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Optimizing Polynomial Graph Filters: A Novel Adaptive Krylov
Subspace Approach

Anonymous Author(s)

ABSTRACT
Graph Neural Networks (GNNs) as spectral graph filters, enhanc-

ing specific frequencies of graph signals while suppressing the

rest, find a wide range of applications in web networks. To bypass

eigendecomposition, polynomial graph filters are proposed to ap-

proximate graph filters by leveraging various polynomial bases

for filter training. However, no existing studies have explored the

diverse polynomial graph filters from a unified perspective for

optimization.

In this paper, we first unify polynomial graph filters, as well as

the optimal filters of identical degrees into the Krylov subspace of

the same order, thus providing equivalent expressive power theoret-
ically. Next, we investigate the asymptotic convergence property of

polynomials from the unified Krylov subspace perspective, reveal-

ing their limited adaptability in graphs with varying heterophily

degrees. Inspired by those facts, we design a novel adaptive Krylov

subspace approach to optimize polynomial bases with provable

controllability over the graph spectrum so as to adapt various het-

erophily graphs. Subsequently, we propose AdaptKry, an optimized

polynomial graph filter utilizing bases from the adaptive Krylov

subspaces. Meanwhile, in light of the diverse spectral properties

of complex graphs comprising numerous components, we extend

AdaptKry by leveraging multiple adaptive Krylov bases without in-

curring extra training costs. As a consequence, extended AdaptKry
is able to capture the intricate characteristics of graphs and provide

insights into their inherent complexity. We conduct extensive ex-

periments across a series of real-world datasets. The experimental

results demonstrate the superior filtering capability of AdaptKry,
as well as the optimized efficacy of the adaptive Krylov basis.

KEYWORDS
Spectral Graph Neural Networks, Supervised Classification, Krylov

Subspace
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1 INTRODUCTION
Graph Neural Networks (GNNs) [23], inherently acting as spectral
graph filters [5, 10, 23, 42], are widely employed across various web
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applications, such as classification on web services [16, 51], online e-

commerce [11, 48, 50], and analysis of social networks [27, 35, 37].

Specifically, given a graph G, the Laplacian matrix L is eigen-

decomposed as L = UΛU⊤ where U is the matrix of eigenvec-

tors and Λ is the diagonal matrix of eigenvalues. Given a signal

x, a spectral graph filter gw parameterized by vector w on x is

gw (L)x = Ugw (Λ)U⊤x. To avert the computation burden of eigen-

decomposition, polynomial filters have been proposed to approxi-

mate the optimal graph filter via polynomial approximation, such

as ChebNet [10], BernNet [21], and JacobiConv [44]. Specifically,
ChebNet utilizes truncated Chebyshev polynomials [19, 30] and

achieves localized spectral filtering. To acquire better controllability

and interpretability, BernNet employs Bernstein polynomials [12].

Lately, Wang and Zhang [44] analyze the expressive power of cur-

rent polynomial filters and propose JacobiConv by exploiting Jacobi
polynomial bases [1].

Numerous studies have investigated various polynomials for

polynomial filters, yet no prior research has explored the proper-

ties of polynomials as signal bases for graph filters from a unified

perspective. Meanwhile, those existing polynomials are usually

exploited directly in graph filters without any customization for

different graphs. An intriguing and valuable question that arises is:

can we optimize polynomial graph filters by enhancing the underlying
polynomial basis?

To address this question, we revisit polynomial filters in terms of

Krylov subspace [29, 32]. The Krylov subspace method was initially

proposed in the early 1950s for solving linear systems [36, 43]. A

Krylov subspace is a subspace of Euclidean vector space. In par-

ticular, an order-𝐾 Krylov subspace is constructed by multiplying

the first 𝐾 powers of a matrix A ∈ R𝑛×𝑛 to a vector v ∈ R𝑛 where

𝐾 is an integer (details in Section 6). In the realm of polynomial

filters, matrix A corresponds to the propagation matrix, v is the

feature signal, and 𝐾 stands for the propagation hops. In this paper,

we demonstrate that polynomial filters sharing identical degrees

inherently belong to the Krylov subspace of the same order and

hence yield theoretically equivalent expressive power.

From the perspective of the Krylov subspace, we prove that prop-

agation matrices in existing polynomials gradually approach stabil-

ity in an asymptotic manner regardless of the heterophily in the

underlying graphs (Theorem 1). It is known that high-frequency sig-

nals can also provide insightful information [2, 7, 25], especially for

strong heterophily graphs. Inspired, we design a tunable propaga-

tion matrix and propose a novel adaptive Krylov subspace approach.

To clarify, we introduce a hyperparameter into propagation matri-

ces by inspecting the graph heat equation [9, 45], equipping the

ability to reshape the underlying spectrum of graphs (Theorem 2).

As a consequence, polynomials from the adaptive Krylov subspace

disrupt the convergence pattern and offer flexible adaptability to

graphs with varying heterophily. Subsequently, we propose Adap-
tKry, an optimized polynomial graph filter by leveraging bases

1
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from the adaptive Krylov subspaces, known as adaptive Krylov
bases. Meanwhile, complex graphs consisting of multiple compo-

nents are inclined to exhibit diverse spectral properties. To handle

such scenarios, we extend AdaptKry by employing several adaptive

Krylov bases simultaneously. The resultant basis set also sheds light

on the complexity of networks. In addition, we integrate weight

parameters of different bases into one singular parameter, ensuring

that no extra training overhead is incurred. We compare AdaptKry
against 11 baselines on 6 real-world datasets with a range of ho-

mophily ratios. AdaptKry achieves the highest accuracy scores in

node classification for almost all cases. Those experimental results

strongly support the superior performance of AdaptKry as poly-

nomial filters. We also devise a comprehensive ablation study to

demonstrate the properties of adaptive Krylov bases and AdaptKry
in Section 5.3. In a nutshell, our contributions are briefly summa-

rized as follows.

• We unify polynomial filters as well as optimal filters from

the Krylov subspace perspective and reveal their constrained

adaptability in graphs with varying heterophily degrees.

• We devise a novel adaptive Krylov subspace approach and

propose an optimized polynomial filter AdaptKry. Meanwhile,

we extend AdaptKry to incorporate multiple adaptive Krylov

bases, enhancing expressive capability without extra training

costs.

• We conduct comprehensive experiments to verify the superior

performance of AdaptKry as polynomial filters, as well as

extensive ablation study to explore the properties AdaptKry
and the adaptive Krylov basis.

2 PRELIMINARY

Table 1: Frequently used notations

Notation Description
G = (V, E) a social network with node setV and edge set E

𝑛,𝑚 the numbers of nodes and edges in G respectively

𝑑𝑢 the degree of node 𝑢

N𝑢 ,N (ℓ )𝑢 the one-hop and ℓ-th hop neighbors of node 𝑢

A,D the adjacency matrix and diagonal degree matrix

L the normalized Laplacian matrix

X, x𝑢 the feature matrix and the feature vector of node 𝑢

Z, z𝑢
the representation matrix and the representation vec-

tor of node 𝑢

K𝐾 (P, x)
A Krylov subspace constructed by matrix P and vector

x as K𝐾 (P, x) = span{x, Px, P2x, · · · , P𝐾−1x}

2.1 Notations and Definitions
In this paper, we use bold uppercase letters, bold lowercase letters,

and calligraphic fonts to represent matrices (e.g., A), vectors (e.g.,

x), and sets (e.g., N ), respectively. The 𝑖-th row (resp. column) of

matrix A is represented by A[𝑖, ·] (resp. A[·, 𝑖]). We denote [𝑛] =
{1, 2, · · · , 𝑛}.
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Figure 1: Illustrations of polynomial approximations to four
common graph filters

Let G = (V, E) be an undirected and connected graph with node
setV and edge set E, 𝑛 = |V| and𝑚 = |E | be the number of nodes

and edges, respectively. Let X ∈ R𝑛×𝑑 be its 𝑑-dimension feature

matrix where each node 𝑣 ∈ V is associated with a 𝑑-dimensional

feature vector x𝑣 ∈ X. For simplicity purposes, we also use node

𝑢 ∈ V to indicate its index, i.e., x𝑢 = X[𝑢, ·]. The direct neighbor set
of any node𝑢 ∈ V with degree 𝑑𝑢 is denoted asN𝑢 with 𝑑𝑢 = |N𝑢 |.
Let A ∈ R𝑛×𝑛 be the adjacency matrix of G, i.e., A[𝑢, 𝑣] = 1 if

⟨𝑢, 𝑣⟩ ∈ E; otherwise A[𝑢, 𝑣] = 0, and D ∈ R𝑛×𝑛 be the diagonal

degree matrix of G, i.e., D[𝑢,𝑢] = 𝑑𝑢 . Normalized Laplacian matrix

L1
of graph G is defined as L = I − D−

1

2 AD−
1

2 where I is the
identity matrix.

2.2 Polynomial Graph Filters
Given a graph G = (V, E), the corresponding Laplacian matrix

is L = UΛU⊤, where U is the matrix of eigenvectors and Λ =

diag[𝜆1, · · · , 𝜆𝑛] is the diagonal matrix of eigenvalues. In particular,

eigenvalues 𝜆𝑖 ∈ [0, 2] for 𝑖 ∈ [𝑛] mark the frequency and the

eigenvalue set {𝜆1, · · · , 𝜆𝑛} is the spectrum of G. Without loss of

generality, we assume 0 = 𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝑛 ≤ 2.

Given a graph signal x ∈ R𝑛 , graph Fourier operator F (x) =
U⊤x transforms the graph signal x into the spectral domain, and

then a predefined spectral filtering gw (·) parameterized by w ∈ R𝑛

is applied on the transformed signals. Last, the processed signal is

transformed back via the inverse graph Fourier transform operator

F −1 (x) = Ux. Specifically, the spectral graph filter is defined as

F −1 (F (gw) ⊙ F (x)) = Ugw (Λ)U⊤x

=U diag(gw (𝜆1), · · · , gw (𝜆𝑛))U⊤x. (1)

where ⊙ is the Hadamard product.

In general, the filter function gw (·) enhances signals in specific

frequency intervals and suppresses the rest parts. Four types of

1
Without further specification, L refers to the normalized Laplacian matrix in this

paper.

2
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spectral filters are commonly observed in real-world graphs [21],

i.e., low-pass filter, band-pass filter, comb-pass filter, and high-pass

filter, as illustrated in Figure 1. Intuitively, homophily graphs tend to

contain low-frequency signals whilst heterophily graphs likely own

high-frequency signals. To quantify the graph homophily degree,

we define homophily ratio ℎ as follows.

Definition 1 (Homophily Ratio ℎ). Given a graph G = (V, E)
and its label set C ∈ R |V | , the homophily ration ℎ of G is the
fraction of edges with two end nodes from the same class, i.e., ℎ =
| { ⟨𝑢,𝑣⟩∈E : C𝑢=C𝑣 } |

| E | .

Since (i) it is inefficient to conduct matrix eigendecomposition

(time complexity 𝑂 (𝑛3)) and (ii) any desired spectral filters can be

approximated with polynomials [19, 30], existing spectral GNNs

approximate the spectral filter with various learnable polynomials.

ChebNet. Defferrard et al. [10] adopt Chebyshev polynomials up

to 𝐾-th order to approximate Equation (1) as

Ugw (Λ)U⊤x ≈ U

(
𝐾∑︁
𝑘=0

𝑤𝑘𝑇𝑘 (Λ̂)
)

U⊤x =

(
𝐾∑︁
𝑘=0

𝑤𝑘𝑇𝑘 ( ˆL)
)

x, (2)

where
ˆL = UΛ̂U⊤ and Λ̂ = 2Λ/𝜆max−I is a normalized diagonal ma-

trix with eigenvalues within [−1, 1], and 𝜆max = max{𝜆1, · · · , 𝜆𝑛}
is the maximum eigenvalue of L. 𝑤𝑘 is the learnable Chebyshev

coefficient and𝑇𝑘 (𝑥) is the Chebyshev polynomial recursively com-

puted as𝑇𝑘 (𝑥) = 2𝑥𝑇𝑘−1 (𝑥)−𝑇𝑘−2 (𝑥) with𝑇0 (𝑥) = 1 and𝑇1 (𝑥) = 𝑥 .
By taking the learnable Chebyshev coefficient𝑤𝑘 as the trainable

parameter of the 𝑘-th convolution layer, the filter function of Cheb-
Net is gw (𝜆) =

∑𝐾
𝑘=0

𝑤𝑘𝑇𝑘 (𝜆).
GPR-GNN. Chien et al. [8] follow the generalized PageRank (GPR)

architecture by stacking up 𝐾 convolution layers and assigning a

learnable weight for each layer. They propose GPR-GNN as

z =

𝐾∑︁
𝑘=0

𝑤𝑘 (D̃−
1

2 ÃD̃−
1

2 )𝑘 · 𝑓𝜃 (x), (3)

where Ã = A + I, D̃ = D + I, z is the final node representation,

𝑓𝜃 (·) represents a neural network parameterized by 𝜃 ∈ R𝑛 , and
𝑤𝑘 is the learnable parameter of 𝑘-th convolutional layer. Hence,

the filter function of GPR-GNN is gw ( ˜𝜆) =
∑𝐾
𝑘=0

𝑤𝑘 (1 − ˜𝜆)𝑘 .

BernNet. He et al. [21] exploit Bernstein basis

(𝐾
𝑘

)
(1−𝑥)𝐾−𝑘𝑥𝑘 as

the polynomial of the 𝑘-th layer. By piling up 𝐾 such convolution

layers with trainable parameter𝑤𝑘 , they propose BernNet as

z =

𝐾∑︁
𝑘=0

𝑤𝑘

2
𝐾

(
𝐾

𝑘

)
(2I − L)𝐾−𝑘L𝑘 · 𝑓𝜃 (x), (4)

Intuitively, the filter function of BernNet is gw (𝜆) =∑𝐾
𝑘=0

𝑤𝑘
2
𝐾

(𝐾
𝑘

)
(2 − 𝜆)𝐾−𝑘𝜆𝑘 .

JacobiConv. Recently, Wang and Zhang [44] leverage Jacobi poly-

nomial [1] bases 𝑃
𝑎,𝑏

𝑘
(𝑥), a general orthogonal polynomials. They

devise JacobiConv using Jacobi polynomials as

z =

𝐾∑︁
𝑘=0

𝑤𝑘𝑃
𝑎,𝑏

𝑘
(I − L) · x, (5)

where𝑤𝑘 is the trainable parameter. The corresponding filter func-

tion is gw (𝜆) =
∑𝐾
𝑘=0

𝑤𝑘𝑃
𝑎,𝑏

𝑘
(1 − 𝜆).

3 POLYNOMIAL FILTERS REVISIT
3.1 Polynomial Filters in Krylov Subspace
The four polynomials introduced in Section 2.2 are essentially

four different linearly independent bases of polynomial vector

spaces. By simply reordering the terms of the four filter func-

tions, they can be reformulated equally by the monomial sequence

{1, 𝑥, 𝑥2, · · · , 𝑥𝐾 , · · · }, i.e.,

z =

𝐾∑︁
𝑘=0

w𝑘P𝑘 · x (6)

where 𝐾 is the predefined degree of the polynomial with 𝐾 ≪ 𝑛,

w𝑘 is the 𝑘-th learnable parameter with w ∈ R𝐾+1, and P is the

corresponding propagation matrix. From the perspective of polyno-

mial vector space, the learned polynomial filter

∑𝐾
𝑘=0

w𝑘P𝑘 is the

combination of𝐾 +1 polynomial bases of the space with coefficients

w𝑘 for 𝑘 ∈ {0, 1, · · · , 𝐾}. However, if regarding the product P𝑘x
as the 𝑘-th vector basis, P𝑘x for 𝑘 ∈ {0, 1, · · · , 𝐾} forms the order-

(𝐾+1) Krylov Subspace K𝐾+1 (P, x) = span{x, Px, P2x, · · · , P𝐾x},
and the filtered signal z =

∑𝐾
𝑘=0

w𝑘P𝑘x is deemed as the weighted

combination of the bases of K𝐾+1 (P, x). As such, we establish the

following proposition.

Proposition 1. Given a graph G and a graph signal x, the set of
all 𝐾-order polynomial filters with propagation matrix P belongs to
the Krylov subspace K𝐾+1 (P, x).

The aim of polynomial filters is to approximate the spectral filter

Ugw (Λ)U⊤x so as to avoid eigendecomposition. In what follows,

we prove that the spectral filter can be equivalently expressed by

polynomial filters constructed from a Krylov subspace with order

𝐾 determined by both matrix P and vector x. Before proceeding
further, we first introduce the concept of vector grade with respect

to a matrix.

Definition 2 (Grade of x with respect to P [29]). The grade
of x with respect to P is a positive integer 𝑡 such that

dim K𝐾 (P, x) = min(𝐾, 𝑡) .

The grade 𝑡 of x with respect to P defines the highest dimension

of a Krylov subspace constructed by P and x. Ergo, the new vectors

P𝐾x are linearly dependent on the previous ones and K𝐾 (P, x) =
K𝐾+1 (P, x) for 𝐾 ≥ 𝑡 . As a consequence, we have the following
conclusion relating to the optimal spectral filter.

Proposition 2. Consider a propagation matrix P = I − L and
a graph signal x with grade 𝑡 with respect to P. There exists a (𝑡 −
1)-order polynomial filter

∑𝑡−1
𝑘=0

𝜃𝑘P𝑘x parameterized by 𝜃 ∈ R𝑡

equivalent to the optimal spectral filter Ugw (Λ)U⊤x.

Proposition 2 implies that the utilization of 𝐾-order polynomial

filters approximates the spectral filter by preserving only the first

𝐾 bases from the order-𝑡 Krylov subspace K𝑡 (P, x) and discarding

the rest bases.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’24, May 13–May 17, 2024, Singapore Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

3.2 Theoretical Analysis on Bases Convergence
As introduced in Section 2.2, polynomial filters utilize different

propagationmatrices P. To elaborate,ChebNet sets P = 2L/𝜆𝑚𝑎𝑥−I
where 𝜆𝑚𝑎𝑥 is the largest eigenvalue of L. GPR-GNN exploits

P = I− ˜L where
˜L = I− D̃−

1

2 ÃD̃−
1

2 . BernNet employs P = I−L/2
while JacobiConv adopts P = I − L. In general, propagation matrix

P is derived from the Laplacian matrix L or its variant
˜L. Typically,

eigenvalues of P lie in the interval (−1, 1]2.
Towards polynomial bases, one pertinent and crucial problem

is the convergence determined by propagation matrix P, which in

turn influences the selections of polynomial order 𝐾 . To this end,

we first prove that for a sufficiently large 𝐾 , the basis vector P𝐾x
converges to 𝜙𝜙⊤x where 𝜙 is the eigenvector associated with the

largest eigenvalue of P. Consequently, we establish an upper bound

for the choice of an appropriate 𝐾 in terms of P measured by the

relative pointwise distance [39].

Theorem 1. Let 𝜆𝑖 (P) be the 𝑖-th eigenvalue of the matrix P
where 𝑖 ∈ {1, 2, · · · , 𝑛} and 𝜆∗ := max{−𝜆1 (P), 𝜆𝑛−1 (P)}. It
holds that (i) P𝐾 converges asymptotically to a stable propaga-
tion matrix P𝜋 , i.e., P𝜋 := lim

𝐾→∞
P𝐾 ; and (ii) given 𝜖 ∈ (0, 1),

max𝑢,𝑣∈V
��P𝐾 [𝑢, 𝑣] − P𝜋 [𝑢, 𝑣]

�� ≤ 𝜖P𝜋 [𝑢, 𝑣] if 𝐾 ≥ ln
𝜖𝑑min

2𝑚 /ln 𝜆
∗

where 𝑑min := min𝑣∈𝑉 𝑑𝑣 .

Theorem 1 elucidates that the convergence speed of the polyno-

mial basis is dominated by value 𝜆∗, i.e., the second largest absolute
value among eigenvalues of the propagation matrix P. In particular,

a smaller 𝜆∗ corresponds to a more rapid convergence speed. More-

over, the empirical efficacy of polynomial filters is substantially

determined by P which plays a pivotal role in the construction of

Krylov subspace. Yet, propagation matrices in existing polynomials

asymptotically converge towards stability regardless of the het-

erophily degrees of underlying graphs. As a consequence, a crucial

question is how we can optimize the design of the propagation matrix
to enhance the expressive power of polynomial filters.We will answer

this question in Section 4.

3.3 Connection to Spatial GNNs
Polynomial graph filters approximate the underlying spectral graph

filters by leveraging different polynomials. By identifying the

propagation matrices P, they can be expressed equivalently as∑𝐾−1
𝑘=0

𝑤𝑘P𝑘x. The weight parameter𝑤𝑘 inherently stems from the

coefficients of original polynomials and learnable weights. From

a spatial perspective, the order 𝐾 of propagation matrix P is the

propagation step in feature aggregation from neighbors. There-

fore, the fundamental distinction among diverse polynomials lies

in that they assign varying weights to neighbors across multiple

hops. Meanwhile, as analyzed in Section 3.2, different propagation

matrices P exhibit divergent convergence properties. Those dis-

parities lead to distinct empirical performance, attributed to the

different capabilities of the polynomials to capture the intricate

characteristics of underlying graphs.

Proposition 2 reveals that propagation within the grade 𝑡 hops

of signal x with respect to propagation matrix P suffices. This fact

hints that ∀𝑣 ∈ V receives all signals from neighbors within t hops

2−1 is achievable when graphs are bipartite, which is not considered in our paper.

and information beyond 𝑡 hops contributes no information gain.

For example, let x be one eigenvector of P and we get the grade

𝑡 = 1. Therefore, signals received out of the first step are the same

as those received from the one-hop neighbors.

4 POLYNOMIAL FILTER FROM ADAPTIVE
KRYLOV SUBSPACE

4.1 Adaptive Krylov Subspace
As proven, existing polynomial filters belong to the Krylov sub-

space K(P, x) and have theoretically equivalent expressive power,

wherein the propagation matrix P plays a crucial role. Despite that,

matrix P in existing filters is predefined and fixed regardless of the

homophily ratios of underlying graphs. Yet, responded frequencies

are significantly correlated with homophily ratios.

For ease of exposition, we consider a binary node classification

for a graph G = (V, E) in homophily ratio ℎ associated with a node

signal x ∈ R𝑛 . Let y0 ∈ R𝑛 (resp. y1 ∈ R𝑛) be the one-hot label
vector such that y0,𝑖 = 1 (resp. y1,𝑖 = 1) if node 𝑢𝑖 belongs to class

0 (resp. class 1), otherwise y0,𝑖 = 0 (resp. y1,𝑖 = 0). Let y = y0 − y1
be the label differences. Therefore, we can establish that

y⊤Ly
y⊤y =

(D1/2y)⊤ (I−D−1/2AD−1/2 ) (D1/2y)
(D1/2y)⊤ (D1/2y) =

y⊤D1/2 (I−D−1/2AD−1/2 )D1/2y∑𝑛
𝑖=1 𝑑𝑖y

2

𝑖

=
y⊤ (D−A)y∑𝑛

𝑖=1 𝑑𝑖y
2

𝑖

=

∑
⟨𝑢𝑖 ,𝑢𝑗 ⟩∈E (y𝑖−y𝑗 )2∑𝑛

𝑖=1 𝑑𝑖y
2

𝑖

=
4(1−ℎ)𝑚

𝑚 = 4(1 − ℎ) .

Since y⊤y = 𝑛, we have 4(1 − ℎ)𝑛 = y⊤Ly. Meanwhile, let L =

UΛU⊤ where U is the eigenvector matrix and Λ is the diagonal

matrix of eigenvalue spectrum {𝜆1, 𝜆2, · · · , 𝜆𝑛}. W.l.o.g., suppose

U⊤y = (𝛼1, 𝛼2, · · · , 𝛼𝑛) where 𝛼𝑖 is the projection (response) of

y on eigenvector U⊤ [𝑖, :]. Then we have y⊤Ly = y⊤UΛU⊤y =∑𝑛
𝑖=1 𝛼

2

𝑖
𝜆𝑖 . Therefore, we have

1

𝑛

∑𝑛
𝑖=1 𝛼

2

𝑖
𝜆𝑖 = 4(1 − ℎ), i.e., graphs

with different homophily ratios respond to different frequencies.

This fact motivates us to design an adaptive P that provides better

adaptability and controllability. Recall that the propagation matrix

P is primarily derived from the Laplacian matrix L and explored in

the graph heat diffusion. Hence, we resort to the following Graph
Heat Equation [9, 45].

dH𝑡
d𝑡

= −LH𝑡 , H0 = X, (7)

where H𝑡 is the node representations of graph G at time 𝑡 . Given

an infinitesimal interval 𝜏 , the Euler method implies that

H𝑡+𝜏 = lim

𝜏→0
+

H𝑡 − 𝜏LH𝑡

= lim

𝜏→0
+

H𝑡 (I − 𝜏L)

= lim

𝜏→0
+

H𝑡 ((1 − 𝜏)I + 𝜏D−
1

2 AD−
1

2 ). (8)

Equation (8) demonstrates that (1−𝜏)I+𝜏D−
1

2 AD−
1

2 propagates H𝑡
forward with a stride 𝜏 . In light of this, we design our propagation

matrix P𝜏 via renormalization trick [23] as

P𝜏 = (𝜏D+(1−𝜏)I)−
1

2 (𝜏A+(1−𝜏)I) (𝜏D+(1−𝜏)I)−
1

2 = D
− 1

2

𝜏 A𝜏D
− 1

2

𝜏 ,

where A𝜏 = 𝜏A + (1 − 𝜏)I and D𝜏 = 𝜏D + (1 − 𝜏)I. In particular, 𝜏

decides the percentages of signals from ego parts and neighbors in

feature aggregations. In the meantime, the 𝜏 value is able to alter

the graph spectrum as follows.
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Theorem 2. Let L𝜏 = I − P𝜏 and 𝜆𝑖 (𝜏)𝑛𝑖=1 denote the eigenvalues
of L𝜏 with 𝜆1 (𝜏) ≤ 𝜆2 (𝜏) ≤ · · · ≤ 𝜆𝑛 (𝜏) for 𝜏 > 0. Then it holds
that 𝜆𝑖 (𝜏) is a monotonically increasing function of 𝜏 and 𝜆𝑖 (𝜏) ≤ 𝜆𝑖
if 𝜏 ∈ (0, 1] and 𝜆𝑖 (𝜏) > 𝜆𝑖 if 𝜏 > 1 for 𝑖 ∈ [𝑛].

Theorem 2 reveals that changing 𝜏 is capable of reshaping the

underlying spectrum ofL𝜏 . In doing so, we are able to build adaptive
Krylov subspace K𝐾+1 (P𝜏 , x) such that the corresponding Krylov

basis, known as adaptive Krylov basis, has the adaptability to graphs
with varying homophily ratios.

4.2 Polynomial Filter AdaptKry
In this section, we propose AdaptKry, an optimized polyno-

mial filter utilizing the adaptive Krylov basis from the adaptive

Krylov subspace K𝐾 (P𝜏 , x). Specifically, AdaptKry first initializes

a weight vector w ∈ R𝐾+1 and then constructs the Krylov basis

{x, P𝜏x, · · · , P𝐾𝜏 x}. Next, those vectors are concatenated and multi-

plied by w in an element-wise manner, after which it is fed into an

arbitrary Multilayer Perceptron (MLP) network to train the weight

parameter w. The pseudo-code for AdaptKry is illustrated in Al-

gorithm 1. It is worth mentioning that AdaptKry, in contrast to

existing polynomial filters, separates the procedures of feature prop-

agation and weight learning. This decoupling mechanism enables

adaptive Krylov bases unchanged during training and thus averts

the repetitive calculation on polynomials.

AdaptKry Extension. Complex networks often consist of numer-

ous components characterized by diverse spectral properties. In

such scenarios, a singular adaptive Krylov basis might lack the

expressiveness necessary to capture the varying spectral charac-

teristics. To address this challenge, it is prudent to utilize multiple

bases derived from distinct adaptive Krylov spaces. For instance,

one can employ appropriate 𝑟 ∈ N bases with different 𝜏 values as

z =
∑𝐾
𝑘=0

w1

𝑘
P𝑘𝜏1 · x + · · · +

∑𝐾
𝑘=0

w𝑟
𝑘

P𝑘𝜏𝑟 · x

=
∑𝐾
𝑘=0

(∑𝑟
𝑖=1

w𝑖
𝑘

𝑟 P𝑘𝜏𝑖

)
· x

=
∑𝐾
𝑘=0

w𝑘
(∑𝑟

𝑖=1 P𝑘𝜏𝑖
)
· x. (9)

By integrating the weight parameters

∑𝑟
𝑖=1 w𝑖

𝑘
/𝑟 into a singular

trainable parameter w𝑘 , it enhances the expressive capability with-

out escalating the training burden. Meanwhile, the specific number

and values of the set of 𝜏 parameter {𝜏1, 𝜏2, · · · , 𝜏𝑟 } facilitate an

enriching analysis the complexity of networks with heterogeneous

homophily ratios.

Space & Time Complexity. In AdaptKry, the space consumption

to store A𝜏 , D𝜏 , and P𝜏 is 2𝑚+3𝑛 in total. The space costs of feature

matrix X and Krylov basis are 𝑛𝑑 and 𝐾𝑛𝑑 respectively. Thus the

space complexity of AdaptKry is𝑂 (𝑚 +𝐾𝑛𝑑). The running time of

AdaptKry is dominated by the computation of Krylov basis, i.e., 𝐾

times of P𝜏 · F(ℓ−1)
(Line 5 in Algorithm 1), which is sparse matrix

multiplication at the cost of (𝑚+𝑛)𝑑 . Thus the total time complexity

of AdaptKry is 𝑂 (𝐾 (𝑚 + 𝑛)𝑑).

Algorithm 1: AdaptKry
Input: Graph G, feature matrix X, order 𝐾 , step size 𝜏

Output: Z
1 Z← X, F(0) ← X;

2 Weight vector w initialization;

3 A𝜏 ← 𝜏A + (1 − 𝜏 )I, D𝜏 ← 𝜏D + (1 − 𝜏 )I, P𝜏 ← D
− 1

2

𝜏 A𝜏D
− 1

2

𝜏 ;

4 for ℓ ← 1 to 𝐾 do
5 F(ℓ ) ← P𝜏 · F(ℓ−1)

;

6 Z← concate(Z, F(ℓ ) ) ;
7 Z← MLP(Z ⊙ w) ;
8 return Z;

4.3 Approximation Analysis
Theoretically, AdaptKry provides equivalent expressive power with
existing polynomial graph filters. However, by equipping adapt-

ability to AdaptKry, it provides the ability to alter the underlying

spectrum as desired. In this regard, AdaptKry derived from adap-

tive Krylov subspace yields an improved capability to capture the

spectral characteristics of underlying graphs, compared to existing

polynomial filters from ordinary Krylov subspace. Furthermore, we

analyze in Section 3.2 that the convergence rate of polynomials is

governed by value 𝜆∗ determined by eigenvalues of propagation

matrices. Therefore, it is intuitive that reshaping the underlying

spectrum enhances the expressive capabilities of polynomials.

Theorem 3. Consider a connected graph G = (V, E) with graph
signal x ∈ R𝑛 . Let F1 (x) =

∑𝑡−1
𝑘=0

w𝑜
𝑘

P𝑘x and F2 (x) =
∑𝑡−1
𝑘=0

w𝑎
𝑘

P𝑘𝜏 x
are the optimal polynomial filters from ordinary Krylov subspace
K𝑡 (P, x) and adaptive Krylov subspace K𝑡 (P𝜏 , x) respectively where
𝑡 is the grade of graph signal to the propagation matrix3. When
training models from the two Krylov subspaces, we assume the initial
weight w is randomly sampled from a predefined distribution. It holds
that E[∥w𝑎 −w∥2] ≤ E[∥w𝑜 −w∥2] where the expectation is over
the randomness of w.

Discussion on basis orthogonality. Theoretically, distinct poly-
nomial bases yield equivalent expressive capabilities, as demon-

strated in Proposition 1. The major distinction lies in the conver-

gence rates of gradient descent in the process of model training. The

convergence rate reaches optimal if the condition number of the

Hessian matrix of gradients is minimal, as demonstrated in [4, 46].

As for polynomial filters, the condition number becomes minimum

when polynomials form an orthonormal basis with respect to the

underlying weight function [44]
4
which, however, is intractable.

Instead, as stated in [17, 29], such orthonormal basis can be directly

established by orthogonalizing the basis of K𝐾 (P, x) via three-term
recurrence method [15, 29] without resolving the weight function.

Despite that, there are two potential weaknesses. First, similar to

existing polynomials, orthonormal bases demonstrate constrained

flexibility in accommodation to graphs with diverse heterophily,

thus yielding suboptimal empirical performance, as confirmed in

our ablation study in Section 5.3. Second, the orthogonalization of

the basis incurs extra 𝑂 (𝐾𝑛) computation costs.

3
According to Definition 2, it is intuitive that the two subspaces share the same grade

𝑡 irrespective of 𝜏 .
4
Notice that we cannot claim the polynomial basis is orthonormal without specifying

the weight function.
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Table 2: Dataset Details.

Dataset Cora Citeseer Pubmed Actor Chameleon Squirrel

#Nodes (𝒏) 2,708 3,327 19,717 7,600 2,277 5,201

#Edges (𝒎) 5,429 4,732 44,338 26,659 31,371 198,353

#Features (𝒅) 1,433 3,703 500 932 2,325 2,089

#Classes 7 6 3 5 5 5

Homo. ratio (𝒉) 0.81 0.73 0.80 0.22 0.23 0.22

5 EXPERIMENTS
In this section, we aim to i) evaluate the capability of AdaptKry
as a graph filter for node classification on both homophily and

heterophily graphs against a series of baselines and ii) validate the

design of AdaptKry and the properties of adaptive Krylov bases.

The classification performance is measured in accuracy.

5.1 Experimental Setting
Datasets.We evaluate the methods on 6 real-world datasets with

varied sizes and homophily ratios, as presented in Table 2. In partic-

ular, the 3 citation networks [40], i.e., Cora, Citeseer, and Pubmed,

are homophily graphs with homophily ratios 0.81, 0.73, and 0.80

respectively; the Wikipedia graphs Chameleon and Squirrel, the Ac-

tor co-occurrence graph from WebKB3 [34] are heterophily graphs

with homophily ratios 0.22, 0.23, and 0.22 respectively.

By following the convention [20, 21, 44], we i) generate 10 ran-

dom splits of training/validation/testing with 60%/20%/20% percents

respectively for the 6 datasets and report the average accuracy with

associated standard deviations for each method.

Algorithms.We consider two seminal GNN models GCN [23] and

the simplified SGC [47], and also include SIGN [14] and ASGC [6]

as they are two variants of SGC for simplicity. Five polynomial

graph filters, i.e., GPR-GNN [8], EvenNet [26], ChebNet [10] and
its improved version ChebNetII [20], BernNet [21], and Jacobi-
Conv [44], and one recently proposed orthogonal basis model Opt-
BasisGNN [17] are deemed as the competitors of polynomial filters.

We compare our AdaptKry against 11 baselines on the 6 datasets.

Appendix A.2 provides the links to the source codes of baselines.

Parameter Settings. There are 4 key hyperparameters in Adap-
tKry, i.e., the neighbor hop 𝐾 , the step size 𝜏 , learning rate and

hidden dimension. For a fair comparison, we fix 𝐾 = 10 for all

tested methods. We tune these parameters to acquire the best at-

tainable performance on each graph according to their homophily

ratios, as summarized in Table 6 in Appendix A.2. For baselines,

we either adopt the public results if applicable or follow the origi-

nal settings in [21, 44, 47] for the best possible performance. More

details are discussed in Appendix A.2.

5.2 Node Classification
Table 3 presents the accuracy associated with the standard deviation

of all tested 12 methods on the 6 datasets with homophily ratios

from 0.22 ∼ 0.81. For ease of exposition, we highlight the highest
accuracy score in bold and underline the second highest accuracy
score for each dataset.

First of all, observe that AdaptKry achieves the highest accuracy

scores almost on all datasets except a slight lag on Squirrel. In par-

ticular, AdaptKry advances the accuracy score up to 3.0% and 1.18%

on the homophily datasets Citeseer and Pubmed. These observa-

tions strongly support the state-of-the-art capability of AdaptKry
as polynomial filters by utilizing the adaptive Krylov basis. Mean-

while, it also confirms our analysis in Section 4.3. As analyzed in

Section 4.1, the notable advantage of AdaptKry arises from the

adaptive parameter 𝜏 . This enables AdaptKry to adapt graphs with

a wide range of homophily ratios as various heterophily graphs

suit different 𝜏 values, further explored in Section 5.3.

5.3 Ablation Study
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Figure 2: Accuracy of AdaptKry with varying 𝜏 values.

Sensitivity on parameter 𝜏 . As stated in Section 4.1, 𝜏 in propaga-

tion matrix P𝜏 controls the portions of signals from ego parts and

neighbors in the feature aggregation. To evaluate the sensitivity

of AdaptKry towards 𝜏 for different datasets, we test AdaptKry
by setting 𝜏 = {0.1, 0.2, 0.3, · · · , 0.9, 1.0} on one homophily graph

Cora (homo. ratio 0.81) and one heterophily graph Squirrel (homo.

ratio 0.22). The resultant accuracy scores are plotted in Figure 2.

As shown, the accuracy scores on Cora remain close for varying 𝜏 ,

whilst those on Squirrel rise along with the increase of 𝜏 and reach

the peak at 𝜏 = 0.9. This reveals that heterophily graphs are more

sensitive to the 𝜏 value compared with homophily graphs since

feature signals of connected neighbors from heterophily graphs

differ more. This result further confirms our claim that graphs

with different homophily ratios respond to different frequencies in

Section 4.1.

Spectrum reshaping by 𝜏 . As proved in Theorem 2, the parameter

𝜏 within the propagationmatrix P𝜏 is able to reshape the graph spec-
trum, thereby offering underlying polynomial basis the adaptability.

To elaborate the influence of 𝜏 on polynomial bases, we generate

three sets of order-𝐾 polynomial bases with 𝜏 = {0.5, 1.0, 1.5} for
Cora and Squirrel. The resultant bases Z is Z ∈ R𝑛×(𝐾+1)𝑑 for each

𝜏 value where 𝑑 is the feature dimension. Specifically, for feature

signal x ∈ R𝑛 from each dimension of feature matrix X ∈ R𝑛×𝑑 , we
compute the angles between signal vectors in two consecutive hops

within the basis, leading to a total of 𝐾𝑑 angles. Subsequently, these

angles are averaged for the 𝑑 signals, resulting in 𝐾 angles that

characterize the polynomial basis. In particular, we keep 𝐾 = 10 for

this experiment.

Figure 3 illustrates the evolving patterns of angles between

two consecutive signal vectors in polynomial bases across three

different 𝜏 values. Observe that polynomial bases with 𝜏 = 0.5

and 𝜏 = 1.0 all converge steadily, which is consistent with Theo-

rem 1. In particular, basis with 𝜏 = 0.5 converges faster than that
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Table 3: Accuracy (%) on small datasets.

Methods Cora Citeseer Pubmed Actor Chameleon Squirrel

GCN 87.18 ± 1.12 79.85 ± 0.78 86.79 ± 0.31 33.26 ± 1.15 60.81 ± 2.95 45.87 ± 0.88

SGC 86.83 ± 1.28 79.65 ± 1.02 87.14 ± 0.90 34.46 ± 0.67 44.81 ± 1.20 25.75 ± 1.07

ASGC 85.35 ± 0.98 76.52 ± 0.36 84.17 ± 0.24 33.41 ± 0.80 71.38 ± 1.06 57.91 ± 0.89

SIGN 87.70 ± 0.69 80.14 ± 0.87 89.09 ± 0.43 41.22 ± 0.96 60.92 ± 1.45 45.59 ± 1.40

ChebNet 87.32 ± 0.92 79.33 ± 0.57 87.82 ± 0.24 37.42 ± 0.58 59.51 ± 1.25 40.81 ± 0.42

GPR-GNN 88.54 ± 0.67 80.13 ± 0.84 88.46 ± 0.31 39.91 ± 0.62 67.49 ± 1.38 50.43 ± 1.89

BernNet 88.51 ± 0.92 80.08 ± 0.75 88.51 ± 0.39 41.71 ± 1.12 68.53 ± 1.68 51.39 ± 0.92

JacobiConv 88.98 ± 0.72 80.78 ± 0.79 89.62 ± 0.41 41.17 ± 0.64 74.20 ± 1.03 57.38 ± 1.25

EvenNet 87.77 ± 0.67 78.51 ± 0.63 90.87 ± 0.34 40.36 ± 0.65 67.02 ± 1.77 52.71 ± 0.85

ChebNetII 88.71 ± 0.93 80.53 ± 0.79 88.93 ± 0.29 41.75 ± 1.07 71.37 ± 1.01 57.72 ± 0.59

OptBasisGNN 87.00 ± 1.55 80.58 ± 0.82 90.30 ± 0.19 42.39 ± 0.52 74.26 ± 0.74 63.62 ± 0.76
AdaptKry 89.95 ± 0.95 83.78 ± 0.38 92.05 ± 0.25 42.70 ± 1.14 74.53 ± 1.21 63.31 ± 0.76
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Figure 3: Bases reshaping by 𝜏 .

Table 4: Accuracy (%) and corresponding 𝜏 set.

𝜏 set Cora Actor Chameleon Squirrel

{𝜏1} 88.90 ± 1.70 42.06 ± 1.27 74.09 ± 1.22 63.31 ± 0.76
{𝜏1, 𝜏2} 89.85 ± 1.36 42.16 ± 1.73 74.53 ± 1.21 63.31 ± 0.76

{𝜏1, 𝜏2, 𝜏3} 89.95 ± 0.95 42.70 ± 1.14 73.83 ± 0.77 63.31 ± 0.76

{𝜏1} {0.8} {0.7} {0.8} {0.8}
{𝜏1, 𝜏2} {0.8, 1.0} {0.6, 1.4} {0.5, 0.8} {0.8, 0.8}
{𝜏1, 𝜏2, 𝜏3} {0.5, 0.8, 1.1} {0.6, 1.7, 1.8} {0.5, 0.8, 1.1} {0.8, 0.8, 0.8}

of 𝜏 = 1.0. This is due to the fact that 𝜆∗ (0.5) < 𝜆∗ (1.0) where
𝜆∗ (𝜏) is the second largest absolute value among eigenvalues of

P𝜏 where P𝜏 = I − L𝜏 . According to Theorem 1, a smaller 𝜆∗

indicates faster convergence. To explain, Theorem 2 proves that

𝜆𝑖 (0.5) ≤ 𝜆𝑖 (1.0) where 𝜆𝑖 (𝜏) is the 𝑖-th eigenvalue of Laplacianma-

trixL𝜏 . In real-world datasets with 𝜏 = 1.0, 𝜆∗ (1.0) = |1−𝜆𝑛−1 (1.0) |
since |1 − 𝜆𝑛−1 (1.0) | ≥ |1 − 𝜆2 (1.0) |. However, when 𝜏 = 0.5,

𝜆𝑛−1 (0.5) becomes substantially smaller than 𝜆𝑛−1 (1.0) such that

|1−𝜆𝑛−1 (0.5) | ≤ |1−𝜆2 (0.5) | = 𝜆∗ (0.5) < |1−𝜆𝑛−1 (1.0) | = 𝜆∗ (1.0).
Note that polynomial bases with 𝜏 = 1.5 diverge as the propagation

hop 𝐾 increases. This divergence occurs due to 𝜆∗ (1.5) > 1, leading

to a significant divergence in the polynomial basis P𝐾x.

Extension of AdaptKry. To demonstrate the enhanced expressive

power of extended AdaptKry, we adopt polynomial bases with

the number in the set of {1, 2, 3} and test on datasets Cora, Actor,

Chameleon, and Squirrel. To obtain the best 𝜏 set on each dataset,

we tune the set of 𝜏 values in the set of {0.1, 0.2, · · · , 1.8, 1.9}.

Table 5: Accuracy (%) of orthogonal / non-orthogonal poly-
nomials

Dataset Method hop 𝐾

2 4 6 8 10

Cora

OrthKry 87.37 88.41 88.60 87.91 86.09

AdaptKry 87.85 89.64 88.75 89.67 88.90

Citeseer

OrthKry 81.88 81.46 81.43 80.90 80.24

AdaptKry 83.82 83.32 83.44 83.66 83.78

Chameleon

OrthKry 72.14 70.42 74.90 72.99 72.70

AdaptKry 68.84 72.56 72.39 72.54 73.22

Squirrel

OrthKry 62.21 62.61 63.13 64.65 65.14

AdaptKry 60.31 61.90 62.23 63.15 63.31

Table 4 presents the obtained accuracy scores and the correspond-

ing 𝜏 set. We highlight the highest score and the associated 𝜏 set

in bold. When achieving the highest scores, AdaptKry adopts three
polynomial bases on both Cora andActor and uses two and one bases
on Chameleon and Squirrel respectively. The exact number and

value of 𝜏 manifest the signal information contained in the datasets.

Intuitively, singular set {𝜏1} indicates the primary signal frequency,

while sets {𝜏1, 𝜏2} and {𝜏1, 𝜏2, 𝜏3} are able to uncover the signal

distribution. Specifically, the fact that 𝜏 set {0.5, 0.8, 1.1} is more ef-

fective than {0.8, 1.0} on Cora manifests that high-frequency (larger

𝜏) signal benefits node representations. For the case of dataset Ac-

tor (resp. Chameleon), it hints that the high-frequency (resp. low-

frequency) signal dominates the others.

Orthogonal bases and computation overheads. We exploit the

three-term recurrence method to orthogonalize polynomial bases

and implement the orthogonal version OrthKry of AdaptKry. Since
OrthKry fixes the relative positions of polynomial bases into or-

thogonality, it cannot take advantage of the utilization of multiple

bases. For a fair comparison, we adopt a singular basis for AdaptKry
as well. In particular, we test OrthKry and AdaptKry on two ho-

mophily datasets Cora and Citeseer, and two heterophily datasets

Chameleon and Squirrel.

Table 5 reports the accuracy scores with propagation hop 𝐾 ∈
{2, 4, 6, 8, 10}. On the two homophily datasets Cora and Citeseer,
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Figure 4: Running times of orthgonal / non-orthogonal poly-
nomial bases.

AdaptKry achieves consistently higher accuracy scores than Or-
thKry does for different propagation hop 𝐾 values. On the het-

erophily dataset Chameleon, the performance of OrthKry closely

aligns with that of AdaptKry as they outperform each other alterna-

tively. On dataset Squirrel, we observe that OrthKry demonstrates

performance gains over AdaptKry. In a nutshell, AdaptKry exhibits
clear advantages overOrthKry on homophily datasets while none of

them presents dominant filtering capability on heterophily datasets.

Therefore, non-orthogonal polynomials in AdaptKry exhibit gen-

eral and comparable filter capability with orthogonal polynomials.

Figure 4 compares the running times, i.e., feature propagation

times and training times of AdaptKry andOrthKry on datasets Cite-
seer and Squirrel. As displayed, AdaptKry demonstrates notable

efficiency advantages over OrthKry. The primary reason is that the

adaptive Krylov basis in AdaptKry accommodates the underlying

better than the fixed orthogonal basis in OrthKry, as proved in The-

orem 3. As we also mentioned in Section 4.3, the orthogonal basis

in OrthKry incurs extra 𝑂 (𝐾𝑛) computation overheads compared

with the non-orthogonal basis.

6 RELATEDWORK
Krylov subspace method. The idea of the Krylov subspace

method was originally conceived by Lanczos, Hestenes, and Stiefel

in the early 1950s for solving linear algebraic systems [18, 32].

An order-𝐾 Krylov subspace is constructed by multiplying the

first 𝐾 powers of a 𝑛 × 𝑛 matrix A to an 𝑛-dimension vector v,
i.e., K𝐾 (A, v) = span{v,Av, · · · ,A𝐾−1v}. In doing so, the Krylov

subspace as a subspace of R𝑛 can capture the property of A [36].

Specifically, for a large linear system Ax = v to identify the un-

known x ∈ R𝑛 , the Krylov subspace method constructs a subspace

K𝑚 (A, v) with𝑚 ≪ 𝑛 and then finds an approximate solution x̃
that belongs to K𝑚 (A, v). Krylov subspace method is widely used

in iterative methods in linear algebra [29].

Polynomial graph filters. The aim of research on graph spectral

filters is to enhance expressive capabilities through various poly-

nomials to approximate the optimal graph filters. ChebNet [10]
utilizes a truncated Chebyshev polynomial [19, 30] up to 𝐾 orders

with each polynomial basis assigned a learnable parameter, which

makes ChebNet a general localized graph filters [41]. By simplify-

ing ChebNet, GCN [23] retains the first two convolution layers and

takes a renormalized propagation matrix as convolution operations,

which makes it a low-pass filter. To better capture node proximity,

APPNP [24] adopts Personalized PageRank (PPR) [33, 38] and takes

the PPR values of neighbors as fixed aggregation weights, resulting

in a low-pass graph filter as well. To achieve better adaptability,

GPR-GNN [8] exploits the generalized PageRank (GPR) matrix with

trainable weights for convolutional layers. Similarly, GNN-LF/HF
proposed by Zhu et al. [53] forms a low-pass and high-pass filter

respectively by devising the variants of the Laplacian matrix as the

propagation matrices. ARMA [3] resorts to rational convolutional

filters using auto-regression moving average filters [31] instead

of polynomials, aiming to yield flexible frequency response. How-

ever, to approximate the inverse matrix, ARMA inevitably incurs

large computation overheads. He et al. [21] employ Bernstein poly-

nomials [12] and propose BernNet for better controllability and

interpretability. However, feature propagation in BernNet leads
to quadratic time complexity of hop 𝐾 . To improve the flexible

controllability on concentration center and bandwidth, Li et al. [28]

combines a series of Gaussian bases on approximation and propose

G2CN. In the meanwhile, Wang and Zhang [44] investigate the

expressive power of polynomial filters and propose JacobiConv
by adopting Jacobi polynomial [1] bases. Later, He et al. [20] re-

visit Chebyshev approximation and point out the over-fitting issue

in ChebNet. To resolve the issue, they propose ChebNetII based
on Chebyshev interpolation. Recently, Guo and Wei [17] orthogo-

nalize the polynomial bases for optimal convergence and propose

OptBasisGNN. ASGC [6] simplifies graph convolution operation

inspired by SGC [47] for heterophily graphs. To this end, a Krylov

matrix is calculated and equipped with coefficients. However,ASGC
presents suboptimal classification performance in the experiments.

SIGN is another SGC-based method similar to AdaptKry. However,
SIGN filters out the negative values in Krylov basis before weight

learning. This operation damages the polynomial properties of the

Krylov basis and unable to approximate graph filters. There are

also other newly proposed GNN models, e.g., Nodeformer [49],
NIGCN [22], and Auto-HeG [52], but they do not exhibit explicit

spectral properties and thus are not discussed here.

7 CONCLUSION
In this paper, we unify existing polynomial filters and optimal fil-

ters into the Krylov subspace and reveal their limited adaptability

for diverse heterophily graphs. To optimize polynomial filters, we

design a novel adaptive Krylov subspace with provable control-

lability over the graph spectrum, enabling adaptability to graphs

in varying heterophily degrees. Consequently, we propose Adap-
tKry by leveraging this adaptive Krylov basis. Furthermore, we

extend AdaptKry to incorporate multiple adaptive Krylov bases

without incurring extra training costs, thereby accommodating

graphs with diverse spectral properties and offering insights into

the inherent complexities. The extensive experiments and ablation

studies strongly support the superior performance of AdaptKry as

polynomial filters, as well as the optimized expressive capability of

the adaptive Krylov basis.
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A APPENDIX
A.1 Proofs

Proof of Proposition 1. Suppose a𝐾-order polynomial graph

filter 𝐺𝐹 with propagation matrix P𝑀 . Let 𝑓 (𝑥, 𝑖) = ∑𝐾
𝑘=0

𝜙𝑖𝑘𝑥
𝑘

be the 𝑖-th polynomial basis of 𝐺𝐹 where Φ ∈ R(𝐾+1)×(𝐾+1) is
the coefficient matrix and Φ[𝑖, 𝑘] = 𝜙𝑖𝑘 . Consequently, repre-

sentation Z from 𝐺𝐹 is calculated as Z =
∑𝐾
𝑖=0𝑤𝑖 𝑓 (P𝑀 , 𝑖)X =∑𝐾

𝑖=0𝑤𝑖
∑𝐾
𝑘=0

𝜙𝑖𝑘P𝑘
𝑀

X where w ∈ R𝐾+1 is the learnable param-

eter vector. By choosing Θ = {𝜃0, 𝜃1, . . . , 𝜃𝐾 } ∈ R𝐾+1 with

Θ = Φ⊤w as the coefficients of basis (X, P𝑀X, P2
𝑀

X, . . . , P𝐾
𝑀

X),
we have

∑𝐾
𝑖=0 𝜃𝑖P

𝑖
𝑀

X =
∑𝐾
𝑖=0𝑤𝑖

∑𝐾
𝑘=0

𝜙𝑖𝑘P𝑘
𝑀

X, which completes

the proof. □

Proof of Proposition 2. Let {u𝑖 | 𝑖 ∈ [𝑛]} be the orthogonal
eigenvectors of L, where u𝑖 is associated with eigenvalue 𝜆𝑖 . Then

Ugw (Λ)U⊤x =
∑𝑛
𝑖=1 gw (𝜆𝑖 )u𝑖u⊤𝑖 x. Moreover, since P is the similar

matrix of L, so P owns the same eigenvectors of L. Let T be a

subset of [n] with |T | = 𝑡 that contains the index of 𝑖 ∈ [𝑛] such
that 𝑢⊤

𝑖
x ≠ 0 ∀𝑖 ∈ T and 𝑢⊤

𝑗
x = 0 ∀𝑗 ∈ [𝑛] \ T . Then, we have∑𝑡−1

𝑘=0
𝜃𝑘P𝑘x =

∑𝑡−1
𝑘=0

∑
𝑖∈T 𝜃𝑘𝜆

𝑘
𝑖

u𝑖u⊤𝑖 x =
∑
𝑖∈T (

∑𝑡−1
𝑘=0

𝜃𝑘𝜆
𝑘
𝑖
)u𝑖u⊤𝑖 x.

Therefore,

∑𝑡−1
𝑘=0

𝜃𝑘𝜆
𝑘
𝑖
= gw (𝜆𝑖 ) holds with proper 𝜃𝑘 for 𝑖 ∈ T .

□

Proof of Theorem 1. The propagation matrix P can be decom-

posed as P = UΛU−1 where the 𝑖-th column of U is the eigenvector

of 𝜆𝑖 (P), denoted as 𝜙𝑖 . Then we have

lim

𝐾→∞
P𝐾 = lim

𝐾→∞
(ΦΛΦ−1)𝐾

= lim

𝐾→∞
ΦΛ𝐾Φ−1

= Φ lim

𝐾→∞
Λ𝐾Φ−1

= Φdiag[ lim
𝐾→∞

𝜆𝐾
1
, . . . , lim

𝐾→∞
𝜆𝐾𝑛 ]Φ−1

= Φdiag[0, 0, . . . , 1]Φ−1

Thus we have lim𝐾→∞ P𝐾 = P𝜋 = 𝜙𝑛 · 𝜙⊤𝑛 where 𝜙𝑛 = D
1

2 ·1√
2𝑚
∈ R𝑛 .

Therefore, we have P𝜋 [𝑢, 𝑣] =
√
𝑑𝑢𝑑𝑣
2𝑚 .

Let e𝑢 ∈ R1×𝑛
be an indicator vector having 1 in coordinate

𝑢 ∈ V . Then P𝐾 [𝑢, 𝑣] is expressed as P𝐾 [𝑢, 𝑣] = e𝑢P𝐾e⊤𝑣 . For e𝑢
and e𝑣 , we decompose e𝑢 =

∑𝑛
𝑖=1 𝛼𝑖𝜙

⊤
𝑖
, e𝑣 =

∑𝑛
𝑖=1 𝛽𝑖𝜙

⊤
𝑖
. Notice

that 𝛼𝑛 =

√
𝑑𝑢√
2𝑚

and 𝛽𝑛 =

√
𝑑𝑣√
2𝑚

. We have

max

𝑢,𝑣∈V

��P𝐾 [𝑢, 𝑣] − P𝜋 [𝑢, 𝑣]
��

P𝜋 [𝑢, 𝑣]

= max

𝑢,𝑣∈V

��e𝑢P𝐾e⊤𝑣 − P𝜋 [𝑢, 𝑣]
��

P𝜋 [𝑢, 𝑣]

≤ max

𝑢,𝑣∈V

∑𝑛−1
𝑖=1 |𝜆𝑖 (P)𝐾𝛼𝑖𝛽𝑖 |

P𝜋 [𝑢, 𝑣]

≤ 𝜆𝐾 · max

𝑢,𝑣∈V

∑𝑛−1
𝑖=1 |𝛼𝑖𝛽𝑖 |
P𝜋 [𝑢, 𝑣]

≤ 𝜆𝐾 · max

𝑢,𝑣∈V
∥𝑒𝑢 ∥∥𝑒𝑣 ∥ · 2𝑚√

𝑑𝑢𝑑𝑣

≤ 𝜆𝐾 · 2𝑚

𝑑min

where 𝜆 = max{−𝜆1 (P), 𝜆𝑛−1 (P)} and 𝑑min = min{𝑑𝑣 : 𝑣 ∈ 𝑉 }.
Therefore, if 𝐾 ≥ ln

𝜖𝑑min

2𝑚 /ln 𝜆, 𝜆
𝐾 · 2𝑚

𝑑min

≤ 𝜖 , which completes the

proof. □

Proof of Theorem 2. W.l.o.g, we set 𝑡 = 1−𝜏
𝜏 for 𝜏 > 0. In par-

ticular, 𝑡 ∈ (−1, 0) for 𝜏 > 1 and 𝑡 ∈ [0,∞) for 𝜏 ∈ (0, 1]. Thus, we
have P𝜏 = (D+𝑡 I)−

1

2 (A+𝑡 I) (D+𝑡 I)−
1

2 . Assume that v1, . . . , v𝑖−1 are
eigenvectors ofL𝜏 corresponding to eigenvalues 𝜆1 (𝜏), . . . , 𝜆𝑖−1 (𝜏),
respectively. According to Courant–Fischer theorem [13], we have

𝜆𝑖 (𝜏) = min

x : v⊤
𝑗

x=0 for 𝑗∈[𝑖−1]
x⊤L𝜏x

x⊤x

= min

x : v⊤
𝑗

x=0 for 𝑗∈[𝑖−1]
x⊤ (D+𝑡 I)

1

2 L𝜏 (D+𝑡 I)
1

2 x
x⊤ (D+𝑡 I)x

= min

x : v⊤
𝑗

x=0 for 𝑗∈[𝑖−1]

∑
⟨𝑢,𝑣⟩∈E∪{⟨𝑢,𝑣⟩|∀𝑢∈𝑉 } (x𝑢−x𝑣 )2∑

𝑢∈v (𝑑𝑢+𝑡 )x2𝑢

= min

x : v⊤
𝑗

x=0 for 𝑗∈[𝑖−1]

∑
⟨𝑢,𝑣⟩∈E (x𝑢−x𝑣 )2∑
𝑢∈v (𝑑𝑢+𝑡 )x2𝑢

Notice that when 𝜏 increases, 𝑡 decreases. Consequently, 𝜆𝑖 (𝜏) in-
crease. Meanwhile, we also get 𝜆𝑖 (𝜏) ≤ 𝜆𝑖 (1) = 𝜆𝑖 for 𝜏 ∈ (0, 1] and
𝜆𝑖 (𝜏) > 𝜆𝑖 (1) for 𝜏 > 1, which completes the proof. □

Proof of Theorem 3. Let y ∈ N𝑛 be the label vector, i.e.,Y𝑢 = 𝑖

when node 𝑢 belongs to the 𝑖-th class. Let L = UΛU⊤ where U is

the eigenvector matrix and Λ is the diagonal matrix of eigenvalue

spectrum {𝜆1, 𝜆2, · · · , 𝜆𝑛}. Suppose U⊤y = (𝛼1, 𝛼2, · · · , 𝛼𝑛) where
𝛼𝑖 is the projection (response) of y on eigenvector U⊤ [𝑖, :]. Then
we have y⊤Ly = y⊤UΛU⊤y =

∑𝑛
𝑖=1 𝛼

2

𝑖
𝜆𝑖 .

W.l.o.g, we have F1 (x) =
∑𝑡−1
𝑘=0

w𝑜
𝑘

P𝑘x =
∑𝑡−1
𝑘=0

∑𝑛
𝑖=1 w𝑜

𝑘
𝜆𝑘
𝑖
𝜓𝑖𝜓
⊤
𝑖

x
and F2 (x) =

∑𝑡−1
𝑘=0

w𝑎
𝑘

P𝑘𝜏 x =
∑𝑡−1
𝑘=0

∑𝑛
𝑖=1 w𝑎

𝑘
𝜆𝑘
𝑖
(𝜏)𝜙𝑖𝜙⊤𝑖 x where 𝜆𝑖

(resp. 𝜆𝑖 (𝜏)) is the 𝑖-th eigenvalue and 𝜓𝑖 (resp. 𝜙𝑖 ) is the associ-

ated eigenvector of P (resp. P𝜏 ). For ease of exposition, we assume

𝜓⊤
𝑖

x = 𝛾𝑖 and 𝜙
⊤
𝑖

x = 𝛽𝑖 for 𝑖 ∈ {1, 2, · · · , 𝑛}. Therefore, for the
corresponding frequencies of F1 (x) and F2 (x), we have∑𝑛

𝑖=1

∑𝑡−1
𝑘=0

w𝑜
𝑘
𝛾2
𝑖
𝜆𝑘
𝑖
=

∑𝑛
𝑖=1

∑𝑡−1
𝑘=0

w𝑎
𝑘
𝛽2
𝑖
𝜆𝑘
𝑖
(𝜏) = ∑𝑛

𝑖=1 𝛼
2

𝑖
𝜆𝑖 (10)

For better demonstration, we represent Equation (10) in the form

of

(𝛾2
1
, 𝛾2

2
, · · · , 𝛾2𝑛)⊤Γ(w𝑜0 ,w

𝑜
1
, · · · ,w𝑜

𝑡−1)
=(𝛽2

1
, 𝛽2

2
, · · · , 𝛽2𝑛)⊤Γ𝜏 (w𝑎

0
,w𝑎

1
, · · · ,w𝑎

𝑡−1)
=(𝛼2

1
, 𝛼2

2
, · · · , 𝛼2𝑛)⊤ (𝜆1, 𝜆2, · · · , 𝜆𝑛) (11)

where Γ𝜏 (resp. Γ) ∈ R𝑛×𝑡 is the Vandermonde matrix of 𝜆𝑖 (𝜏) (resp.

𝜆𝑖 ). Specifically, Γ𝜏 =

����������
1 𝜆1 (𝜏) 𝜆2

1
(𝜏) · · · 𝜆𝑡−1

1
(𝜏)

1 𝜆2 (𝜏) 𝜆2
2
(𝜏) · · · 𝜆𝑡−1

2
(𝜏)

· · · · · · · · · · · · · · ·
1 𝜆𝑛−1 (𝜏) 𝜆2

𝑛−1 (𝜏) · · · 𝜆𝑡−1
𝑛−1 (𝜏)

1 𝜆𝑛 (𝜏) 𝜆2𝑛 (𝜏) · · · 𝜆𝑡−1𝑛 (𝜏)

����������.
Note that (𝛾2

1
, 𝛾2

2
, · · · , 𝛾2𝑛) and Γ in F1 (x) are constant while

(𝛽2
1
, 𝛽2

2
, · · · , 𝛽2𝑛) and Γ𝜏 in F2 (x) are functions of 𝜏 . Meanwhile,

as proved in Theorem 2, 𝜆𝑖 (𝜏) is a monotonically increasing

10
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function of 𝜏 with controllable values, i.e., either 𝜆𝑖 (𝜏) ≤ 𝜆𝑖 or

𝜆𝑖 (𝜏) > 𝜆𝑖 . In particular, F2 (x) is a general extension of F1 (x), e.g.,
(𝛽2

1
, 𝛽2

2
, · · · , 𝛽2𝑛) = (𝛾21 , 𝛾

2

2
, · · · , 𝛾2𝑛) and Γ𝜏 = Γ when 𝜏 = 1.

As a consequence, for a randomly initialized weight w, let

{w,w1,w2, · · · ,w𝑝 ,w𝑜 } be the learning trace of a model from

K𝑡 (P, x) to optimal filter F1 after training in (𝑝 + 1) steps. In
thus a case, there exists an appropriate 𝜏 > 0 to alter 𝛾𝑖 into 𝛽𝑖
and reshape Γ into Γ𝜏 to reach w𝑎

before (𝑝 + 1) steps, ensuring
Equation (11). Put differently, obtaining w𝑎 is more attainable than

reaching w𝑜 starting from the initial weight w in expectation, i.e.,

E[∥w𝑎 −w∥2] ≤ E[∥w𝑜 −w∥2]. □

Table 6: Hyperparameters of AdaptKry.

Datasets Hop 𝐾 𝜏 Learning rate Hidden dimension

Cora 10 {0.5,0.8,1.1} 0.10 256

Citeseer 10 0.1 0.01 128

Pubmed 10 0.5 0.10 128

Actor 10 { 0.6,1.7,1.8} 0.10 256

Chameleon 10 { 0.5,0.8} 0.01 256

Squirrel 10 0.8 0.005 256

A.2 Experimental Settings
Running Environment.All experiments are conducted on a Linux

machine with an NVIDIA Tesla V100 (32GB memory), Intel Xeon(R)

CPU (2.80GHz), and 500GB RAM.

Parameter Settings. Table 6 presents the hyperparamters (hop

𝐾 , 𝜏 , learning rate and hidden dimension) of AdaptKry adopted on

the 6 small datasets and 4 large datasets. As said in Section 5.1, we

fix 𝐾 = 10 for the small datasets and tune 𝐾 in {2, 4, 6, 8, 10} for
the large datasets by following the setting in [20]. For 𝜏 , we tune

𝜏 in the range [0.1, 1]. In particular, we normally set 𝜏 = 0.9 for

the three strong heterophily graphs, as verified in our experiment

(Section 5.3, and tune it for the rest datasets for the best fit. Learning

rate (lr) is selected from the set {0.005, 0.01, 0.05, 0.10} and hidden

dimension is tuned from the set {128, 256, 512, 1024, 2048}. For base-
lines, we either adopt their recommended parameter settings on

corresponding datasets or tune their parameters carefully following

the above scheme for a fair comparison.

Implementation Details. We implement AdaptKry in PyTorch.

The baselines are obtained from their official release. Table 7 summa-

rizes the links to baseline codes. As with ChebNet and GPR-GNN,
we adopt their implementations inside the source code of BernNet.

Table 7: Download links of baseline methods.

Methods URL

GCN https://github.com/pyg-team/pytorch_geometric

SGC https://github.com/Tiiiger/SGC

ASGC https://github.com/schariya/adaptive-simple-convolution

SIGN https://github.com/twitter-research/sign

BernNet https://github.com/ivam-he/BernNet

JacobiConv https://github.com/GraphPKU/JacobiConv

EvenNet https://github.com/leirunlin/evennet

ChebNetII https://github.com/ivam-he/ChebNetII

OptBasisGNN https://github.com/yuziGuo/FarOptBasis

Table 8: Accuracy (%) for orthogonal / non-orthogonal poly-
nomials

Dataset Method hop 𝐾

2 4 6 8 10

Pubmed

OrthKry 91.56 91.72 91.47 91.68 91.47

AdaptKry 92.17 91.90 91.95 92.01 92.05

Actor

OrthKry 40.51 40.71 40.33 40.04 39.11

AdaptKry 39.87 40.92 41.21 41.92 42.06

A.3 Additional Experimental Results

AdaptKry OrthKry
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Figure 5: Non-orthgonal and orthogonal polynomial compu-
tation overheads.

Further exploration on orthogonality. For a complete evalua-

tion, we further test AdaptKry and OrthKry on datasets Pubmed

and Actor to compare non-orthogonal and orthogonal polynomi-

als in graph filters. Table 8 presents the accuracy scores on the

homophily dataset Pubmed and the heterophily dataset Actor. We

observe that AdaptKry shows a clear advantage over OrthKry on

Pubmed. Except for the case of 𝐾 = 2, AdaptKry also beats Or-
thKry on heterophily dataset Actor. Together with the results in

Table 5, neither AdaptKry nor OrthKry graph filter demonstrates

dominance over the other across various graphs, and our experi-

ments indicate that orthogonal polynomials do not exhibit clear

advantages over non-orthogonal polynomials.

Meanwhile, we also plot the polynomial computation overheads

of AdaptKry andOrthKry on datasets Pubmed and Actor in Figure 5.

Similar to the results in Figure 4, the computation overheads of non-

orthogonal polynomials in AdaptKry can be one order of magnitude

smaller than those of orthogonal polynomials in OrthKry. Those
findings substantiate the superior efficacy of non-orthogonal bases

in comparison to orthogonal bases.

Learned graph filters. To better illustrate the graph filtering ca-

pability of AdaptKry, we plot the graph filters learned on the 3 ho-

mophily graphs (Cora, Citeseer, Pubmed) and 3 heterophily graphs

(Actor, Chameleon, Squirrel) in Figure 6. As seen, AdaptKry learns

explicit low-pass filters on homophily graphs and a high-pass filter

on Actor, comb-pass filters on Chameleon and Squirrel, coherent

with the results in the literature [21].
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Figure 6: Graph filters learnt by AdaptKry on 6 graphs with various homophily ratios
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