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ABSTRACT

With the growing prevalence of large language model (LLM)-generated content,
watermarking is considered a promising approach for attributing text to LLMs
and distinguishing it from human-written content. A common class of techniques
embeds subtle but detectable signals in generated text by modifying token sam-
pling probabilities. However, such methods are unsuitable for open-source mod-
els, where users have white-box access and can easily disable watermarking dur-
ing inference. Existing watermarking methods that support open-source models
often rely on complex or compute-intensive training procedures. In this work,
we introduce OpenStamp, a simple watermarking technique that implants de-
tectable signals into the generated text by modifying just the final projection,
or unembedding, layer. Through experiments across two models, we show that
OpenStamp achieves superior detection performance, with minimal degradation
in model capabilities. The implanted watermarking signal is harder to scrub off
through post-hoc fine-tuning compared to previous methods, and offers similar
robustness against paraphrasing attacks. We have shared our code through an
anonymized repository to enable developers to easily watermark their models.

1 INTRODUCTION

Large language models (LLMs) are capable of generating human-like text, which has led to their
widespread adoption in various applications (Brown et al., 2020; Chowdhery et al., 2023). As these
models become more prevalent, there are looming concerns about potential misuse, such as gen-
erating large-scale misinformation (Oviedo-Trespalacios et al., 2023), influencing public opinion
(Panditharatne & Giansiracusa, 2023), or orchestrating social engineering attacks (Grbic & Du-
jlovic, 2023). To address these concerns, it is critical to develop methods for distinguishing LLM-
generated content from human-written text. Such methods can also be used to attribute the content
to its source model, thereby promoting transparency and accountability in LLM use, especially for
high-stakes applications. One promising approach to detect model-generated content is to water-
mark the text by embedding subtle, imperceptible signals into the model’s outputs. To implant
such signals, several prominent watermarking techniques either modify the next-token probabilities
(Kirchenbauer et al., 2023; Liu & Bu, 2024) or constrain the sampling process during generation
(Aaronson, 2023; Kuditipudi et al., 2024). While effective, these decoding-based techniques are
incompatible with requirements of open sourcing, where users have full control over the generation
process and can easily disable the watermarking logic. This motivates the need for techniques that
embed watermarking signals directly into the weights of language models.

Few recent works explore this direction for watermarking open-source LLMs. A notable approach
proposes to distill a student model using the outputs of the watermarked teacher model (Gu et al.,
2024). However, this method typically requires considerable amounts of training data and computa-
tional resources. Another recent study proposes to add Gaussian noise to the bias vector of the final
layer, steering the generation towards a fixed set of tokens (Christ et al., 2024), also referred to as
the green list in watermarking literature. This scheme may have limited applicability as most LLMs
omit bias terms in linear layers (Touvron et al., 2023; Jiang et al., 2023; Radford et al., 2019). Fur-
thermore, recent work shows that watermarks relying on a fixed green list can be reverse-engineered
and rendered ineffective (Jovanovic et al., 2024; Rastogi & Pruthi, 2024).
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Figure 1: Overview of our watermarking method. We add an offset matrix ∆W to the unembed-
ding layer’s weights U to produce watermark logits that bias token sampling, favoring tokens with
higher watermark logit values. The watermark can be detected using a log-likelihood ratio (LLR)
based score which measures how much more likely the observed tokens are under the watermarked
model compared to the unwatermarked model.

In this work, we introduce OpenStamp, a simple approach to watermarking open-source LLMs by
modifying the unembedding layer1 weights of the model. We introduce a carefully designed modi-
fication to these weights, which bias the logits before generation and thereby implant signals in the
generated text. OpenStamp is conceptually similar to prior logit-based watermarking approaches
(Kirchenbauer et al., 2023; Liu et al., 2024; Liu & Bu, 2024), which influence token selection by
adding small, context-dependent biases to the logits at each decoding step. However, an important
distinction is that we embed the biasing logic directly into the unembedding layer’s weights. Fig-
ure 1 shows a high-level overview of our watermarking method. To detect watermarked text, we
compute a length normalized log-likelihood ratio (LLR) score, which measures how much more
likely the observed tokens are under the watermarked model compared to the unwatermarked model.

OpenStamp offers multiple advantages over prior work. Unlike past approaches (Gu et al., 2024;
Xu et al., 2025; Elhassan et al., 2025), it requires no complex training procedures to embed the wa-
termark. Furthermore, unlike Christ et al. (2024), it does not rely on the final layer bias and cannot be
trivially removed. Despite its simplicity, OpenStamp achieves near-perfect detection (TPR ≥ 99%
at 1% FPR) with only minimal degradation in text quality, outperforming other open-source wa-
termarking methods by over 45 percentage points in detection accuracy at comparable perplexity
levels. Our watermarking method approaches the Pareto frontier defined by prominent decoding-
based techniques. Furthermore, our watermarking signal is more difficult to erase via fine-tuning
compared to existing approaches and is comparably robust to paraphrasing attacks. We believe that
these strengths make our approach a strong candidate for watermarking open-source models. To
encourage model developers to watermark their models prior to release, and foster the development
of new watermarking techniques for open-source models, we publicly release our code through an
anonymized repository: https://anonymous.4open.science/r/openstamp-78F4/

2 BACKGROUND AND RELATED WORK

Watermark for Large Language Models. Watermarking techniques for LLMs embed signals
in model-generated text that remain imperceptible to human readers but can be algorithmically de-
tected. A common approach alters the decoding process (Kirchenbauer et al., 2023; Liu & Bu, 2024)
by boosting a pseudorandom subset of tokens. Detection relies on statistical tests that exploit the re-
sulting skew, for example by comparing the proportion of green tokens against the baseline expected
under unwatermarked text. For a comprehensive survey, see Liang et al. (2024).

Watermarks for Open-Source LLMs. In open-source settings, where users control the decod-
ing process, any decoding-time logic can be easily bypassed; hence, the watermarking logic must
be embedded directly into the model weights. One approach uses distillation, training a student
model on watermarked outputs from a decoding-based watermarked teacher, thereby enabling the
student to generate watermarked text natively (Gu et al., 2024). While effective, this method requires
substantial computational resources and training data. A reinforcement learning-based framework

1The unembedding layer is also referred to as the output projection layer or softmax layer.

2

https://anonymous.4open.science/r/openstamp-78F4/


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

jointly optimizes an LLM and a paired detector to balance detectability and text quality (Xu et al.,
2025). A further line of work embeds a watermark into model weights by jointly fine-tuning LoRA
adapters, optimizing for both coherence and detectability (Elhassan et al., 2025). In addition to re-
quiring substantial compute, both methods rely on complex joint optimization objectives that can be
challenging to tune.

Similar to our work are approaches that embed watermarking logic without requiring any LLM fine-
tuning. One such method introduces a fixed Gaussian perturbation to the final layer’s bias vector,
steering generation towards positively biased tokens (Christ et al., 2024), similar to a fixed green
list (Zhao et al., 2024). However, most LLMs omit bias terms in linear layers (Touvron et al., 2023;
Jiang et al., 2023; Radford et al., 2019), and fixed green-list watermarks are known to be vulnerable
to reverse-engineering attacks (Jovanovic et al., 2024; Rastogi & Pruthi, 2024). GaussMark (Block
et al., 2025) embeds a watermark by adding Gaussian noise to a subset of model weights, and detects
it by analysing how the log-likelihood of a given text changes under the perturbed model. However,
GaussMark can be difficult to embed, as it requires careful selection of the weight subsets and the
noise strength to balance text quality and detectability across models.

Despite recent innovations, a key limitation across existing work is the lack of robustness to post-hoc
model modifications. This is a major challenge for watermarking open-source models, which are
often updated through quantization, pruning, merging, or fine-tuning. Gloaguen et al. (2025) find
that no current methods remain detectable after such updates. We present complementary evidence
on this limitation in Section 5.3. Various recent approaches underscore the inherent difficulty of
watermarking in open-source LLMs. Each method exhibits different limitations across several axes:
efficiency of integration, detectability, robustness, and practicality.

3 METHODOLOGY

Overview. This section presents our approach for watermarking language model outputs. We
first introduce the model setup and notation (§3.1), then describe how a simple modification to the
unembedding layer can bias generation towards specific tokens to embed a watermark signal (§3.2).
We outline key desiderata for effective watermarking and show how our design satisfies them (§3.3).
Finally, we describe how to detect the watermark using a log-likelihood ratio based score (§3.4).

3.1 PRELIMINARIES

Let a language model process a sequence of tokens drawn from a vocabulary V . Let xt ∈ V denote
the token at generation step t, and let x≤t = (x1, . . . , xt) denote the prefix up to step t. The model
computes a hidden representation ht = f(x≤t) ∈ Rd, where f : V∗ → Rd is the model’s internal
encoding function. The model then produces a logit vector

vt = Uht ∈ R|V|,

where U ∈ R|V|×d is the unembedding matrix. The model defines a categorical distribution p(xt+1 |
x≤t) over the next token by applying a softmax over vt, where each component v(w)

t corresponds to
the logit value of token w ∈ V . Watermarking strategies typically modify vt during generation to
influence the next-token distribution.

KGW Watermarking. In the KGW watermarking scheme (Kirchenbauer et al., 2023), the logit
modification step is guided by a pseudorandom partition of the vocabulary. At each generation step
t, a pseudorandom function (PRF) selects a subset of tokens Gt ⊂ V called the green list, based on
the context x≤t and a secret key. A parameter γ controls the fraction of tokens in the green list, so
that |Gt| = γ|V|. The logits for tokens in the green list are boosted by a fixed amount δ > 0:

v̂
(w)
t = v

(w)
t + δ · 1{w ∈ Gt}.

3.2 WATERMARKING VIA UNEMBEDDING MATRIX MODIFICATION

Modifying the unembedding matrix provides a direct mechanism to alter the logit vector produced at
each generation step. Concretely, we define a modified unembedding matrix Ũ = U +∆W, where

3
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we refer to ∆W ∈ R|V|×d as the offset matrix. Applying this matrix to a hidden state ht yields the
modified logit vector ṽt = Ũht = vt +∆Wht, where ∆Wht is termed watermark logits. These
logits bias the output distribution during generation, favoring tokens with higher adjusted scores.
This bias accumulates in the generated text, embedding a detectable watermark signal.

Unlike prior approaches that modify arbitrary model weights, altering the unembedding matrix has
interpretable effects: the watermark’s influence on token probabilities is directly determined by the
linear transformation ∆W applied to hidden states. This linearity allows us to provide a theoretical
justification for why the watermark logits remain stable, as discussed in Appendix J.

Designing an effective offset matrix. For our method to be effective, the offset matrix ∆W should
embed a watermark that is:

• Detectable in generated text using algorithmic methods.
• Controllable via hyperparameters that balance detectability and text quality.
• Variable across contexts, avoiding fixed biases that can be reverse-engineered.

To meet these desiderata, we now present our design for the offset matrix ∆W .

3.3 LINEARIZED GREEN LIST BIASING

Inspired by KGW, where a PRF selects a context-dependent green list Gt ⊂ V , we model a similar
list-selection mechanism as a composition of two linear transformations. Specifically, we construct
the offset matrix as

∆W = GS,

where G ∈ R|V|×L encodes L green lists, and S ∈ RL×d is designed to map the hidden state ht to a
vector s = Sht ∈ RL that approximates a one-hot selector for one of the L green lists. The product
Gs ∈ R|V| then yields watermark logits that closely resembles one of the encoded green lists in G.
Because the hidden state encodes the generation context, this construction parallels KGW’s use of
PRF to tie list selection to context. By maintaining multiple green lists and selecting among them
dynamically through ht, the method ensures variability in the watermark logits across contexts. We
provide supporting evidence of this variability in Appendix G.

Selector Matrix S. The selector matrix S ∈ RL×d is obtained by solving a ridge regression
problem in which input variables are continuous hidden states and the target outputs are one-hot
vectors representing L pseudo-classes. To build these pseudo-classes, we first extract the hidden
states from the final transformer layer on text sampled from the OpenWebText corpus (Gokaslan &
Cohen, 2019). We then group these hidden states into L clusters using the k-means algorithm. This
gives us a training dataset Dtrain = {(hi, ei)}Ni=1, where ei is the one-hot encoding of the cluster
label for hi. We then solve:

min
S

∑
(hi,ei)∈Dtrain

∥Shi − ei∥2 + λ∥S∥2F ,

where λ > 0 is a regularization parameter. Once trained, S can be applied to any hidden state ht to
produce a soft class indicator s = Sht ≈ et. See Appendix B for training details.

Green List Matrix G. The matrix G ∈ R|V|×L encodes L candidate green lists as its columns.
For each column l ∈ {1, . . . , L}, the corresponding green list Gl ⊂ V is defined by a PRF:

Gl = { i | PRF(seed, l, i) < γ },

where seed is the secret key shared between watermark generation and detection, and PRF(·)
maps the token index i to a value in [0, 1]. Each entry of G is then given by

Gi,l = δ · 1{i ∈ Gl}.

The hyperparameters γ and δ have the same interpretation as in the KGW watermarking scheme,
offering controllability over the watermark’s strength and impact on text quality.

4
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Approximating one-hot selectors. Since our method operates on continuous hidden states, the
selector matrix S yields soft, continuous selectors instead of exact one-hot vectors. As a result,
multiple green lists can be partially activated at once leading to weaker alignment with the intended
green-list behavior. This effect becomes more pronounced as L grows. Nonetheless, detection
performance remains strong. A detailed analysis of this effect and its influence on detection perfor-
mance is presented in Section 5.5.

3.4 DETECTION VIA LOG-LIKELIHOOD RATIO

To detect the presence of a watermark, we compute a length-normalized log-likelihood ratio
(LLR) for the given sequence using the watermarked and original model, specifically:

LLR(x) =
1

T

T∑
t=1

log
pwm(xt | x<t)

porig(xt | x<t)
, (1)

where the probabilities are defined via softmax over logits from the original unwatermarked model,
porig and it’s watermarked version, pwm.

Intuition. The LLR score measures how much more likely a given token sequence is under the
watermarked model than under the original model. Because the watermark logits systematically
bias sampling towards certain favored tokens, generations from the watermarked model tend to
accumulate higher LLR values, making the watermark detectable in practice. Length normalization
ensures that a single detection threshold can be applied consistently across sequences of different
lengths. A key assumption behind this approach is that unwatermarked text, whether human-written
or generated by other models, is better modeled by the original model than by the watermarked one.
While the conditional probabilities in Equation 1 formally condition on the full history, detection
remains robust using only partial prefixes that exclude the generation prompt. We present empirical
evidence in Appendix I that detection performance is largely invariant to prompt inclusion.

Unlike frequency-based detection methods (Kirchenbauer et al., 2023), our LLR score does not con-
stitute a formal statistical test. The null hypothesis—that the text is unwatermarked—is composite,
encompassing human-written and other model-generated text. As noted in Block et al. (2025), this
makes p-value calibration intractable, since the null distribution of the LLR is not well-defined.
Nevertheless, because the LLR uses the full token probability distribution and naturally captures
the mixture of green lists produced by our watermarking method, it preserves signal that frequency-
based tests lose by relying only on discrete counts. In Section 5.6, we demonstrate this empirically
by comparing our LLR-based detector with ablations that discretize the signal.

Detection Protocol. The developer publicly releases a watermarked model with the modified un-
embedding matrix Ũ = U + ∆W , while keeping the original unembedding matrix private. Any
text generated using the public model can be detected using Algorithm 1. This protocol assumes
white-box access to the model weights in order to evaluate log-likelihoods.

Algorithm 1 Watermark Detection via LLR Score

Require: Sequence x = (x1, . . . , xT ), LLM backbone f(·), unembedding matrix U , offset matrix
∆W , threshold τ

Ensure: True if x is watermarked; else False
// Extract hidden states from the LLM

1: (h1, . . . , hT )← f(x)
// Compute log-likelihood of sequence under original model

2: ℓorig ←
∑T−1

t=1 log softmax(htU
⊤)[xt+1]

// Compute log-likelihood under watermarked model
3: ℓwm ←

∑T−1
t=1 log softmax(ht(U +∆W )⊤)[xt+1]

// Compute length-normalized LLR score
4: LLR(x)← (ℓwm − ℓorig)/(T − 1)
5: return (LLR(x) > τ)

5
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Figure 2: Trade-off between detectability (TPR at 1% FPR) and text quality (PPL) for various
watermarking methods. KGW + LLR defines the Pareto frontier, establishing an upper bound on
detectability at each PPL level. Vanilla KGW performs slightly worse, highlighting the effective-
ness of the LLR detection method. Our method, OpenStamp, is close to the Pareto frontier and
outperforms all open-source compatible methods (shown in green) by a substantial margin.

4 EXPERIMENTAL SETUP

We evaluate our watermarking method across four key dimensions: (i) detection performance
(§ 5.1), (ii) robustness to paraphrasing attacks (§ 5.2), (iii) resistance to fine-tuning (§ 5.3)
and (iv) impact on downstream tasks (§ 5.4). We conduct all experiments along these axes on
Llama-2-7B (Touvron et al., 2023). Additional detection performance experiments are conducted
on Mistral-7B (Jiang et al., 2023) and presented in Appendix C. Beyond these evaluations, we
also provide a deeper analysis of watermarking behavior (§ 5.5) and the LLR detector (§ 5.6).

4.1 BASELINES

We compare our method against two prior open-source-compatible watermarking approaches:
GaussMark (Block et al., 2025) and a distilled version of KGW (Gu et al., 2024). We also include
standard KGW as a representative of more conventional decoding-based techniques. In addition, we
evaluate KGW combined with the LLR-based detector described in Section 3.4, which we regard as
an approximate upper bound on detection performance. We omit RL-based watermarking (Xu et al.,
2025) because it does not remain robust across different sampling strategies (See Appendix E). We
omit Elhassan et al. (2025) because we were unable to train a model that could reliably embed a
detectable watermark. Hyperparameters for all methods are provided in Appendix D.

4.2 EVALUATION PROTOCOL

Watermarked Sample Generation. We generate 500 watermarked completions of 200 tokens
each, using 50-token prompts sampled from the RealNewsLike subset of C4 (Raffel et al.,
2020). The corresponding unwatermarked completions are taken directly from the dataset as the
next 200 tokens after each prompt. Detection is performed only on the continuations and excludes
the prompts. Watermarked generations are sampled using nucleus sampling with temperature 1.0.
To assess generalizability, we also evaluate on prompts drawn from ArXiv (Cohan et al., 2018),
BookSum (Kryściński et al., 2022), and Wikipedia (Wikimedia Foundation, 2024).

Metrics. We evaluate two properties: watermark detectability and text quality. Detectabil-
ity is measured by the AUROC and the true positive rate at a fixed false positive rate of 1%
(TPR@1%FPR). In applications such as plagiarism detection, where false positives carry a high
cost, maintaining a low FPR is essential, making TPR@1%FPR a particularly relevant metric. Text
quality is measured by the mean perplexity (PPL) of the watermarked samples, computed using
Llama-2-13b as the oracle model. All metrics are averaged over three random seeds, except for
KGW Distilled, where only one seed was used due to the high computational cost of distillation.
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Method ArXiv BookSum Wikipedia
TPR@1%FPR PPL TPR@1%FPR PPL TPR@1%FPR PPL

KGW 0.99 34.1 1.00 25.1 0.97 13.7
KGW + LLR 1.00 31.9 1.00 23.5 0.99 12.5

KGW Distilled 0.97 40.8 0.99 30.9 0.94 15.8
GaussMark 0.92 38.6 0.95 30.1 0.90 17.0
OpenStamp 1.00 31.0 1.00 26.3 0.99 14.4

Table 1: Watermark detection performance across datasets. Prompts are sampled from
ArXiv, BookSum, and Wikipedia and evaluated on LLaMA-2-7B. Bold values denote the best
TPR@1%FPR and lowest PPL per dataset. KGW and KGW + LLR are decoding-based methods.

5 RESULTS

5.1 DETECTION PERFORMANCE

Figure 2 illustrates the tradeoff between text quality and detectability for various watermarking
methods. Each method’s tradeoff curve is generated by varying a method-specific parameter that
controls strength of the signal. Open-source methods are shown in green, while decoding-based
methods are shown in orange.

OpenStamp achieves near-perfect detection (TPR≥ 99.9%) at a perplexity of approximately 13.6,
significantly outperforming Gaussmark and KGW Distilled, which reach only 45-55% TPR at sim-
ilar PPL levels. The gap between vanilla KGW and the KGW+LLR upper bound highlights the
effectiveness of the LLR detection method. As shown in Table 1, our method also outperforms
all baselines across other datasets, demonstrating its generalizability. OpenStamp shows similar
trends across all datasets on Mistral-7B (see Appendix C).

We also assess detection under stricter false-positive constraints, since in many applications even a
1% FPR may be too high. Table 2 reports TPR@0.1% FPR and TPR@0.01% FPR for all methods.
OpenStamp maintains near-perfect detection at both 0.1% and 0.01% FPR, clearly outperforming
GaussMark and KGW Distilled.

Method TPR@0.1% FPR TPR@0.01% FPR PPL
KGW + LLR 1.00 1.00 14.8
KGW 0.99 0.99 15.5

Gaussmark 0.74 0.74 15.7
KGW Distilled 0.85 0.84 16.6
OpenStamp 1.00 1.00 15.1

Table 2: Detection TPR at stricter FPRs. OpenStamp maintains near-perfect detection perfor-
mance even at 0.1% and 0.01% FPR, significantly outperforming GaussMark and KGW Distilled.

5.2 ROBUSTNESS TO PARAPHRASING ATTACKS

Paraphrasing attacks pose a major challenge for watermark detection (Krishna et al., 2023; Kirchen-
bauer et al., 2024). By replacing or rearranging tokens, paraphrasing can dilute the statistical pat-
terns that watermarking methods rely on for detection. To test robustness against such attacks, we
use DIPPER (Krishna et al., 2023), a paraphrase generation model that allows fine-grained control
over lexical diversity, a measure of how much the paraphrase’s word choice diverges from the origi-
nal. We apply DIPPER to watermarked samples with two lexical diversity levels, 20 for lighter edits
and 60 for stronger edits. As an upper-bound, we include UNIGRAM (Zhao et al., 2024), which
uses a static green list and is inherently robust to paraphrasing since its green token set remains fixed
regardless of surface form. Note that while UNIGRAM is robust to paraphrasing because of its static
green list, it is easier to reverse engineer and thus less secure.

7
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Figure 4: Relative downstream task accuracy
of watermarked models. Accuracy is shown
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(dashed line at 100%). All methods exhibit a
degradation in accuracy that is less than 5%.

Table 3 shows that OpenStamp achieves the highest TPR@1%FPR at low lexical diversity
(20), while GaussMark outperforms at higher diversity (60). We observed a similar trend on
Mistral-7B (see Appendix C). Note that a lexical diversity of 20 corresponds to the kind of
quick, low-effort edits a human paraphraser might realistically attempt, making it the more practical
setting. In contrast, a diversity of 60 is far less realistic, since achieving that level of rewriting would
require effort similar to composing the text from scratch.

Method LexDiv = 20 LexDiv = 60
AUROC TPR@1%FPR AUROC TPR@1%FPR

UNIGRAM 0.99 0.87 0.97 0.56

KGW Distilled 0.97 0.71 0.87 0.29
GaussMark 0.96 0.63 0.92 0.47
OpenStamp 0.99 0.89 0.88 0.45

Table 3: Paraphrasing attack results on LLaMA-2-7B. LexDiv (Lexical Diversity) measures
the degree of paraphrasing; higher LexDiv means stronger paraphrasing. UNIGRAM serves as an
upper-bound and is expected to remain robust under paraphrastic transformation. Bold indicates top
TPR@1%FPR among methods.

5.3 RESISTANCE TO POST-HOC FINE-TUNING

We assess how well open-source compatible watermarking methods can resist post-hoc fine-tuning.
Specifically, we simulate an adversary attempting to erase the watermark from model weights by fur-
ther fine-tuning on OpenWebText (Gokaslan & Cohen, 2019) using LoRA (Hu et al., 2022). Since
OpenStamp modifies only the unembedding layer, an adversary may leverage this knowledge to
perform a more targeted and computationally efficient fine-tuning attack that updates only the unem-
bedding layer. Therefore, we also include this targeted attack in our evaluation. Full experimental
details are provided in Appendix F. We measure the TPR@1%FPR after every 500 fine-tuning steps
up to 2,500 steps. We discuss more attack setups in Appendix K.

Figure 3 shows that although all watermarking methods degrade over time, OpenStamp retains
higher detectability than both GaussMark and KGW Distilled. The targeted attack performs simi-
larly to full-model fine-tuning, but serves as a more computationally efficient approach for attempt-
ing to erase OpenStamp ’s watermark.
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Figure 5: Green List Token Overlap. As L in-
creases, the overlap between the top-biased to-
kens and the intended green list decreases, indi-
cating weakening alignment with the intended
green list structure.
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Figure 6: Detection Performance vs. L. Mini-
mum PPL to achieve TPR@1%FPR ≥ 0.90 is
reported for different L values. PPL remains
stable with growing L and consistently below
the GaussMark and KGW Distilled baselines.

5.4 IMPACT ON DOWNSTREAM TASK ACCURACY

Since watermarking strategies alter the output distributions of LLMs, it is essential to ensure that
the utility of the underlying model is not significantly compromised. While the results in Figure 2
demonstrate minimal degradation in perplexity, Ajith et al. (2024) find that perplexity measure-
ments cannot reliably predict the performance trade-offs due to watermarking on downstream tasks.
Therefore, we further evaluate watermarked models on downstream tasks using the Language Model
Evaluation Harness (Gao et al., 2024). We measure the potential performance degradation intro-
duced by watermarking across three benchmarks: ARC-C (Clark et al., 2018), BoolQ (Clark et al.,
2019), and HellaSwag (Zellers et al., 2019).

Figure 4 shows the accuracy of various watermarking methods on these tasks, relative to the unwa-
termarked model. All methods exhibit a degradation in accuracy that is less than 5%, suggesting
similar levels of degradation on other downstream tasks.

5.5 ANALYSIS OF WATERMARKING BEHAVIOR

In this section, we study how the hyperparameter L, which represents the number of green lists, in-
fluences our watermarking method. We focus on two aspects: (1) the alignment between watermark
logits and the green list structure, and (2) the detection performance.

Measuring alignment. We first extract 5,000 hidden states from OpenWebText samples. For each
hidden state h, we compute watermark logits ∆Wh = GSh. We measure overlap, defined as the
fraction of |G| = γ · |V| tokens with the largest logits in ∆Wh that also belong to the intended green
list Gℓ, where ℓ = argmaxi(Sh)i. We report overlap for different values of γ and L in Figure 5. As
L increases, the overlap decreases, indicating a weakening alignment with the green list structure.

Measuring detection performance. We find the minimum PPL required to achieve
TPR@1%FPR ≥ 0.90 on watermarked samples. A lower PPL threshold indicates a more effec-
tive watermark, since it enables reliable detection with less degradation in text quality. We report
the PPL threshold for different L values. For comparison, we also report corresponding PPL thresh-
olds for GaussMark and KGW Distilled. Figure 6 shows that PPL remains stable across different L
values and consistently below the baseline thresholds.

5.6 LLR VS. DISCRETIZED-SIGNAL DETECTORS

We assess how much the LLR detector benefits from retaining the full continuous watermark signal
versus discretizing it. For this, we compare the LLR detector against two ablations that discretize
the watermark signal: (i) a discrete LLR variant that replaces the soft selector with an argmax before

9
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computing likelihoods, and (ii) a binomial count detector that counts the number of selected green
list tokens, following the style of Kirchenbauer et al. (2023). In the discrete LLR variant, the selector
s = Sht is collapsed to a single index ℓ̂t = argmaxi si, and the corresponding green list vector
Gℓ̂t
∈ R|V | is taken as the discretized signal. The watermarked distribution is then

pwm(xt | Gℓ̂t
) =

exp
(
vt +Gℓ̂t

)
xt∑

w∈V exp
(
vt +Gℓ̂t

)
w

,

which the mirrors the numerator in Equation 1 but uses only a single green-list vector, removing all
mixed-list contributions present in the full model. The binomial count detector instead treats green
list membership as a Bernoulli indicator, forming

Z =

T∑
t=1

1{xt ∈ Gℓ̂t
}, z =

Z − γT√
Tγ(1− γ)

.

Table 4 shows TPR at various FPR thresholds for all three detectors. The two discretized-signal
variants recover some watermark signal but they still perform noticeably worse than the LLR de-
tector, indicating that collapsing the mixed green list structure into a single discrete choice loses
information the continuous LLR leverages.

Method TPR@1%FPR TPR@0.1%FPR TPR@0.001%FPR
Discrete LLR 0.96 0.82 0.79
Binomial Count 0.86 0.51 0.50
LLR 1.00 1.00 1.00

Table 4: Comparing LLR to alternative detectors. The discretized-signal variants perform worse
than the full LLR detector, indicating that collapsing the mixed green list structure into a single
discrete choice loses useful information.

6 LIMITATIONS

There are several important limitations of our work. First, detection requires a forward pass through
the model, making it computationally expensive compared to methods that perform statistical tests
on generated text. Second, our method assumes access to token probabilities from the base model.
However, this is a realistic assumption as model owners typically have white-box access to their
models. While our detection algorithm achieves stronger performance, it is not grounded in a sta-
tistical test and thus lacks a probabilistic interpretation, such as confidence levels or false positive
rates, that help quantify detection uncertainty. Finally, the performance of our approach, akin to
existing work, deteriorates under paraphrasing attacks and post-hoc fine-tuning.

7 CONCLUSION

In this work, we proposed a simple and effective approach for watermarking open-source LLMs by
embedding the watermarking logic directly into the weights of the unembedding layer. This design
enables the watermark to be natively integrated into the models generation process without requiring
decoding-time interventions. We demonstrated that our approach outperforms existing open-source
watermarking methods in detection performance while preserving text quality. Additionally, we
demonstrated that its robustness under paraphrasing and post-hoc model fine-tuning is comparable
to, or surpasses, that of existing methods. Overall, our approach offers strong detectability, control-
lability and can be easily integrated into existing models. Future work could explore more advanced
offset matrix designs to improve robustness against paraphrasing and model modifications such as
fine-tuning, and to better support the use of detection methods with statistical guarantees.

10
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APPENDICES

A EFFECT OF VARYING γ AND δ.

We measure the detectability and text quality of watermarked samples generated using different val-
ues of γ and δ. The results, shown in Figures 7a and 7b, indicate the trade-off between detectability
and distortion as we vary these parameters.
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(a) Effect of γ and δ on detectability. TPR@1%FPR
vs. δ for various γ values.
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(b) Effect of γ and δ on text quality. Perplex-
ity vs. δ across the same γ settings, measured using
Llama-2-13b.

B TRAINING THE SELECTOR MATRIX

We train the selector projection matrix S to classify hidden state vectors into L distinct classes,
where L is an hyperparameter. To obtain the training data, we collect 1.5 million hidden states from
the model’s final layer by passing OpenWebText (Gokaslan & Cohen, 2019) sequences of maximum
length 512 through the model. We apply MiniBatchKMeans from scikit-learn (Pedregosa
et al., 2011) to group these hidden states into L clusters. Clusters with fewer than 10 hidden states are
discarded to ensure sufficient representation. We set the ridge regression regularization parameter λ
to 10−3 throughout our experiments.

C RESULTS ON MISTRAL-7B

We present additional results on the Mistral-7b model across two axes: detection performance
and robustness to paraphrasing attacks. We compare our method against GaussMark.

Hyperparameters. For OpenStamp , we set the hyperparameters to δ = 1.0, γ = 0.25, and
L = 203. For GaussMark, we add noise to the up projection weights of the 20th decoder block with
σ = 0.005.

Detection Performance. We evaluate the detection performance of OpenStamp on prompts sam-
pled from the same datasets described in Section 4.2. Table 5 shows that OpenStamp achieves a
TPR@1%FPR of 1.00 across all datasets, with significantly lower perplexity (PPL) compared to the
GaussMark baseline.

Robustness to Paraphrasing Attacks. To evaluate robustness to paraphrasing attacks, we use the
same paraphrasing setup as described in Section 5.2. Table 6 shows that OpenStamp reports a
higher TPR@1%FPR than GaussMark at both levels of lexical diversity.
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Dataset Metric GaussMark OpenStamp

RealNewsLike TPR@1%FPR 0.77 0.99
PPL 15.3 14.1

ArXiv TPR@1%FPR 0.78 1.00
PPL 34.1 26.6

BookSum TPR@1%FPR 0.94 1.00
PPL 26.9 24.6

Wikipedia TPR@1%FPR 0.68 0.99
PPL 14.4 13.1

Table 5: Watermark detection performance for Mistral-7b. Prompts are sampled from
RealNewsLike, ArXiv, BookSum, and Wikipedia, evaluated on Mistral-7B. Bold values
indicate the best TPR@1%FPR and lowest PPL per dataset.

Method LexDiv = 20 LexDiv = 60
AUROC TPR@1%FPR AUROC TPR@1%FPR

GaussMark 0.92 0.41 0.88 0.24
OpenStamp 0.98 0.78 0.87 0.30

Table 6: Paraphrasing attack results on Mistral-7B. Bold indicates top TPR@1%FPR among
methods.

D HYPERPARAMETER DETAILS FOR WATERMARKING METHODS

This section details the experimental setup and hyperparameters used across all experiments. For
each watermarking method, we perform a parameter sweep to generate the plot in Figure 2. For other
evaluations, such as robustness to paraphrasing attacks (§ 5.2), downstream task accuracy (§ 5.4),
and resistance to post-hoc fine-tuning (§ 5.3), we select a single representative configuration from
each method.

OpenStamp We encode L = 235 green lists, each containing a fraction γ = 0.25 of green to-
kens. The strength parameter δ is swept over the range {0.3, 0.4, . . . , 1.2} for the Pareto evaluation.
For all other experiments, we select δ = 1.0 as the representative configuration.

GaussMark Baseline For GaussMark Block et al. (2025), we perturbed the MLP up-projection
weights in a single decoder block using Gaussian noise. For Llama-2-7b, the 27th decoder block
was used with σ ∈ {0.025, 0.03, 0.035, 0.04, 0.045}. The configuration σ = 0.04 is chosen for all
other experiments.

KGW Distilled Baseline We trained several logit-distilled KGW variants Gu et al. (2024) using
a green list fraction γ = 0.25 and strength values δ ∈ {1.0, 1.25, 1.5, 1.75, 2.0} for the Pareto plot.
The distilled model with δ = 2.0 was selected for all other evaluations.

KGW Decoding-Time Watermark We used the decoding-time KGW watermark Kirchenbauer
et al. (2023), which biases the model’s logits during generation without requiring any parameter
modification. We set k = 1, which is the token context length used by the PRF to generate green
lists. We fixed the green list fraction γ = 0.25 and swept the bias strength δ ∈ {0.7, 0.8, . . . , 2.0}
to populate the Pareto frontier. For Table 2 and Table 1, we selected δ = 1.5.

KGW + LLR Detection Variant We additionally evaluated KGW with an LLR-based detection
strategy (Section 3.4) to simulate a white-box detection setting. The hyperparameters were fixed at
γ = 0.25 and δ ∈ {0.5, 0.6, . . . , 1.7} for the Pareto evaluation. For Table 2 and Table 1, we selected
δ = 1.4.
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E PRACTICAL CHALLENGES WITH RL-BASED WATERMARKING

We attempted to implement the RL-based watermarking method from Xu et al. (2025). However,
the trained RL model was unable to generate detectable watermarks when the text was generated us-
ing multinomial sampling, and it could only embed a strong watermark when sampling with greedy
decoding. This is not practical for real-world applications, as greedy decoding often produces repet-
itive and low-quality text.

We quantify repetition using seq-rep-3, the proportion of duplicate 3-grams in a sequence (Welleck
et al., 2020):

1− # of unique 3-grams
# of 3-grams

We report mean seq-rep-3 across watermarked samples for both RL watermarking and our
method under greedy and multinomial (temperature = 1.0) decoding, along with TPR@1%FPR.
Results in table Table 7 show that while greedy decoding makes RL watermarks detectable, it also
causes severe repetition, limiting practicality. In contrast, our method preserves low repetition while
maintaining strong detectability across both decoding strategies.

Method Multinomial Greedy
TPR@1%FPR seq-rep-3 TPR@1%FPR seq-rep-3

RL Watermarking 0.25 0.03 0.99 0.58
OpenStamp 1.0 0.03 1.0 0.03

Table 7: Detectability (TPR@1%FPR) and text repetition (mean seq-rep-3) for RL water-
marking and OpenStamp under multinomial and greedy decoding. While RL watermarking
achieves high detectability with greedy decoding, it causes severe repetition, whereas OpenStamp
maintains both strong detectability and low repetition across settings.

F FINE-TUNING SETUP DETAILS

We fine-tune all models on OpenWebText. We follow a setup similar to Gloaguen et al. (2025): we
use a batch size of 64 with 512 tokens per input and a learning rate of 2e−5. We use the Adafactor
optimizer with cosine learning rate decay and

linear warmup for the first 500 steps. For LoRA Hu et al. (2022), we set the rank to 16, the scaling
factor (alpha) to 32, and the dropout rate to 0.1. For our general fine tuning attack we fine-tune all the
internal linear layers of the transformer blocks. For the targeted fine-tuning attack on OpenStamp
, we perform full fine-tuning (i.e., without LoRA) on only the unembedding layer.

G EFFECT OF L ON LOGIT VARIABILITY.

We study how increasing L affects the variability of watermark logits across different contexts.
With more green lists available, hidden states can be assigned to a greater number of distinct green
lists. This increases the diversity of tokens favored by the watermark, making it less predictable and
more robust to reverse-engineering attacks. We measure variability by computing the mean Jaccard
similarity between the sets of token indices corresponding to the top γ|V | components of watermark
logits across hidden states. We evaluate this metric for different values of L and γ. Lower similarity
implies greater variability in the watermark logits. As shown in Figure 8, mean similarity decreases
with increasing L, though the decline plateaus for large L, reflecting diminishing marginal gains in
variability.

H LLM USAGE

ChatGPT (OpenAI, 2025) was used to assist with typesetting (e.g., equations, tables) and for mi-
nor language editing (grammar and conciseness). All outputs were reviewed and validated by the
authors.
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Figure 8: Variability in Watermark Logits. As L increases, the mean Jaccard similarity between
different top-biased token sets decreases, indicating greater variability in watermark logits across
different contexts.

I PROMPT INDEPENDENCE OF WATERMARK DETECTION

To explain why our detection method works without the original prompt, we compare per-token
LLR scores on watermarked and unwatermarked text, with and without the prompt. As shown in
Figures 9a and 9b, the scores are largely consistent across settings, diverging only slightly at the
start of generation. This suggests that hidden states—and thus green-list selections—depend mainly
on the immediate local context rather than the initial prompt, allowing effective watermark detection
even when the prompt is unavailable.

J BOUNDEDNESS OF WATERMARK LOGITS

At each step t, the watermark logits is defined as ∆vt = ∆GSht, where ht is the final-layer hid-
den state. We assume that hidden states are bounded in norm, which is a reasonable assumption
due to the normalization typically applied to final-layer hidden states in Transformer architectures.
Furthermore, the selector matrix S is a fixed linear operator with a constant finite operator norm
(∥S∥op = CS), and the green list matrix G, containing entries in {0, δ}, has an operator norm
strictly proportional to δ (i.e., ∥G∥op ≤ δCG). Combining these properties yields a strict upper
bound on the perturbation:

∥∆vt∥2 ≤ ∥G∥op∥S∥op∥ht∥2 ≤ δ · (CGCSCh).

This implies that the watermark logits are finitely bounded and can be controlled via δ.

K ADDITIONAL ATTACK SETUPS

Here we explore several attack setups aimed at erasing the watermark from the weights or recovering
the green list assignments.

K.1 REINITIALIZING AND RETRAINING THE UNEMBEDDING LAYER

An adversary may attempt to completely remove the watermark by reinitializing the unembedding
layer and relearning the mapping from hidden states to token logits to restore the model’s capability
to generate fluent text. However, restoring this capability is non-trivial since model developers train
LLMs on large curated datasets and rely on complex pretraining and post-training pipelines.

To illustrate this difficulty, we reinitialized the unembedding layer and retrained only that layer on
FineWeb (Penedo et al., 2024). Table 8 reports perplexity after 2,500 and 25,000 training steps.
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(a) Watermarked Text

Japan is less than two years away from making a fundamental change in its legal system, by allowing 
jury trials. Under the new system, average citizens will work alongside judges to issue verdicts in 
many criminal cases. As Yur
iko Nagano reports from Tokyo, the greatest hurdle to the experiment is expected to be persuading Japanese 
citizens to participate.<0x0A>In Japan, as in most Asian countries, judges alone make decisions in trials. But 
starting in 2009, juries will be participating in Japanese courts, under what is called a "saibanin" system.
<0x0A>The new system has not yet been confirmed. At first, it will be tested for three years. And it will be 
limited in scope. Juries will only be used in certain criminal cases, involving serious crimes such as murder.
<0x0A>Robert Precht, a U.S. defense lawyer and legal scholar at the University of Montana, is helping 
Japanese judges, prosecutors, defense lawyers and citizens to implement the change. He spoke to 
journalists in Tokyo on Thursday.<0x0A>"The saibanin system and these other reforms are intended to 
transform
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(b) Unwatermarked Text

Figure 9: Prompt Independence of Watermark Detection. Per-token LLR scores for (a) water-
marked and (b) unwatermarked text, computed with and without the prompt. The red highlight
indicates tokens with a negative score whereas the green highlight indicates tokens with a positive
score. The text in blue is the prompt. Scores are similar in both settings, indicating that detection is
robust to the absence of the original prompt.
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Even with substantial retraining, perplexity remained far worse than the original model’s, showing
that recovering quality is non-trivial and making this attack computationally costly.

Condition PPL

Watermarked Baseline 15.1
After 2500 Steps (80M tokens) 78529.4
After 25000 Steps (800M tokens) 351.7

Table 8: Perplexity after retraining a reinitialized unembedding layer.

K.2 INVERSION ATTACK VIA RECONSTRUCTING THE SELECTOR MATRIX

We evaluate a plausible inversion attack based on the intuition that an adversary might try to recon-
struct the selector matrix S and then reverse-engineer each cluster’s green list. In practice, this attack
is particularly challenging because key details—such as the number of clusters L, the k-means ini-
tialization seed, and the dataset used to extract hidden states—are kept private by the model provider.

Even if the attacker guesses L, reproducing the original hidden-state-to-cluster assignments is highly
sensitive to both the k-means seed and the underlying dataset. To illustrate this sensitivity, we con-
struct selector matrices with the same L using different datasets (OpenWebText vs. FineWeb) and
different initialization seeds. We then generate a test set of hidden states from RealNewsLike sam-
ples and compute cluster assignments under each variant of the selector matrix. Agreement between
assignments is measured using Adjusted Rand Index (ARI) and Normalized Mutual Information
(NMI). As shown in Table 9, cluster assignments vary across datasets and seeds. This variability
suggests that reconstructing the original selector matrix is challenging, providing inherent robust-
ness against this class of inversion attacks.

Condition ARI NMI

Different Dataset 0.44 0.65
Different Seed 0.46 0.67
Different Dataset & Seed 0.37 0.63

Table 9: Agreement between cluster assignments from different selector matrices. The ARI and
NMI scores indicate moderate agreement, showing that reconstructing the original selector matrix
is challenging even with knowledge of L.
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