
How important are specialized transforms in Neural Operators?

Ritam Majumdar 1 Shirish Karande 1 Lovekesh Vig 1

Abstract

Transform-based Neural Operators like Fourier
Neural Operators and Wavelet Neural Operators
have received a lot of attention for their potential
to provide fast solutions for systems of Partial Dif-
ferential Equations. In this work, we investigate
what could be the cost in performance, if all the
transform layers are replaced by learnable linear
layers. We observe that linear layers suffice to
provide performance comparable to best-known
transform-based layers and seem to do so at possi-
bly a compute time advantage as well. We believe
that this observation can have significant implica-
tions for future work on Neural Operators.

1. Introduction
The prediction and analysis of physical systems with the
help of computational forward simulations have emerged as
a crucial instrument in numerous industrial domains. These
physical systems, constrained by an array of Partial Differ-
ential Equations (PDEs) along with initial and boundary
values, call for precise and scalable simulation methodolo-
gies. Among the diverse range of techniques available,
transform-based Neural Operators such as Fourier Neural
Operator (FNO) (Li et al., 2021) and Wavelet Neural Oper-
ator (WNO) (Tripura & Chakraborty, 2023) have attracted
considerable attention for their aptitude in delivering rapid,
scale-free simulations.

One of the salient features of these transform-based opera-
tors is their ability to transform the input data into a domain
where the data’s inherent features become more apparent,
thus making it easier to analyze and perform computations.
Traditionally, the efficacy of such transformations is highly
reliant on the intrinsic nature of the data, leading to an opti-

1Tata Consultancy Services Research, India. Corre-
spondence to: Ritam Majumdar <ritam.majumdar@tcs.com>,
Shirish Karande <shirish.karande@tcs.com>, Lovekesh Vig
<lovekesh.vig@tcs.com>.

Accepted after peer-review at the 1st workshop on Synergy of
Scientific and Machine Learning Modeling, SynS & ML ICML,
Honolulu, Hawaii, USA. July, 2023. Copyright 2023 by the au-
thor(s).

mal choice of transform becoming a significant determinant
of the overall performance of the system. However, de-
spite the growing interest and success of these methods,
a comprehensive investigation into the necessity of these
sophisticated transforms, and their effect on system perfor-
mance is lacking. Tremendous human effort is involved in
the study of characteristics of the industrial data and making
the appropriate choice of transform.

The universal approximation theorem (Nishijima, 2021)
states that a neural network with a single hidden layer con-
taining a finite number of neurons can approximate con-
tinuous functions on compact subsets, given the activation
function is a non-constant, bounded, and monotonically
increasing continuous function. This includes specialized
transforms like Fourier, Laplace, and wavelet transforms.
It has been demonstrated, Neural Networks can success-
fully compute Discrete Fourier Transforms (Velik, 2008).
As specific transforms lead to distinct transformation of
the PDE-induced input data, the choice of transform be-
comes critical to the generalization capabilities of the neural
operator. While there is significant effort involved in de-
signing the correct transform for given input data and PDEs,
most considered transforms are linear in nature, raising the
question: Are these well-known pre-defined transforms es-
sential, or could they be replaced by a parameterized linear
layer which can learn an adaptive transform for the specific
problem under consideration and deliver comparable per-
formance? This study probes this pertinent question and
explores the performance implications when replacing all
transform layers in the network with basic learnable linear
layers.

We hypothesize that learnable linear transformations suffice
in terms of generalization and computational efficacy. The
initial results of our exploration are surprising, pointing to-
wards linear layers exhibiting performance parity with the
best-known transform-based operators, seemingly with a
computational advantage. Such a revelation prompts further
questioning of the underlying significance of transform-
based operators in the Neural Operator realm. This study
serves as an exploration of this notion, providing empirical
evidence that challenges the status quo of existing Neural
Operator models. The primary objective is to delve into the
trade-offs between using a pre-defined linear transform and
using a parameterized linear transform which adapts to the



How important are specialized transforms in Neural Operators?

PDE problem in-hand. We analyze the performance factor
and the computational cost as criterion for our trade-offs.
By doing this, we aim to shed light on the potential of learn-
able linear transformations and their capability to generalize
over varying PDE systems of different complexity, without
having to handcraft specialized transforms and save human
effort.

2. Related Work
Traditional approaches to forward simulation of Partial
Differential Equations (PDEs) primarily involve numeri-
cal methods such as Finite Difference, Finite Volume, and
Finite Element Methods. These approaches discretize the
problem domain into a grid or mesh and approximate the
derivatives in the PDEs using this discretized representa-
tion. However, these methods are computationally demand-
ing as they often require small time steps for stability, par-
ticularly in high-dimensional spaces. Furthermore, they
face challenges in handling complex geometries, multiple
scales, and non-linearities inherent in many physical sys-
tems. In the recent past, Neural network based techniques
like Physics-Informed Neural Networks (PINNs), (Raissi
et al., 2019), Deep Galerkin Methods (DGM) (Sirignano &
Spiliopoulos, 2018), Deep BSDE solvers (Wang & Ni, 2022)
have been proposed as surrogates for solutions of PDEs.
DGM is a neural network-based approach for solving PDEs
that formulates the solution as a continuous optimization
problem, handling high-dimensional problems more effec-
tively than traditional methods. Deep BSDE Solvers solve
high-dimensional PDEs by representing them as backward
stochastic differential equations. These methods however,
don’t generalize to changing initial-boundary conditions
and requires retraining for every unique initial-boundary
conditions and parameterized PDE coefficients.

Operator-based methods circumvent around this issue by
aiming to learn a mapping or an operator, that transforms a
given set of input conditions (parameterized initial-boundary
conditions) to the corresponding solutions. Given a new-
instance of a PDE system, instead of developing solutions
from scratch, a pre-trained operator can simply infer the
solutions in real time, reducing computational cost. Some
widely-used operators for learning systems of parameter-
ized PDEs are DeepONets (Lu et al., 2021), Fourier Neural
Operators (FNO) (Li et al., 2021), Wavelet Neural Opera-
tors (WNO) (Tripura & Chakraborty, 2023), Laplace Neural
Operators (LNO) (Cao et al., 2023), just to name a few.
DeepONets, rooted in the universal approximation theorem,
consist of a branch network processing function parameters
and a trunk network handling function variables. The final
output, integration of the two network outputs, effectively
approximate complex operators. Special linear-transforms
like Fourier, Wavelet and Laplace have been incorporated

into Neural transforms as tools for feature extraction and
data compression to improve the representation-capacity
of Neural Operators. FNO consists of a Fourier transform
to convert the input data into Fourier space, followed by
multiple layers of 1D convolutions and nonlinearities to
learn the mapping, and then an inverse Fourier transform to
convert the output back to the original space. WNO takes
Wavelet transforms instead of Fourier transforms and is bet-
ter equipped to handle non-periodic and irregular domains
due to the superiority of wavelets in time-frequency local-
ization. LNO uses the Laplace transform to decompose the
input space and can handle non-periodic signals, take tran-
sient responses into account, and converge exponentially.

3. Methodology
We describe the architecture of our Neural Operator in Fig-
ure 1. The architecture resembles the original architectures
of FNO and WNO, the only difference being, we replace
the one-dimensional Fourier (Wavelet) and Inverse Fourier
(Wavelet) transforms with learnable linear transforms M
and N respectively. Our objective is to learn a operator
G parameterized by θ mapping Gθ : A → U , wherein
A = A(D;Rda) and U = U(D;Rdu) are input and out-
put Banach spaces and D ⊂ Rd be a bounded, open set.
a(x) ∈ Rda and u(x) ∈ Rdu refer to the input and output
signals sampled i.i.d from A and U respectively.

The neural operator, similar to (Li et al., 2021) is formulated
as an iterative architecture v0 → v1 → ... → vT where vj
with j ∈ [0, T − 1] is a sequence of functions each taking
values in Rdv . Rdv is the dimension of the middle projection
layers. As shown in Figure 1, the input a ∈ A is first lifted
to a higher dimensional representation

v0(x) = P (a(x)) (1)

by the local transformation P : Rda → Rdv which is pa-
rameterized by a shallow neural network. Then we apply
several iterations of updates vt → vt+1 defined as the com-
position of a non-local integral operator K and a local, non-
linear activation function σ. The projection Q transforms
the projection back to the dimension of the output space
Q : Rdv → Rdu , while the output u(x) is defined as

u(x) = Q(vT (x)) (2)

The update vt → vt+1 is defined as:

vt+1(x) = σ(W.vt(x) +K(a;ϕ)vt(x)) (3)

K(a;ϕ)vt(x) =

∫
D

κ(x, y, a(x), a(y);ϕ)vt(y)dy (4)

κ(x, y, a(x), a(y);ϕ)vt(y) = N(R ·M(vt(y))) (5)

Here κ(ϕ) : R2(d+da) → RdvXdv is a kernel integral op-
erator represented by a neural network parameterized by



How important are specialized transforms in Neural Operators?

a(x) P Neural layer 1 Neural layer 2 Neural layer T Q u(x)

+ σ

Neural Layer

v(x)

M NR

W

Figure 1. Model architecture of Neural Operator

ϕ. W : Rdv → Rdv is a linear transformation, and σ is a
non-linear activation function.

An n-dimensional Fourier transform can be broken down
into n 1D-Fourier Transforms along each dimension (Tolim-
ieri et al., 2012). Given an n-dimensional tensor of shape
Rd1×Rd2×· · ·×Rdn , the n-dimensional Fourier transform
M of the tensor is defined as:

M(Rd1 × · · · ×Rdn) = F (Rd1)× · · · × F (Rdn) (6)

where F refers to the one-dimensional Fourier transform.
The resulting tensor is of the shape Ck1 × Ck2 × · · · ×
Ckn where k1, k2, . . . , kn are the chosen number of Fourier
modes in the low-frequency regime, and C refers to the
complex domain. We replace the one-dimensional Fourier
transform F with a learnable linear layer Lf and Lb where
Lf stands for linear transform in forward space and Lb

refers to linear transform in the inverse space. We define
our n-dimensional linear transformation M as follows:

M(Rd1 × · · · ×Rdn) = Lf1(R
d1)× · · · ×Lfn(R

dn) (7)

where Lfi where i ∈ [1, n] represents learnable linear trans-
forms (parameterized matrices of shape Rdi ×Rki) along
each dimension. In figure 1, R refers to the tensor multi-
plication in the transformed space. In the Fourier space,
R takes in Cdv × Ck1 × · · · × Ckn dimensional tensor as
input, takes an element wise tensor multiplication with a
parameterized tensor of shape Cdv2 × Ck1 × · · · × Ckn to
output a Cdv ×Ck1 × · · ·×Ckn dimensional tensor. In our
case, we stay in the real domain, and our input and output
tensors are of the shape Rdv ×Rk1 × · · · ×Rkn , while the
parameterized tensor is of the shape Rdv2×Rk1×· · ·×Rkn .

The n-dimensional inverse transform N is defined as

N(Ck1 ×· · ·×Ckn) = F−1(Ck1)×· · ·×F−1(Ckn) (8)

where F−1 refers to the one-dimensional inverse Fourier
transform. The resulting tensor is of the shape Rd1 ×Rd2 ×
· · ·×Rdn , the original dimensions of the tensor. In our case,

we replace F−1 with Lb (parameterized matrices of shape
Rki ×Rdi ) and define the inverse transform N to be

N(Rk1 × · · · ×Rkn) = Lb1(R
k1)× · · · ×Lbn(R

kn) (9)

The M-R-N operation is repeated iteratively for T blocks,
before being projected to the output space u(x) using
projection Q defined in Eqn 2. The code and datasets
for the paper are available at https://github.com/Ritam-
M/LearnableTransformsNO

4. PDE information
In order to make a fair comparison, we consider the same
class of examples used in the original papers of (Li et al.,
2021; Tripura & Chakraborty, 2023).

Burgers’ Equation We consider the 1D Burgers’ equation,
which is a non-linear PDE with various applications, includ-
ing modeling the flow of a viscous fluid. The 1D Burgers’
equation takes the form:

∂tu(x, t) + ∂x
(
u2(x, t)/2

)
= ν∂xxu(x, t), t ∈ (0, 1]

u(x, 0) = u0(x), x ∈ (0, 1)

where u0 is the initial condition and ν is the viscosity co-
efficient. We aim to learn the operator mapping the initial
condition to the solution.

Wave advection equation: The wave advection equation
is a hyperbolic PDE and primarily describes the solution
of a scalar under some known velocity field. The advec-
tion equation with periodic boundary condition is given by,
∂tu(x, t) + v∂xu(x, t) = 0 and u(x− π, t) = u(x+ π, t).
v ∈ R > 0 represents the speed of the flow. The
initial condition is given by, u(x, 0) = h{c−ω

2 ,c+ω
2 } +√

max (h2 − (a(x− c))2, 0). where the variables ω and
h represents the width and height of the square wave,
respectively and the wave is centered at x = c. For
v = 1, the solution to the advection equation is given as,
u(x, t) = u0(x− t). The objective is to learn the operator,
that learns the mapping u0(x) 7→ u(x, t), to a later time t.



How important are specialized transforms in Neural Operators?

2D Darcy Flow 2D Darcy Flow is a linear second-order
elliptic PDE. We consider a steady-state flow in a unit box,
given by:

−∇ · (a(x)∇u(x)) = f(x), x ∈ (0, 1)2

u(x) = 0, x ∈ ∂(0, 1)2

with a Dirichlet boundary where a is the diffusion coefficient
and f = 1 is the forcing function. The objective is to
learn the operator mapping the diffusion coefficient to the
solution.

2D Darcy flow equation with a notch in triangular do-
main: This example is a special case of the 2D-Darcy
problem in the triangular domain with a notch in the
flow. The boundary conditions for the triangular domain
are generated using the following Gaussian process (GP),
u(x) ∼ GP(0,K (x, x′)), with the kernel K (x, x′) =

exp
(
− (x− x′)

2
/2l2

)
; l = 0.2;x, x′ ∈ [0, 1]. The per-

meability and the forcing function f(x, y) is 0.1 and -1
respectively. The objective is to learn the operator map-
ping the boundary conditions to the pressure field, given by,
u(x, y)|∂ω 7→ u(x, y).

Navier-Stokes Equation The two dimensional temporally
varying Navier-Stokes equation for a viscous, incompress-
ible fluid on the unit torus is given by:

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x),

∇ · u(x, t) = 0, x ∈ (0, 1)2

w(x, 0) = w0(x), t ∈ (0, T ]

where w = ∇ × u is the vorticity, w0 is the initial vor-
ticity, ν ∈ R+is the viscosity coefficient, and f(x) =
0.1 (sin (2π (x1 + x2)) + cos (2π (x1 + x2))) is the forc-
ing function. The objective is to learn the operator mapping
the vorticity up to time 10 to the vorticity up to some later
time.

Kolmogorov Flow The high-frequency Kolmogorov flow
is governed by the 2D Navier-Stokes equation, defined in
the earlier section. The forcing f(x) = sin (nx2) x̂1, where
x1 is the unit vector and a larger domain size [0, 2π]. The
objective is to learn the evolution operator mapping the next
time-step from the previous time-step.

5. Training and Hyperparameter Details
In order to have a fair comparison and benchmark in an
unbiased manner, we consider the original PDE examples
and datasets used in the original papers of (Li et al., 2021;
Tripura & Chakraborty, 2023), same set of hyperparameters
(Same number of layers, same spatial and temporal grid
dimensions of PDE examples, same transform dimensions,
optimizers, schedulers, batch sizes of examples, etc). We

construct our neural operator by stacking four integral op-
erator layers with ReLU as the activation function. We use
an Adam optimizer for 500 epochs with an initial learning
rate of 1e−3 that is halved every 100 epochs. All experi-
ments were conducted on Nvidia P100 GPU with 16 GB
GPU Memory and 1.32 GHz GPU Memory clock using Py-
torch framework. In Burger’s, Wave-Advection, 2D-Darcy
Rectangular and Triangular domains and Navier-Stokes,
we consider 500 training examples and 200 test-examples,
while in Darcy-notch we consider 1900 and 100 train and
test examples respectively. Our dimensions of linear trans-
forms are same as the number of modes in Fourier transform
used in (Li et al., 2021). For one-dimensional examples, our
final transform-dimension is 64, while for two-dimensional
and three-dimensional examples, our transform-dimension
is 32. Across all examples, we use % relative L2-error as
our metric.

6. Results and Discussion
In this section, we discuss the results of our experiments.
We divide our analysis into two sections, Table 1 consists
of the lower-dimensional PDEs, while Table 2 consists of
higher-dimensional PDEs. In all examples in Table 1, the
experiments are trained and evaluated on the same resolu-
tion. In Table 2, the property column refers to viscosity in
Navier-Stokes and Reynold’s number (Re) in Kolmogorov
flow. The complexity of the problem is increased by the
decrease in viscosity in Navier-Stokes and higher Re in
Kolmogorov flow, which leads to turbulent behavior.

PDE Resolution Ours FNO WNO
1024 0.18 0.17 0.20

Burger’s 2048 0.18 0.19 0.25
4096 0.19 0.19 0.24

Advection 40× 40 0.61 45.14 0.59
106× 106 0.27 0.27 0.34

Darcy-flow 211× 211 0.26 0.27 0.35
421× 421 0.28 0.28 0.35

Darcy-Notch 100× 100 0.69 - 0.74

Table 1. Test % relative L2-error for lower dimensional PDEs

From Table 1, we observe our Neural Operator with a learn-
able linear transform performs competitively against the
best-performing architecture between FNO and WNO. FNO
struggles on the examples of Wave-Advection and triangu-
lar domain Darcy flow with a notch, due to the inability of
Fourier transform to handle irregular geometry. Our neural
linear transform is capable of learning the transform suitable
for irregular geometries, indicated by the superior perfor-
mance over FNOs and comparable performance with WNOs.
Numerically, learnable linear-transform based Neural op-
erators are within 0.01 to 0.02 points (outperforms Darcy-
triangular-notch by 0.05 points) against the best-performing



How important are specialized transforms in Neural Operators?

transform between FNO and WNO across all examples and
resolutions.

PDE Property Ours FNO WNO

1e−3 3.03 3.02 4.54
3.24 3.22 3.74

Navier
1e−4 7.07 7.16 9.39

Stokes 7.12 7.33 9.16

1e−5 15.27 14.85 18.57
17.19 17.32 24.15

100 4.02 3.91 5.53
Kolmogorov 400 9.66 9.64 10.56

500 13.36 13.35 15.54

Table 2. Test % relative L2-error for higher dimensional PDEs

Table 2 represents the results on higher-dimensional PDEs,
the more difficult examples in our study. In Navier-Stokes,
the first row for each viscosity refers to modeling the two-
dimensional spatial component using a 2D-Neural Operator
and the temporal component using an LSTM , while the
second row directly models the spatial and temporal compo-
nents together using a 3D-Neural Operator. The resolution
is fixed to 64× 64 for both training and testing. We observe,
across all examples, taking a learnable linear transform per-
forms comparably against pre-defined Fourier and Wavelet
transforms across all examples. Thus, parameterized trans-
forms have the ability to scale to the complexity of the
PDE and can adapt to learn a transform best suited to the
PDE problem under consideration. In the Kolmogorov flow
examples, learnable transforms based NOs are within 0.1
points against FNOs, while in the Navier-Stokes examples,
learnable transforms are within 0.42 points against FNOs,
while being the best performing architecture among 3 out
of 6 scenarios.

PDE Ours FNO WNO
1D-Burgers 2.52 2.75 5.58
Advection 2.72 2.86 6.03
2D-Darcy 13.55 13.84 38.34

Navier-Stokes (2D+time) 67.41 130 221
Navier-Stokes (3D) 22.14 46.33 196

Kolmogorov 16.35 19.56 47.75

Table 3. Training times of operators (per epoch) in seconds

We refer to the training time per epoch for each of the
operators in Table 3. We train all the operators for 500
epochs (the original hyperparameter considered in FNO
and WNO papers) to keep the benchmarking consistent.
Learnable linear transform is significantly faster to train than
FNO on complex examples and WNO across all examples.

We investigate the reasons behind this, and make a compar-
sion of the parameter count of differentiating blocks of each
operator in Table 4. All notations in Table 4 are consistent

M R N

FNO/WNO 0 2dv
2 ∏n

i=1 ki 0
Ours

∑n
i=1 diki dv

2 ∏n
i=1 ki

∑n
i=1 diki

Table 4. Parameter size comparison between Neural Operators

with those defined in the methodology section of the paper.
M,N refers to the forward and inverse transforms, while R
refers to the tensor multiplication. n refers to number of di-
mensions, while di, ki refer to input and output dimensions
before and after computing a forward transform, respec-
tively. While FNO/WNO have no extra parameters while
undergoing the forward, inverse transforms, the tensor mul-
tiplication R takes place in the complex space, contributing
to an additional dv2

∏n
i=1 ki parameters as against learnable

linear-layer based transforms. In all scenarios, FNO/WNO
architectures have an additional dv2

∏n
i=1 ki−2

∑n
i=1 diki

parameters per block. The training time of a neural network
architecture is proportional to the number of parameters.
Since linear-transform based Neural Operators end up hav-
ing a lower number of parameters, their training time is
faster as compared to FNO/WNO.

7. Conclusion
We replace specialized transforms like Fourier and Wavelet
in Neural Operators with a learnable linear transform. The
learnable linear transforms generalize well and perform
competitively on a wide class of examples like low-viscous
Navier Stokes and high Re Kolmogorov flow. Additionally,
learnable linear transforms generalize on Wave-Advection
and irregular domain Darcy flows which Fourier trans-
forms fail to do and is computationally faster than Wavelet
transform-based operators. Thus, a parameterized linear
layer can replace specialized transforms and saves human
effort for Neural Operator architecture design. In future,
we seek to investigate the learnt transforms and their resem-
blance with known transforms. Additionally, theoretical
studies on convergence rates and error-bounds for parame-
terized linear layer-based Neural Operators remain.

8. Broader impact
The findings of this work hold the potential to streamline
computational simulations across various industries, from
engineering and meteorology to physics, by utilizing learn-
able linear transformations instead of pre-defined transform-
based Neural Operators. This may foster faster, more acces-
sible and more generalizable simulations, expanding their
applicability even to higher complexity entities.



How important are specialized transforms in Neural Operators?

References
Cao, Q., Goswami, S., and Karniadakis, G. E. Lno: Laplace

neural operator for solving differential equations, 2023.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions, 2021.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E.
Learning nonlinear operators via DeepONet based on
the universal approximation theorem of operators. Na-
ture Machine Intelligence, 3(3):218–229, mar 2021. doi:
10.1038/s42256-021-00302-5. URL https://doi.
org/10.1038%2Fs42256-021-00302-5.

Nishijima, T. Universal approximation theorem for neural
networks, 2021.

Raissi, M., Perdikaris, P., and Karniadakis, G. Physics-
informed neural networks: A deep learning frame-
work for solving forward and inverse problems involv-
ing nonlinear partial differential equations. Journal
of Computational Physics, 378:686–707, 2019. ISSN
0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.10.
045. URL https://www.sciencedirect.com/
science/article/pii/S0021999118307125.

Sirignano, J. and Spiliopoulos, K. DGM: A deep learn-
ing algorithm for solving partial differential equations.
Journal of Computational Physics, 375:1339–1364, dec
2018. doi: 10.1016/j.jcp.2018.08.029. URL https:
//doi.org/10.1016%2Fj.jcp.2018.08.029.

Tolimieri, R., An, M., and Lu, C. Mathematics of mul-
tidimensional Fourier transform algorithms. Springer
Science & Business Media, 2012.

Tripura, T. and Chakraborty, S. Wavelet neural op-
erator for solving parametric partial differential
equations in computational mechanics problems.
Computer Methods in Applied Mechanics and En-
gineering, 404:115783, 2023. ISSN 0045-7825.
doi: https://doi.org/10.1016/j.cma.2022.115783.
URL https://www.sciencedirect.com/
science/article/pii/S0045782522007393.

Velik, R. Discrete fourier transform computation using
neural networks. In 2008 International Conference on
Computational Intelligence and Security, volume 1, pp.
120–123, 2008. doi: 10.1109/CIS.2008.36.

Wang, Y. and Ni, Y.-H. Deep bsde-ml learning and its
application to model-free optimal control, 2022.

https://doi.org/10.1038%2Fs42256-021-00302-5
https://doi.org/10.1038%2Fs42256-021-00302-5
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://doi.org/10.1016%2Fj.jcp.2018.08.029
https://doi.org/10.1016%2Fj.jcp.2018.08.029
https://www.sciencedirect.com/science/article/pii/S0045782522007393
https://www.sciencedirect.com/science/article/pii/S0045782522007393

