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Abstract

Annotator disagreement is ubiquitous in nat-
ural language processing (NLP) tasks. There
are multiple reasons for such disagreements,
including the subjectivity of the task, dif-
ficult cases, unclear guidelines, and so on.
Rather than simply aggregating labels to ob-
tain data annotations, we instead try to directly
model the diverse perspectives of the annota-
tors, and explicitly account for annotators’ id-
iosyncrasies in the modeling process by creat-
ing representations for each annotator (anno-
tator embeddings) and also their annotations
(annotation embeddings). In addition, we pro-
pose TID-8, The Inherent Disagreement - 8
dataset, a benchmark that consists of eight exist-
ing language understanding datasets that have
inherent annotator disagreement. We test our
approach on TID-8 and show that our approach
helps models learn significantly better from dis-
agreements on six different datasets in TID-8
while increasing model size by fewer than 1%
parameters. By capturing the unique tenden-
cies and subjectivity of individual annotators
through embeddings, our representations prime
AI models to be inclusive of diverse viewpoints.

1 Introduction

Annotator disagreement is a common challenge
in NLP (Leonardelli et al., 2021; Fornaciari et al.,
2021). The conventional approach to reconciling
such disagreements is to assume there is a sin-
gle ground-truth label, and aggregate annotator
labels on the same data instance (Paun and Simp-
son, 2021). However, disagreement among anno-
tators can arise from various factors, including dif-
ferences in interpretation, certain preferences (e.g.
due to annotators’ upbringing or ideology), diffi-
cult cases (e.g., due to uncertainty or ambiguity), or
multiple plausible answers (Plank, 2022). It is prob-
lematic to simply treat disagreements as noise and
reconcile the disagreements by aggregating differ-
ent labels into a single one. To illustrate, consider
the case of hate speech detection, where certain

Humor
Text A: Being crushed by large objects can be very de-
pressing.
Text B: As you make your bed, so you will sleep on it.
ANN WHICH IS FUNNIER, X MEANS A TIE: A, A, B, X, X

Table 1: An example where annotators disagree. Table 7
in Appendix B.1 shows more examples.

words or phrases might be harmful to specific eth-
nic groups (Kirk et al., 2022). For instance, terms
that white annotators regard as innocuous might be
offensive to black or Asian annotators due to cul-
tural nuances and experiences that shape the subjec-
tive perceptions of hate speech. Adjudication over
the annotation of hate speech assumes that there
is a standard “correct” way people should feel to-
wards these texts, which ignores under-represented
groups whose opinions may not agree with the
majority. Similarly, in humor detection, different
people can have varying levels of amusement to-
wards the same text (Ford et al., 2016; Jiang et al.,
2019), making it difficult to reach a consensus on
such a subjective task. Another example is natural
language inference (NLI), where it has been shown
that there are inherent disagreements in people’s
judgments that cannot be smoothed out by hiring
more workers (Pavlick and Kwiatkowski, 2019).
Aggregating labels in NLI tasks can disregard the
reasoning and perspective of certain individuals,
undermining their intellectual contributions.

To account for these disagreements, one ap-
proach is to directly learn from the data that has
annotation disagreements (Uma et al., 2021), but
representing this information inside the models is
often not trivial. Instead, to leverage the diverse
viewpoints brought by different annotators, we cre-
ate representations for the annotators (annotator
embeddings) and for their annotations (annotation
embeddings), with learnable matrices associated
with both of these embeddings (see Section 4). On
downstream tasks, we forward the weighted embed-



dings together with the text embeddings to the clas-
sification model, which adjusts its prediction for
each annotator. Intuitively, by modeling each anno-
tator with a unique embedding, we accommodate
their idiosyncrasies. By modeling the annotations
themselves, we capture annotators’ tendencies and
views for individual annotation items.

To test our methods, we propose TID-8, The
Inherent Disagreement - 8 dataset, a benchmark
that consists of eight existing language understand-
ing datasets that have inherent annotator disagree-
ment. TID-8 covers the tasks of NLI, sentiment
analysis, hate speech detection, and humorousness
comparison. Empirical results on TID-8 show that
annotator embeddings improve performance on
tasks where individual differences such as the sense
of humor matter, while annotation embeddings give
rise to clusters, suggesting that annotation embed-
dings aggregate annotators with similar annotation
behaviors.

Our approach helps models learn significantly
better from disagreements on six datasets in TID-8
and yields a performance gain between 4%∼17%
on four datasets that contain more than 50 anno-
tators, while adding fewer than 1% of model pa-
rameters. We also conduct an ablation study and a
comparison of the two embeddings over different
datasets. By building and analyzing embeddings
specific to the viewpoints of different annotators,
we highlight the importance of considering annota-
tor and annotation preferences when constructing
models on data with disagreement. We hope to con-
tribute towards democratizing AI by allowing for
the representation of a diverse range of perspectives
and experiences.

In summary, our contributions include:

• Rather than aggregating labels, we propose a
setting of training models to directly learn from
data that contains inherent disagreements.

• We propose TID-8, The Iherent Disagreement -
8 dataset, a benchmark that consists of eight ex-
isting language understanding datasets that have
inherent annotator disagreements.

• We propose weighted annotator and annotation
embeddings, which are model-agnostic and im-
prove model performances on six out of the eight
datasets in TID-8.

• We conduct a detailed analysis on the perfor-
mance variations of our methods and how our

methods can be potentially grounded to real-
world demographic features.

TID-8 is publically available on Hugging-
face at https://huggingface.co/datasets/
dnaihao/TID-8. Our code and implementation are
available at https://github.com/MichiganNLP/
Annotator-Embeddings.

2 Related Work

Inherent Annotator Disagreement. Annotator
disagreement is a well-known issue in NLP. A com-
mon approach to deal with annotator disagreement
is to aggregate labels by taking the average (Pavlick
and Callison-Burch, 2016) or the majority vote
(Sabou et al., 2014), or select a subset of the data
with a high annotator agreement rate (Jiang and
de Marneffe, 2019a,b).

Researchers have criticized the conventional ap-
proach of assuming a single ground truth and ig-
noring the inherent annotator disagreement (Plank,
2022). Various studies reveal that there exists gen-
uine human variation in labeling because of the
subjectivity of the task or multiple plausible an-
swers (Passonneau et al., 2012; Nie et al., 2020;
Min et al., 2020; Ferracane et al., 2021; Jiang and
Marneffe, 2022). For instance, in the task of toxic
language detection, not all text is equally toxic for
everyone (Waseem, 2016; Al Kuwatly et al., 2020).
The identities and beliefs of the annotator influence
their view toward the toxic text (Sap et al., 2022).
Therefore, such annotator disagreement should not
be simply dismissed as annotation “noise” (Pavlick
and Kwiatkowski, 2019). Recently, researchers
have started to leverage the different labels from
annotators to better personalize the model for vari-
ous users (Plepi et al., 2022).

Modeling Annotator Disagreement. Re-
searchers have proposed various approaches for
studying datasets with annotator disagreement.
Zhang and de Marneffe (2021) propose Artificial
Annotators to simulate the uncertainty in the
annotation process. Zhou et al. (2022) apply
additional distribution estimation methods such
as Monte Carlo (MC) Dropout, Deep Ensemble,
Re-Calibration, and Distribution Distillation to
capture human judgment distribution. Meissner
et al. (2021) train models directly on the estimated
label distribution of the annotators in the NLI
task. Zhang et al. (2021) consider annotator
disagreement in a more general setting with a
mixture of single-label, multi-label, and unlabeled
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Figure 1: Concept diagram of how we apply our
methods. We add the weighted annotator and anno-
tation embeddings to the embedding of the “[CLS]” to-
ken, and feed the updated embedding sequence to the
transformer-based models.

examples. Gordon et al. (2022) introduce jury
learning to model every annotator in a dataset with
Deep and Cross Network (DCN) (Wang et al.,
2021). They combine the text and annotator ID
together with the predicted annotator’s reaction
from DCN for classification. In contrast, we
propose to explicitly embed annotator and their
labels, and we perform a detailed analysis of these
two embeddings. Davani et al. (2022) employ
a common shared learned representation while
having different layers for each annotator. Similar
to our work, Kocoń et al. (2021) also develop
trainable embeddings for annotators. In contrast,
we propose embedding annotators as well as their
labels with learnable matrices associated with each.
We test our methods on eight datasets sourced
from various domains, while Kocoń et al. (2021)
conduct their experiments on four datasets all
sourced from Wikipedia.

3 Task Setup

For the dataset D, where D = (xi, yi, ai)
E
i=1, xi

represents the input text, yi represents the corre-
sponding label assigned by the annotator ai for text
xi. The dataset D consists of E examples anno-
tated by N unique annotators. We aim to optimize
the model parameters θ to maximize the likelihood
of the correct labels given the annotator ai and all
of their input text xi:

θ∗ = argmax
θ

E∑
i=1

logP (yi|xi, ai; θ)

4 Methods

To explicitly account for annotation idiosyncrasies,
we propose to create representations for both anno-
tators and annotations. We create two embeddings,
annotator embeddings (Ea), and annotation embed-
dings (En), associated with two learnable matrices
(αa, αn), respectively as shown in Figure 1. For the
annotator embeddings, we assign each annotator a
unique embedding that represents their individual
annotating preferences. For the annotation embed-
dings, we first assign embeddings to each label in
the dataset. We then take the average embedding
of the labels annotated by an annotator on other
examples as their annotation embedding. The intu-
ition is that an annotator’s labels on other examples
can be viewed as a proxy of their annotation ten-
dencies when they annotate the current example.
We describe the two embedding methods in detail
below.

4.1 Embeddings
Annotator Embedding (Ea) We define a learn-
able matrix EA ∈ RN×H to represent embeddings
for all the annotators, where N is the total num-
ber of annotators, and H is the hidden size of the
model. The annotator embedding for an individual
annotator is Ea∈ R1×H .

Annotation Embedding (En) We define a learn-
able matrix EL ∈ RM×H to represent embeddings
for all the labels, where M is the number of pos-
sible labels within the benchmark, and H is the
hidden size of the model. The embedding for an
individual label l is El ∈ R1×H . During training,
for the example κ annotated by annotator i, we
calculate the annotation embedding En by taking
the average of the label embeddings El for all other
examples annotated by the same annotator i:

En =
1

|Ki| − 1

∑
k∈Ki\{κ}

El(k)

where Ki is the set of examples in the training
set annotated by the annotator i, the cardinality
symbol | · | yields the number of elements within
that set, and El(k) indicates the embedding for label
l assigned to example k.

During testing, we average all the annotation
embeddings of the training examples annotated by
the same annotator:

En =
1

|Ki,train|
∑

k∈Ki,train

El(k)
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4.2 Embedding Weights

The annotator and annotation embeddings are in-
tegrated into a transformer-based classification
model. First, we calculate the sentence embed-
ding of the input text Es ∈ R1×H by averaging the
text embedding, Et ∈ RT×H over the number of
tokens, Tby Equation (1), where Et is the sum of
the word embedding, type embedding, and position
embedding from the original BERT embeddings.

Es =
1

T

T∑
t=1

(Et)t,H (1)

To incorporate our embedings, given the sentence
embedding Es ∈ R1×H and the annotator embed-
ding Ea ∈ R1×H , we calculate the weight for
the annotator embedding αa ∈ R1×1 using Equa-
tion (2), where Ws ∈ RH×H and Wa ∈ RH×H

are learnable matrices.

αa = (WsET
s )

T (WaET
a ) (2)

Similarly, for the sentence embedding Es ∈ R1×H

and the annotation embedding En ∈ R1×H , we cal-
culate the weight for the annotation embedding
αn ∈ R1×1 using Equation (3), where Wn ∈
RH×H is another learnable matrix.

αn = (WsET
s )

T (WnET
n) (3)

We experiment with the following three methods
for defining E, the combined embedding used by
the classification model:

En: Text embedding and weighted annotator em-
bedding. E = {E[CLS] + αnEn,Et,1, · · · ,Et,T},
where E[CLS] is the embedding of the first token,
[CLS], the encoded representation of which is used
for classification.

Ea: Text embedding and weighted annotation em-
bedding. E = {E[CLS] + αaEa,Et,1, · · · ,Et,T}.

En+ Ea: Text, weighted annotator, and weighted
annotation embedding. E = {E[CLS] + αnEn +
αaEa,Et,1, · · · ,Et,T}.

The embedding E then propagates through the
layer norm and the dropout function in the same
way as the standard embedding calculation in the
transformer-based model. The output embedding
then propagates to the encoder.

5 TID-8 Overview

We propose TID-8: The Inherent Disagreement -
8 dataset. TID-8 consists of eight publicly avail-
able classification datasets with inherent annotator
disagreement. In addition, information on the asso-
ciation between annotators and labels is available
for all the datasets in TID-8. TID-8 covers the tasks
of natural language inference (NLI), sentiment and
emotion classification, hate speech detection, and
humorousness comparison.

5.1 Desiderata Dataset

When selecting datasets for TID-8, a major concern
is the quality of the annotations. Although there
is a significant number of annotator disagreements
arising from differences in interpretation, certain
preferences, difficult cases, or multiple plausible
answers, annotation errors could still be the rea-
son for disagreements (Plank, 2022). Furthermore,
there is no easy way to determine whether a label
is assigned by mistake or because of subjective
reasons.

Fortunately, each dataset has its own quality con-
trol mechanisms, such as including control exam-
ples (De Marneffe et al., 2019), various data analy-
ses (Demszky et al., 2020), etc. For instance, dur-
ing the collection process of the CommitmentBank
dataset, De Marneffe et al. (2019) constructed con-
trol examples to assess annotators’ attention, where
the control examples clearly indicated certain la-
bels. De Marneffe et al. (2019) filtered data from
annotators who gave other responses for the con-
trol examples. Appendix B.4 contains details of
the quality control for each dataset.

5.2 TID-8 Overview

TID-8 consists of eight datasets described in Ta-
ble 2.

Annotation Distribution. Figure 2 shows the
annotation distributions for the datasets in TID-
8. In Sentiment (SNT) dataset, each annotator la-
bels a similar number of examples. In Go Emo-
tions (GOE), CommitmentBank (COM), Humor
(HUM), and MultiDomain Agreement (MDA), a
small group creates most of the dataset examples,
though more than two-thirds of the annotators an-
notate more than 2,000 examples in Go Emotions
(GOE). In Friends QIA (FIA), HS-Brexit (HSB),
and Pejorative (PEJ) datasets, there are only a few
annotators who each annotates the entire dataset,
except for one annotator in the Pejorative (PEJ)
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Figure 2: Figures 2a and 2b show the proportion of examples covered by the number of annotators (sorted by
number of annotations). Specifically, Figure 2a shows the pattern for Few Annotators Datasets in TID-8 which
contain < 10 annotators, while Figure 2b shows the pattern for Many Annotators Datasets in TID-8 which contain >
50 annotators. Figure 2c shows the proportion of examples with different numbers of labels on the eight datasets.
The y-axis for all three plots is example coverage (%).

FIA Friends QIA (Damgaard et al., 2021)
which classifies indirect answers to polar
questions.

PEJ Pejorative (Dinu et al., 2021) which clas-
sifies whether Tweets contain pejorative
words.

HSB HS-Brexit (Akhtar et al., 2021), an abu-
sive language detection dataset.

MDA MultiDomain Agreement (Leonardelli
et al., 2021), a hate speech detection
dataset.

GOE Go Emotions (Demszky et al., 2020), an
emotion classification dataset.

HUM Humor (Simpson et al., 2019) which
compares humorousness between a pair
of texts.

COM CommitmentBank (De Marneffe et al.,
2019), an NLI corpus.

SNT Sentiment Analysis (Díaz et al., 2018),
a sentiment classification dataset.

Table 2: Overview of datasets in TID-8. Appendix B.2
provides additional details for these datasets.

dataset who only annotates six examples. There-
fore, we refer to FIA, HSB, and PEJ as Few An-
notators Datasets as they contain fewer than 10
annotators. For comparison, we refer to the other
datasets as Many Annotators Datasets, as all of
them are annotated by more than 50 annotators.
Appendix B.5 provides more details of the number
of examples annotated for each annotator.

Label Disagreement Figure 2c shows the label
distributions among the datasets in TID-8. For
most datasets, the majority of the examples have ≤
3 possible labels. For CommitmentBank (COM),
a significant proportion of the examples have four

Data Train Test #A #E/#A #L

FIA 4.4k 0.6k 3 1,873 5
PEJ 1.5k 0.7k 3 724 3
HSB 4.7k 1k 6 952 2

MDA 33k 11k 819 60 2
GOE 136k 58k 82 2,361 4
HUM 99k 42k 1059 133 3
COM 7.8k 3.7k 496 24 7
SNT 59k 1.4k 1481 41 5

Table 3: Statistics of datasets in TID-8. “#A” is the
number of annotators, “#E/#A” is the average number
of examples annotated per annotator, “#L” is the number
of possible labels in the dataset. Datasets above the line
are Few Annotators Datasets while datasets below are
Many Annotators Datasets.

or more labels. This aligns with the findings by
Pavlick and Kwiatkowski (2019) that there are in-
herent disagreements in people’s judgments in natu-
ral language inference tasks, especially considering
the meticulous data collection process described in
Section 5.1 that ensures high-quality and reliable
datasets. Appendix B.6 provides more details of
the number of examples corresponding to different
numbers of answers.

6 Experiment Setup

In this paper, we investigate the setting of training
models to directly learn from data that has inherent
annotator disagreements. Therefore, instead of ag-
gregating the labels, we consider each annotation
as a separate example. In other words, different
labels may exist for the same text annotated by
different annotators.
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Models. As our methods are model-agnostic, we
test our methods with various language understand-
ing models, including base and large versions of
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and DeBERTa Version 3 (He et al., 2021).
Adding annotator or annotation embeddings only
increases fewer than 1% of the original parameters
for each model. Appendix C.3 provides the details
of the calculation.

Baseline Models. We include four baseline mod-
els to compare against:

• Random: Randomly select a label.

• Majority Vote (MVind): Always choose the
most frequent label assigned by an annotator.

• Majority Vote (MVmacro): Always choose the
overall most frequent label across annotators.

• T: Only feed the example text to the model.

• Naive Concat (NC): Naively concatenate the
annotator ID with the example text and feed
the concatenated string to the transformer-based
models.

Evaluation Metrics. We report exact match ac-
curacy (EM accuracy) and macro F1 scores on
annotator-specific labels.

Dataset Split. Table 3 shows the statistics for
each dataset in TID-8. We split the data annotated
by each annotator into a train and test set (and a dev
set if the original dataset contains one), where the
train and test set have the same set of annotators
(“annotation split”). For Friends QIA, HS-Brexit,
MultiDomain Agreement, and Sentiment Analy-
sis datasets, we follow the split from the original
dataset. For the rest, we split the data into a 70%
train set and a 30% test set. Appendix B.3 provides
some pre-processing we conduct.

Appendix C.1 provides more details of the ex-
perimental set-ups.

7 Results and Discussion

Both proposed embeddings help them better
learn from disagreement. Table 4 shows that an-
notation and annotator embeddings improve accu-
racy scores on Many Annotators Datasets in TID-8
up to 17% compared to the question-only baselines.
In addition, naively concatenating the annotator
ID with the question text harms the model perfor-
mance, suggesting the need for sophisticated meth-
ods. Furthermore, we see our methods consistently

T NC En Ea En + Ea

75.06 64.81 76.70 75.72 75.76
75.67 65.88 76.13 74.67 74.97
75.65 68.36 76.02 75.14 75.28
76.24 69.73 77.18 75.99 75.68
76.45 70.43 77.78 76.93 77.26

MDA

76.38 73.02 77.22 74.75 77.19

63.04 60.88 68.49 69.98 69.90
62.90 62.12 68.39 69.92 66.32
63.22 60.49 67.42 69.22 68.54
63.19 58.86 64.41 65.71 68.46
63.59 62.28 68.58 69.70 69.60

GOE

62.94 58.60 65.18 66.52 69.74

54.26 52.05 56.72 58.15 53.89
54.11 51.07 56.67 58.19 54.35
54.43 47.16 55.07 56.31 53.31
54.40 52.55 54.26 51.97 50.02
54.71 53.63 56.33 57.70 53.31

HUM

54.67 54.81 57.18 58.76 51.86

40.83 40.78 44.00 44.22 44.41
40.47 40.08 43.11 44.09 43.86
41.44 41.61 40.81 42.62 43.00
40.66 40.32 40.42 40.34 39.75
40.54 38.14 42.37 42.82 42.59

COM

40.57 33.82 44.02 44.33 44.15

47.09 39.20 62.88 60.23 64.61
47.32 36.91 61.88 56.20 63.65
46.40 43.32 60.30 45.57 59.65
47.88 43.82 58.19 46.50 55.16
45.75 43.62 61.21 52.57 60.83

SNT

48.76 43.78 67.37 68.39 69.77

Table 4: EM accuracy scores for annotation split on
Many Annotator Datasets, averaged across 10 runs. The
best results (statistically significant from baselines, t-
test, p ≤ 0.05) are shown in bold. For each dataset,
the six rows (from top to bottom) correspond to the
scores from BERT base, BERT large, RoBERTa base,
RoBERTa large, DeBERTa V3 base, and DeBERTa V3
large. Table 9 in Appendix C.4 shows the complete
table including the remaining three baseline models and
performances on Few Annotators Datasets.

improve performance across different models and
model sizes, which shows the effectiveness of anno-
tator and annotation embeddings in helping models
learn from crowd data that has disagreements. Ap-
pendix C.4 provides macro F1 scores.

Despite increased performance, annotator and
annotation embeddings have different effects.
In Table 4, we see that on MultiDomain Agree-
ment (MDA), Go Emotions (GOE), and Humor
(HUM), adding either annotation or annotator em-
bedding yields the best performance across models.
In contrast, on CommitmentBank (COM) and Sen-
timent Analysis (SNT), adding both embeddings
yields the best or second-to-best performance. Al-
though on these two datasets, annotator or annota-
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tion embedding might perform the best for some
models, adding both embeddings yields a similar
score. Furthermore, on Humor (HUM), adding
both embeddings yields a worse performance than
the baseline, while on Sentiment Analysis (SNT),
adding both embeddings for BERT models yields
the best performance. This suggests that annotator
and annotation embedding have different effects.
Intuitively, annotator embeddings capture individ-
ual differences. From Figure 5, we observe clusters
emerge from annotation embedding. Therefore, we
hypothesize that annotation embeddings align with
group tendencies. We further discuss the effects of
these embeddings in Section 8.

Scaling models up does not help models learn
from disagreement. On the Many Annotators
Datasets in TID-8, we observe little to no perfor-
mance difference between the base and large ver-
sions of each model. In some cases, the large mod-
els even underperform the base model, as seen with
BERT on the Go Emotions (GOE) dataset. This
result suggests that the increased capacity of the
larger models does not necessarily translate into
improved performance when dealing with datasets
that exhibit significant annotation disagreement.
However, when there is minimal disagreement, as
observed in the Friends QIA (FIA) dataset where
only four examples have multiple labels while the
remaining 5.6k examples have a single label (as
shown in Table 8), the larger models consistently
outperform the base versions for the text-only base-
line (as shown in Table 9 in Appendix C.4). This
trend could be attributed to the larger models’
higher capacity and increased number of param-
eters.

The superior performance of the larger models
in low-disagreement scenarios suggests that they
excel at capturing and leveraging subtle patterns
present in the data. However, when faced with
datasets that contain significant disagreement, the
larger models may become more prone to overfit-
ting. Their increased capacity and specificity to the
training data might hinder their ability to general-
ize well to new or unseen examples, resulting in
diminished performance.

Models’ ability to learn from disagreements is
similar for text-only baselines but varies with
different embeddings. For Many Annotators
Datasets in TID-8, we observe similar perfor-
mances across models for text-only baselines. This
suggests that these models possess a comparable

Text: We know it anecdotally from readers we’ve heard
from who’ve been blatantly discriminated against be-
cause they’re older.
POSITIVE (2) <–> NEGATIVE (-2)
Annotator ID 1 2 3 4
Gold -1 0 -2 -2
T -1 -1 -1 -1
En + Ea -1 0 -1 -2

Table 5: An example predicted by the BERT base model
from Sentiment Analysis, where adding both annotator
and annotation embeddings better accommodates anno-
tators’ preference.

MDA GOE HUM COM SNT
0
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50

60
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80
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Text Only
Combination

Figure 3: Ablation of performance on annotation split
in the test when using annotator and annotation embed-
dings without text (Embedding Only), text embeddings
(Text Only), or the combination (Combination). We use
the BERT base model on Many Annotators Datasets in
TID-8.

ability to learn from data that exhibits disagree-
ments. However, the performance of these models
varies when we incorporate annotation or annota-
tor embeddings. This indicates that different pre-
training strategies might have an impact on the
effectiveness of incorporating annotator or annota-
tion embeddings into a given model.

Apart from these analyses, we discuss perfor-
mance patterns on each dataset in Appendix C.5.

8 Further Analyses

Since we observe a similar pattern across different
transformer-based models, we use the BERT base
model for ablation and discussion in this section.

Our methods give annotator-based predictions.
Often, the baseline text-only model cannot accom-
modate different annotators, as shown in Table 5.
However, after we incorporate the annotator or
annotation embedding, the model can adjust its
prediction to better align with the annotation for
different annotators.
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Figure 4: TSNE plots for MultiDomain Agreement. The
embeddings are learned with BERT base model. We
try with various hyperparameters and all of the plots
demonstrate similar patterns.

Text and annotator or annotation embeddings
used jointly yield the best performance. To re-
veal the performance contribution of different com-
ponents, we train a BERT base model with text
and both embeddings (En+ Ea) and test with text,
embeddings, or their combination separately. Fig-
ure 3 shows the test-time performance of using
both embeddings (Embedding Only), just the text
embeddings (Text Only), and using a combination
of both (Combination). We can see that the Ea+
En and text embeddings need to work coopera-
tively to yield the best performance. In addition,
we investigate the effects of the weight associated
with the annotation or annotation embeddings in
Appendix C.6.

Annotator embeddings capture individual dif-
ferences. On Go Emotions (GOE) and Humor
(HUM), adding annotator embeddings yields the
best performance (Table 4). We hypothesize this
is because both emotion and humor are subjective
feelings, and annotator embeddings capture individ-
ual differences. As revealed by psychological stud-
ies, emotion and humor are entangled with one’s
cognition, motivation, adaptation, and physiologi-
cal activity (Lazarus, 1991; Rowe, 1997; Tellegen
et al., 1988; Cherkas et al., 2000; Martin and Ford,
2018). Having a dedicated embedding for each
annotator (annotator embedding) might better cap-
ture the individual annotator differences in tasks
dealing with emotion and humor.

Annotation embeddings align with group ten-
dencies. The visualization of the embeddings
on MultiDomain Agreement in Figure 4a reveals
a spectrum in terms of annotation embeddings,
where each point within the spectrum represents
an individual. The spectrum encompasses individ-
uals positioned at opposite ends, as well as others
dispersed throughout. This could be explained by
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(a) Annotation Embedding
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Figure 5: Annotation and annotator embedding for Sen-
timent Analysis. The embeddings are learned with the
BERT base model. Different colors in Figure 5a indi-
cate different “groups” in Table 17 in Appendix D.

AG

GU
CA

AH

ED

PI
GE

0.20.40.60.81.0Group 0
Group 1
Group 2
Group 3
Group 4

CA: current living area
GU: grew up area
AG: age
GE: gender
PI: political identification
ED: education
AH: annual household income

Figure 6: The prevalent demographic features for each
cluster/group in Figure 5a in Sentiment Analysis (SNT).
Appendix D provides details of these demographic fea-
tures. Figure 10 provides the spread-out plots for each
group.

the domain of the dataset. MultiDomain Agree-
ment contains English tweets about Black Lives
Matter, Elections, and Covid-19 (Appendix B.2).
Regarding these topics, each annotator has their
own political beliefs and attitudes towards these
topics, and their annotation is a good reflection of
their beliefs and attitudes. Therefore, the annota-
tion embeddings may reflect the collective tenden-
cies of individuals sharing similar political beliefs
and attitudes.

Figure 5 visualizes both annotator and annota-
tion embeddings on Sentiment Analysis. We notice
that clusters emerge in annotation embeddings, in-
dicating there are collective labeling preferences
among the annotators on this dataset.

Prevalent demographic features vary among
clusters in annotation embeddings. To gain in-
sights into the relationship between annotation em-
beddings and demographic features, we perform
a clustering analysis on the annotation embed-
dings of Sentiment Analysis as shown in Figure 5a.
Specifically, we employ the K-means algorithm
(Lloyd, 1982) and empirically choose K = 5 clus-
ters based on visual observations from Figure 5a.
Next, we map the identified clusters back to the
corresponding demographic features provided by
the dataset, as illustrated in Figure 6. The mapping
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T NC En Ea En + Ea

MDA 74.91 67.26 73.55 73.90 74.24
GOE 62.86 61.01 61.33 61.98 61.96
HUM 54.33 52.24 53.15 53.53 53.51
COM 40.78 40.49 40.80 40.30 40.28
SNT 43.93 38.56 36.99 40.82 37.90

Table 6: EM accuracy for the BERT base model on
annotator split for Many Annotators Datasets, averaged
across 10 runs. The best results are in bold if they yield
a statistically significant difference from the baselines
(t-test, p ≤ 0.05).

is performed using the methods described in Ap-
pendix D. We find the prevalent demographic fea-
tures associated with each cluster vary significantly.
This analysis demonstrates that the learned anno-
tation embeddings can be grounded in actual de-
mographic features, allowing us to identify distinct
patterns and tendencies within different clusters.
By examining the relationships between annotation
embeddings and demographic characteristics, we
can gain a deeper understanding of the underlying
dynamics at play in the dataset.

Performance decrease is minimal on unknown
annotators. The annotation and annotator em-
beddings do not substantially degrade performance
when testing on new annotators. We test the em-
beddings on the setting where the annotators in
the train and test set are distinct (“annotator split”).
We include 70% of the annotators in the train and
30% for the test in TID-8, and test with the BERT
base model. Table 6 shows the EM accuracy scores
for this annotator split. On most of the Many An-
notators Datasetsin TID-8, such as Go Emotions
(GOE), MultiDomain Agreement (MDA), Humor
(HUM), and CommitmentBank (COM), the per-
formance loss is minimal to none. For Sentiment
Analysis (SNT), the annotation embedding suffers
a lot, which shows the difficulty of learning the
group tendencies for unknown annotators. In ad-
dition, because sentiment and emotion are highly
personalized feelings, annotator embeddings in this
case suffer less than annotation embedding, as the
annotator embeddings better handle individual dif-
ferences. We further discuss performance on un-
known annotators in Appendix C.4.

9 Conclusion

Instead of aggregating labels, we introduce a set-
ting where we train models to directly learn from
datasets that have inherent disagreements. We pro-
pose TID-8, The Inherent Disagreement - 8 dataset,

consisting of eight language understanding tasks
that have inherent annotator disagreement. We in-
troduced a method for explicitly accounting for an-
notator idiosyncrasies through the incorporation of
annotation and annotator embeddings. Our results
on TID-8 show that integrating these embeddings
helps the models learn significantly better from
data with disagreements, and better accommodates
individual differences. Furthermore, our approach
provides insights into differences in annotator per-
spectives and has implications for promoting more
inclusive and diverse perspectives in NLP models.
We hope that TID-8 and our approach will inspire
further research in this area and contribute to the
development of more effective and inclusive NLP
methods.

Acknowledgement

We thank the anonymous reviewers for their feed-
back. We thank Zhenjie Sun, Yinghui He, and
Yufan Wu for their help on the data processing part
of this project. We also thank members of the Lan-
guage and Information Technologies (LIT) Lab at
the University of Michigan for their constructive
feedback. This project was partially funded by an
award from the Templeton Foundation (#62256).

Limitations

One limitation of our work is the limited explo-
ration of the demographic effects on annotations.
This is because Sentiment Analysis is the only
Many Annotator Dataset in TID-8 that provides
publicly available demographic features for the an-
notators. We encourage researchers to collect the
demographic features of the annotators when build-
ing datasets in the future while ensuring robust
privacy protection.

Our methods suffer performance loss on unseen
annotators, although on four of the five Many An-
notators Datasets in TID-8, the performance loss
is minimal to none. We stress that this is not the
main focus of this paper, and we conduct this study
to provide a more comprehensive understanding
of the embeddings. Future studies might enhance
methods to deal with annotator disagreement for
“unseen” annotators.

Due to the scope of this project, we only stud-
ied annotator disagreement on classification tasks.
However, annotator disagreement also exists in
other NLP tasks such as summarization, or tasks
beyond NLP such as image classification. We leave
these topics to future research.
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Ethics Statement

In this paper, we do not collect any new datasets.
Rather, we propose TID-8 based on eight publicly
available datasets. All of the eight datasets in TID-
8 provide the information of which annotator an-
notates the corresponding examples. In addition,
HS-Brexit provides whether the annotator is a Mus-
lim immigrant or not. Sentiment Analysis pro-
vides more comprehensive demographic features
for each annotator. All annotator is anonymous and
their personal information is not revealed.

Our methods require the information on which
annotator annotates the corresponding examples,
which we believe will accommodate annotators’
preferences while protecting their personal infor-
mation.

Furthermore, though we can observe that differ-
ent prevalent demographic features vary for clusters
in annotation embeddings, our methods do not rely
on demographic features. This protects the privacy
of the annotators.

Our methods help various models accommodate
predictions based on annotators’ preferences. We
make steps towards leveraging different perspec-
tives from annotators to enhance models.
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B More about Selected Datasets in TID-8

B.1 Dataset Examples

Table 7 shows examples in TID-8 where annotators
disagree with each other.

B.2 Selected Datasets

We provide the description of the eight datasets we
selected for TID-8:

FIA Friends QIA (Damgaard et al., 2021) is a
corpus of classifying indirect answers to polar ques-
tions.

PEJ Pejorative (Dinu et al., 2021) classifies
whether Tweets contain words that are used pejora-
tively. By definition, pejorative words are words or
phrases that have negative connotations or that are
intended to disparage or belittle.

HSB HS-Brexit (Akhtar et al., 2021) is an abu-
sive language detection corpus on Brexit belonging
to two distinct groups: a target group of three Mus-
lim immigrants in the UK, and a control group of
three other individuals.

MDA MultiDomain Agreement (Leonardelli
et al., 2021) is a hate speech classification dataset of
English tweets from three domains of Black Lives
Matter, Election, and Covid-19, with a particular
focus on tweets that potentially lead to disagree-
ment.

GOE Go Emotions (Demszky et al., 2020) is a
fine-grained emotion classification corpus of care-
fully curated comments extracted from Reddit. We
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Friends QIA
Question: Did Rachel tell you we hired a male nanny?
Answer: I think that’s great!
ANN ANSWER (1), NOT THE ANSWER (2), ANSWER SUBJECT TO SOME

CONDITIONS (3), NEITHER (4), OTHER (5): 1, 1, 4

Pejorative
Text: @WORSTRAPLYRlCS Everything Jay-Z writes is
trash.
ANN PEJORATIVE (1) <–> NON-PEJORATIVE (0): 1, 0, 0

HS-Brexit
Text: RT <user>: Islam has no place in Europe #Brexit.
ANN NO HATE (1) <–> HATE (0): 1, 1, 1, 0, 0, 0

MultiDomain Agreement
Text: Please lost you yelling insanely at the sky on Nov 3
losers
ANN OFFENSIVE (1) <–> NOT OFFENSIVE (0): 1, 1, 1, 0, 0

Go Emotions
Text: This is how I feel when I use a crosswalk on a busy
street
ANN POSITIVE (1), NEUTRAL (0), AMBIGUOUS (-1), NEGATIVE (-2): 1, 0

Humor
Text A: Being crushed by large objects can be very de-
pressing.
Text B: As you make your bed, so you will sleep on it.
ANN WHICH IS FUNNIER, X MEANS A TIE: A, A, B, X, X

CommitmentBank
Premise: Meg realized she’d been a complete fool. She
could have said it differently. If she’d said Carolyn had
borrowed a book from Clare and wanted to return it they’d
have given her the address.
Hypothesis: Carolyn had borrowed a book from Clare.
ANN ENTAIL (3) <–>CONTRADICT (-3): 3, 3, 3, 2, 0, -3, -3, -3

Sentiment Analysis
Text: Even hotel bar food is good in California...fresh avo-
cados, old chicken, and reasonably recent greens. Mmmm.
Really.
ANN POSITIVE (2) <–>NEGATIVE (-2) : 2, 2, 0, -1

Table 7: Examples in TID-8 where annotators disagree with each other.

group emotions into four categories following sen-
timent level divides in the original paper.

HUM Humor (Simpson et al., 2019) is a corpus
of online texts for pairwise humor comparison.

COM CommitmentBank (De Marneffe et al.,
2019) is an NLI dataset. It contains naturally oc-
curring discourses whose final sentence contains
a clause-embedding predicate under an entailment
canceling operator (question, modal, negation, an-
tecedent of conditional). We note that, unlike the
standard NLI setting where “Entailment”, “Neu-
tral”, and “Contradiction” are used, we use the
ratings from -3 to 3 that reflect the different de-
grees of “Entailment” and “Contradiction” and 0
to represent “Neutral” in particular.

SNT Sentiment Analysis (Díaz et al., 2018) is a
sentiment classification dataset originally used to
detect age-related sentiments.

B.3 More Details about Dataset
Pre-Processing

For annotation split on MultiDomain Agreement
(MDA), we filtered 4746 examples (around 12% of
the total examples) as the annotators of those do
not appear in the training time for the annotation
split. We use the entire dataset in the annotator
split.

For Go Emotions (GOE), we follow Demszky

et al. (2020) to group the sentiments into positive,
negative, ambiguous, and neutral.

B.4 Quality Control from the Selected
Datasets

FIA For Friends QIA, Damgaard et al. (2021)
provide the raw agreement distribution of the an-
notations, which include the agreement for each
of the final three categories. In addition, there is
a high inter-annotator agreement rate as shown in
Table 8.

PEJ For Pejorative, Dinu et al. (2021) recruited
specialists in linguistics for the annotation. The
Cohen’s k agreement score was 0.933.

HSB For HS-Brexit, Akhtar et al. (2021) briefed
and trained the annotators so that the annotators
have a similar understanding of the abusive cate-
gories. For the purpose of their research, Akhtar
et al. (2021) selected three volunteers who were
first or second-generation immigrants and students
from developing countries to Europe and the UK,
of Muslim background; and three other volunteers
who were researchers with western background and
experience in the linguistic annotation.

MDA For MultiDomain Agreement, Leonardelli
et al. (2021) selected a pool of tweets from the
three domains of interest and asked three expert
linguists to annotate them to ensure high-quality
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annotations. The tweets with the perfect agreement
are used as the gold standard. Leonardelli et al.
(2021) then included a gold standard tweet in ev-
ery HIT (group of 5 tweets to be annotated). If a
crowd worker fails to evaluate the gold tweet, the
HIT is discarded. Moreover, after the task com-
pletion, Leonardelli et al. (2021) removed all the
annotations done by workers who did not reach a
minimum overall accuracy of 70% with respect to
the gold standard.

GOE For Go Emotions, Demszky et al. (2020)
used a checkbox for raters to indicate if labeling
a particular example was difficult, in which case
raters could select "no emotions". Examples where
no emotion was selected were removed from the
dataset. In addition, Demszky et al. (2020) con-
ducted various data analyses such as interrater cor-
relation, correlation among emotions, principal pre-
served component analysis, etc. These various data
analyses demonstrate the quality of the data, as the
results are coherent and reasonable.

HUM For Humor, Simpson et al. (2019) com-
puted the mean inter-annotator agreement (Krip-
pendorff’s α) across instances. The result, 0.80,
indicates a decent level of agreement among the
annotators.

COM For CommitmentBank, De Marneffe et al.
(2019) collected annotations through question-
naires that included eight discourses of interest
and two constructed control discourses. These con-
trol discourses were used to evaluate the annota-
tors’ attentiveness, with one clearly indicating the
speaker’s certainty of the truth of the content of the
complement (CC) and the other indicating certainty
of the negation of the CC. Responses of +2 or +3
were accepted for the “true” control items, and re-
sponses of -3 or -2 were accepted for the “false”
ones. Any data from annotators who gave other
responses to at least one control item was excluded
from the analysis.

SNT For Sentiment Analysis, Díaz et al. (2018)
adopted the quality controls provided by Qualtrics1,
an annotation platform. Díaz et al. (2018) checked
on completion time and whether there is straight-
lining. Specifically, the completion time check
involved discarding any responses that were com-
pleted more quickly than half of the median speed.
Note that the original paper did not talk about qual-

1https://www.qualtrics.com/iq/text-iq/

Data 1 2 3 4 5 6 + 7

COM 25 154 310 367 231 113
SNT 892 6.7k 5.7k 809 10
GOE 24k 25k 7.0k 941
HUM 2.4k 14k 11k
MDA 4.9k 5.8k
HSB 774 345
PEJ 856 76
FIA 5.6k 4

Table 8: Label disagreements in TID-8.

ity control, we contacted the authors directly for
the information.

B.5 Annotation Distribution

Figure 7 shows the number of examples annotated
by each annotator among the eight datasets. In Fig-
ure 7g, each annotator annotates a similar amount
of examples. In Figures 7d to 7f and 7h, a small
group creates most of the dataset examples similar
to the pattern spotted by Geva et al. (2019), though
more than 2/3 of the annotators annotate more than
2,000 examples in Figure 7h. In Figures 7a to 7c,
there are just a few annotators and each annotates
the entire datasets, except for one in Figure 7b who
only annotates six examples.

B.6 Label Distribution

Table 8 shows the number of examples correspond-
ing to the number of unique labels of a single ex-
ample in TID-8. Friends QIA is a dataset with little
to no disagreement, as only 4 examples have two
labels while the remaining 5.6k examples have a
single label. Although there are examples in Senti-
ment Analysis and CommitmentBank where there
is high disagreement, because of the rigorous qual-
ity control protocol described in Appendix B.4,
we attribute them as hard examples or ambiguous
examples that naturally lead to disagreement. We
include all these examples in our modeling process.

C More about Experiments

C.1 Experiment Set-Ups

We adopt a learning rate of 1e-5 for all of our ex-
periments. We set 3 epochs for TID-8. In terms
of batch size, we find that a larger batch size helps
stabilize the model performance. Therefore, we
set the batch size from 8, 16, 32, 64, 128, and 256
based on the capacity of the GPUs. All of our
experiments are run on the A40 GPU.
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Figure 7: The number of examples annotated by each annotator in TID-8. We categorize the top three as Few
Annotators Datasets, and the bottom five as Many Annotators Datasets.

C.2 Baseline Models

Dawid and Skene (1979) introduced a probabilistic
approach that allows to reduce the influence of
unreliable annotators during predictions. Yet, the
quality assurance methods in the TID-8 datasets
ensure the labels are genuine and not spam. Instead
of diminishing or consolidating labels, our interest
lies in understanding how models can be trained on
data with inherent disagreements. Consequently,
we choose not to incorporate the models presented
by Dawid and Skene (1979).

C.3 Size of the Added Parameters

For the annotator embedding, the learnable ma-
trix EA ∈ RN×H is of size N × H , where N is
the number of annotators, H is the hidden size of
the model. For its associated weight, αa, we in-
troduced 2 × H × H weight for the Ws and Wa

matrices. Therefore, we introduced NH + 2H2

parameters for the weighted annotator embedding.
Similarly, we introduced MH + 2H2 parameters

for the weighted annotation embedding, where M
is the number of unique labels in the dataset.

In TID-8, Sentiment Analysis has the most an-
notators of 1481, and CommitmentBank has the
most unique labels of 7 (Table 3). Take the BERT
base model as an example, H = 768, therefore,
NH + 2H2 + MH + 2H2 ≈ 3H2 + MH ≈
1Million at its maximum, which is around 1% of
BERT base’s parameter size (110 Million parame-
ters).

C.4 Experiment Results
Tables 9 and 10 report the EM accuracies and
macro F1 scores across models for the annota-
tion split on the eight datasets, respectively. We
observe similar performance patterns between Ta-
bles 9 and 10.

We report the BERT base performance for the
annotator split on the eight datasets in Tables 6, 11
and 12. Note that because for annotator split, we
are testing on a different set of annotators from the
train set, MVind cannot make any prediction based
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R MVind MVmacro T NC En Ea En + Ea

75.06 64.81 76.70 75.72 75.76
75.67 65.88 76.13 74.67 74.97
75.65 68.36 76.02 75.14 75.28
76.24 69.73 77.18 75.99 75.68
76.45 70.43 77.78 76.93 77.26

MDA 50.03 61.71 63.58

76.38 73.02 77.22 74.75 77.19

63.04 60.88 68.49 69.98 69.90
62.90 62.12 68.39 69.92 66.32
63.22 60.49 67.42 69.22 68.54
63.19 58.86 64.41 65.71 68.46
63.59 62.28 68.58 69.70 69.60

GOE 25.05 41.27 36.71

62.94 58.60 65.18 66.52 69.74

54.26 52.05 56.72 58.15 53.89
54.11 51.07 56.67 58.19 54.35
54.43 47.16 55.07 56.31 53.31
54.40 52.55 54.26 51.97 50.02
54.71 53.63 56.33 57.70 53.31

HUM 33.30 45.65 41.55

54.67 54.81 57.18 58.76 51.86

40.83 40.78 44.00 44.22 44.41
40.47 40.08 43.11 44.09 43.86
41.44 41.61 40.81 42.62 43.00
40.66 40.32 40.42 40.34 39.75
40.54 38.14 42.37 42.82 42.59

COM 14.02 25.58 18.26

40.57 33.82 44.02 44.33 44.15

47.09 39.20 62.88 60.23 64.61
47.32 36.91 61.88 56.20 63.65
46.40 43.32 60.30 45.57 59.65
47.88 43.82 58.19 46.50 55.16
45.75 43.62 61.21 52.57 60.83

SNT 20.04 49.47 37.49

48.76 43.78 67.37 68.39 69.77

61.76 60.49 61.68 61.51 61.96
65.31 62.64 65.66 63.56 62.86
66.78 66.04 63.22 62.01 61.70
68.03 62.91 65.31 70.38 62.50
67.61 67.51 68.73 68.92 68.77

FIA 20.22 45.67 45.67

71.73 72.32 72.69 69.56 72.20

67.48 64.84 65.28 65.42 65.77
68.59 67.22 64.93 62.84 62.94
71.46 71.20 61.29 62.32 60.82
71.93 70.39 59.89 57.66 59.23
70.26 63.19 64.70 64.69 65.07

PEJ 33.78 51.90 51.90

74.51 73.98 73.20 73.05 72.91

86.87 86.01 86.90 87.80 87.68
86.35 85.75 86.61 87.83 87.10
86.77 86.65 86.61 87.03 86.69
86.83 87.04 86.68 85.76 87.22
86.90 86.71 87.16 87.78 87.87

HSB 50.04 86.90 86.90

86.87 86.31 87.49 88.75 88.04

Table 9: EM accuracy scores for annotation split on all eight datasets, where the same annotators appear in both
train and test sets. We average the results across 10 runs. The best results are in bold if they yield a statistically
significant difference from the baselines or the other way around (t-test, p ≤ 0.05). For each dataset, the six rows
correspond to the scores from BERT base, BERT large, RoBERTa base, RoBERTa large, DeBERTa V3 base, and
DeBERTa V3 large.
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R MVind MVmacro T NC En Ea En + Ea

72.13 64.65 75.43 74.70 74.62
73.07 65.73 75.09 73.97 74.22
73.26 67.92 75.01 73.60 73.98
73.67 69.50 75.73 73.34 73.16
74.06 69.85 76.32 75.55 75.82

MDA 49.08 59.70 38.87

74.22 71.69 76.27 71.69 76.23

59.44 56.98 66.00 67.55 67.46
59.23 58.54 65.84 67.39 61.71
59.28 55.00 64.41 66.50 65.70
59.52 52.33 59.27 60.86 65.69
59.85 58.14 65.78 67.07 66.87

GOE 24.02 28.98 13.43

59.15 52.34 60.35 61.83 67.15

46.32 41.79 52.97 55.06 48.58
46.15 42.98 53.55 55.66 49.74
46.35 40.76 51.29 52.37 47.33
46.66 43.71 48.45 42.23 37.58
46.17 43.64 53.22 54.30 47.86

HUM 32.52 43.82 19.57

47.04 47.17 54.15 56.12 45.27

32.21 31.30 36.38 36.87 36.76
31.41 31.39 35.02 37.39 36.64
32.32 32.60 31.85 33.42 33.41
32.34 32.29 32.13 31.10 30.82
29.71 25.92 31.89 32.78 32.50

COM 13.86 22.15 4.41

30.72 23.29 36.64 38.71 37.93

32.71 28.39 58.16 48.99 59.40
34.30 30.63 57.40 43.78 58.68
34.40 32.90 55.40 33.64 54.19
35.45 33.54 50.47 33.30 46.22
33.58 27.78 55.72 40.16 55.11

SNT 18.29 38.85 10.91

37.45 36.08 64.36 64.11 67.14

45.22 44.91 44.30 45.65 45.36
49.06 42.80 47.23 44.23 45.55
50.82 48.40 46.19 44.75 45.58
51.24 41.15 44.92 56.94 41.12
49.04 53.02 52.32 52.78 53.68

FIA 17.07 12.54 12.54

55.75 56.95 56.49 53.72 56.87

45.23 43.70 43.97 43.53 43.97
46.11 45.34 43.29 41.10 41.92
48.26 48.06 40.42 40.68 40.24
48.35 47.34 39.09 36.56 38.71
47.28 40.49 43.32 42.94 43.22

PEJ 28.54 22.78 22.78

50.48 50.08 49.47 49.39 49.33

56.99 61.23 60.03 66.34 64.40
58.80 64.99 65.88 66.14 69.24
64.60 61.54 56.03 60.36 57.37
63.22 67.37 58.12 61.24 58.94
56.01 54.82 66.21 72.27 71.36

HSB 42.08 46.50 46.50

60.42 69.86 71.35 74.31 73.72

Table 10: Macro F1 scores for annotation split on all eight datasets, where the same annotators appear in both train
and test sets. We average the results across 10 runs. The best results are in bold if they yield a statistically significant
difference from the baselines or the other way around (t-test, p ≤ 0.05). For each dataset, the six rows correspond to
the scores from BERT base, BERT large, RoBERTa base, RoBERTa large, DeBERTa V3 base, and DeBERTa V3
large.
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R MVmacro T NC En Ea En + Ea

MDA 49.88 64.15 74.91 67.26 73.55 73.90 74.24
GOE 24.96 36.46 62.86 61.01 61.33 61.98 61.96
HUM 33.34 42.37 54.33 52.24 53.15 53.53 53.51
COM 14.22 19.88 40.78 40.49 40.80 40.30 40.28
SNT 19.98 42.56 43.93 38.56 36.99 40.82 37.90

FIA 20.22 46.41 84.55 83.00 77.48 83.70 83.23
PEJ 33.78 51.57 70.43 66.46 52.45 63.71 59.47
HSB 49.88 95.09 87.77 89.30 80.78 89.34 88.99

Table 11: EM accuracy for the BERT base model on annotator split, where a different set of annotators appear in
train and test sets. We average the results across 10 runs. The best results are in bold if they yield a statistically
significant difference from the baselines or the other way around (t-test, p ≤ 0.05).

R MVmacro T NC En Ea En + Ea

MDA 48.86 39.08 72.35 66.76 72.04 71.59 71.95
GOE 23.98 13.36 59.33 56.91 56.68 58.13 58.05
HUM 32.50 19.84 46.59 42.54 47.64 47.09 47.39
COM 13.97 4.74 32.08 31.31 32.58 32.12 31.81
SNT 17.92 11.94 31.18 32.82 23.99 29.35 26.82

FIA 17.07 12.68 75.59 73.27 66.42 73.70 72.62
PEJ 28.54 22.68 47.33 44.60 24.80 41.75 36.99
HSB 37.13 48.74 65.23 65.10 49.45 62.57 63.14

Table 12: Macro F1 scores for the BERT base model on annotator split, where a different set of annotators appear in
train and test sets. We average the results across 10 runs. The best results are in bold if they yield a statistically
significant difference from the baselines or the other way around (t-test, p ≤ 0.05).

on its mechanism. Therefore, we omit the MVind
baseline in Tables 6, 11 and 12.

C.5 Performances Patterns

Table 9 shows the EM accuracy scores in different
settings on TID-8 for the annotation split. Here
we mainly describe the performance patterns for
the BERT base model. The improvement across
different settings varies on TID-8. On Commit-
mentBank and Sentiment Analysis, adding either
the annotator or annotation embeddings improves
the model performance, and adding the two embed-
dings together further improves the model perfor-
mance. On Go Emotions, HS-Brexit, and Humor,
both embeddings improve the model performance,
but adding the two embeddings yields less improve-
ment than simply using annotator embeddings. On
Multi-Domain Agreement, both annotator and an-
notation embeddings improve the model perfor-
mance, but adding annotation embeddings yields
the most performance gain. Additionally, adding
both embeddings together yields less performance
gain than annotation embedding only. On Pejora-
tive, there are no significant improvements after
adding the annotator or annotation embeddings.
On Friends QIA, however, adding either embed-
ding hurts the performance, and the baseline setting

achieves the best performance.

Table 10 in Appendix C.4 shows the macro F1
scores with similar trends.

Our embeddings yield insignificant perfor-
mance gains or performance losses on datasets
with too few annotators or with few disagree-
ments. For Friends QIA and Pejorative, adding
annotator or annotation embeddings yields insignif-
icant performance gains or performance losses. For
Friends QIA, every annotator annotates all of the
examples in the dataset as shown in Figure 7. More-
over, only 4 examples in Friends QIA have 2 dif-
ferent labels, while the remaining 5.6k examples
have only a single label as shown in Table 8. For
Pejorative, the proportion of examples with which
annotators disagree is relatively small, as less than
10% of examples have 2 distinct labels (Table 8).
Moreover, Pejorative only has 3 annotators and 2
of them annotate the whole dataset while the other
annotates fewer than 10 examples. In these scenar-
ios with such a high or almost perfect agreement
rate and so few annotators, adding extra annotator
information may be a burden to the model, as there
is not much the model can do to accommodate
different annotators.
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Figure 8: Cohen Kappa scores between each annotator
of HS-Brexit. Annotators 4 to 6 are Muslim immigrants
and 1 to 3 are not.

NO HATE (NH) <–> HATE (H)
Annotator ID 1 2 3 4 5 6

Group Non Muslim Muslim Immi-
grants in the UK

Text: RT <user>: Islam has no place in Europe #Brexit
<url>
Annotation H NH H NH NH H

Text: Who let this clown into the US? Deport now. <url>
Annotation NH H NH H H H

Table 13: Label disagreements within the same demo-
graphic group for HS-Brexit. Annotator 4 to 6 are Mus-
lim immigrants and 1 to 3 are not.

Cases when annotator embeddings alone im-
prove performances. Apart from Go Emotions
and Humor discussed in Section 8, on HS-Brexit,
incorporating annotator embedding yields a perfor-
mance gain. HS-Brexit is annotated by six annota-
tors: three are Muslim immigrants in the UK, while
the other three are not. As all of the annotators an-
notate the entire dataset, we are able to calculate
inter-annotator agreement using the Cohen Kappa
scores (McHugh, 2012) and examine the agreement
between annotators belonging to the same group
(Muslim immigrants or not). Figure 8 shows the
Cohen Kappa scores, where annotators 4 to 6 are
Muslim immigrants and 1 to 3 are not. Though the
inter-group agreement is higher (≥ 0.40), both the
inter-group and overall inter-annotator agreements
lie in the range of 0.20 to 0.60, which suggests a
fair or moderate agreement. Table 13 shows two
examples where annotators from a Muslim back-
ground or no Muslim background disagree within
their own groups. In such a case, annotator embed-
ding might better capture the individual variance.

Cases when annotation embeddings alone im-
prove model performances. As discussed in
Section 8, on MultiDomain Agreement, adding
annotation embeddings alone improves model per-
formances. And the reason might be because the
annotation is a good reflection of their political
beliefs and attitudes towards topics in the dataset
domains. Therefore, annotation embeddings may
reflect the collective tendencies of individuals shar-
ing similar political beliefs and attitudes.

Our findings align with social identity theory
(Tajfel and Turner, 2004) which proposes that in-
dividuals within the same group exhibit similari-
ties, while differences exist between groups due to
variation in attitudes, behaviors, and self-concepts
(Hewstone et al., 2002; Hogg, 2016; Rosenberg,
2017).

Cases when adding annotator and annota-
tion embeddings together yield the best perfor-
mances. For the Sentiment Analysis, adding both
annotator and annotation embedding yields the best
performance. The Sentiment Analysis dataset is an
emotion classification dataset with the added spe-
cific goal of studying age-related bias, as shown in
Tables 5 and 7. Apart from individual differences
in emotional feelings, annotation embeddings can
also capture tendencies as a group. Thus, consider-
ing both individual and group tendencies, we find
that two embeddings together yield better results
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Figure 9: Pearson correlation of each label for Senti-
ment Analysis. There is a weak positive relationship
between “very negative” and “very positive”, as well as
“somewhat negative” and “somewhat positive”.

than using one alone on three out of the six models
we tested.

Another reason why the group tendency is im-
portant for Sentiment Analysis is that it has fine-
grained labels that indicate different intensities of
the same feelings or judgments. For instance, un-
like Go Emotions, which has three labels indicat-
ing positive, negative, or neutral, Sentiment Analy-
sis has five labels to represent different extents of
positive and negative emotion. Therefore, certain
groups of annotators may have their own interpre-
tations or preferences of the scale on Sentiment
Analysis. We calculate the Pearson correlations
across labels by:

• We first obtain the matrix of for annotators (Ai)
who annotate more than 50 examples:

A1 A2 · · · AN

label1 v11 v12 · · · v1N
label2 v21 v22 · · · v2N
· · ·

label5 v51 v52 · · · v5N

• We then calculate the Pearson correlation scores
based on the row vectors. For instance, if we
want to calculate the Pearson correlation score
for label1 and label2, we would calculate with
respect to [v11, v12, · · · , v1N ] and [v21, v22, · · · ,
v2N ].

Because the examples are randomly assigned by
default, we assume that there would not be any
obvious correlation between labels. However, Fig-
ure 9 shows a moderate Pearson correlation score

for the “Somewhat Negative” and “Somewhat Pos-
itive” labels. This suggests that a group of annota-
tors may prefer to use the a “moderate” extent in
their labeling process.

C.6 The Effects of Weights in Annotator and
Annotation Embeddings

Tables 14 and 15 present a comparison between
the weighted annotator and annotation embeddings
versus the embeddings that are without the weight
matrix.

We notice that for the eight datasets, the
weighted version generally performs better or about
the same as its unweighted counterpart. The weight
αa, αn may capture the relations between the text
and the annotator or annotation embeddings, there-
fore the weighted annotator or annotation embed-
dings may be integrated better with the text embed-
dings.

One exception is the accuracy patterns for Mul-
tiDomain Agreement. However, the weighted em-
beddings still achieve better or similar macro F1
scores on MultiDomain Agreement.

The other exception is Friends QIA in Few An-
notators Datasets, where the unweighted embed-
dings outperform the weighted ones. The reason
could be that Friends QIA only has six annotators
and the disagreement is minimal. Therefore, the
unweighted embeddings alone may be enough to
capture individual preferences.

C.7 Take-Away Messages

Single-dimensioned demographic features are
not enough. We find that individuals belonging
to the same demographic groups may hold contrast-
ing opinions. For instance, on HS-Brexit, where the
text might contain hate speech towards the Muslim
community, being from the Muslim community or
not does not necessarily determine an individual’s
stance or opinion. Table 13 shows several examples
where people from the same cultural background
disagree with each other. Our findings are similar to
Biester et al. (2022), who studied annotation across
genders for datasets of sentiment analysis, natural
language inference, and word similarity, and found
a lack of statistically significant differences in anno-
tation by males and females on three out of the four
datasets. Thus, relying on a single demographic
feature for analyzing perceptions oversimplifies the
intricate nature of individual stances and opinions.
We advocate for considering multiple dimensions
to gain a more comprehensive understanding of
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Enw.o. weight Enw. weight Eaw.o. weight Eaw. weight En+ Eaw.o. weight En+ Eaw. weight

MDA 75.17 76.70 76.86 75.72 77.19 75.76
GOE 66.68 68.49 69.00 69.98 69.20 69.90
HUM 54.13 56.72 55.37 58.15 54.65 53.89
COM 41.20 44.00 40.89 44.22 41.10 44.41
SNT 57.57 62.88 46.08 60.23 57.96 64.61

FIA 61.86 61.68 61.68 61.51 61.35 61.96
PEJ 66.43 65.28 65.78 65.42 66.67 65.77
HSB 87.03 86.90 87.19 87.80 87.25 87.68

Table 14: EM accuracy scores for our embeddings with or without weights on annotation split. We obtain the results
from the BERT base model. We average the results across 10 runs. The best results are in bold if they yield a
statistically significant difference from the baselines (t-test, p ≤ 0.05).

Enw.o. weight Enw. weight Eaw.o. weight Eaw. weight En+ Eaw.o. weight En+ Eaw. weight

MDA 74.88 74.70 72.42 75.43 75.34 74.62
GOE 66.47 67.55 63.57 66.00 66.71 67.46
HUM 48.96 55.06 45.69 52.97 47.54 48.58
COM 31.43 36.87 31.53 36.38 31.81 36.76
SNT 32.63 48.99 47.99 58.16 48.67 59.40

FIA 44.59 45.65 44.81 45.36 45.61 44.30
PEJ 44.71 43.97 44.08 43.53 44.80 43.97
HSB 55.48 66.34 54.30 60.03 54.80 64.40

Table 15: Macro F1 scores for our embeddings with or without weights on annotation split. We obtain the results
from the BERT base model. We average the results across 10 runs. The best results are in bold if they yield a
statistically significant difference from the baselines (t-test, p ≤ 0.05).

diverse viewpoints.

Diversifying the data. Because of the inherent
individual differences, it is crucial to incorporate
diversity in the data collection process. Collecting
data from a wide range of sources, including indi-
viduals from diverse backgrounds and demograph-
ics, is imperative. There could be disagreements
involved in the process, as we have seen in the
eight datasets we studied in this paper. However, by
gathering annotations from diverse populations, we
can capture the richness and complexity of human
experiences, perceptions, and opinions. Failing
to account for these individual differences in data
collection could lead to biased or incomplete repre-
sentations, limiting the validity and generalizability
of research findings.

C.8 Performance of Our Methods on Other
Datasets

Kumar et al. (2021) introduced the Toxic Ratings
dataset. We obtained the complete dataset from
Kumar et al. (2021) since the version available to
the public lacks annotator identification. Table 16
shows the performance of our methods with the
BERT base model.

D Details of the Group Alignment with
Demographic Features

Dimension of Demographic Features. We se-
lect seven dimensions that are sequential or can
be regarded as sequential data here, including age,
grew-up area, current living area, annual household
income, education, political identification, and gen-
der. Table 17 shows examples of the different de-
mographic features for each dimension. Note that
the values for each dimension are the most preva-
lent ones in the group, they are not necessarily
coming from a single person in that group.

Methods We first conduct the K-means cluster-
ing to cluster the embeddings. For an annotator
ai corresponding to the data point in the cluster,
we find his or her demographic features for all the
dimensions in the metadata for each dimension
{d1, d2, · · · , d12}. There could be imbalances for
the number of people from dj corresponding to the
dimension Dj , for instance, there might be more
females than males in terms of the gender dimen-
sion. Therefore, when counting its frequency in a
cluster/group, we give a multiplier α for dj

α =
N∑N

k=1 JDj = djK
(4)
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R MVind MVmacro T NC En Ea En + Ea

TOR 20.06 55.39 52.36 53.17 48.08 58.07 57.37 58.63

Table 16: Performance of our methods on Toxic Ratings (TOR) dataset (Kumar et al., 2021) for annotation split.

, where N is the total number of annotators (every
annotator has their own demographic features), JK
returns 1 if the dimension Dj for that annotator is
dj , otherwise, it returns 0.

We then calculate the frequency of dj for the
demographic dimension Dj for each cluster, where
the frequency f for the demographic feature Dj =
dj in cluster c is

f = αJDj = djKc (5)

We show the most prevalent demographic feature
for dimension Dj for each cluster in Figures 6
and 10a to 10e, and list the demographic features
for each cluster in Table 17.

Normalization of Demographic Features

• Current Live Area: Rural: 0.0, Suburban: 0.5,
Urban: 1.0.

• Grew Up Area: Rural: 0.0, Suburban: 0.5,
Urban: 1.0.

• Age: 50-59: 0, 60-69: 1, 70-79: 2, 80-89: 3,
90-99: 4, 100+: 5.

• Gender: Female: 0.0, Nonbinary: 0.5, Male:
1.0.

• Political Identification: Very liberal: 0.0,
Somewhat liberal: 0.25, Moderate: 0.5, Some-
what conservative: 0.75, Very conservative: 1.0.

• Education: Less than high school: 0.0, High
school graduate, GED, or equivalent: 0.25,
Some college or associate’s degree: 0.5, Bach-
elor’s degree: 0.75, Graduate or professional
degree: 1.0.

• Annual Household Income: Less than
$10,000: 0.0, $10,000 - $14,999: 0.11, $15,000
- $24,999: 0.22, $25,000 - $34,999: 0.33,
$35,000 - $49,999: 0.44, $50,000 - $74,999:
0.56, $75,000 - $99,999: 0.67, $100,000 -
$149,999: 0.78, $150,000 - $199,999: 0.89,
More than $200,000: 1.0.
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(e) Group 5

Figure 10: Sentiment Analysis group alignment with demographic features. For the shorthands, CA: current living
area, GU: grew up area, AG: age, GE: gender, PI: political identification, ED: education, AH: annual household
income.

Group ID 0 1 2 3 4

Curr Area Suburban Urban Urban Rural Suburban
Grew area Suburban Rural Urban Rural Suburban
Age 70-79 90-99 90-99 100+ 60-69
Gender Male Female Male Nonbinary Female
Poli Identifi Somewhat Conser-

vative
Very liberal Moderate Somewhat Conser-

vative
Moderate

Edu College/Associate College/Associate Bachelor’s degree Less than high
school

High School
/ GED / equiv-
-alent

Annual Income $150k - $200k < $10k $10k - $15k $35k - $50k $150k - $200k

Table 17: The most prevalent demographic features on each dimension for the five groups. Appendix D gives details
of each demographic dimension. Note that the values for each dimension are the most prevalent ones in each group,
they are not necessarily coming from a single person in that group.
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