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Abstract

We study restless multi-armed bandits (RMABs) in the con-
text of public health, where there is a need to optimize re-
source allocation decisions. Until now, RMABs typically
solve for the optimal planning policy by assuming the re-
ward function in the problem is fully known. However, in this
work, we aim to study whether we can learn the most optimal
rewards for an RMAB problem given some demonstrated,
ideal behavior. To achieve this, we turn to inverse reinforce-
ment learning (IRL) which is a field of study motivated by the
desire to understand and learn the underlying reward structure
of an agent’s observed behavior. Existing IRL approaches
predominantly focus on single agent systems, presenting lim-
itations in dealing with the expansive state spaces character-
istic of public health scenarios, where tens of thousands of
arms are active simultaneously. We propose a new IRL al-
gorithm specifically for RMAB settings that uses techniques
from decision focused learning (DFL) to directly optimize the
objective function, allowing for efficient and accurate updates
to the learned rewards. We compare our algorithm with the
max entropy IRL baseline on runtime and accuracy and find
that our algorithm performs better on both metrics. We also
propose a framework for how to apply this algorithm in the
public health domain where expert trajectories come from do-
main experts.

1 Introduction
Restless multi-armed bandits (RMABs) (Weber and Weiss
1990; Tekin and Liu 2012) are composed of a set of het-
erogeneous arms and a planner who can pull multiple arms
under budget constraint at each time step to collect re-
wards. Different from the classic stochastic multi-armed
bandits (Gittins, Glazebrook, and Weber 2011; Bubeck and
Cesa-Bianchi 2012), the state of each arm in an RMAB can
change even when the arm is not pulled, where each arm
follows a Markovian process to transition between different
states with transition probabilities dependent on arms and
the pulling decision. Rewards are associated with different
arm states, where the planner’s goal is to plan a sequential
pulling policy to maximize the total reward received from
all arms. RMABs are commonly used to model sequential
scheduling problems where limited resources must be strate-
gically assigned to different tasks sequentially to maximize
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performance. One such application is in healthcare (Mate
et al. 2022), where healthcare workers are the planners de-
ciding which beneficiaries (arms) to intervene on (pull).

For RMABs, the prevailing assumption is that planners
possess complete knowledge of the rewards associated with
different arms (Glazebrook, Ruiz-Hernandez, and Kirkbride
2006). However, there can be scenarios where where the
desired trajectories are known, but the explicit rewards for
achieving those trajectories remain uncertain. For instance,
in the context of pregnancy care which has been studied ex-
tensively using RMABs (Mate, Perrault, and Tambe 2021;
Wang et al. 2023), a health expert may express an ideal pa-
tient’s behavior throughout their pre- and postnatal journeys,
without precisely being able to quantify rewards for each
timestep. To address this challenge, we apply inverse rein-
forcement learning (IRL) techniques to RMABs, enabling
the learning of rewards from observed trajectories, thereby
aligning the planner’s sequential actions with the desired
outcomes.

IRL which was first proposed by (Ng and Russel 2000) is
a machine learning technique that aims to infer the under-
lying reward structure of an agent’s behavior by observing
its actions in an environment. This is particularly useful in
scenarios where the explicit reward function is unknown or
difficult to specify, allowing us to learn from demonstrations
or expert behavior and subsequently generalize that knowl-
edge to make informed decisions in similar settings. IRL
has found applications in various fields, including robotics,
autonomous systems, healthcare, and personalized recom-
mendation systems, offering a powerful tool for understand-
ing and replicating expert behavior in complex environments
(Arora and Doshi 2021; Skalse and Abate 2023).

In this paper, we study RMAB problems with unknown
rewards but with given transition dynamics. The goal is to
learn a mapping from states to rewards, which can be used
to infer the rewards of unseen RMAB problems to plan ac-
cordingly. Prior works (Mate et al. 2022) define the reward
function for these problem in advance but this can often be
misaligned with the actual goal in the real world. We flip the
problem around to use expert trajectories to guide us to find
the most appropriate reward function.

There are many existing IRL approaches for a variety of
use cases (Arora and Doshi 2021), but none designed specifi-
cally for the case of RMABs. Moreover, scalability becomes



critical when the problem size gets higher on the order of
100s or 1000s of arms. Existing work models these prob-
lems as a single Markov Decision Process (MDP), but in
the RMAB or MAB case, the state space grows exponen-
tially with the number of arms, so we need to design a better
approach. Existing IRL techniques also use a large number
of sample trajectories to train with, but that is not a realis-
tic scenario in the public health setting where data is lim-
ited (Chadi and Mousannif 2021). To remedy these short-
comings, we design an IRL algorithm that uses techniques
from decision focused learning (DFL) to efficiently and ac-
curately update learned RMAB reward functions.

Previously, DFL (Wilder, Dilkina, and Tambe 2019)
has been proposed to directly optimize the solution quality
rather than predictive accuracy, by integrating the one-shot
optimization problem (Donti, Amos, and Kolter 2017; Per-
rault et al. 2020) or sequential problems (Wang et al. 2021;
Futoma, Hughes, and Doshi-Velez 2020) as a differentiable
layer in the training pipeline. Unfortunately while DFL can
successfully optimize the evaluation objective, it is compu-
tationally extremely expensive. To address this, (Wang et al.
2023) proposes an approach for decision-focused learning in
RMAB problems using Whittle index policy, a commonly
used approximate solution in RMABs. We build on this
previous work by using this differentiable layer to apply
gradient-based updates to rewards. This is the basis of our
new IRL algorithm.

Our three key contributions are (i) we design an IRL al-
gorithm for learning RMAB rewards from demonstrated tra-
jectories using decision focused learning; (ii) we show that
our algorithm performs better than current baselines in IRL
- both in performance and computation time (iii) we pro-
pose a framework for applying an IRL algorithm to a large-
scale public health setting where expert trajectories come
from domain experts.

To establish a benchmark for comparison, we select the
Max Entropy IRL algorithm as a commonly used baseline
in the IRL literature (Ziebart et al. 2008; Arora and Doshi
2021). By comparing our DFL-based approach against this
established method, we demonstrate significant advance-
ments in scalability and performance within the RMAB set-
ting. Our algorithm surpasses the baseline by efficiently han-
dling large state spaces and directly optimizing our desired
objective function. These results underscore the importance
of our algorithm, offering improved decision-making and re-
source allocation capabilities in practical applications.

Related Work
RMABs + DFL with missing transition dynamics Our
work is inspired by previous work applying DFL to RMAB
settings with missing transition dynamics (Wang et al.
2023). This work proposes a novel and scalable decision-
focused learning approach using Whittle index policy, estab-
lishing its differentiability to optimize the RMAB solution
quality directly. By differentiating through the Whittle in-
dex policy, they improve the scalability of decision-focused
learning in RMAB problems. Their algorithm demonstrates
the use of decision-focused learning to real-world RMAB

problems with hundreds of arms with significant perfor-
mance improvements to previous solutions. We build upon
this work since we also suffer from the same scalability con-
straints, and extend this to learn rewards instead of transition
dynamics.

Multi-agent IRL (MAIRL) There is some work looking
at IRL for multiple agents, but they focus on many fewer
agents (Natarajan et al. 2010; Bogert and Doshi 2014), or
assume the agents are homogeneous (Šošić et al. 2017) re-
ducing the problem down to a single agent. MAIRL also is
used to infer underlying reward structure from observed be-
havior of multiple agents in competitive settings (Bergerson
2021), which also is not suitable for our case because the
arms in our problem do not interact with one another.

Maximum Entropy IRL Max Entropy Inverse Reinforce-
ment Learning (Max Entropy IRL) is a popular approach
used to infer the underlying reward function in an envi-
ronment based on observed expert behavior (Ziebart et al.
2008). The goal of Max Entropy IRL is to find a reward func-
tion that not only explains the demonstrated behavior but
also maximizes the entropy of the policy distribution. An-
other way to think of maximum entropy is that it finds the
reward distribution that makes minimal commitments be-
yond constraints, and is therefore least wrong (Arora and
Doshi 2021). It has been applied in various domains, includ-
ing robotics, autonomous driving, and game playing.

We compare our algorithm to the max entropy algorithm
due to its strong performance as a baseline in existing IRL
literature. Despite it being an older algorithm, it is consid-
ered to be one of the most common models (Skalse and
Abate 2023) in IRL literature, and therefore an important
one to test our multi-agent algorithm against. There are also
more recent algorithms like GAIL and AIRL that use deep
learning architecture, but they are most effective in contin-
uous state action spaces which is not applicable to our do-
main. (Fu, Luo, and Levine 2017; Ho and Ermon 2016).

IRL applied to healthcare IRL is a promising method to
use in healthcare settings because these settings often in-
volve a sequence of decision-making tasks between a doctor
and patient. One such example is using IRL to make deci-
sions on ventilator units and sedatives in ICUs (Yu, Liu, and
Zhao 2019). The body of work applying IRL to healthcare
domains is growing but there are still a lot of limitations
around data scarcity and modeling complex healthcare set-
tings (Chadi and Mousannif 2021). We aim to extend this
literature to a more complex public health setting with a
large number of heterogenous beneficiaries and budget con-
straints.

2 Model and Preliminaries
2.1 Restless Multi-armed Bandits
An instance of the restless multi-armed bandit (RMAB)
problem is composed of a set of N arms where each is mod-
eled as an independent Markov decision process (MDP).
The i-th arm in a RMAB problem is defined by a tuple
(S,A, Ri, P

sas′

i ). S and A are the identical state and action



spaces across all arms. We consider finite state space with
|S| = M fully observable states, and action set A = {0, 1}
corresponding to not pulling or pulling the arm, respectively.
P sas′

i : S ×A×S → P defines the probability distribution
of arm i in state s transitioning to all possible next states
s′ ∈ S. Ri(s) is the reward function associated to arm i at
the current state s. Ri(s) only depends on the current state
and not past or future states.

In a RMAB problem, at each time step h ∈ [H], the
learner observes sh = [sh,i]i∈[N ] ∈ SN , the states of all
arms. The learner then chooses action ah = [ah,i]i∈[N ] ∈
AN denoting the pulling actions of all arms, which has to
satisfy a budget constraint

∑
i∈[N ] at,i ≤ K, i.e., the learner

can pull at most K arms at each time step. Once the action is
chosen, arms receive action at and transitions under P with
rewards rt = [rt,i]i∈[N ] accordingly. The total reward is de-
fined by the summation of the discounted reward across T

time steps and N arms, i.e.,
∑T

t=1 γ
t−1

∑
i∈[N ] rt,i, where

0 < γ ≤ 1 is the discount factor.
A policy is denoted by π, where π(a | s) is the probability

of choosing action a given state s. Additionally, we define
π(ai = 1 | s) to be the marginal probability of pulling arm
i given state s, where π(s) = [π(ai = 1 | s)]i∈[N ] is a
vector of arm pulling probabilities. We use πexpert to denote
the optimal policy that knows the true rewards, while πlearner

to denote a near-optimal policy solver.

2.2 Whittle Index Policy
In this paper, instead of grappling with the optimal policy,
we consider the Whittle index policy (Whittle 1988) – the
dominant solution paradigm used to solve the RMAB prob-
lem. Whittle index policy is easier to compute and has been
shown to perform well in practice.

Informally, the Whittle index of an arm captures the added
value derived from pulling that arm. The key idea is to de-
termine the Whittle indices of all arms and to pull the arms
with the highest values of the index.

To evaluate the value of pulling an arm i, we consider the
notion of ‘passive subsidy’, which is a hypothetical compen-
sation m rewarded for not pulling the arm (i.e. for choosing
action a = 0). Whittle index is defined as the smallest sub-
sidy necessary to make pulling as rewarding as not pulling,
assuming indexability (Liu and Zhao 2010):
Definition 2.1 (Whittle index). Given state u ∈ S, we define
the Whittle index associated to state u by:

Wi(u) := infm{Qm
i (u; a = 0) = Qm

i (u; a = 1)} (1)
where the value functions are defined by the following Bell-
man equations, augmented with subsidy m for action a = 0.

V m
i (s) = maxa Q

m
i (s; a) (2)

Qm
i (s; a)=m1a=0+R(s)+γ

∑
s′
Pi(s, a, s

′)V m
i (s′) (3)

Given the Whittle indices of all arms and all states W =
[Wi(u)]i∈[N ],u∈S , the Whittle index policy is denoted by
πwhittle : SN −→ [0, 1]N , which takes the states of all arms
as input to compute their Whittle indices and output the
probabilities of pulling arms. This policy repeats for every
time step to pull arms based on the index values.

2.3 Soft-top-k Whittle Index Policy
A common choice of Whittle index policy is defined by:

Definition 2.2 (Strict Whittle index policy).

πstrict
W (s) = 1top-k([Wi(si)]i∈[N]) ∈ {0, 1}N (4)

which selects arms with the top-k Whittle indices to pull.

However, the strict top-k operation in the strict Whittle
index policy is non-differentiable, which prevents us from
gradient based updates in our algorithm, so we use the soft-
top-k selection which gives us the probability of pulling each
arm. (Xie et al. 2020) (Wang et al. 2021).

We apply soft-top-k to define a differentiable soft Whittle
index policy:

Definition 2.3 (Soft Whittle index policy).

πsoft
W (s) = soft-top-k([Wj(si)]i∈[N ]) ∈ [0, 1]N (5)

Using the soft Whittle index policy, the policy becomes
differentiable.

2.4 Inverse RL
We also define a set of J realized trajectories T = {τ (j)}j∈J

generated from a given behavior policy πexpert we artificially
generate. We denote a full trajectory over H timesteps by
τ = (s1,a1, · · · , sH ,aH , ), where s,a are the joint state
and action of all N arms at each timestep. We define a func-
tion Eval(πlearner, T ) in Equation 7 which we use to update
our learned reward estimates. We also propose a method
for creating these trajectories directly from previous mobile
health data and feedback from public health experts.

3 Problem Statement
This paper studies the RMAB problem where we do not
know the reward function Ri(s) in advance, but we know
all the other parameters of the problem. Each arm i can have
a different reward at each state. We are also given expert
trajectories T that describe optimal behavior that we are try-
ing to mimic with the learned rewards. For now we gener-
ate these trajectories using an artificially generated reward
Rexpert to create πexpert, but eventually would like to use real
world data. The goal is to learn a mapping Rlearner : Si → R.
The predicted rewards are later used to solve the RMAB
problem to derive a policy πlearner = π(Rlearner). The per-
formance of the learned policy is evaluated by comparison
to the true policy πexpert.

4 RMAB IRL
For this work, we take inspiration from recent work in
decision-focused-learning for RMABS (Wang et al. 2021),
but instead of learning transition dynamics, we learn the re-
ward function for the RMAB.

In our case, we perform iterative updates to the reward
function informed by the evaluation function in our IRL al-
gorithm. Figure 1 describes this more closely. In order to
apply gradient updates to update the estimated reward, we
want to know dEval

dR . And to compute this, we need to use



Figure 1: This flowchart visualizes the decision focused learning method of learning rewards. The algorithm iterates through a
policy solver using Whittle index policy to estimate the final evaluation and run gradient ascent. From Equation 6, the red box
to the blue is dW

dR , the blue is dπlearner

dW , and the blue to green is dEval(πlearner,T )
dπlearner . Because of Equation 6, we are able to backpropagate

through the solver and directly apply dEval(πlearner,T )
dR to update the rewards.

chain rule to make sure all the intermediate steps are differ-
entiable.

dEval(πlearner, T )

dR
=

dEval(πlearner, T )

dπlearner

dπlearner

dW

dW

dR
(6)

where W is the Whittle indices of all states under the learned
rewards R. The policy πlearner is the Whittle index policy
induced by W . This is illustrated in detail in Figure 1.

The term dEval(πwhittle,T )
dπwhittle can be computed via policy gra-

dient theorem (Sutton, Barto et al. 1998), and dπwhittle

dW was
shown to be differentiable in (Wang et al. 2021). However,
we still need to show differentiability through Whittle index
computation to derive dW

dR .

4.1 Differentiability of Whittle Index for Rewards
Whittle indices are often computed using value iteration and
binary search (Qian et al. 2016; Mate et al. 2020) or mixed
integer linear program. However, these operations are not
differentiable and so we need to compute the derivative dW

dR
in Equation 6 using a different method.

Lemma 4.1. (Wang et al. 2023) dW
dR is differentiable.

We use a similar approach from (Wang et al. 2023) to
show that dW

dR is differentiable. Using the same linear ma-
trix equation from the proof of dW

dP from that work, we can
express whittle indices as a linear function of R allowing for
the computation of dW

dR via autodifferentiation.

4.2 Computation Cost and Backpropagation
It is well studied that Whittle index policy can be computed
more efficiently than solving the RMAB problem as a large
MDP problem. From (Wang et al. 2023) we know that the
overall computation of all N arms and M states for a DFL
based update is O(NMω+1) per gradient step. In contrast,
the Max Entropy works only on large joint-state MDP’s and
therefore it’s computation cost blows up by O(MN ). Our al-
gorithm significantly reduces the computation cost to a lin-
ear dependency on the number of arms N . This significantly
improves the scalability of IRL algorithms.

5 Policy Evaluation
In this paper, we use a maximum likelihood estimation
(MLE) based evaluation (Arora and Doshi 2021). Given a

Algorithm 1: IRL using Decision-focused Learning in
RMAB

1: Input: T ,P, learning rate r
2: Initialize: R = 0
3: for epoch = 1, 2, · · · do
4: Compute Whittle indices W (R).
5: Let πlearner = πsoft

W and compute Eval(πlearner, T ).

6: Update R = R + r dEval(πwhittle,T )
dπwhittle

dπwhittle

dW
dW
dR , where

dW
dR is computed from Section 4.1.

7: end for
8: Return: reward R

set of expert trajectories T , at every iteration we estimate
P (T |πlearner) and use this evaluation to apply a gradient up-
date to the learned rewards (see Equation 7).

We use si,τh and ai,τh to denote the state and action of arm
i in trajectory τ at timestep h. P (si,τh=1) is the probability
of an armm i being at its initial state at time h = 1 which
is just 1 for us because we start all beneficiaries at state 0.
P (si,τh , ai,τh , si,τh+1) is the transition probability P sas′

i defined
in Section 2.1. Lastly, P (ai,τh |søh, πlearner) is the soft-top-k
probability for pulling arm i given πlearner which is generated
from the learned rewards in that iteration (Equation 5).

Eval(πlearner, T ) = P (T |πlearner)

=

τ∈T∏ i∈N∏
P (si,τh=1) ·

H∏
h=1

P (si,τh , ai,τh , si,τh+1)

· P (ai,τh |søh, π
learner)

∝ logP (T |πlearner)

=

τ∈T∑ i∈N∑
log(P (si,τh=1)) +

H∑
h=1

[
log(P (si,τh , aı,τh , si,τh+1))

+ log(P (ai,τh |søh, π
learner))

]
(7)

6 Experiments
Design We perform experiments on a synthetic dataset.
We generate T from randomly generated probabilities Psas′



and rewards R, and while learning we have access to the
true Psas′ values. All experiments are averaged over 10 runs
with randomly generated rewards and transition probabili-
ties.

Baseline The baseline we use to determine the success
of our algorithm is Max Entropy IRL (Ziebart et al. 2008)
which aims to learn the reward that allows for the most vari-
ation in behavior while still maximizing the likelihood of
seeing the expert trajectories. A key difference between our
algorithm and the Max Entropy baseline is that we solve the
problem for N independent MDPs while the baseline com-
bines all the arms into a single joint state MDP which grows
exponentially with each added arm.

Metrics We compare Max Entropy IRL (ME-IRL) with
our decision-focused learning based algorithm (DF-IRL).
To compare performance we compute the l2 norm between
the learned soft-k and expert soft-k policy policy proba-
bilites ∥πsoft

W (Rexpert)−πsoft
W (Rlearner)∥2. We can only use this

metric on synthetic datasets since we don’t have the expert
reward in the real world setting. We choose this metric be-
cause we want the policy from the learned rewards to mimic
the decision making used to create the initial trajectories.

Synthetic datasets We consider two differently sized
RMAB problems. The first is composed of N = 2 arms,
M = 2 states, budget K = 1, and time horizon T = 10 with
a discount rate of γ = 0.99. We use this smaller problem to
compare the baseline with our algorithm because the max
entropy baseline becomes computationally harder to com-
pute as we increase the number of arms. We also consider
an RMAB setting composed of N = 100 arms, M = 2
states, budget K = 20, and time horizon T = 10 with a
discount rate of γ = 0.99.

For both settings, the reward function is generated uni-
formly at random but with the constraint of increasing
states having increasing rewards i.e. ∀i ∈ arms,∀m ∈
state space, Ri(sm) < Ri(sm+1). Transition probabilities
are also generated uniformly at random but with a constraint
that pulling the arm (a = 1) is strictly better than not pulling
the arm (a = 0) to ensure the benefit of pulling.

The historical trajectories T with |T | = J are produced
by running a random expert policy πexpert. The goal is to
predict the rewards used to generate the training trajectories.

7 Experimental Results
Improved performance compared to baselines on finding
correct rewards In Figure 2, we show the performance of
the maximum entropy policy compared to our DFL based
algorithm as we increase the J number of trajectories. We
can see that our algorithm finds nearly optimal rewards after
just 2 sample trajectories, and significantly outperforms the
max entropy baseline.

Fast reward learning with few trajectories Figure 3
shows that our DFL based IRL algorithm can learn close
to optimal rewards on a much larger problem of N = 100
with just 3 input trajectories. Once we move beyond syn-
thetic data, we won’t have the πsoft

W (Rexpert) so this experi-
ment validates that our MLE-based Eval function can learn

Figure 2: This graph plots the soft-k l2 norm metric (Section
6) for both algorithm as the number of trajectories J is in-
creased. We also set N = 2,K = 1. Our algorthm reaches a
near optimal reward very quickly and consistently performs
better than the max entropy baseline as more trajectories are
added

Figure 3: This graph plots the soft-k l2 norm metric (Sec-
tion 6) for our algorithm for N = 100,K = 20, J =
3, epochs = 30. Our algorithm learns nearly optimal re-
wards in approximately 10 epochs even with large numbers
of arms.

a nearly optimal reward with very few training trajectories
on large problem sizes.

Computation cost comparison Figure 4, compares the
computation cost per gradient step of our Whittle index-
based decision-focused learning and the max entropy base-
line in IRL by changing N (the number of arms) in M = 2-
state RMAB problem. The max entropy algorithm will not
scale to larger problems like maternal and child care with
more than 600 people enrolled, while our approach is faster
than the baselines with a linear dependency on the number
of arms N .

8 Future Applications to Public Health
As the next step of this work, we are interested getting T
from actual healthcare experts. Specifically, we currently
work closely with a maternal and child health nonprofit in
India named Armman that delivers telehealth care to women
during their pregnancy up until the child in one year old.
Until now, we have deployed RMAB and DFL based algo-
rithms in the field in collaboration with Armman (Mate et al.
2022; Wang et al. 2023). One way we propose to investi-



Figure 4: Runtime comparison between max entropy and
DFL

gate IRL in this setting is by investigating previous phone
engagement data with public health experts to understand
what they consider to be good trajectories for different types
of beneficiaries (low, medium, high risk). From there we can
maximize the likelihood of each type of beneficiary engag-
ing according to the τ assigned to the based on risk score.
Through this, we can learn optimal rewards for each bene-
ficiary, which allow us to use those rewards for the future
planning problem of deciding when to intervene on them.

Another way we propose to create expert trajectories is
by using the actual content delivered in each call. The idea
is that there are certain listening patterns that maximize
the total new content heard since listening to 60% of the
calls amounts to hearing 100% of the health content (Byrne
2020). From these ideal listening patterns, we can again
learn rewards that we can use for the actual planning prob-
lem to determine how to act on beneficiaries.

9 Conclusion
To the best of our knowledge, this paper presents the first al-
gorithm for using IRL for RMAB problems that is also scal-
able for large real-world datasets. We also show strong per-
formance in learning rewards with very few input trajecto-
ries. Lastly, we propose an approach for applying this work
to a real world public health setting.

References
Arora, S.; and Doshi, P. 2021. A survey of inverse reinforce-
ment learning: Challenges, methods and progress. Artificial
Intelligence, 297: 103500.
Bergerson, S. 2021. Multi-Agent Inverse Reinforcement
Learning: Suboptimal Demonstrations and Alternative So-
lution Concepts. arXiv:2109.01178.
Bogert, K.; and Doshi, P. 2014. Multi-Robot Inverse Rein-
forcement Learning under Occlusion with Interactions.
Bubeck, S.; and Cesa-Bianchi, N. 2012. Regret analysis of
stochastic and nonstochastic multi-armed bandit problems.
arXiv preprint arXiv:1204.5721.
Byrne, F. 2020. Episode 105: Aparna Hegde Founder of
ARMMAN.

Chadi, M.-A.; and Mousannif, H. 2021. Inverse Reinforce-
ment Learning for Healthcare Applications: A Survey. In
Proceedings of the 2nd International Conference on Big
Data, Modelling and Machine Learning - Volume 1: BML,,
97–102. INSTICC, SciTePress. ISBN 978-989-758-559-3.
Donti, P. L.; Amos, B.; and Kolter, J. Z. 2017. Task-based
end-to-end model learning in stochastic optimization. arXiv
preprint arXiv:1703.04529.
Fu, J.; Luo, K.; and Levine, S. 2017. Learning Robust
Rewards with Adversarial Inverse Reinforcement Learning.
CoRR, abs/1710.11248.
Futoma, J.; Hughes, M. C.; and Doshi-Velez, F. 2020. Pop-
corn: Partially observed prediction constrained reinforce-
ment learning. arXiv preprint arXiv:2001.04032.
Gittins, J.; Glazebrook, K.; and Weber, R. 2011. Multi-
armed bandit allocation indices. John Wiley & Sons.
Glazebrook, K. D.; Ruiz-Hernandez, D.; and Kirkbride, C.
2006. Some indexable families of restless bandit problems.
Advances in Applied Probability, 38(3): 643–672.
Ho, J.; and Ermon, S. 2016. Generative Adversarial Imita-
tion Learning. arXiv:1606.03476.
Liu, K.; and Zhao, Q. 2010. Indexability of restless bandit
problems and optimality of whittle index for dynamic multi-
channel access. IEEE Transactions on Information Theory,
56(11): 5547–5567.
Mate, A.; Killian, J. A.; Xu, H.; Perrault, A.; and Tambe, M.
2020. Collapsing Bandits and Their Application to Public
Health Intervention. In NeurIPS.
Mate, A.; Madaan, L.; Taneja, A.; Madhiwalla, N.; Verma,
S.; Singh, G.; Hegde, A.; Varakantham, P.; and Tambe, M.
2022. Field Study in Deploying Restless Multi-Armed Ban-
dits: Assisting Non-Profits in Improving Maternal and Child
Health. In Proceedings of the AAAI Conference on Artificial
Intelligence.
Mate, A.; Perrault, A.; and Tambe, M. 2021. Risk-Aware In-
terventions in Public Health: Planning with Restless Multi-
Armed Bandits.
Natarajan, S.; Kunapuli, G.; Judah, K.; Tadepalli, P.; Ker-
sting, K.; and Shavlik, J. 2010. Multi-Agent Inverse Rein-
forcement Learning. In 2010 Ninth International Confer-
ence on Machine Learning and Applications, 395–400.
Ng, A.; and Russel, S. 2000. Algorithms for Inverse Rein-
forcement Learning. ICML 2000.
Perrault, A.; Wilder, B.; Ewing, E.; Mate, A.; Dilkina, B.;
and Tambe, M. 2020. End-to-end game-focused learning
of adversary behavior in security games. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34,
1378–1386.
Qian, Y.; Zhang, C.; Krishnamachari, B.; and Tambe, M.
2016. Restless poachers: Handling exploration-exploitation
tradeoffs in security domains. In Proceedings of the 2016
International Conference on Autonomous Agents & Multia-
gent Systems, 123–131.
Skalse, J.; and Abate, A. 2023. Misspecification in Inverse
Reinforcement Learning. ArXiv:2212.03201 [cs].



Sutton, R. S.; Barto, A. G.; et al. 1998. Introduction to rein-
forcement learning, volume 135. MIT press Cambridge.
Tekin, C.; and Liu, M. 2012. Online learning of rested and
restless bandits. IEEE Transactions on Information Theory,
58(8): 5588–5611.
Wang, K.; Shah, S.; Chen, H.; Perrault, A.; Doshi-Velez,
F.; and Tambe, M. 2021. Learning MDPs from Features:
Predict-Then-Optimize for Sequential Decision Making by
Reinforcement Learning. Advances in Neural Information
Processing Systems, 34.
Wang, K.; Verma, S.; Mate, A.; Shah, S.; Taneja, A.;
Madhiwalla, N.; Hegde, A.; and Tambe, M. 2023. Scal-
able Decision-Focused Learning in Restless Multi-Armed
Bandits with Application to Maternal and Child Health.
ArXiv:2202.00916 [cs].
Weber, R. R.; and Weiss, G. 1990. On an index policy for
restless bandits. Journal of applied probability, 27(3): 637–
648.
Whittle, P. 1988. Restless bandits: Activity allocation in a
changing world. Journal of applied probability, 25(A): 287–
298.
Wilder, B.; Dilkina, B.; and Tambe, M. 2019. Melding the
data-decisions pipeline: Decision-focused learning for com-
binatorial optimization. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, 1658–1665.
Xie, Y.; Dai, H.; Chen, M.; Dai, B.; Zhao, T.; Zha, H.; Wei,
W.; and Pfister, T. 2020. Differentiable top-k operator with
optimal transport. arXiv preprint arXiv:2002.06504.
Yu, C.; Liu, J.; and Zhao, H. 2019. Inverse reinforcement
learning for intelligent mechanical ventilation and sedative
dosing in intensive care units. BMC medical informatics and
decision making, 19(Suppl 2): 57.
Ziebart, B. D.; Maas, A.; Bagnell, J. A.; and Dey, A. K.
2008. Maximum Entropy Inverse Reinforcement Learning.
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