly transforms pre-trained offline Video-LLMs into
streaming-capable models. In contrast to prior efforts [10; 11; 12; 13], which train streaming models
from scratch but fall behind on offline video tasks, StreamBridge leverages the strong generaliza-
tion capabilities of existing Video-LLMs without requiring full retraining. This approach allows
developers to directly benefit from the rich world knowledge and linguistic fluency of large-scale
pre-trained models, while incurring only minimal additional computational cost and data require-
ments. Concretely, StreamBridge introduces a memory buffer to manage incoming video frames,
coupled with a round-decayed compression strategy that merges earlier frame tokens while preserving
recent ones, enabling the model to support long-context, multi-modal, and multi-turn interactions in
streaming scenarios. For proactive capabilities, instead of modifying the base model architecture [14]
or introducing streaming-specific objectives [12], both of which can lead to optimization conflicts
and issues like probability correction [10], StreamBridge adopts a modular design, by decoupling the
proactive capability from the main Video-LLM via a compact activation model. This plug-and-play
component operates in parallel with the main Video-LLM, enabling proactive behavior in a flexible
and non-intrusive manner while fully preserving the main Video-LLM’s language fluency and general
video understanding capabilities.

To further support StreamBridge, we construct Stream-IT, a large-scale dataset tailored for streaming
scenarios. Stream-IT captures diverse real-time questions and proactive responses embedded within
multi-turn video interactions, featuring interleaved video-text sequences. While existing datasets
primarily focus on single-turn question answering [15; 16] or short-form video captioning [17; 18; 19],
Stream-IT fills a critical gap by enabling temporally extended, interactive video understanding. It is
constructed by concatenating semantically related short clips from large-scale video-caption corpora,
followed by the generation of multi-turn QA sequences that simulate realistic, time-sensitive user
interactions. Moreover, Stream-IT incorporates a broad spectrum of task formats sourced from public
datasets, thereby boosting task diversity and promoting model generalization in streaming settings.

By integrating our StreamBridge framework and fine-tuning on Stream-IT, we successfully convert
several leading offline Video-LLMs, including LLaVA-OV [3], Oryx-1.5 [1], and Qwen2-VL [2], into
streaming-capable assistants. Extensive experiments demonstrate that our models achieve state-of-
the-art performance on streaming benchmarks such as OVO-Bench [20] and Streaming-Bench [21],
outperforming even proprietary models like GPT-4o [22] and Gemini 1.5 Pro [23], while retaining or
exceeding performance on conventional offline video understanding tasks [24; 25; 26; 27; 28; 29].

2



2 Related Work

Video Large Language Models. With the rapid advancement of Multimodal Large Language Models
(MLLMs) [30; 3; 31; 32; 2], Video-LLMs [33; 34; 35; 36; 15; 37; 38] have gained increasing attention
for general video understanding. Typically, these models comprise a visual encoder [39; 40; 1] for
extracting frame-level representations, a modality projector (e.g., MLP [41] and Q-former [30]) to
map visual features into the language space, and an LLM [42; 43] to generate contextual responses.
While achieving strong results on standard video benchmarks [25; 29; 27], these models are inherently
designed for static, offline settings where the entire video is pre-recorded and fully accessible at
inference time. As a result, they struggle in streaming environments, where video frames arrive
sequentially and require real-time, temporally coherent, or even proactive responses. Our work aims
to bridge this gap by augmenting offline Video-LLMs with streaming capabilities.

Streaming Video Understanding. Typical tasks in streaming video understanding, such as action
recognition [44; 45; 46; 47] and anticipation [48; 49], causally process video inputs using only past
and current observations. Recent efforts [50; 12; 13; 51] focus on building Video-LLMs capable
of real-time conversation, generating timely responses throughout a live video stream. VideoLLM-
Online [10] and Flash-VStream [11] introduce specialized online objectives and memory architectures
to handle sequential inputs. MMDuet [14] and ViSpeak [52] add dedicated heads to facilitate proactive
response generation. To benchmark streaming video capabilities, several evaluation suites have been
proposed, including StreamingBench [21], StreamBench [53], SVBench [54], OmniMMI [55], and
OVO-Bench [20]. In contrast to previous approaches that retrain models or tightly couple proactive
mechanisms within the backbone, our work leverages the strong generalization abilities of pre-trained
offline Video-LLMs [1; 3; 2]. We propose an efficient adaptation framework, combined with a
dedicated fine-tuning dataset, to endow these models with streaming capabilities. Furthermore,
observing that embedding the activation function into the main model often lead to optimization
conflicts and performance degradation [10; 14], we advocate a modular, decoupled design. Our
method introduces a compact, plug-and-play activation model that enables proactive behaviors
efficiently and non-intrusively. We also provide additional discussions on how our work relates to the
ReKV [56], VideoStreaming [57], and StreamChat [53] in the Appendix F.

3 Methodology

3.1 Preliminary Analysis

Streaming video understanding involves interleaved video-text inputs. From an input perspective,
streaming scenarios can be broadly categorized into two representative formats:

• Multi-turn dialogue with interleaved video-text. In this setting, the input sequence is in the
form of ‘<V1> <Q1> <A1>, <V2> <Q2> <A2>, · · · ’, where <Vi>, <Qi>, and <Ai> denote the
video clip, user query, and assistant answer in the i-th round. Crucially, there is no delay between
<Qi> and <Ai>, reflecting the need for immediate responses. This format closely resembles the
live interaction in dynamic environments, as shown in Figure 1 (Top).

• Proactive output. The assistant answers after watching an incoming video stream, often without
an explicit user query at the response time. The input can be structured as ‘<Q> <V1> <A1>
<V2> <A2> · · · ’, where <Q> represents an initial prompt (e.g.,“Guide me through the task”), and
the model must proactively determine when and how to respond based on the incoming video
contents. This scenario requires the ability to continuously monitor evolving context and trigger
responses at appropriate moments. Figure 1 (Bottom) is an example of proactive responses.

Recent benchmarks such as OVO-Bench [20] and Streaming-Bench [21] attempt to evaluate these
capabilities by constructing multi-turn interleaved video-text dialogues. However, due to the limited
input length and the lack of streaming support in current Video-LLMs, these benchmarks necessarily
simplify the problem. Specifically, they segment a complete long video into multiple isolated clips
aligned with each query timestamp. For a query <Qi> at time ti, the visual input is restricted to the
uniformly sampled frames under segment V[0:ti], and prior dialogue history is completely discarded.
As a result, the multi-turn streaming scenario is reduced to a series of independent, single-turn offline
tasks. To address these limitations, we propose StreamBridge, a general framework designed to
introduce the actual streaming setup to existing offline Video-LLMs.
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Figure 2: Overview of StreamBridge. ➀➂: Incoming frames are encoded and stored into the memory
buffer one by one. ➁: A query Q is posed. ➃: The activation model monitors incoming frames and
returns a binary signal D, indicating whether LLM should start answering. ⊗ means concatenation.

3.2 StreamBridge

As shown in Figure 2 and Algorithm 1, in addition to the frame encoder I(·) and the large language
model LLM(·), StreamBridge proposes three key components to enable streaming capabilities: (1) a
memory buffer responsible for storing and retrieving frame tokens over time, (2) a round-decayed
compression strategy COM(·) that efficiently prunes redundant tokens from earlier rounds while
preserving the most recent context, and (3) a compact activation model ACT (·) that enables proactive
responses by making frame-level decisions on when to generate outputs.

3.2.1 Memory Buffer

In streaming scenarios where video frames arrive sequentially, we adopt a memory buffer MB
to store both visual and textual embeddings. As illustrated in Figure 2, each incoming frame is
independently encoded and appended to the buffer alongside any associated query embeddings.
Conceptually, MB operates under a producer-consumer paradigm: the encoder I(·) functions as the
producer, continuously generating frame-level features, while the language model LLM(·) serves
as the consumer, retrieving the accumulated embeddings to generate a response upon receiving a
user query. Formally, as detailed in Algorithm 1, at each time step t, the incoming frame Ft is first
processed by I(·), and the resulting embeddings are stored in the memory buffer MB (Algorithm 1,
line 4). Upon the arrival of a user query Q and a positive activation decision D, the buffer content,
including both visual and textual embeddings, is flattened into a single sequence of input embeddings,
which is then fed into LLM(·) for response generation (Algorithm 1, line 13-16). Once a response
R is produced, it is also appended to the memory buffer (Algorithm 1, line 17), enabling the model
to preserve temporal continuity and maintain a complete history of multi-turn video-text interactions.

3.2.2 Round-Decayed Compression

Online scenarios often involve long, even infinite video streaming, which can lead to significant
memory usage and inference latency. Therefore, we propose a round-decayed token compression
strategy tailored for multi-turn streaming settings. Specifically, we pre-define a maximum allowable
embedding length MaxLen for the model input. Before each response generation, the model checks
whether the current input embedding exceeds MaxLen. If so, we apply a round-decayed token
merging strategy: starting from the earliest dialogue rounds, visual tokens are progressively merged
frame-by-frame, until the total length falls below MaxLen. The merging is implemented via average
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Algorithm 1: StreamBridge Framework
1 Inputs: incoming frames [F1, F2, . . . , Ft, . . . ];
2 Initializations: I(·), LLM(·), ACT (·), COM(·),MB = [·], MaxLen, tQ=None;
3 while Ft do
4 MB← I(Ft) ; // store the frame feature I(Ft) into the Memory Buffer
5 ifQ at timestamp t then
6 MB←Q
7 tQ← t ; // tQ is the timestamp whenQ is posed

8 if tQ is not None then
9 D ←ACT (Q, FtQ:t−1, Ft) ; // D denotes whether response or not at timestamp t

10 else
11 D ← False ; // not response if there is noQ
12 if D then

// D is true at timestamp t, and should return a responseR
13 InputEmbeds← Flatten(MB)
14 if Len(InputEmbeds) > MaxLen then
15 InputEmbeds← COM(InputEmbeds) ; // compress redundant visual tokens

16 R← LLM(InputEmbeds) ; // return a responseR
17 MB←R ; // updateMB
18 t += 1 ; // receive subsequent frames

pooling [58] over adjacent frame tokens. This strategy ensures that the most recent visual context is
retained with minimal distortion, thus maintaining the precision of real-time responses while not fully
discarding historical visual contexts. At the same time, it significantly improves memory efficiency
and reduces inference overhead as in Figure 4. This process is encapsulated in the compression
function COM(·) in Algorithm 1 (line 15). The detailed pseudo codes can be found in Appendix I.

3.2.3 A Plug-and-play Activation Model

Activation Model (LLaVA-OV-0.5B)

Score Head
0 0 0 1 0 1

First 1-P% frames, keep silent Keep silentLast P% frames, activated Activated

1 0

<ACT > token

Figure 3: An overview of the proposed activation model. We label
the last P% of frames of each video clip to be true during training.

To enable proactive responses
in streaming Video-LLMs, we
decouple the activation function
from the main Video-LLM. Un-
like prior methods that tightly
integrate activation mechanisms
into the LLM [10; 12; 14; 52],
our framework avoids potential
interference with the language
modeling capacity of the main
Video-LLM. Specifically, we propose a parallel pipeline, where a compact external MLLM (e.g.,
LLaVA-OV-0.5B [3]) is used as an independent activation model, denoted as ACT (·). As shown
in Algorithm 1 (line 9), upon receiving each new frame, the framework simultaneously forwards
the current frame (along with the user query Q and optionally previous frames) to ACT (·) to de-
termine whether a response should be generated. If the activation signal D is positive, the buffered
embeddings are sent to the LLM for decoding. This design ensures high flexibility and compatibility.
Furthermore, in real-time deployment, the ACT (·), the frame encoder I(·), and the main LLM(·)
can run concurrently in parallel threads, enabling more efficient inference.

To train the activation model (illustrated in Figure 3), we modify the architecture by replacing the
standard language modeling head with a score head for binary classification, and introduce a learnable
activation token <ACT> which is appended to the visual embeddings of each frame. After processing
through the final layer, we extract the latest frame’s activation token and feed its hidden representation
into the score head to predict whether the model should respond at that time. During inference, only
when the predicted score is greater than the activation threshold α, the main Video-LLM can be
triggered to give a response. Since ACT (·) performs only binary classification (i.e., to respond or
not), we aggressively pool its visual tokens for efficiency. The input sequence to the model follows
the format: ‘<Q> <V1> <A1> <V2> <A2> · · · ’, where the question Q is prepended to the sequence,

5



and visual frames and corresponding responses are interleaved. This design enables the model to
learn temporal dependencies and identify appropriate response moments throughout the video stream.

For training data, we collect a diverse set of temporally annotated video datasets across multiple
tasks, including dense video captioning [59; 60], sequential step recognition [61; 62], grounded video
question answering [63; 64; 65], temporal video grounding [66], and temporal action detection [67;
68]. For each task, we design specific prompt templates and randomly select among them as Q during
training (details in Appendix A). To supervise activation timing, we insert the response <Ai> at the
end of its corresponding annotated timestamp (during inference, the response <Ai> is generated
by the larger main Video-LLM). Besides, only the last P% of frames of each video segment Vi

are labeled as positive (i.e., response-worthy), while earlier frames are treated as negatives. P
is dynamically sampled between 0% and 50% for each training instance, simulating a variety of
activation patterns and enhancing the model’s robustness to temporal variations.

4 Stream-IT Dataset

As analyzed in Section 3.1, streaming scenarios are primarily characterized by multi-turn real-time
understanding and proactive responses. However, existing datasets and video sources fall short of
fully supporting these requirements [69; 70]. To fill this gap and further enhance the streaming
interaction capability of StreamBridge, we introduce Stream-IT—a video-text dataset specifically
designed for streaming instruction tuning with an interleaved multi-turn dialogue format.

Datasets for Proactive Understanding. We collect a set of public datasets enriched with timestamp
annotations, spanning a wide range of tasks including: (i) Dense Video Captioning [59; 60; 71]; (ii)
Sequential Step Recognition [61; 62; 72]; (iii) Grounded VideoQA [63; 73; 74; 75]. All datasets are
reformatted into a proactive-style interleaved format: ‘<Q> <V1> <A1>, <V2> <A2>, · · · ’, where Q
may be an open-ended query (e.g., “Who is the man going to find?”) or a goal-oriented instruction
(e.g., “Show me all the steps for cooking.”). Unlike traditional single-turn datasets where a question
is immediately followed by an answer [69; 70], our structure introduces a temporal delay between
<Q> and <A> through the inserted video segments <V >, simulating proactive response scenarios.

StreamingQA-120K: Multi-Turn, Long-Form QA Construction. To further support long-context,
multi-turn real-time understanding, we introduce StreamingQA-120K, a large-scale synthetic dataset
constructed by composing long-form videos from existing short video clips. Labeling long-duration
videos with dense multi-turn QA pairs is prohibitively expensive. To address this, we leverage short
clips from large-scale video-caption datasets, including WebVid-10M [19], Panda-70M [18], and
InternVid-10M [17]. We filter approximately 1.28 million clips using semantic similarity between
video and caption to ensure alignment, with each clip being around 12 seconds long. With these short
clips, to form coherent long-form videos, we then iteratively compute pairwise similarity between
videos and concatenate highly similar clips. Each constructed video contains roughly 10 clips, with an
average length exceeding 150 seconds. Captions for each clip are preserved with natural timestamps.
Using these captions, we employ GPT-4o [22] to generate diverse question-answer pairs spanning 8
task types. By default, each QA pair <Qi> <Ai> is inserted immediately after its corresponding clip
<Vi>, forming sequences like ‘<V1> <Q1> <A1>, <V2> <Q2> <A2>, ...’. Here, we introduce two
augmentation strategies during sequence construction:

• Random QA Drop: randomly drops some QA pairs by transforming ‘<Vi> <Qi> <Ai>’ to
‘<Vi>’ with a probability of Pdrop, to prevent overfitting to fixed QA positions and enhance the
model’s robustness in temporal variations. We set Pdrop to be 0.55 by default.

• QA Interval Shift: with probability Pshift, transforms sequences from ‘<Vi> <Qi> <Ai>’ to
‘<Qi> <Vi> <Ai>’, where the visual content Vi serves as the temporal delay between question
and response for proactive scenarios. Pshift is set to 0.1 here.

Together, these strategies ensure that the Stream-IT dataset supports rich and varied streaming
interaction formats, enabling both multi-turn real-time dialogue and proactive response capabilities
across a wide range of tasks and timescales. More details on data statistics, concatenation strategy of
StreamingQA-120K, and prompts for QA generation are provided in Appendix B.
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Method # of OVO-Bench Real-Time Streaming-Bench Real-Time
Frames OCR ACR ATR STU FPD OJR AVG. OP CR CS ATP EU TR PR SU ACP CT AVG.

Human
Human - 93.96 92.57 94.83 92.70 91.09 94.02 93.20 89.47 92.00 93.60 91.47 95.65 92.52 88.00 88.75 89.74 91.30 91.46

Proprietary Models (Offline), Single-Turn Evaluation
Gemini 1.5 pro [23] 1 FPS 85.91 66.97 79.31 58.43 63.37 61.96 69.32 79.02 80.47 83.54 79.67 80.00 84.74 77.78 64.23 71.95 48.70 75.69
GPT-4o [22] 64 69.80 64.22 71.55 51.12 70.3 59.78 64.46 77.11 80.47 83.91 76.47 70.19 83.80 66.67 62.19 69.12 49.22 73.28

Open-Source Models (Offline), Single-Turn Evaluation
Qwen2-VL-72B [2] 64 65.77 60.55 69.83 51.69 69.31 54.35 61.92 - - - - - - - - - - -
LLaVA-Video-7B [15] 64 69.13 58.72 68.83 49.44 74.26 59.78 63.52 - - - - - - - - - - -
LLaVA-OV-7B [3] 64/32 66.44 57.80 73.28 53.37 71.29 61.96 64.02 80.38 74.22 76.03 80.72 72.67 71.65 67.59 65.45 65.72 45.08 71.12
Qwen2-VL-7B [2] 64/1 FPS 60.40 50.46 56.03 47.19 66.34 55.43 55.98 75.20 82.81 73.19 77.45 68.32 71.03 72.22 61.19 61.47 46.11 69.04
InternVL-V2-8B [76] 64/16 67.11 60.55 63.79 46.07 68.32 56.52 60.39 68.12 60.94 69.40 77.12 67.70 62.93 59.26 53.25 54.96 56.48 63.72

Open-Source Models (Streaming), Single-Turn Evaluation
Flash-VStream-7B [11] 1 FPS 24.16 29.36 28.45 33.71 25.74 28.80 28.37 25.89 43.57 24.91 23.87 27.33 13.08 18.52 25.20 23.87 48.70 23.23
VideoLLM-Online-8B [10] 2 FPS 8.05 23.85 12.07 14.04 45.54 21.20 20.79 39.07 40.06 34.49 31.05 45.96 32.40 31.48 34.16 42.49 27.89 35.99
Dispider [13] 1 FPS 57.72 49.54 62.07 44.94 61.39 51.63 54.55 74.92 75.53 74.10 73.08 74.44 59.92 76.14 62.91 62.16 45.80 67.63

Models under StreamBridge (Offline → Streaming), Multi-Turn Evaluation
Oryx-1.5-7B† [1] 1 FPS 60.40 52.29 69.83 50.00 65.35 57.61 59.25 78.47 77.17 83.86 80.20 71.07 66.98 79.63 61.38 66.29 40.93 70.59

+ Stream-IT 1 FPS 84.56 75.23 70.69 50.56 74.26 71.74 71.17 82.29 77.95 87.98 86.47 77.99 81.31 76.85 69.92 71.96 35.23 74.79
LLaVA-OV-7B† [3] 1 FPS 58.39 59.63 69.82 44.38 76.23 61.41 61.64 76.84 77.17 82.60 75.25 64.15 64.17 75.00 61.38 61.19 46.11 68.39

+ Stream-IT 1 FPS 74.50 77.06 70.69 54.49 73.27 69.57 69.93 82.29 72.44 92.09 80.86 71.07 74.46 75.00 62.20 70.26 28.50 70.92
Qwen2-VL-7B† [2] 1 FPS 65.10 64.22 64.66 46.63 74.26 65.22 63.35 80.38 78.74 83.22 79.86 74.21 69.47 77.78 63.41 69.97 43.01 72.01

+ Stream-IT 1 FPS 84.56 71.56 74.14 49.44 75.25 72.83 71.30 84.74 82.68 88.92 89.77 77.36 85.36 84.26 69.92 71.67 35.75 77.04

Table 1: Results on real-time understanding tasks on OVO-Bench and Streaming-Bench. † means
models under StreamBridge framework, and + Stream-IT means finetuned on Stream-IT.

5 Experiments

5.1 Settings

Models and Datasets. We evaluate StreamBridge framework using three mainstream offline Video-
LLMs to show its generalizability: LLaVA-OV-7B [3], Qwen2-VL-7B [2], and Oryx-1.5-7B [1]. To
preserve their general video understanding capabilities during streaming adaptation, we supplement
Stream-IT with approximately 600K samples from the LLaVA-178K [15], VCG-Plus [35] and
ShareGPT4Video [16]. For the activation model, we fine-tune LLaVA-OV-0.5B [3] on our collected
activation datasets as described in Sec. 3.2.3. The videos are sampled at 1 FPS. In Section 5.3, we use
Qwen2-VL-7B as the default model unless otherwise specified. See the Appendix C for more details.

Benchmarks. For multi-turn real-time understanding, we choose OVO-Bench [20] and Streaming-
Bench [21]. We primarily focus on their real-time tasks. For general video understand-
ing, we evaluate our method across 7 video benchmarks, including 3 short-video benchmarks:
MVBench [24], PerceptionTest [26], TempCompass [77], and 4 long-video benchmarks: EgoSchema
[28], LongVideoBench [29], MLVU [27], and VideoMME [25]. To evaluate the proactive capability
of our method, we use subtasks from ET-Bench [66] following previous works. See Appendix D for
more benchmark details and evaluation metrics.

5.2 Main Results

Multi-Turn Real-Time Understanding. As discussed in Section 3.1, the results reported in
the original paper [20; 21] in Table 1, marked as “ (Offline), Single-Turn Evaluation ”, do not
reflect performance in real streaming scenarios. They segment a complete video into sev-
eral individual clips, discarding historical visual and dialogue contexts, thereby limiting the
upper bound of the performance. In contrast, with the StreamBridge framework, denoted as
“ (Offline → Streaming), Multi-Turn Evaluation ”, these offline models are equipped to process
streaming videos at 1 FPS in a multi-turn manner, while maintaining input length and historical
contexts within a predefined maximum token budget.

Specifically, we observe that Qwen2-VL† demonstrates notable improvements in the streaming setting,
with its average score on OVO-Bench increasing from 55.98 to 63.35, and on Streaming-Bench from
69.04 to 72.01. Conversely, LLaVA-OV† shows a slight performance drop when transitioning to the
streaming setup: from 64.02 to 61.64 on OVO-Bench, and from 71.12 to 68.39 on Streaming-Bench.
We attribute these differences to the nature of their pretraining data, where Qwen2-VL benefits
from richer interleaved multimodal training (e.g., image/video-text sequences), which makes it more
adept at understanding interleaved video-text inputs and utilizing extended context effectively. On
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Model
MVBench PerceptionTest TempCompass EgoSchema LongVideoBench MLVU VideoMME (w/o subs)

Avg Val MC Test Val M-Avg Avg

Avg. Duration 16s 23s 12s 180s 473s 651s 1010s

Proprietary Models
Gemini 1.5 pro [23] 60.5 - 67.1 71.2 64.0 - 75.0
GPT-4o [22] 64.6 - 70.9 72.2 66.7 64.6 71.9

Open-Source Models
Kangaroo-8B [78] 61.0 - 62.5 - 54.8 61.0 56.0
LongVILA-7B [79] - - - 67.7 - - 57.5
LongVU-7B [80] 66.9 - - 67.6 - 65.4 60.6
Apollo-7B [4] - 67.3 64.9 - 58.5 70.9 61.3
NVILA-8B [81] 68.1 65.4 69.7 - 57.7 70.1 64.2
SF-LLaVA-1.5-7B [5] - 69.6 68.8 - 62.5 71.5 63.9
InternVL2.5-8B [82] 72.0 68.2 68.3 51.5 60.0 68.9 64.2
VideoChat-Flash-7B [83] 74.0 76.2 - - 64.7 74.7 65.3
VideoLLaMA3-7B [37] 69.7 72.8 68.1 63.3 59.8 73.0 66.2

Oryx-1.5-7B [1] 67.6 70.0 58.8 - 56.3 67.5 58.8
Oryx-1.5-7B (ours) ‡ 68.0 (↑0.4) 71.0 (↑1.0) 69.0 (↑10.2) 61.2 58.9 (↑2.6) 71.4 (↑4.0) 65.5 (↑6.7)

LLaVA-OV-7B [3] 56.7 57.1 64.8 60.1 56.3 64.7 58.2
LLaVA-OV-7B (ours) ‡ 59.4 (↑2.7) 63.9 (↑6.8) 67.7 (↑2.9) 67.0 (↑6.9) 54.3 (↓2.0) 68.2 (↑3.5) 61.2 (↑3.0)

Qwen2-VL-7B [2] 67.0 62.3 67.9 66.7 - - 63.3
Qwen2-VL-7B (ours) ‡ 64.4 (↓2.6) 69.9 (↑7.6) 71.1 (↑3.2) 66.9 (↑0.2) 59.1 69.6 64.4 (↑1.1)

Table 2: Results on general video understanding benchmarks. ‡ means models under Stream-
Bridge framework and fine-tuned on Stream-IT.

the other hand, LLaVA-OV is trained with fewer interleaved sequences, making it less suited for
multi-turn streaming inputs. When faced with long, interleaved video-text sequences in streaming
scenarios, its performance tends to degrade as more historical frames accumulate. Notably, fine-tuning
these models on the proposed Stream-IT leads to substantial improvements in multi-turn real-time
understanding. For instance, Oryx-1.5† achieves a performance gain of +11.92 on OVO-Bench
and +4.2 on Streaming-Bench. Furthermore, Qwen2-VL† reaches an average score of 71.30 on
OVO-Bench and 77.04 on Streaming-Bench, outperforming proprietary models such as GPT-4o and
Gemini 1.5 Pro. These results validate the effectiveness of both our StreamBridge framework and the
Stream-IT dataset in enhancing multi-turn real-time understanding in streaming scenarios.

General Video Understanding. While our method is designed for online scenarios, we also verify
that it does not downgrade the base model’s performance on standard offline video tasks. As shown
in Table 2, models equipped with the StreamBridge framework and fine-tuned on Stream-IT (denoted
with ‡) exhibit consistent improvements or maintain comparable performance relative to their original
versions. For instance, Oryx-1.5-7B‡ achieves 65.5 on the challenging VideoMME with an increase
of 6.7, while LLaVA-OV-7B‡ outperforms its base model across nearly all benchmarks, except
LongVideoBench. Likewise, Qwen2-VL-7B‡ achieves competitive results on MVBench, while
surpassing its original counterpart on other benchmarks. These outcomes demonstrate that our
streaming adaptation enables models to retain, or even exceed their original performance in general
video understanding tasks, demonstrating the generality and non-degradability of our method.

Method # of ET-Bench

Frames TVGF1 TALF1 DVCF1 DVCSim SLCF1 SLCSim

VideoLLM-Online [10] 2 FPS 13.2 9.1 24.0 13.4 9.9 10.1
Dispider [13] 1 FPS 36.1 27.3 33.8 18.9 18.8 12.4

Models under StreamBridge Framework

Oryx-1.5 (ours)‡ 1 FPS 34.3 24.3 37.8 24.0 22.5 17.3
LLaVA-OV (ours)‡ 1 FPS 34.3 24.3 37.9 24.2 22.8 16.2
Qwen2-VL (ours)‡ 1 FPS 34.3 24.3 38.3 25.1 22.6 17.1

Table 3: Results on ET-Bench. ‡ denotes models un-
der StreamBridge framework and fine-tuned on Stream-
IT. TVGF1 and TALF1 scores are identical across Stream-
Bridge models due to sharing the same activation model.

Online Activation. We evaluate the
proactive capability of our framework
in Table 3. Notably, in all tasks,
the question is presented at the be-
ginning of the video, and the model
must autonomously decide when to
respond. On the ET-Bench, Stream-
Bridge outperforms both VideoLLM-
Online [10] and Dispider [13] across
generation-based tasks such as DVC
(Dense Video Captioning) and SLC
(Step Localization and Captioning),
achieving higher similarity scores of DVCSim and SLCSim, by producing more accurate and context-
aware descriptions in streaming scenarios. We attribute this to the decoupled nature of the activation
model, which enables the main Video-LLM to focus solely on video understanding and language
generation, free from the burden of proactive decision-making. We also observe that Qwen2-VL‡

achieves better text similarity scores than other Video-LLMs, consistent with its strong real-time
understanding performance presented in Table 1.
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5.3 In-Depth Analysis

Compression OVO Streaming ET

Avg. Avg. DVCSim SLCSim

Truncation 68.88 72.79 22.1 16.7
Round-Uniform 69.91 74.18 23.8 15.9

Round-Decayed 71.30 77.04 25.1 17.1

Table 4: Ablation studies on different com-
pression strategies.

LLaVA-178k Stream-IT OVO Streaming MVBench VideoMME

(600k used) w/o SQA-120k w/ SQA-120k Avg. Avg. Avg. Overall.

✓ 65.98 71.36 64.5 61.7
✓ 71.28 74.10 58.8 59.0

✓ ✓ 67.67 72.42 63.1 63.6

✓ ✓ 71.30 77.04 64.4 64.4

Table 5: Ablation studies on Stream-IT. SQA-120k de-
notes the generated StreamingQA-120k.
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Round-Decayed Compression. We set the maximum input length MaxLen = 16384, and denote
the current length of the input embeddings as L. To assess the effectiveness of our round-decayed
compression strategy, we compare it against two alternative methods: (1) Truncation: If L > MaxLen,
only keep the last L tokens in the input sequence. (2) Round-Uniform: We treat each round equally by
reducing the number of visual tokens with a fixed ratio L−MaxLen

L per round, to keep the total length
within MaxLen. The results are reported in Table 4. We observe that Truncation yields the worst
performance, as it indiscriminately removes both visual and textual history tokens, severely weakening
multi-turn reasoning. The Round-Uniform strategy performs slightly better, but still underperforms
our method. It compresses the latest visual tokens, which are critical for real-time comprehension,
thus leading to degraded performance, particularly on OVO-Bench and Streaming-Bench.

Inference Latency. We also evaluate the inference latency on a single A100-80G GPU with different
MaxLen (8k, 16k, 32k), as shown in Figure 4. Our results show that our compression method
maintains near-constant latency when the number of input tokens exceeds MaxLen, whereas models
without compression suffer from sharply increasing delays and eventually trigger out-of-memory
(OOM) errors with 2048 frames. This highlights the necessity of effective compression to balance
inference efficiency and memory usage in streaming settings.

Impact of Stream-IT. Table 5 ablates effectiveness of Stream-IT. Training on LLaVA-178K alone
causes a marked drop on both OVO-Bench and Streaming-Bench, as it lacks interleaved video–text
samples necessary for multi-turn interactions. Conversely, using only Stream-IT without LLaVA-
178K leads to declines in general video understanding (MVBench, VideoMME), indicating that the
larger offline data corpus still contributes valuable world knowledge. Finally, removing the synthetic
StreamingQA-120K subset from Stream-IT degrades performance across both streaming and offline
benchmarks, underscoring the crucial role of StreamingQA-120K in boosting both streaming and
offline video understanding capabilities.

MaxLen
OVO-Bench VideoMME

(Real-Time) Avg. Avg.

4k 70.49 61.7
8k 70.89 63.6
16k 71.30 64.4
32k 71.16 64.7

Table 6: Ablation studies on MaxLen

Impact of MaxLen. To better understand the impact of
MaxLen, we conducted ablation studies using the Qwen2-
VL-StreamBridge model with 1 FPS sampling, varying
MaxLen from 4k to 32k. From Table 6, we observe the
following: (1) For streaming tasks (e.g., OVO-Bench Real-
Time): Model performance remains relatively stable across
varying MaxLen values, ranging from 70.49% to 71.30%;
Accuracy peaks at 16k and slightly declines at 32k, sug-
gesting that further increasing the memory budget yields
diminishing returns. This supports our design assumption: in streaming scenarios, models primarily
rely on recent context, and older frames can be compressed without significant performance loss.
(2) For offline tasks (e.g., VideoMME): Accuracy improves consistently as MaxLen increases, from
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61.7% at 4k to 64.7% at 32k. This means that offline tasks benefit more from retaining the full tem-
poral context and more uncompressed video tokens, especially for long videos that require detailed
long-range understanding. StreamBridge can flexibly balance efficiency and performance across both
streaming and offline settings by adjusting the memory budget accordingly, and we set MaxLen =
16k to strike a good balance between them across most tasks.

Activation Threshold. The compact activation model makes a per-frame decision to trigger responses,
with frequency determined by the activation threshold α (see score head in Figure 3). We adopt a
default α of 0.35, following common practice [52; 14]. Figure 5 illustrates the impact of varying this
threshold: both excessively low and high values of α decrease F1 scores (DV CF1 and SLCF1 on
ET-Bench). A low threshold triggers overly frequent responses, while a high threshold suppresses
them excessively, both of which hurt performance. Nonetheless, this hyper-parameter allows users to
flexibly control response frequency through α, adapting to different practical scenarios.

6 Conclusion

We present StreamBridge, a novel framework that transforms offline Video-LLMs into streaming-
capable models. StreamBridge introduces a memory buffer paired with a round-decayed compression
strategy, and decouples the activation function with a compact activation model. We also construct
Stream-IT, a dataset with interleaved video-text sequences to further support StreamBridge. Extensive
experiments on diverse benchmarks demonstrate that our method not only preserves the strengths
of the base models but also equips them with the ability to make timely, proactive responses across
multi-turn, long-context streaming scenarios. We believe StreamBridge offers a general solution for
bridging the gap between offline Video-LLMs and real-world, interactive streaming applications.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction have accurately claimed the contributions of this
work, including the streaming framework and datasets.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations have been discussed in the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully discloses all the information needed to reproduce the main
experimental results in both the main paper and the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:[Yes]

Justification: The paper open-sources the code and data after internal review.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper has specified the training and test details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Following common practice in the multimodal learning literature, we do not
report error bars in this paper because of the heavy computation overheads.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper has provided the computation information.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:[Yes]

Justification: The paper is under the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:[Yes]

Justification: Broader impacts have been discussed in the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite the original assets in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The details of the newly contributed dataset/code/model have been discussed
in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The LLM is used to generate the contributed data.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Prompts for Dense Video Captioning:
(1) "Identify and describe all activity events in the video.",
(2) "List every event happening in the video with descriptions.",
(3) "Detect and summarize each event sequence in the video.",
(4) "Extract and explain all notable activities in the video.",
(5) "Find all significant events in the video and describe them.",

Prompts for Sequential Step Recognition:
(1) "Identify key action steps in the video and provide a brief description of each.",
(2) "Detect and outline a sequence of actions or steps taking place in the video.",
(3) "Analyze the video to determine distinct actions or steps.",
(4) "Break down the video into meaningful steps, describing each one concisely.",
(5) "Recognize and highlight specific sequences of actions within the video.",

Prompts for Temporal Action Detection:
(1) "When the action <action label> happens, output <action label>.",
(2) "When the event <action label> occurs, output <action label>.",
(3) "If you see the actuon <action label>, return <action label>.",
(4) "Upon detecting <action label>, generate the message <action label>.",
(5) "When <action label> arises, immediately output <action label>.",

Prompts for Grounded VideoQA:
(1) "<Question>. Answer me only when you get enough information for answering the question.",
(2) "<Question>. Respond only if you have sufficient details to provide a complete answer.",
(3) "<Question>. Provide an answer only when you have gathered enough relevant information.",
(4) "<Question>. Ensure you have all necessary context before attempting to answer.",
(5) "<Question>. Only reply when you are confident that your answer is accurate and well-informed.",

Prompts for Temporal Video Grounding:
(1) "Localize the visual content described by the given textual query <query> in the video.",
(2) "Detect the video segment that semantically matches the given textual query <query>.",
(3) "Give you a textual query: <query>. When does the described content occur in the video?",
(4) "Locate the visual content mentioned in the text query <query> within the video.",
(5) "Find the video segment that corresponds to the given textual query <query>.",

Table 7: Prompts used for datasets to train the activation model.

A Datasets Used to Train the Activation Model

To train the activation model ACT (·), we compile a diverse collection of video datasets spanning
five distinct tasks:

• Dense Video Captioning: ActivityNet Captions [59], Shot2Story [60].

• Sequential Step Recognition: YouCook2 [62], COIN [61].

• Temporal Action Detection: FineAction [67], HACS [68].

• Grounded VideoQA: Multihop-EgoQA [64], EgoTimeQA [73].

• Temporal Video Grounding: Charades [84], and the TVG subset from ET-Instruct [66].

In total, our training set contains approximately 180k video samples. For each sample, we construct
an input prompt using task-specific templates. A prompt is randomly sampled from a predefined
pool for the corresponding task to ensure stylistic diversity and improve generalization across video
domains. The full list of prompt templates is provided in Table 7. During training, the prompt is
inserted at the beginning of the input sequence as in Figure 3.
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System:
You are a good question generator. I need your help in generating high quality question-answer pairs
pertaining to the video clip descriptions. Follow these instructions:
(1) Ensure the questions and answers are highly relevant to the captions and DO NOT INCLUDE
TOPICS NOT MENTIONED in the captions.
(2) IGNORE CONTRADICTORY OR UNREASONABLE PARTS of the captions. Do not base
questions on them.
(3) I hope your questions feature different causal and temporal reasoning. Questions should be
diverse and be related to different aspects of the described events.
(4) Ensure that the questions in the QA chain are clear and precise, directly corresponding to specific
information or events in the video, and can be answered by watching the video content without the
need for a video description or inference, avoiding questions that require assumptions.
(5) Pay attention to grammar. Avoid grammar mistakes, especially with person and tense.
(6) Ensure questions are reasonable and challenging, requiring thoughtful consideration to answer
correctly.
(7) The question should not contain phrases like ’In the beginning of the clips’ or ’at the beginning of
the video’ or ’in the video’ or ’in this clips’; it can include expressions of the present or recent past
such as ’just now’ or ’right now.
(8) Please pay attention to the tense of the sentences.
(9) Never mention the sentence like ’according to the caption’ in your question, you should assume
that you can really watch the video instead of reading a caption.
(10) Ensure there are no references to the source of information in the QA, avoiding expressions like
’from the image’, ’sequence of pictures’, ’which frame’, or ’which photo’; you should understand the
input as a video and describe it using video footage.

Understand the following different task descriptions:
<task descriptions>

USER:
Now, please carefully review the following video caption:
<caption>
According to the given caption, please select ONE task type that is best suitable to generate the QA
pair, and output your question, answer and task type following the SAME FORMAT as the examples
above. Remember, just generate only ONE QA pair.

Table 8: Prompts used to generate QA pairs with GPT-4o.

B Stream-IT Construction

B.1 Statistics of Stream-IT

We provide detailed statistics of the Stream-IT dataset in Table 9, including the number of samples,
average video duration, and the corresponding source datasets used for each task. Notably, during the
construction of the dense video captioning tasks, including ActivityNet[59] and Shot2Story [60], we
only arrange 20% of the sequences with the proactive format of ‘<Q> <V1> <A1>, <V2> <A2>, · · · ‘,
while the 80% of the sequences with the multi-turn format of ’<V1> <Q1> <A1>, <V2> <Q2> <A2>,
...’, where <Qi> is the question asking about current situations like ’What is happening now?’.

B.2 Concatenation Strategy for Constructing StreamingQA-120K

Starting from a pool of 1.28 million filtered short videos sourced from WebVid-10M [19], Panda-
70M [18], and InternVid-10M [17], our goal is to iteratively merge semantically similar clips to form
long-form video samples. Let V denote the entire set of filtered videos. We initiate the process by
randomly sampling one clip V1 from V as the anchor. We then compute pairwise semantic similarity
(based on the middle frame) between V1 and all other videos in V \ V1. A new clip V2 is sampled
according to the similarity distribution (without replacement). The procedure is repeated using V2

as the new anchor, generating V3 from V \ V1,V2, and so on. This results in a similarity-ordered
list of videos V1,V2,V3, . . . We formulate this process in Algorithm 2. This approach allows for
flexible concatenation of any number k of clips to construct a long-form sample, by directly selecting
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Task # of Samples Datasets Average duration

Dense Video Captioning ∼54k
ActivityNet [59] (∼10k) ∼180s
Shot2Story [60] (∼36k) ∼16s

ViTT [71] (∼8k) ∼210s

Sequential Step Recognition ∼22k
YouCook2 [62] (∼1.3k) ∼317s

COIN [61] (∼11k) ∼145s
HowToStep [72] (∼10k) ∼190s

Grounded Video Question Answering ∼69k

MovieChat [74] (∼0.8k) ∼10k frames
EgoTimeQA [73] (∼10k) ∼150s
QAEgo4D [63] (∼15k) ∼495s
FineVideo [75] (∼43k) ∼280s

Multi-turn Real-time Question Answering ∼120k StreamingQA-120K (∼120k) ∼150s
(Sourced from Webvid-10M[19], Panda-70M[18], InternVid-10M[17])

Table 9: Involved tasks and datasets in Stream-IT.

Algorithm 2: Constructing Similarity-Ordered Video Clip Sequence
1 Inputs: Pool of filtered short video clips Vpool = {v1, v2, . . . , vM};
2 Initializations: Vordered = [ ], vanchor = None;
3 Define: Sim(vanchor, Ccandidates): function that returns the clip from Ccandidates most similar to vanchor.
4 vanchor ← RandomSample(Vpool) ; // Randomly select the first anchor clip
5 Vordered ← vanchor ; // Add vanchor to Vordered
6 Vpool ← Vpool \ {vanchor} ; // Remove vanchor from Vpool
7 while Vpool is not empty do
8 vnext ← Sim(vanchor,Vpool) ; // Find the clip in pool most similar to vanchor
9 Vordered ← vnext

10 Vpool ← Vpool \ {vnext}
11 vanchor ← vnext ; // Update anchor to the newly added clip

12 Output: Similarity-ordered list of video clips Vordered = [V1,V2, . . . ,VM ].

a continuous span V[i:i+k], without re-computing similarity each time. We also prepare hallucination
questions irrelevant to existing video inputs following [20] with a ratio of 0.01%.

B.3 Prompt Templates for Generating QA Pairs

To generate question-answer pairs based on clip-level captions, we design diverse prompt templates
for 8 distinct reasoning tasks. Table 8 provides examples of these templates. Below, we summarize
the <task descriptions> associated with each QA category:

• [OP] Object Perception: Detect and identify objects, focusing on recognizing their attributes in
real time.

• [AR] Action Recognition: Identify human actions and interactions occurring in the current
moment.

• [SA] Spatial Awareness: Understand spatial relationships among objects and events; reason
about location, orientation, and distance.

• [SR] Sequential Relationship: Identify the temporal order of events and actions, especially those
involving “before” and “after” cues.

• [CR] Causal Reasoning: Analyze cause-and-effect relationships between actions and outcomes.

• [OCR] Optical Character Recognition: Recognize and interpret textual content in scenes (e.g.,
subtitles, signs, charts).

• [UEH] Unexpected Event Handling: Detect and react to anomalies or sudden changes in the
environment.

• [EU] Event Understanding: Summarize and reason about sequences of temporally linked events.

These diverse prompts ensure broad task coverage and help enhance the model’s generalization across
different temporal and semantic understanding challenges.
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C More Implementation Details

For the main VideoLLMs, we use the following configurations for each model:

• LLaVA-OV-7B: We apply center cropping with a resolution of 384×384 and use a ×4 down
sampler (bilinear interpolation) with the frame features, resulting in 49 tokens per frame.

• Oryx-1.5-7B: We use the model’s default dynamic resolution, ranging from 288 to 480 pixels.
With a ×4 down sampler on the frame features (average pooling), the resulting token count per
frame varies between 33 and 59.

• Qwen2-VL-7B: The model uses a dynamic resolution between 224 and 448, with ×4 down
sampling (average pooling) on the frame features, resulting in 36–64 tokens per frame.

All models are fine-tuned for one epoch using a learning rate of 2e-5 with a cosine annealing scheduler
and AdamW optimizer. The image encoder remains frozen, while the visual projector and the LLM
are fully trainable. The maximum length MaxLen of input embeddings is set to 16384 for the
round-decayed compression.

For the activation model, we adopt LLaVA-OV-0.5B as the base model. To improve efficiency, we
aggressively pool the frame representations to 16 tokens per frame. During training, only the LoRA
adapters, the projector, the score head, and the learnable activation token are trainable. The model is
trained for 5 epochs using a fixed learning rate of 2e-5 for the projector, while 2e-4 for the LoRA
adapters, score head, and the learnable activation token, with AdamW optimizer.

Notably, for both the main VideoLLM and the activation model, we sample frames at 1 FPS to
better simulate real-world frame rates. For videos longer than 256 seconds, we uniformly sam-
ple 256 frames to fit within the maximum input length constraint. Experiments are conducted on
NVIDIA-H100/A100 GPUs. During inference, we sample videos at 2 FPS for short video bench-
marks like MVBench, PerpecptionTest, and TempCompass, while 1 FPS for multi-turn real-time
understanding benchmarks and long video benchmarks including OVO-Bench, Streaming-Bench,
MLVU, LongVideoBench, VideoMME, and EgoSchema.

D Benchmarks and Metrics

Multi-turn Real-time Understanding Benchmarks. We evaluate our method on two recently
proposed large-scale streaming video benchmarks: OVO-Bench [20] and Streaming-Bench [21].
Both benchmarks are designed to assess streaming video comprehension under long-context, multi-
turn settings. Our evaluation primarily focuses on their real-time understanding tasks. OVO-Bench
contains 512 videos with an average length of 435 seconds and approximately 1,600 questions. The
evaluated tasks include: (1) Spatial Understanding (STU), (2) Object Recognition (OJR), (3) Attribute
Recognition (ATR), (4) Action Recognition (ACR), (5) Optical Character Recognition (OCR), and
(6) Future Prediction (FPD). Streaming-Bench consists of 500 videos with an average length of 606
seconds and approximately 2,500 questions. It includes the following tasks: (1) Object Perception
(OP), (2) Causal Reasoning (CR), (3) Clip Summarization (CS), (4) Attribute Perception (ATP), (5)
Event Understanding (EU), (6) Text-Rich Understanding (TR), (7) Prospective Reasoning (PR), (8)
Spatial Understanding (SU), (9) Action Perception (ACP), (10) Counting (CT). Both benchmarks are
structured as multiple-choice question-answering tasks, and we report the accuracy.

General Video Understanding Benchmarks. To evaluate general video comprehension ability,
we test our models on seven widely used benchmarks. This includes three short-video benchmarks:
MVBench [24], Perception Test [26], and TempCompass [77], and four long-video benchmarks:
EgoSchema [28], LongVideoBench [29], MLVU [27], and VideoMME [25]. These datasets span
a broad range of video durations, from a few minutes to several hours. All are evaluated in a
multiple-choice format, and accuracy is reported.

Online Activation Benchmarks. To assess the proactive capabilities of our framework, we evaluate
performance on a subset of ET-Bench [66], including Temporal Video Grounding (TVG), Temporal
Action Localization (TAL), Dense Video Captioning (DVC), and Sequential Localization Captioning
(SLC). These tasks emphasize a shift from passive to active perception, requiring the model to
determine when to respond based on upcoming visual inputs, rather than reacting immediately. For
example, the Sequential Localization Captioning (SLC) task requires the model to both determine
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the precise timing of a certain step and output its content. For evaluation metrics, we compute
the average F1 score across multiple IoU thresholds (IoU ∈ {0.1, 0.3, 0.5, 0.7}) for localization-
based tasks. For tasks involving text generation, we adopt sentence-level similarity metrics [85]
to measure the semantic alignment between model outputs and ground-truth responses, following
prior works [66; 13]. Specifically, the all-MiniLM-L6-v2 model in Sentence-Transformers library is
used as the embedding model. Notably, in all these tasks, the question is presented at the beginning
of the video, and the model must autonomously decide when to respond. Moreover, the results of
TVGF1, TALF1, are the same for our method with different main Video-LLMs, since they use the
same activation model and will not be affected by the generated response.

E Broader Impacts

There are many real-world applications of streaming Video-LLMs, such as patient or elderly health
monitoring, autonomous driving, and collaborative robots. However, there could be unintended
usages and we advocate responsible usage complying with applicable laws and regulations.

F More Related Works

To address the challenge of long-context understanding in streaming video, several memory and
retrieval mechanisms have been proposed. For instance, ReKV [56] introduces a training-free frame-
work that stores and retrieves the Key-Value (KV) caches of processed frames, enabling offline models
to answer user queries efficiently by reloading only the most relevant context. Besides, VideoStream-
ing [57] employs a memory-propagated encoding architecture where a condensed representation
of the preceding clip serves as historical context for encoding the next, combined with an adaptive
selection of memories for question-answering. Moreover, StreamChat [53] proposes a hierarchical
memory system comprising short-term, long-term, and dialogue components to facilitate complex
streaming interactions, and also contributes the StreamBench benchmark for evaluating diverse
streaming scenarios. While these methods effectively advance long-context retention for reactive
question-answering, StreamBridge differs by introducing a round-decayed compression strategy
specifically tailored for multi-turn real-time interactions, which efficiently prunes redundant historical
tokens while preserving recent context with high fidelity. Moreover, StreamBridge introduces a
decoupled, lightweight activation model. This plug-and-play component operates in parallel with
the main Video-LLM, enabling continuous proactive responses. These designs, supported by our
dedicated Stream-IT dataset, effectively transform general-purpose offline models into versatile and
proactive streaming assistants without compromising their core performance.

G Limitations

Although our proposed framework and dataset significantly enhance the streaming capabilities of
existing offline Video-LLMs, there are still limitations worth noting. First, while Stream-IT provides
large-scale multi-turn, interleaved training data, its construction relies partially on synthetic QA
generation and clip concatenation, which, despite careful filtering, may introduce domain shift
compared to truly continuous, real-world video streams. Future work could benefit from curating
more organically collected long-form streaming videos with naturally evolving events and dialogues.
Second, StreamBridge currently focuses on frame-by-frame streaming under relatively low sampling
rates (e.g., 1 FPS). Extending the framework to handle denser frame rates or multi-modal streaming
inputs (e.g., audio-visual-text) in real-time remains an important direction for future research.
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H Full Results on OVO-Bench and Streaming-Bench

Method # of Real-Time Visual Perception Backward Tracing Forward Active Responding Overall.
Frames OCR ACR ATR STU FPD OJR AVG. EPM ASI HLD AVG. REC SSR CRR AVG. Overall AVG.

Human
Human - 93.96 92.57 94.83 92.70 91.09 94.02 93.20 92.59 93.02 91.37 92.33 95.48 89.67 93.56 92.90 92.81

Proprietary Models (Offline), Single-Turn Evaluation
Gemini 1.5 pro [23] 1 FPS 85.91 66.97 79.31 58.43 63.37 61.96 69.32 58.59 76.35 52.64 62.54 35.53 74.24 61.67 57.15 63.00
GPT-4o [22] 64 69.80 64.22 71.55 51.12 70.30 59.78 64.46 57.91 75.68 48.66 60.75 27.58 73.21 59.40 53.40 59.54

Open-Source Models (Offline), Single-Turn Evaluation
Qwen2-VL-72B [2] 64 65.77 60.55 69.83 51.69 69.31 54.35 61.92 52.53 60.81 57.53 56.95 38.83 64.07 45.00 49.30 56.27
LLaVA-Video-7B [15] 64 69.13 58.72 68.83 49.44 74.26 59.78 63.52 56.23 57.43 7.53 40.4 34.10 69.95 60.42 54.82 52.91
LLaVA-OV-7B [3] 64 66.44 57.80 73.28 53.37 71.29 61.96 64.02 54.21 55.41 21.51 43.71 25.64 67.09 58.75 50.50 52.74
Qwen2-VL-7B [2] 64 60.40 50.46 56.03 47.19 66.34 55.43 55.98 47.81 35.48 56.08 46.46 31.66 65.82 48.75 48.74 50.39
InternVL-V2-8B [76] 64 67.11 60.55 63.79 46.07 68.32 56.52 60.39 48.15 57.43 24.73 43.44 26.5 59.14 54.14 46.60 50.15

Open-Source Models (Streaming), Single-Turn Evaluation
Flash-VStream-7B [11] 1 FPS 24.16 29.36 28.45 33.71 25.74 28.80 28.37 39.06 37.16 5.91 27.38 8.02 67.25 60.00 45.09 33.61
VideoLLM-Online-8B [10] 2 FPS 8.05 23.85 12.07 14.04 45.54 21.20 20.79 22.22 18.80 12.18 17.73 - - - - -
Dispider [13] 1 FPS 57.72 49.54 62.07 44.94 61.39 51.63 54.55 48.48 55.41 4.30 36.06 18.05 37.36 48.75 34.72 41.78

Models under StreamBridge (Offline → Streaming), Multi-Turn Evaluation
Oryx-1.5-7B† [1] 1 FPS 60.40 52.29 69.83 50.00 65.35 57.61 59.25 54.21 55.41 5.40 38.33 20.65 37.56 40.00 32.74 43.44

+ Stream-IT 1 FPS 84.56 75.23 70.69 50.56 74.26 71.74 71.17 69.02 59.50 79.03 69.17 20.51 66.89 60.41 49.27 63.21
LLaVA-OV-7B† [3] 1 FPS 58.39 59.63 69.82 44.38 76.23 61.41 61.64 53.87 54.72 30.64 46.41 14.41 51.23 43.33 36.33 48.13

+ Stream-IT 1 FPS 74.50 77.06 70.69 54.49 73.27 69.57 69.93 66.67 6149 85.48 71.21 17.83 66.06 61.67 48.52 63.22
Qwen2-VL-7B† [2] 1 FPS 65.10 64.22 64.66 46.63 74.26 65.22 63.35 55.56 60.14 62.90 59.53 22.14 61.12 49.58 44.28 55.72

+ Stream-IT 1 FPS 84.56 71.56 74.14 49.44 75.25 72.83 71.30 67.68 57.43 79.03 68.05 19.17 64.25 61.67 48.36 62.57

Table 10: Full results on OVO-Bench. † means models under StreamBridge framework

Method # of Real-Time Visual Understanding Omni-Source Understanding Contextual Understanding Overall.
Frames OP CR CS ATP EU TR PR SU ACP CT AVG. ER SCU SD MA AVG. ACU MCU SQA PO AVG. Overall AVG.

Human
Human - 89.47 92.00 93.60 91.47 95.65 92.52 88.00 88.75 89.74 91.30 91.46 88.00 88.24 93.60 90.27 90.26 88.80 90.40 95.00 100 93.55 91.66

Proprietary Models (Offline), Single-Turn Evaluation
Gemini 1.5 pro [23] 1 FPS 79.02 80.47 83.54 79.67 80.00 84.74 77.78 64.23 71.95 48.70 75.69 46.80 39.60 74.90 80.00 60.22 51.41 40.73 54.80 45.10 48.73 67.07
GPT-4o [22] 64 77.11 80.47 83.91 76.47 70.19 83.80 66.67 62.19 69.12 49.22 73.28 41.20 37.20 43.60 56.00 44.50 41.20 38.40 32.80 56.86 38.70 60.15

Open-Source Models (Offline), Single-Turn Evaluation
LLaVA-OV-7B [3] 32 80.38 74.22 76.03 80.72 72.67 71.65 67.59 65.45 65.72 45.08 71.12 40.80 37.20 33.60 44.80 38.40 35.60 36.00 27.27 29.55 32.74 56.36
Qwen2-VL-7B [2] 0.2-1 FPS 75.20 82.81 73.19 77.45 68.32 71.03 72.22 61.19 61.47 46.11 69.04 41.20 22.00 32.80 43.60 34.90 31.20 26.00 39.60 22.73 31.66 54.14
InternVL-V2-8B [76] 16 68.12 60.94 69.40 77.12 67.70 62.93 59.26 53.25 54.96 56.48 63.72 37.60 26.40 37.20 42.00 35.80 32.00 31.20 32.32 40.91 32.42 51.40

Open-Source Models (Streaming), Single-Turn Evaluation
Flash-VStream-7B [11] 1 FPS 25.89 43.57 24.91 23.87 27.33 13.08 18.52 25.20 23.87 48.70 23.23 25.91 24.90 25.60 28.40 26.00 24.80 25.20 26.80 1.96 24.12 24.04
VideoLLM-Online-8B [10] 2 FPS 39.07 40.06 34.49 31.05 45.96 32.40 31.48 34.16 42.49 27.89 35.99 31.20 26.51 24.10 32.00 28.45 24.19 29.20 30.80 3.92 26.55 32.48
Dispider [13] 1 FPS 74.92 75.53 74.10 73.08 74.44 59.92 76.14 62.91 62.16 45.80 67.63 35.46 25.26 38.57 43.34 35.66 39.62 27.65 34.80 25.34 33.61 53.12

Models under StreamBridge (Offline → Streaming), Multi-Turn Evaluation
Oryx-1.5-7B† [1] 1 FPS 78.47 77.17 83.86 80.20 71.07 66.98 79.63 61.38 66.29 40.93 70.59 30.00 15.20 33.60 43.20 30.50 20.40 24.80 39.60 54.90 34.93 53.76

+ Stream-IT 1 FPS 82.29 77.95 87.98 86.47 77.99 81.31 76.85 69.92 71.96 35.23 74.79 19.20 14.40 52.00 29.20 28.70 14.40 14.80 51.20 43.14 30.89 54.79
LLaVA-OV-7B† [3] 1 FPS 76.84 77.17 82.60 75.25 64.15 64.17 75.00 61.38 61.19 46.11 68.39 24.40 12.00 32.40 37.60 26.60 20.00 19.60 34.40 52.94 31.74 50.96

+ Stream-IT 1 FPS 82.29 72.44 92.09 80.86 71.07 74.46 75.00 62.20 70.26 28.50 70.92 20.80 13.20 43.60 27.60 26.30 20.40 17.60 41.60 37.26 29.21 51.73
Qwen2-VL-7B† [2] 1 FPS 80.38 78.74 83.22 79.86 74.21 69.47 77.78 63.41 69.97 43.01 72.01 32.00 15.20 39.60 38.40 31.30 25.20 21.20 33.20 66.67 36.57 55.09

+ Stream-IT 1 FPS 84.74 82.68 88.92 89.77 77.36 85.36 84.26 69.92 71.67 35.75 77.04 18.00 13.20 43.60 21.60 24.10 14.00 17.20 48.00 50.98 32.55 55.39

Table 11: Full results on Streaming-Bench. † means models under StreamBridge framework
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I Pseudo Code of the Round-Decayed Compression in a PyTorch-like Style

def Round_Decayed_Compression (inputs_embeds, max_len, token_per_frame):
’’’
inputs_embeds: [1, seq_len, dim], interleaved embeddings of video and text;
max_len: the predefined maximum sequence length of inputs_embeds;
token_per_frame: the number of tokens per frame;
’’’

# compress_target_num is the number of tokens that need to be compressed,
# should be integer multiples of token_per_frame
redudant_frame_num = int((inputs_embeds.shape[1] - max_len)/token_per_frame) + 1
compress_target_num = token_per_frame * redudant_frame_num

# split inputs_embeds into image_embeds and text_embeds by round,
# e.g., image_embeds[i] is the visual tokens of the i-th round,
# and len(image_embeds) == len(text_embeds) == number of rounds;
image_embeds, text_embeds = split_image_and_text(inputs_embeds)
new_inputs_embeds = []

# compress visual tokens round by round
for round_idx in range(len(image_embeds)):

current_image_embeds = image_embeds[round_idx]
current_text_embeds = text_embeds[round_idx]
if compress_target_num > 0 and current_image_embeds.shape[1] >=

token_per_frame*2:

"""
compress current_image_embeds into [1, token_per_frame, dim];
"""
if current_image_embeds.shape[1] <= compress_target_num +

token_per_frame:
current_frame_num = current_image_embeds.shape[1] // token_per_frame
current_image_embeds = current_image_embeds.reshape(1,

current_frame_num, token_per_frame,
current_image_embeds.shape[-1])

current_image_embeds = current_image_embeds.mean(dim=1)
compress_target_num -= (current_frame_num-1)*token_per_frame

"""
compress current_image_embeds’s first compress_target_num +

token_per_frame tokens into [1, token_per_frame, dim], and reserve
the rest tokens;

"""
else:

pre_image_embeds = current_image_embeds[:,
:compress_target_num+token_per_frame, :]

pre_frame_num = pre_image_embeds.shape[1]//token_per_frame
pre_image_embeds = pre_image_embeds.reshape(1,

compress_target_num//token_per_frame + 1, token_per_frame,
current_image_embeds.shape[-1])

pre_image_embeds = pre_image_embeds.mean(dim=1)

post_image_embeds = current_image_embeds[:,
compress_target_num+token_per_frame:, :]

compress_target_num -= (pre_frame_num-1)*token_per_frame
current_image_embeds = torch.cat([pre_image_embeds,

post_image_embeds], dim=1)

new_inputs_embeds.append(current_image_embeds)
new_inputs_embeds.append(current_text_embeds)

return torch.cat(new_inputs_embeds, dim=1)
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