
Federated Natural Policy Gradient and Actor Critic
Methods for Multi-task Reinforcement Learning

Tong Yang∗

CMU
Shicong Cen†

CMU
Yuting Wei‡

UPenn
Yuxin Chen§

UPenn
Yuejie Chi¶

CMU

Abstract

Federated reinforcement learning (RL) enables collaborative decision making of
multiple distributed agents without sharing local data trajectories. In this work,
we consider a multi-task setting, in which each agent has its own private reward
function corresponding to different tasks, while sharing the same transition kernel
of the environment. Focusing on infinite-horizon Markov decision processes, the
goal is to learn a globally optimal policy that maximizes the sum of the discounted
total rewards of all the agents in a decentralized manner, where each agent only
communicates with its neighbors over some prescribed graph topology. We develop
federated vanilla and entropy-regularized natural policy gradient (NPG) methods
in the tabular setting under softmax parameterization, where gradient tracking
is applied to estimate the global Q-function to mitigate the impact of imperfect
information sharing. We establish non-asymptotic global convergence guarantees
under exact policy evaluation, where the rates are nearly independent of the size of
the state-action space and illuminate the impacts of network size and connectivity,
and further establish its robustness against inexact policy evaluation. We further
propose a federated natural actor critic (NAC) method for multi-task RL with
function approximation and stochastic policy evaluation, and establish its finite-
time sample complexity taking the errors of function approximation into account.
To the best of our knowledge, this is the first time that near dimension-free global
convergence is established for federated multi-task RL using policy optimization.

1 Introduction
Federated reinforcement learning (FRL) is an emerging paradigm that combines the advantages of
federated learning (FL) and reinforcement learning (RL) [QZLZ21, ZFL+19], allowing multiple
agents to learn a shared policy from local experiences, without exposing their private data to a central
server nor other agents. FRL is poised to enable collaborative and efficient decision making in scenar-
ios where data is distributed, heterogeneous, and sensitive, which arise frequently in applications such
as edge computing, smart cities, and healthcare [WHM+23, WKNL20, ZFL+19], to name just a
few. As has been observed [LZZ+17], decentralized training can lead to performance improvements
in FL by avoiding communication congestions at busy nodes such as the server, especially under
high-latency scenarios. This motivates us to design algorithms for the fully decentralized setting, a

∗Department of Electrical and Computer Engineering, Carnegie Mellon University; email:
tongyang@andrew.cmu.edu.

†Department of Electrical and Computer Engineering, Carnegie Mellon University; email:
shicongc@andrew.cmu.edu.

‡Department of Statistics and Data Science, Wharton School, University of Pennsylvania; email:
ytwei@wharton.upenn.edu.

§Department of Statistics and Data Science, Wharton School, University of Pennsylvania; email:
yuxinc@wharton.upenn.edu.

¶Department of Electrical and Computer Engineering, Carnegie Mellon University; email:
yuejiechi@cmu.edu.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

scenario where the agents can only communicate with their local neighbors over a prescribed network
topology.6

In this work, we study the problem of federated multi-task RL [AR21, QZLZ21, YLS+20], where
each agent collects its own reward — possibly unknown to other agents — corresponding to the local
task at hand, while having access to the same dynamics (i.e., transition kernel) of the environment.
The collective goal is to learn a shared policy that maximizes the total rewards accumulated from all
the agents; in other words, one seeks a policy that performs well in terms of overall benefits, rather
than biasing towards any individual task, achieving the Pareto frontier in a multi-objective context.
There is no shortage of application scenarios where federated multi-task RL becomes highly relevant.
For instance, in healthcare [ZBW+20], different hospitals may be interested in finding an optimal
treatment for all patients without disclosing private data, where the effectiveness of the treatment
can vary across different hospitals due to demographical differences. See Appendix B.1 for more
application scenarios of our setting.

Nonetheless, despite the promise, provably efficient algorithms for federated multi-task RL remain
substantially under-explored, especially in the fully decentralized setting. The heterogeneity of local
tasks leads to a higher degree of disagreements between the global value function and local value
functions of individual agents. Due to the lack of global information sharing, care needs to be taken
to judiciously balance the use of neighboring information (to facilitate consensus) and local data (to
facilitate learning) when updating the policy. To the best of our knowledge, very few algorithms are
currently available to find the global optimal policy with non-asymptotic convergence guarantees
even for tabular infinite-horizon Markov decision processes.

Motivated by the connection with decentralized optimization, it is tempting to take a policy optimiza-
tion perspective to tackle this challenge. Policy gradient (PG) methods, which seek to learn the policy
of interest via first-order optimization methods, play an eminent role in RL due to their simplicity
and scalability. In particular, natural policy gradient (NPG) methods [Ama98, Kak01] are among the
most popular variants of PG methods, underpinning default methods used in practice such as trust
region policy optimization (TRPO) [SLA+15] and proximal policy optimization (PPO) [SWD+17].
On the theoretical side, it has also been established recently that the NPG method enjoys fast global
convergence to the optimal policy in an almost dimension-free manner [AKLM21, CWC21], where
the iteration complexity is nearly independent of the size of the state-action space. These benefits
can be translated to their sample-based counterparts such as the natural actor critic (NAC) method
[BSGL09, XWL20, KDRM22], where the policies are evaluated via stochastic samples. It is natural
to ask:

Can we develop federated NPG and NAC methods with non-asymptotic global convergence
guarantees for multi-task RL in the fully decentralized setting?

1.1 Our contributions
Focusing on infinite-horizon Markov decision processes (MDPs), we provide an affirmative answer to
the above question, by developing federated NPG (FedNPG) methods for solving both the vanilla and
entropy-regularized multi-task RL problems with finite-time global convergence guarantees. While
entropy regularization is often incorporated as an effective strategy to encourage exploration during
policy learning, solving the entropy-regularized RL problem is of interest in its own right, as the
optimal regularized policy possesses desirable robust properties with respect to reward perturbations
[EL21, MP95]. Due to the multiplicative update nature of NPG methods under softmax parameteri-
zation, it is more convenient to work with the logarithms of local policies in the decentralized setting.
In each iteration of the proposed FedNPG method, the logarithms of local policies are updated by
a weighted linear combination of two terms (up to normalization): a gossip mixing [NO09] of the
logarithms of neighboring local policies, and a local estimate of the global Q-function tracked via the
technique of dynamic average consensus [ZM10], a prevalent idea in decentralized optimization that
allows for the use of large constant learning rates [DLS16, NOS17, QL17] to accelerate convergence.
We further develop sample-efficient federated NAC (FedNAC) methods that allow for both stochastic
policy evaluation and function approximation. Our contributions are as follows.

• We propose FedNPG methods for both the vanilla and entropy-regularized multi-task RL prob-
lems, where each agent only communicates with its neighbors and performs local computation
using its own reward or task information.

6Our work seamlessly handles the server-client setting as a special case, by assuming the network topology
as a fully connected network.

2

setting algorithms iteration complexity optimality criteria

unregularized
NPG [AKLM21] O

(
1

(1−γ)2ε + log |A|
ηε

)
V ⋆ − V π(t) ≤ ε

FedNPG (ours) O
(

σ
√
N log |A|

(1−γ)
9
2 (1−σ)ε

3
2
+ 1

(1−γ)2ε

)
1
T

∑T−1
t=0

(
V ⋆ − V π(t)) ≤ ε

regularized
NPG [CWC21] O

(
1
τη log

(
1
ε

))
V ⋆
τ − V π(t)

τ ≤ ε

FedNPG (ours) O
(
max

{
1
τη ,

1
1−σ

}
log
(
1
ε

))
V ⋆
τ − V π(t)

τ ≤ ε

Table 1: Iteration complexities of NPG and FedNPG (ours) methods to reach ε-accuracy of the
vanilla and entropy-regularized problems, where we assume exact gradient evaluation, and only keep
the dominant terms w.r.t. ε. The policy estimates in the t-iteration are π(t) and π̄(t) for NPG and
FedNPG, respectively, where T is the number of iterations. Here, N is the number of agents, τ ≤ 1 is
the regularization parameter, σ ∈ [0, 1] is the spectral radius of the network, γ ∈ [0, 1) is the discount
factor, |A| is the size of the action space, and η > 0 is the learning rate. The iteration complexities of
FedNPG reduce to their centralized counterparts when σ = 0. For vanilla FedNPG, the learning rate

is set as η = η1 = O
(

(1−γ)9(1−σ)2 log |A|
TNσ

)1/3
; for entropy-regularized FedNPG, the learning rate

satisfies 0 < η < η0 = O
(

(1−γ)7(1−σ)2τ
σN

)
.

• Assuming access to exact policy evaluation, we establish that the average iterate of vanilla
FedNPG converges globally at a rate of O(1/T 2/3) in terms of the sub-optimality gap for the
multi-task RL problem, and that the last iterate of entropy-regularized FedNPG converges globally
at a linear rate to the regularized optimal policy. Our convergence theory highlights the impacts
of all salient problem parameters (see Table 1 for details), such as the size and connectivity of the
communication network. In particular, the iteration complexities of FedNPG are again almost
independent of the size of the state-action space, which recover prior results on the centralized
NPG methods when the network is fully connected.

• We further demonstrate the stability of the proposed FedNPG methods when policy evaluations
are only available in an inexact manner. To be specific, we prove that their convergence rates
remain unchanged as long as the approximation errors are sufficiently small in the ℓ∞ sense.

• We go beyond the tabular setting and black-box policy evaluation by proposing FedNAC— a
federated actor critic method for multi-task RL with function approximation and stochastic policy
evaluation — and establish a finite-sample sample complexity on the order ofO(1/ε7/2) for each
agent in terms of the expected sub-optimality gap for the fully decentralized setting.

To the best of our knowledge, the proposed federated NPG and NAC methods are the first policy opti-
mization methods for multi-task RL that achieve near dimension-free global convergence guarantees
in terms of iteration and sample complexities, allowing for fully decentralized communication without
any need to share local reward/task information. We conduct numerical experiments in a multi-task
GridWorld environment to corroborate the efficacy of the proposed methods (see Appendix H). We
defer the readers to Appendix A for more related work, and Appendix B.2 for additional discussions
on our theoretical contributions.

Notation. Boldface small and capital letters denote vectors and matrices, respectively. Sets are
denoted with curly capital letters, e.g., S,A. We let (Rd, ∥·∥) denote the d-dimensional real coordinate
space equipped with norm ∥·∥. The ℓp-norm of v is denoted by ∥v∥p, where 1 ≤ p ≤ ∞, and the
spectral norm and the Frobenius norm of a matrix M are denoted by ∥M∥2 and ∥M∥F, resp. We let
[N] denote {1, . . . , N}, use 1N to represent the all-one vector of length N , and denote by 0 a vector
or a matrix consisting of all 0’s. We allow the application of functions such as log(·) and exp(·) to
vectors or matrices, with the understanding that they are applied in an element-wise manner.

2 Model and backgrounds

Markov decision processes. We consider an infinite-horizon discounted Markov decision process
(MDP) denoted byM = (S,A, P, r, γ), where S and A denote the state space and the action space,
respectively, γ ∈ [0, 1) indicates the discount factor, P : S ×A → ∆(S) is the transition kernel, and
r : S × A → [0, 1] stands for the reward function. To be more specific, for each state-action pair
(s, a) ∈ S × A and any state s′ ∈ S, we denote by P (s′|s, a) the transition probability from state

3

s to state s′ when action a is taken, and r(s, a) the instantaneous reward received in state s when
action a is taken. Furthermore, a policy π : S → ∆(A) specifies an action selection rule, where
π(a|s) specifies the probability of taking action a in state s for each (s, a) ∈ S ×A.

For any given policy π, we denote by V π : S 7→ R the corresponding value function, which is the
expected discounted cumulative reward with an initial state s0 = s, given by

∀s ∈ S : V π(s) := E

[∞∑
t=0

γtr(st, at)|s0 = s

]
, (1)

where the randomness is over the trajectory generated following the policy at ∼ π(·|st) and the
MDP dynamic st+1 ∼ P (·|st, at). We also overload the notation V π(ρ) to indicate the expected
value function of policy π when the initial state follows a distribution ρ over S, namely, V π(ρ) :=
Es∼ρ [V

π(s)]. Similarly, the Q-function Qπ : S ×A 7→ R of policy π is defined by

Qπ(s, a) := E

[∞∑
t=0

γtr(st, at)|s0 = s, a0 = a

]
(2)

for all (s, a) ∈ S×A, which measures the expected discounted cumulative reward with an initial state
s0 = s and an initial action a0 = a, with expectation taken over the randomness of the trajectory. The
optimal policy π⋆ refers to the policy that maximizes the value function V π(s) for all states s ∈ S,
which is guaranteed to exist [Put14]. The corresponding optimal value function and Q-function are
denoted as V ⋆ and Q⋆, respectively.

Entropy-regularized RL. Entropy regularization [WP91, ALRNS19] is a popular technique in
practice that encourages stochasticity of the policy to promote exploration, as well as robustness
against reward uncertainties. Mathematically, this can be viewed as adjusting the instantaneous
reward based the current policy in use as

∀(s, a) ∈ S ×A : rτ (s, a) := r(s, a)− τ log π(a|s) , (3)

where τ ≥ 0 denotes the regularization parameter. Typically, τ should not be too large to outweigh the
actual rewards; for ease of presentation, we assume τ ≤ min

{
1, 1

log |A|

}
[CCDX22]. Equivalently,

this amounts to the entropy-regularized (also known as “soft”) value function, defined as

∀s ∈ S : V π
τ (s) := V π(s) + τH(s, π), (4)

where

H(s, π) := E

[∞∑
t=0

−γt log π(at|st)
∣∣s0 = s

]
. (5)

Analogously, for all (s, a) ∈ S ×A, the regularized (or soft) Q-function Qπ
τ of policy π is related to

the soft value function V π
τ (s) as

Qπ
τ (s, a) = r(s, a) + γEs′∈P (·|s,a) [V

π
τ (s′)] , (6a)

V π
τ (s) = Ea∼π(·|s) [−τπ(a|s) +Qπ

τ (s, a)] . (6b)

The optimal regularized policy, the optimal regularized value function, and the Q-function are denoted
by π⋆

τ , V ⋆
τ , and Q⋆

τ , respectively.

Natural policy gradient methods. Natural policy gradient (NPG) methods lie at the heart of policy
optimization, serving as the backbone of popular heuristics such as TRPO [SLA+15] and PPO
[SWD+17]. Instead of directly optimizing the policy over the probability simplex, one often adopts
the softmax parameterization, which parameterizes the policy as πθ := softmax(θ) or

πθ(a|s) :=
exp θ(s, a)∑

a′∈A exp θ(s, a′)
(7)

for any θ: S ×A → R and (s, a) ∈ S ×A.

In the tabular setting, the update rule of vanilla NPG at the t-th iteration can be concisely represented
as

π(t+1)(a|s) ∝ π(t)(a|s) exp
(
ηQ(t)(s, a)

1− γ

)
, (8)

4

Turning to the regularized problem, we note that the update rule of entropy-regularized NPG becomes

π(t+1)(a|s) ∝ (π(t)(a|s))1−
ητ

1−γ exp

(
ηQ

(t)
τ (s, a)

1− γ

)
, (9)

where η ∈ (0, 1−γ
τ] is the learning rate, and Q

(t)
τ = Qπ(t)

τ is the soft Q-function of policy π(t).

3 Federated NPG methods for multi-task RL

In this paper, we consider the federated multi-task RL setting, where a set of agents learn collabo-
ratively a single policy that maximizes its average performance over all the tasks using only local
computation and communication.

Multi-task RL. Each agent n ∈ [N] has its own private reward function rn(s, a) — corresponding
to different tasks — while sharing the same transition kernel of the environment. The goal is to
collectively learn a single policy π that maximizes the global value function given by V π(s) =
1
N

∑N
n=1 V

π
n (s), where V π

n is the value function of agent n ∈ [N], defined by

V π
n (s) := E

[∞∑
t=0

γtrn(st, at)|s0 = s

]
.

Clearly, the global value function corresponds to using the average reward of all agents r(s, a) =
1
N

∑N
n=1 rn(s, a). The global Q-function Qπ(s, a) and the agent Q-functions Qπ

n(s, a) can be defined
in a similar manner obeying Qπ(s, a) = 1

N

∑N
n=1 Q

π
n(s, a).

In parallel, we are interested in the entropy-regularized setting, where each agent n ∈ [N] is equipped
with a regularized reward function given by rτ,n(s, a) := rn(s, a) − τ log π(a|s). And we define
similarly the regularized value functions as

V π
τ,n(s) := E

[∞∑
t=0

γtrτ,n(st, at)|s0 = s

]
for all n ∈ [N] and V π

τ (s) = 1
N

∑N
n=1 V

π
τ,n(s), ∀s ∈ S. The soft Q-function of agent n is given by

Qπ
τ,n(s, a) = rn(s, a) + γEs′∈P (·|s,a)

[
V π
τ,n(s

′)
]
, (10)

and the global soft Q-function is given by Qπ
τ (s, a) =

1
N

∑N
n=1 Q

π
τ,n(s, a).

Federated policy optimization in the fully decentralized setting. We consider a federated setting
with fully decentralized communication, that is, all the agents are synchronized to perform information
exchange over some prescribed network topology denoted by an undirected weighted graph G([N], E).
Here, E stands for the edge set of the graph with N nodes — each corresponding to an agent —
and two agents can communicate with each other if and only if there is an edge connecting them.
The information sharing over the graph is best described by a mixing matrix [NO09], denoted by
W = [wij] ∈ [0, 1]N×N , where wij is a positive number if (i, j) ∈ E and 0 otherwise. We also
make the following standard assumptions on the mixing matrix.
Assumption 3.1 (double stochasticity). The mixing matrix W = [wij] ∈ [0, 1]N×N is symmetric
(i.e., W⊤ = W) and doubly stochastic (i.e., W1N = 1N , 1⊤

NW = 1⊤
N).

The following standard metric measures how fast information propagates over the graph.
Definition 3.2 (spectral radius). The spectral radius of W is given as σ := ∥W− 1

N 1N1⊤
N∥2 ∈ [0, 1).

The spectral radius σ determines how fast information propagate over the network. For instance, in a
fully-connected network, we can achieve σ = 0 by setting W = 1

N 1N1⊤
N . For control of 1/(1− σ)

regarding different graphs, we refer the readers to [NOR18]. In an Erdös-Rényi random graph, as
long as the graph is connected, one has with high probability σ ≍ 1. Another immediate consequence
is that for any x ∈ RN , letting x = 1

N 1⊤
Nx be its average, we have

∥Wx− x1N∥2 ≤ σ ∥x− x1N∥2 , (11)

where the consensus error contracts by a factor of σ.

5

Algorithm 1 Federated NPG (FedNPG)
1: Input: learning rate η > 0, iteration number T ∈ N+, mixing matrix W ∈ RN×N .
2: Initialize: π(0), T (0) = Q(0).
3: for t = 0, 1, · · ·T − 1 do
4: Update the policy for each (s, a) ∈ S ×A:

logπ(t+1)(a|s) = W
(
logπ(t)(a|s) + η

1− γ
T (t)(s, a)

)
− log z(t)(s) , (15)

where z(t)(s) =
∑

a′∈A exp
{
W
(
logπ(t)(a′|s) + η

1−γT
(t)(s, a′)

)}
.

5: Evaluate Q(t+1).
6: Update the global Q-function estimate for each (s, a) ∈ S ×A:

T (t+1)(s, a) = W
(
T (t)(s, a) +Q(t+1)(s, a)−Q(t)(s, a)︸ ︷︷ ︸

Q-tracking

)
. (16)

7: end for

3.1 Proposed federated NPG algorithms
Assuming softmax parameterization, the problem can be formulated as decentralized optimization,

(unregularized) max
θ

V πθ (s) =
1

N

N∑
n=1

V πθ
n (s), (12)

(regularized) max
θ

V πθ
τ (s) =

1

N

N∑
n=1

V πθ
τ,n(s), (13)

where πθ := softmax(θ) subject to communication constraints. Motivated by the success of NPG
methods, we aim to develop federated NPG methods to achieve our goal. For notational convenience,
let π(t) :=

(
π
(t)
1 , · · · , π(t)

N

)⊤
be the collection of policy estimates at all agents in the t-th iteration.

Let

π(t) := softmax

(
1

N

N∑
n=1

log π(t)
n

)
, (14)

which satisfies that π(t)(a|s) ∝
(∏N

n=1 π
(t)
n (a|s)

)1/N
for each (s, a) ∈ S × A. Therefore, π(t)

could be seen as the normalized geometric mean of {π(t)
n }n∈[N]. Define the collection of Q-function

estimates as Q(t) :=
(
Q

π
(t)
1

1 , · · · , Qπ
(t)
N

N

)⊤
and Q

(t)
τ :=

(
Q

π
(t)
1

τ,1 , · · · , Qπ
(t)
N

τ,N

)⊤
. We shall often abuse

the notation and treat π(t), Q(t)
τ as matrices in RN×|S||A|, and treat π(t)(a|s), Q(t)

τ (a|s) as vectors
in RN , for all (s, a) ∈ S ×A.

Vanilla federated NPG methods. To motivate the algorithm development, observe
that the NPG method (cf. (8)) applied to (12) adopts the update rule π(t+1)(a|s) ∝

π(t)(a|s) exp
(

η
∑N

n=1 Qπ(t)

n (s,a)

N(1−γ)

)
for all (s, a) ∈ S × A. Two challenges arise when executing

this update rule: the policy estimates are maintained locally without consensus, and the global
Q-function are unavailable in the decentralized setting. To address these challenges, we apply the idea
of dynamic average consensus [ZM10], where each agent maintains its own estimate T (t)

n (s, a) of the
global Q-function, which are collected as vector T (t) =

(
T

(t)
1 , · · · , T (t)

N

)⊤
. At each iteration, each

agent updates its policy estimates based on its neighbors’ information via gossip mixing, in addition

to a correction term that tracks the difference Q
π(t+1)
n

n (s, a) − Q
π(t)
n

n (s, a) of the local Q-functions
between consecutive policy updates. Note that the mixing is applied linearly to the logarithms of local
policies, which translates into a multiplicative mixing of the local policies. Algorithm 1 summarizes
the detailed procedure of the proposed algorithm written in a compact matrix form, which we dub
as federated NPG (FedNPG). Note that the agents do not need to share their reward functions with

6

others, and agent n ∈ [N] will only be responsible to evaluate the local policy π
(t)
n using the local

reward rn.

Entropy-regularized federated NPG methods. Moving onto the entropy regularized case, we adopt
similar algorithmic ideas to decentralize (9), and propose the federated NPG (FedNPG) method
with entropy regularization, summarized in Algorithm 2 (see Appendix C.1). Clearly, the entropy-
regularized FedNPG method reduces to vanilla FedNPG in the absence of the regularization (i.e.,
when τ = 0).

3.2 Theoretical guarantees
Global convergence of FedNPG with exact policy evaluation. We begin with the global conver-
gence of FedNPG (cf. Algorithm 1), stated in the following theorem. The formal statement and proof
can be found in Appendix D.3, and see Appendix B.2 for discussions on the technical challenges.

Theorem 3.3 (Global sublinear convergence of exact FedNPG (informal)). Suppose π(0)
n , n ∈ [N] are

set as the uniform distribution. Then when T ≥ 128
√
N log |A|σ4

(1−σ)4 and η =
(

(1−γ)9(1−σ)2 log |A|
32TNσ2

)1/3
,

we have

1

T

T−1∑
t=0

(
V ⋆(ρ)− V π(t)

(ρ)
)
≲

V ⋆(dπ
⋆

ρ)

(1− γ)T
+

N1/3σ2/3

(1− γ)3(1− σ)2/3

(
log |A|

T

)2/3

. (17a)

∥∥∥log π(t)
n − log π̄(t)

∥∥∥
∞

≲
N2/3σ1/3

(1− γ)(1− σ)1/3

(
log |A|

T

)1/3

. (17b)

Theorem 3.3 characterizes the average-iterate convergence of the average policy π(t) (cf. (14)) across
the agents, which depends logarithmically on the size of the action space, and independently on
the size of the state space. Theorem 3.3 indicates that in the server-client setting with σ = 0,
the convergence rate of FedNPG recovers the O(1/T) rate, matching that of the centralized NPG
established in [AKLM21]; on the other end, in the decentralized setting where σ > 0, FedNPG slows
down and eventually converges at the slower O(1/T 2/3) rate.

We state the iteration complexity in Corollary 3.4.

Corollary 3.4 (Iteration complexity of exact FedNPG). To reach 1
T

∑T−1
t=0

(
V ⋆(ρ) −

V π(t)

(ρ)
)

≤ ε, the iteration complexity of FedNPG is at most

O
((

σ
(1−γ)9/2(1−σ)ε3/2

+ σ2

(1−σ)4

)√
N log |A|+ 1

ε(1−γ)2

)
.

Global convergence of FedNPG with inexact policy evaluation. In practice, the policies need
to be evaluated using samples collected by the agents, where the Q-functions are only estimated
approximately. We are interested in gauging how the approximation error impacts the performance of
FedNPG, as demonstrated in the following theorem. The formal statement, detailed discussions, and
proof of this result is given in Appendix D.4.
Theorem 3.5 (Global sublinear convergence of inexact FedNPG (informal)). Suppose that an estimate

q
π(t)
n

n are used in replace of Qπ(t)
n

n in Algorithm 1. Under the assumptions of Theorem 3.3, when

T ≳
√
N log |A|σ4

(1−σ)4 and η =
(

(1−γ)9(1−σ)2 log |A|
32TNσ2

)1/3
, we have

1

T

T−1∑
t=0

(
V ⋆(ρ)− V π(t)

(ρ)
)
≲

V ⋆(dπ
⋆

ρ)

(1− γ)T
+

N1/3σ2/3

(1− γ)3(1− σ)2/3

(
log |A|

T

)2/3

+
1

(1− γ)2
max

n∈[N],t∈[T]

∥∥∥Qπ(t)
n

n − q
π(t)
n

n

∥∥∥
∞

. (18)

Equipped with existing sample complexity bounds on policy evaluation, e.g. using a simulator as in
[LWCC23a], this immediate leads to the sample complexity per state-action pair at each agent to find
an ε-optimal policy is at most

Õ

(√
N

(1− γ)11.5(1− σ)ε3.5

)
(19)

7

for sufficiently small ε.

Global convergence of entropy-regularized FedNPG with exact policy evaluation. Next, we
present our global convergence guarantee of entropy-regularized FedNPG with exact policy evaluation
(cf. Algorithm 2).
Theorem 3.6 (Global linear convergence of exact entropy-regularized FedNPG (informal)). For
any γ ∈ (0, 1) and 0 < τ ≤ 1, there exists η0 = min

{
1−γ
τ ,O

(
(1−γ)7(1−σ)2τ

σ2N

)}
, such that if

0 < η ≤ η0, then we have∥∥Q(t)

τ −Q⋆
τ

∥∥
∞ ≤ 2γC1ρ(η)

t
∥∥ log π⋆

τ − log π(t)
∥∥
∞ ≤

2C1

τ
ρ(η)t , (20)

where Q
(t)

τ := Qπ(t)

τ , ρ(η) ≤ max{1− τη
2 , 3+σ

4 } < 1, and C1 is some problem-dependent constant.
Furthermore, the consensus error satisfies

∀n ∈ [N] :
∥∥ log π(t)

n − log π(t)
∥∥
∞ ≤ 2C1ρ(η)

t. (21)

The exact expressions of C1 and η0 are specified in Appendix D.1. Theorem 3.6 confirms that
entropy-regularized FedNPG converges at a linear rate to the optimal regularized policy, which is
almost independent of the size of the state-action space, highlighting the positive role of entropy
regularization in federated policy optimization. When the network is fully connected, i.e. σ = 0,
the iteration complexity of entropy-regularized FedNPG reduces to O

(
1
ητ log 1

ε

)
, matching that

of the centralized entropy-regularized NPG established in [CWC21]. When the network is less
connected, one needs to be more conservative in the choice of learning rates, leading to a higher
iteration complexity, as described in the following corollary.
Corollary 3.7 (Iteration complexity of exact entropy-regularized FedNPG). To reach∥∥log π⋆

τ − log π(t)
∥∥
∞ ≤ ε, the iteration complexity of entropy-regularized FedNPG is at most

Õ
(
max

{
2

τη
,

4

1− σ

}
log

1

ε

)
(22)

up to logarithmic factors. Especially, when η = η0, the best iteration complexity becomes
Õ
((

Nσ2

(1−γ)7(1−σ)2τ2 + 1
1−γ

)
log 1

τε

)
.

Global convergence of entropy-regularized FedNPG with inexact policy evaluation. Last but not
the least, we present the informal convergence results of entropy-regularized FedNPG with inexact
policy evaluation, whose formal version can be found in Appendix D.2.
Theorem 3.8 (Global linear convergence of inexact entropy-regularized FedNPG (informal)). Sup-

pose that an estimate q
π(t)
n

τ,n are used in replace of Qπ(t)
n

τ,n in Algorithm 2. Under the assumptions of
Theorem 3.6, we have∥∥Q(t)

τ −Q⋆
τ

∥∥
∞ ≤ 2γ

(
C1ρ(η)

t +C2εq

)
,
∥∥ log π⋆

τ − log π(t)
∥∥
∞ ≤

2

τ

(
C1ρ(η)

t +C2εq

)
, (23)

where Q
(t)

τ := Qπ(t)

τ , εq := maxn∈[N],t∈[T]

∥∥Qπ(t)
n

τ,n − q
π(t)
n

τ,n

∥∥
∞, ρ(η) ≤ max{1− τη

2 , 3+σ
4 } < 1, and

C1, C2 are problem-dependent constants.

4 Federated NAC with function approximation and stochastic evaluation
In this section, motivated by the design and analysis of FedNPG, we go beyond the tabular setting
and exact policy evaluation, by proposing a federated natural actor-critic (FedNAC) method with
function approximation and stochastic policy evaluation. Specifically, we consider the policy with
function approximation under softmax parameterization is of the following form:

fξ(a|s) =
exp(ϕ⊤(s, a)ξ)∑

a′∈A exp(ϕ⊤(s, a′)ξ)
, (24)

for all (s, a) ∈ S ×A and ξ ∈ Rp, where ϕ : S ×A → Rp is a known feature map. We assume ϕ is
bounded over S×A, i.e., there exists Cϕ > 0 such that ∥ϕ(s, a)∥2 ≤ Cϕ holds for all (s, a) ∈ S×A.

8

Following [AKLM21, YDG+22], given any w ∈ Rp, Q : S ×A → R and probability distribution
ζ ∈ ∆(S ×A) over the state-action space, we define the function approximation error ℓ(w, Q, ζ) as
follows:

ℓ(w, Q, ζ) := E(s,a)∼ζ

[(
w⊤ϕ(s, a)−Q(s, a)

)2]
. (25)

By searching for w that minimizes ℓ(w, Q, ζ), it approximates Q(s, a) using the feature map ϕ with
respect to the distribution ζ.

Algorithm design. Let us now discuss the high-level design of FedNAC, which is presented in
Algorithm 3, with more details provided in Appendix C.2. At the t-th iteration (t = 0, . . . , T − 1),
denote the actor (concerning the policies) parameters of all agents as ξ(t) = (ξ

(t)
1 , . . . , ξ

(t)
N)⊤ ∈

RN×p, and the critic parameters of all agents as w(t) = (w
(t)
1 , . . . ,w

(t)
N)⊤ ∈ RN×p (concerning the

local Q-values) and h(t) = (h
(t)
1 , . . . ,h

(t)
N)⊤ ∈ RN×p (concerning the global Q-values).

• First, the critic parameter w
(t)
n is locally updated at each agent by aiming to minimize

ℓ(w, Q
(t)
n , d̃

(t)
n) (cf. (25)) with gradient descent, where Q

(t)
n is the local Q-function of the local

policy f
ξ
(t)
n

, and d̃
(t)
n is the state-action visitation distribution induced by the local policy f

ξ
(t)
n

and an initial state-action distribution ν (determined from the data sampling mechanism, cf. (30)).
However, since Q

(t)
n is not directly available, it needs to be estimated from samples. Therefore,

the critic update takes K steps of stochastic gradient descent with critic learning rate β, given by

w̃k+1 = w̃k − β
(
w̃⊤

k ϕ(sk, ak)− Q̂ξ(sk, ak)
)
ϕ(sk, ak),

for k = 0, . . . ,K − 1, where (sk, ak) is sampled on the local policy f
ξ
(t)
n

, and Q̂ξ(sk, ak) is a
careful estimate of the Q-value using a trajectory with expected length 1/(1−γ) (see Algorithm 5
in Appendix C.2 adopted from [YDG+22, Lemma 4]), and w̃0 = 0 for simplicity. The final
critic is updated as w(t)

n = 1
K

∑K
k=1 w̃k. The total sample complexity of the critic update per

iteration is then on the order of K/(1− γ).

• Next, the critic parameter h
(t)
n for estimating the global Q-function can then be esti-

mated by averaging with the neighbors with the Q-tracking term, given by h(t) =
W
(
h(t−1) +w(t) −w(t−1)

)
.

• Finally, the actor parameter ξ(t)n can be updated via averaging with the neighbors along with the
policy gradient informed by h

(t)
n , given by ξ(t+1) = W

(
ξ(t) + αh(t)

)
, where α is the learning

rate of the actor.

Note that the sample complexity of FedNAC is on the order of KT/(1− γ). An important aspect of
the FedNAC method is that the policy is updated using trajectory data collected via executing the
learned policy, which is closer to practice and more challenging to learn than using the generative
model.

Theoretical guarantees. We first state the assumptions that are needed to guarantee the convergence
of Algorithm 3, which are all commonly used in the literature, e.g., [YDG+22, AKLM21]. To begin,
we require the covariance matrix of the feature map induced by the initial state-action distribution ν
satisfies the following assumption to guarantee the convergence of the critic.
Assumption 4.1 (PSD of the covariance matrix of the feature map). There exists µ > 0 such that
E(s,a)∼ν

[
ϕ(s, a)ϕ⊤(s, a)

]
= Σν ≥ µI .

We also need to ensure that the Q-values can be well approximated by the linear function approxima-
tion using feature map ϕ(s, a), which is captured next.
Assumption 4.2 (Bounded approximation error). For each n ∈ [N], there exists εnapprox ≥ 0

such that for all t ∈ N, it holds that E
[
ℓ
(
w

(t)
⋆,n, Q

(t)
n , d̃

(t)
n

)]
≤ εnapprox, where w

(t)
⋆,n :=

argminw ℓ
(
w

(t)
⋆,n, Q

(t)
n , d̃

(t)
n

)
.

We denote the average approximation error as ε̄approx = 1
N

∑N
n=1 ε

n
approx. Similar as [YDG+22], we

need the following assumption that bounds the transfer errors due to distribution shifts.

9

Assumption 4.3 (Bounded transfer error). There exists Cν > 0 such that for all n ∈ [N] and t ∈ N,

it holds that E
(s,a)∼d̃

(t)
n

[(
hπ(s,a)

d̃
(t)
n (s,a)

)2]
≤ Cν , where hπ(s, a) is the state-action visitation distribution

induced by any policy π from initial state distribution ρ.

Note that if we choose ν(s, a) > 0 for all (s, a) ∈ S ×A, then Assumption 4.3 is guaranteed to hold
true (see Lemma E.4 in Appendix E). We are now ready to state the convergence guarantee, whose
formal version and proof could be found in Appendix E.

Theorem 4.4 (Convergence rate of Algorithm 3 (informal)). Let ξ(0)1 = · · · = ξ
(0)
N in FedNAC.

Denoting ξ̄(t) := 1
N

∑N
n=1 ξ

(t)
n , and f̄ (t) := fξ̄(t) as the average policy. Then under Assumption 3.1,

4.1, 4.2 and 4.3, with appropriately chosen learning rates α and β, as long as the number of actor
iterations satisfies

T ≳ max

{
σ

ε3/2(1− γ)17/4(1− σ)3/2
,

1

ε(1− γ)
,

σ1/4

ε3/4(1− σ)3/8(1− γ)7/8N3/8
,

σ4

(1− γ)2(1− σ)6

}

and the number of critic iterations satisfies K = O
(

1
(1−γ)6ε2

)
, it holds that

V ⋆(ρ)− 1

T

T−1∑
t=0

V f̄(t)

(ρ) ≲ ε+
ε̄approx
1− γ

. (26)

In the server-client setting when σ = 0, to reach (26), it suffices to choose T = O
(

1
(1−γ)ε

)
and

K = O
(

1
(1−γ)6ε2

)
, leading to a total sample complexity of KT/(1 − γ) = O

(
1

(1−γ)8ε3

)
per

agent, and T = O
(

1
(1−γ)ε

)
rounds of communication. The sample complexity matches that of

(centralized) Q-NPG established in [YDG+22] with a single agent. On the other end, in the fully
decentralized setting when σ is not close to 0, FedNAC requires O

(
1

(1−γ)45/4ε7/2(1−σ)3/2

)
samples

for each agent andO
(

1
ε3/2(1−γ)17/4(1−σ)3/2

)
rounds of communication to reach (26), for sufficiently

small ε. Encouragingly, the dependency on the accuracy level ε — the dominating factor — in the
sample complexity matches that of FedNPG given in (19) when assuming access to the generative
model, which allows query of arbitrary state-action pairs. In contrast, FedNAC only collects on-policy
samples, and therefore is much more challenging to guarantee its convergence.

5 Conclusions
This work proposes the first provably efficient federated NPG (FedNPG) methods for solving vanilla
and entropy-regularized multi-task RL problems in the fully decentralized setting. The established
finite-time global convergence guarantees are almost independent of the size of the state-action
space up to some logarithmic factor, and illuminate the impacts of the size and connectivity of the
network. Furthermore, the proposed FedNPG methods are provably robust vis-a-vis inexactness of
local policy evaluations. Last but not least, we also propose FedNAC, which can be viewed as an
extension of FedNPG with function approximation and stochastic policy evaluation, and establish its
finite-time sample complexity. Future directions include generalizing the framework of federated
policy optimization to allow personalized policy learning in a shared environment.

Acknowledgments and Disclosure of Funding

The work of T. Yang, S. Cen and Y. Chi are supported in part by the grants ONR N00014-19-1-2404,
NSF CCF-1901199, CCF-2106778, AFRL FA8750-20-2-0504, and a CMU Cylab seed grant. The
work of Y. Wei is supported in part by the the NSF grants DMS-2147546/2015447, CAREER award
DMS-2143215, CCF-2106778, and the Google Research Scholar Award. The work of Y. Chen is
supported in part by the Alfred P. Sloan Research Fellowship, the Google Research Scholar Award,
the AFOSR grant FA9550-22-1-0198, the ONR grant N00014-22-1-2354, and the NSF grants CCF-
2221009 and CCF-1907661. S. Cen is also gratefully supported by Wei Shen and Xuehong Zhang
Presidential Fellowship, Boeing Scholarship, and JP Morgan Chase PhD Fellowship.

10

References

[AKLM21] A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan. On the theory of policy gradient
methods: Optimality, approximation, and distribution shift. The Journal of Machine
Learning Research, 22(1):4431–4506, 2021.

[ALRNS19] Z. Ahmed, N. Le Roux, M. Norouzi, and D. Schuurmans. Understanding the impact
of entropy on policy optimization. In International Conference on Machine Learning,
pages 151–160, 2019.

[Ama98] S.-I. Amari. Natural gradient works efficiently in learning. Neural computation,
10(2):251–276, 1998.

[AR21] A. Anwar and A. Raychowdhury. Multi-task federated reinforcement learning with
adversaries. arXiv preprint arXiv:2103.06473, 2021.

[ARB+19] M. Assran, J. Romoff, N. Ballas, J. Pineau, and M. Rabbat. Gossip-based actor-
learner architectures for deep reinforcement learning. Advances in Neural Information
Processing Systems, 32, 2019.

[BM13] F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with
convergence rate o (1/n). Advances in neural information processing systems, 26, 2013.

[BR21] J. Bhandari and D. Russo. On the linear convergence of policy gradient methods for
finite MDPs. In International Conference on Artificial Intelligence and Statistics, pages
2386–2394. PMLR, 2021.

[BSGL09] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee. Natural actor-critic algo-
rithms. Automatica, 45(11):2471–2482, 2009.

[CCC+22a] S. Cen, C. Cheng, Y. Chen, Y. Wei, and Y. Chi. Fast global convergence of natural policy
gradient methods with entropy regularization. Operations Research, 70(4):2563–2578,
2022.

[CCC+22b] S. Cen, C. Cheng, Y. Chen, Y. Wei, and Y. Chi. Fast global convergence of natural policy
gradient methods with entropy regularization. Operations Research, 70(4):2563–2578,
2022.

[CCDX22] S. Cen, Y. Chi, S. S. Du, and L. Xiao. Faster last-iterate convergence of policy
optimization in zero-sum Markov games. In The Eleventh International Conference on
Learning Representations, 2022.

[CFGW22] J. Chen, J. Feng, W. Gao, and K. Wei. Decentralized natural policy gradient with
variance reduction for collaborative multi-agent reinforcement learning. arXiv preprint
arXiv:2209.02179, 2022.

[CWC21] S. Cen, Y. Wei, and Y. Chi. Fast policy extragradient methods for competitive games
with entropy regularization. Advances in Neural Information Processing Systems,
34:27952–27964, 2021.

[CZC21] Z. Chen, Y. Zhou, and R. Chen. Multi-agent off-policy TDC with near-optimal sample
and communication complexity. In 2021 55th Asilomar Conference on Signals, Systems,
and Computers, pages 504–508. IEEE, 2021.

[CZGB21] T. Chen, K. Zhang, G. B. Giannakis, and T. Başar. Communication-efficient policy
gradient methods for distributed reinforcement learning. IEEE Transactions on Control
of Network Systems, 9(2):917–929, 2021.

[DAW11] J. C. Duchi, A. Agarwal, and M. J. Wainwright. Dual averaging for distributed opti-
mization: Convergence analysis and network scaling. IEEE Transactions on Automatic
control, 57(3):592–606, 2011.

[DLS16] P. Di Lorenzo and G. Scutari. Next: In-network nonconvex optimization. IEEE
Transactions on Signal and Information Processing over Networks, 2(2):120–136,
2016.

11

[EL21] B. Eysenbach and S. Levine. Maximum entropy RL (provably) solves some robust RL
problems. In International Conference on Learning Representations, 2021.

[ESM+18] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu,
T. Harley, I. Dunning, et al. Impala: Scalable distributed deep-rl with importance
weighted actor-learner architectures. In International conference on machine learning,
pages 1407–1416. PMLR, 2018.

[HJ12] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge university press, 2012.

[Kak01] S. M. Kakade. A natural policy gradient. Advances in neural information processing
systems, 14, 2001.

[KDRM22] S. Khodadadian, T. T. Doan, J. Romberg, and S. T. Maguluri. Finite sample analysis of
two-time-scale natural actor-critic algorithm. IEEE Transactions on Automatic Control,
2022.

[KJVM21] S. Khodadadian, P. R. Jhunjhunwala, S. M. Varma, and S. T. Maguluri. On the linear
convergence of natural policy gradient algorithm. In 2021 60th IEEE Conference on
Decision and Control (CDC), pages 3794–3799. IEEE, 2021.

[KMP12] S. Kar, J. M. Moura, and H. V. Poor. Qd-learning: A collaborative distributed
strategy for multi-agent reinforcement learning through consensus. arXiv preprint
arXiv:1205.0047, 2012.

[KSJM22] S. Khodadadian, P. Sharma, G. Joshi, and S. T. Maguluri. Federated reinforcement
learning: Linear speedup under Markovian sampling. In International Conference on
Machine Learning, pages 10997–11057. PMLR, 2022.

[Lan23] G. Lan. Policy mirror descent for reinforcement learning: Linear convergence, new
sampling complexity, and generalized problem classes. Mathematical programming,
198(1):1059–1106, 2023.

[LCCC20] B. Li, S. Cen, Y. Chen, and Y. Chi. Communication-efficient distributed optimization
in networks with gradient tracking and variance reduction. The Journal of Machine
Learning Research, 21(1):7331–7381, 2020.

[LLZ23] G. Lan, Y. Li, and T. Zhao. Block policy mirror descent. SIAM Journal on Optimization,
33(3):2341–2378, 2023.

[LO08] I. Lobel and A. Ozdaglar. Convergence analysis of distributed subgradient methods
over random networks. In 2008 46th Annual Allerton Conference on Communication,
Control, and Computing, pages 353–360. IEEE, 2008.

[LWA+23] G. Lan, H. Wang, J. Anderson, C. Brinton, and V. Aggarwal. Improved communication
efficiency in federated natural policy gradient via admm-based gradient updates. arXiv
preprint arXiv:2310.19807, 2023.

[LWCC23a] G. Li, Y. Wei, Y. Chi, and Y. Chen. Breaking the sample size barrier in model-based
reinforcement learning with a generative model. Operations Research, 2023.

[LWCC23b] G. Li, Y. Wei, Y. Chi, and Y. Chen. Softmax policy gradient methods can take
exponential time to converge. Mathematical Programming, pages 1–96, 2023.

[LZZ+17] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel
stochastic gradient descent. Advances in neural information processing systems, 30,
2017.

[MA22] M. M Alshater. Exploring the role of artificial intelligence in enhancing academic
performance: A case study of chatgpt. Available at SSRN, 2022.

[MBM+16] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In Interna-
tional conference on machine learning, pages 1928–1937, 2016.

12

[MP95] R. D. McKelvey and T. R. Palfrey. Quantal response equilibria for normal form games.
Games and economic behavior, 10(1):6–38, 1995.

[MXSS20] J. Mei, C. Xiao, C. Szepesvari, and D. Schuurmans. On the global convergence rates of
softmax policy gradient methods. In International Conference on Machine Learning,
pages 6820–6829. PMLR, 2020.

[NNXS17] O. Nachum, M. Norouzi, K. Xu, and D. Schuurmans. Bridging the gap between value
and policy based reinforcement learning. In Advances in Neural Information Processing
Systems, pages 2775–2785, 2017.

[NO09] A. Nedic and A. Ozdaglar. Distributed subgradient methods for multi-agent optimiza-
tion. IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

[NOR18] A. Nedić, A. Olshevsky, and M. G. Rabbat. Network topology and communication-
computation tradeoffs in decentralized optimization. Proceedings of the IEEE,
106(5):953–976, 2018.

[NOS17] A. Nedic, A. Olshevsky, and W. Shi. Achieving geometric convergence for distributed
optimization over time-varying graphs. SIAM Journal on Optimization, 27(4):2597–
2633, 2017.

[OPA+17] S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian. Deep decentralized multi-
task multi-agent reinforcement learning under partial observability. In International
Conference on Machine Learning, pages 2681–2690. PMLR, 2017.

[PN21] S. Pu and A. Nedić. Distributed stochastic gradient tracking methods. Mathematical
Programming, 187:409–457, 2021.

[PP08] K. B. Petersen and M. S. Pedersen. The matrix cookbook. Technical University of
Denmark, 7(15):510, 2008.

[Put14] M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

[QL17] G. Qu and N. Li. Harnessing smoothness to accelerate distributed optimization. IEEE
Transactions on Control of Network Systems, 5(3):1245–1260, 2017.

[QZLZ21] J. Qi, Q. Zhou, L. Lei, and K. Zheng. Federated reinforcement learning: Techniques,
applications, and open challenges. arXiv preprint arXiv:2108.11887, 2021.

[RTR+23] M. M. Rahman, H. J. Terano, M. N. Rahman, A. Salamzadeh, and M. S. Rahaman.
Chatgpt and academic research: a review and recommendations based on practical
examples. Rahman, M., Terano, HJR, Rahman, N., Salamzadeh, A., Rahaman, S.(2023).
ChatGPT and Academic Research: A Review and Recommendations Based on Practical
Examples. Journal of Education, Management and Development Studies, 3(1):1–12,
2023.

[SEM20] L. Shani, Y. Efroni, and S. Mannor. Adaptive trust region policy optimization: Global
convergence and faster rates for regularized MDPs. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 5668–5675, 2020.

[SLA+15] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy
optimization. In International conference on machine learning, pages 1889–1897,
2015.

[SWD+17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[WCYW19] L. Wang, Q. Cai, Z. Yang, and Z. Wang. Neural policy gradient methods: Global
optimality and rates of convergence. arXiv preprint arXiv:1909.01150, 2019.

[WHM+23] J. Wang, J. Hu, J. Mills, G. Min, M. Xia, and N. Georgalas. Federated ensemble
model-based reinforcement learning in edge computing. IEEE Transactions on Parallel
and Distributed Systems, 2023.

13

[WJC23] J. Woo, G. Joshi, and Y. Chi. The blessing of heterogeneity in federated q-learning:
Linear speedup and beyond. arXiv preprint arXiv:2305.10697, 2023.

[WKNL20] H. Wang, Z. Kaplan, D. Niu, and B. Li. Optimizing federated learning on non-iid data
with reinforcement learning. In IEEE INFOCOM 2020-IEEE Conference on Computer
Communications, pages 1698–1707. IEEE, 2020.

[WP91] R. J. Williams and J. Peng. Function optimization using connectionist reinforcement
learning algorithms. Connection Science, 3(3):241–268, 1991.

[WSJC24] J. Woo, L. Shi, G. Joshi, and Y. Chi. Federated offline reinforcement learning: Col-
laborative single-policy coverage suffices. In Forty-first International Conference on
Machine Learning, 2024.

[Xia22] L. Xiao. On the convergence rates of policy gradient methods. The Journal of Machine
Learning Research, 23(1):12887–12922, 2022.

[XWL20] T. Xu, Z. Wang, and Y. Liang. Improving sample complexity bounds for actor-critic
algorithms. arXiv preprint arXiv:2004.12956, 2020.

[YDG+22] R. Yuan, S. S. Du, R. M. Gower, A. Lazaric, and L. Xiao. Linear convergence of natural
policy gradient methods with log-linear policies. arXiv preprint arXiv:2210.01400,
2022.

[YLS+20] T. Yu, T. Li, Y. Sun, S. Nanda, V. Smith, V. Sekar, and S. Seshan. Learning context-
aware policies from multiple smart homes via federated multi-task learning. In 2020
IEEE/ACM Fifth International Conference on Internet-of-Things Design and Implemen-
tation (IoTDI), pages 104–115. IEEE, 2020.

[ZAD+21] S. Zeng, M. A. Anwar, T. T. Doan, A. Raychowdhury, and J. Romberg. A decentralized
policy gradient approach to multi-task reinforcement learning. In Uncertainty in
Artificial Intelligence, pages 1002–1012. PMLR, 2021.

[ZBW+20] F. Zerka, S. Barakat, S. Walsh, M. Bogowicz, R. T. Leijenaar, A. Jochems, B. Miraglio,
D. Townend, and P. Lambin. Systematic review of privacy-preserving distributed ma-
chine learning from federated databases in health care. JCO clinical cancer informatics,
4:184–200, 2020.

[ZCH+23] W. Zhan, S. Cen, B. Huang, Y. Chen, J. D. Lee, and Y. Chi. Policy mirror descent for
regularized reinforcement learning: A generalized framework with linear convergence.
SIAM Journal on Optimization, 33(2):1061–1091, 2023.

[ZFL+19] H. H. Zhuo, W. Feng, Y. Lin, Q. Xu, and Q. Yang. Federated deep reinforcement
learning. arXiv preprint arXiv:1901.08277, 2019.

[ZLK+22] R. Zhou, T. Liu, D. Kalathil, P. Kumar, and C. Tian. Anchor-changing regularized
natural policy gradient for multi-objective reinforcement learning. Advances in Neural
Information Processing Systems, 35:13584–13596, 2022.

[ZM10] M. Zhu and S. Martínez. Discrete-time dynamic average consensus. Automatica,
46(2):322–329, 2010.

[ZRY+23] F. Zhao, X. Ren, S. Yang, P. Zhao, R. Zhang, and X. Xu. Federated multi-objective
reinforcement learning. Information Sciences, 624:811–832, 2023.

14

A Related work

Global convergence of NPG methods for tabular MDPs. [AKLM21] first establishes a O(1/T)
last-iterate convergence rate of the NPG method under softmax parameterization with constant step
size, assuming access to exact policy evaluation. When entropy regularization is in place, [CWC21]
establishes a global linear convergence to the optimal regularized policy for the entire range of
admissible constant learning rates using softmax parameterization and exact policy evaluation,
which is further shown to be stable in the presence of ℓ∞ policy evaluation errors. The iteration
complexity of NPG methods is nearly independent with the size of the state-action space, which is
in sharp contrast to softmax policy gradient methods that may take exponential time to converge
[LWCC23b, MXSS20]. [Lan23] proposed a more general framework through the lens of mirror
descent for regularized RL with global linear convergence guarantees, which is further generalized
in [ZCH+23, LLZ23]. Earlier analysis of regularized MDPs can be found in [SEM20]. Besides,
[Xia22] proves that vanilla NPG also achieves linear convergence when geometrically increasing
learning rates are used; see also [KJVM21, BR21]. [ZLK+22] developed an anchor-changing NPG
method for multi-task RL under various optimality criteria in the centralized setting.

Convergence and sample complexity results of NAC. The convergence and sample complex-
ity of a variety of natural actor–critic methods (NACs) are extensively studied in the litera-
ture [BSGL09, WCYW19, KDRM22, AKLM21, YDG+22]. More pertinent to our work, [AKLM21]
introduced Q-NPG—a sample version of the NPG method with function approximation under softmax
parameterization —and obtained a convergence rate of O(1/

√
T). [YDG+22] weakens some of its

assumptions and improves the convergence rate toO(1/T) and gives the Õ(1/ε3) sample complexity
using a constant actor learning rate. The FedNAC method we propose in this paper can be seen as a
decentralized version of Q-NPG, and in the server-client setting where the network is fully connected,
our convergence rate and sample complexity match those in [YDG+22].

Distributed and federated RL. There have been a variety of settings being set forth for distributed
and federated RL. [MBM+16, ESM+18, ARB+19, KSJM22, WJC23] focused on developing feder-
ated versions of RL algorithms to accelerate training, assuming all agents share the same transition
kernel and reward function; in particular, [KSJM22, WJC23, WSJC24] established the provable ben-
efits of federated learning in terms of linear speedup. More pertinent to our work, [ZRY+23, AR21]
considered the federated multi-task framework, allowing different agents having private reward
functions. [ZRY+23] proposed an empirically probabilistic algorithm that can seek an optimal policy
under the server-client setting, while [AR21] developed new attack methods in the presence of adver-
sarial agents. Recently [LWA+23] discussed how to avoid transmitting the Hessian matrix during
communication in the server-client setting where all agents share the same reward function. Different
from the FRL framework, [CZGB21, CZC21, OPA+17, KMP12, CFGW22, ZAD+21] considered
the distributed multi-agent RL setting where the agents interact with a dynamic environment through
a multi-agent Markov decision process, where each agent can have their own state or action spaces.
[ZAD+21] developed a decentralized policy gradient method where different agents have different
MDPs, where a special case of their setting recovers ours. However, the convergence rate developed
in [ZAD+21] has rather pessimistic dependencies with the size of the state-action space, together
with other parameters, without leveraging natural policy gradients and gradient tracking techniques.

Decentralized first-order optimization algorithms. Early work of consensus-based first-order
optimization algorithms for the fully decentralized setting include but are not limited to [LO08,
NO09, DAW11]. Gradient tracking, which leverages the idea of dynamic average consensus [ZM10]
to track the gradient of the global objective function, is a popular method to improve the convergence
speed [QL17, NOS17, DLS16, PN21, LCCC20].

B Additional Discussion

B.1 Application Related to Federated Multi-task RL

In this section, we elaborate more on our motivation and the application scenarios where federated
multi-task RL becomes highly relevant.

We first provide some key motivations for our federated multi-task RL setting as follows.

15

• Efficient knowledge transfer: multi-task RL enables agents to transfer knowledge across
related tasks, accelerating learning and improving performance by leveraging experiences
gained from one task to another. For instance, in our healthcare example in Section 1,
by learning across hospitals with varying demographics, the agent can identify treatment
strategies that are effective across diverse patient populations without directly accessing
sensitive patient information.

• Generalization and adaptability: agents trained with multi-task RL can generalize their
learned policies, adapt to new tasks, and handle diverse environments more effectively,
enhancing their robustness and adaptability. In the healthcare example, an optimal treatment
over different hospitals better adapts to variations in patient characteristics.

• Resource optimization: training a single policy for multiple tasks optimizes resource usage
compared to training separate policies for each task, making it more efficient in scenarios
with limited data or computational resources. In the healthcare example, the collabora-
tive approach enhances learning efficiency and scalability while preserving data privacy,
particularly in settings where each hospital has limited access to patient information.

Below we provide more application scenarios of our setting.

1. To enhance ChatGPT’s performance across different tasks or domains [MA22, RTR+23],
one might consult domain experts to chat and rate ChatGPT’s outputs for solving different
tasks, and train ChatGPT in a federated manner without exposing private data or feedback
of each expert.

2. Our setting is especially suitable for the multi-task problems where each agent only have
partial access of the "global" task. There are a lot of such problems.

• An example is the problem we consider in our experiments (see Appendix H), where
we distributedly train the agents to learn a shared policy to follow a predetermined
trajectory while each agent only has partial information of this trajectory.

• The above problem could be seen as a simplified version of the Unmanned Aerial
Vehicle (UAV) Patrol Mission, each unmanned aerial vehicle (UAV) patrols only in a
specific area, and they need to collectively train a strategy utilizing information from
the entire patrol range.

• In the game setting, different agents aim to train a character to perform well in multiple
tasks, and each agent trains on one task.

Despite the promise, provably efficient algorithms for federated multi-task RL remain substantially
under-explored, especially in the fully decentralized setting. Our work is the first to provide efficient
algorithms with global convergence guarantees for federated multi-task RL.

B.2 Theoretical Contribution

In this section, we stress that while our work is built upon the algorithmic ideas in the distributed
learning, reinforcement learning and optimization literature, it is not a strightforward combination
and the theoretical analysis is by no means trivial.

One key difficulty is to estimate the global Q-functions using only neighboring information and local
data. To address this issue, we invoke the “Q-tracking” step (see Algorithm 1, 2), which is inspired
by the gradient tracking method in decentralized optimization. Note that this generalization is highly
non-trivial: to the best of our knowledge, the utility of gradient tracking has not been exploited in
policy optimization, and the intrinsic nonconcavity issue, together with the use of natural gradients,
prevents us from directly using the results from decentralized optimization. It is thus of great value
to study if the combination of NPG and gradient tracking could lead to fast globally convergent
algorithms as in the standard decentralized optimization literature despite the nonconcavity.

Besides, due to the lack of global information sharing, care needs to be taken to judiciously balance
the use of neighboring information (to facilitate consensus) and local data (to facilitate learning)
when updating the policy. Compared to the centralized version of our proposed algorithms, a much
more delicate theoretical analysis is required to prove our convergence results. For example, the
key step to establish the convergence rate of the single-agent exact entropy-regularized NPG is to
form the 2nd-order linear system in Eq. (46) in [CCC+22a], while in our corresponding analysis,

16

a 4th-order linear system in Eq. (49) is needed, where the inequality in each line is non-trivial and
requires the introduction of some intricate and novel auxiliary lemmas, see Appendix D.

C Omitted Algorithms

C.1 Federated NPG (FedNPG) with entropy regularization

We record the entropy-regularized FedNPG method in Algorithm 2 here due to space limits.

Algorithm 2 Federated NPG (FedNPG) with entropy regularization
1: Input: learning rate η > 0, iteration number T ∈ N+, mixing matrix W ∈ RN×N , regulariza-

tion coefficient τ > 0.
2: Initialize: π(0), T (0) = Q

(0)
τ .

3: for t = 0, 1, · · · do
4: Update the policy for each (s, a) ∈ S ×A:

logπ(t+1)(a|s) = W

((
1− ητ

1− γ

)
logπ(t)(a|s) + η

1− γ
T (t)(s, a)

)
− log z(t)(s) ,

(27)
where z(t)(s) =

∑
a′∈A exp

{
W
((

1− ητ
1−γ

)
logπ(t)(a′|s) + η

1−γT
(t)(s, a′)

)}
.

5: Evaluate Q
(t+1)
τ .

6: Update the global Q-function estimate for each (s, a) ∈ S ×A:

T (t+1)(s, a) = W
(
T (t)(s, a) +Q(t+1)

τ (s, a)−Q(t)
τ (s, a)︸ ︷︷ ︸

Q-tracking

)
. (UT)

7: end for

C.2 Development of FedNAC

For any policy π, we let dπs0 denote the discounted state visitation distribution of π given an initial
state s0 ∈ S, i.e.,

∀s ∈ S : dπs0(s) := (1− γ)

∞∑
t=0

γtP(st = s|s0) . (28)

For a distribution ρ ∈ ∆(S), we define dπρ (s) = Es0∼ρ[d
π
s0(s)]. We also define the state-action

visitation distribution d̄πρ as

d̄πρ (s, a) :=dπρ (s)π(a|s) = (1− γ)Es0∼ρ

[∞∑
t=0

γtP(st = s, at = a|s0)

]
. (29)

Furthermore, we extend the definition of d̄πρ by specifying the initial state-action distribution ν ∈
∆(S ×A) and define

d̃πν (s, a) := (1− γ) E
(s0,a0)∼ν

[∞∑
t=0

γtP(st = s, at = a|s0, a0)

]
. (30)

Our proposed federated NAC method FedNAC could be seen as a decentralized version of Q-NPG
method [AKLM21, YDG+22], which we briefly review as follows.

Q-NPG method. Q-NPG is a sample version of NPG with function approximation which is suitable
for the case where S or A is large or infinite. We consider the policy with function approximation
under softmax parameterization (24).

Given an approximate solution w(t) for minimizing the function approximation error

ℓ(w, Q
f
ξ(t) , d̃

f
ξ(t)

ν) (see (25)), the Q-NPG update rule ξ(t+1) = ξ(t) + αw(t), when plugged in

17

parameterization (24), results in the following policy update rule when we set α = η/(1− γ):

f (t+1)(a|s) ∝ f (t)(a|s) exp
(
ηϕ⊤(s, a)w(t)

1− γ

)
, (31)

which could be seen as the function approximation version of the update rule (8) of vanilla NPG
method.

Federated NAC method. FedNAC (describe in Section 4) is presented in Algorithm 3, whose
subroutines are written in Algorithm 4, 5. In each iteration t of FedNAC, each agent n updates
the critic parameter w(t)

n locally using Algorithm 4, which aims to minimize ℓ(w, Q
(t)
n , d̃

(t)
n) by

stochastic gradient descent. Note that since we don’t know the Q-function Q
(t)
n in the gradients, we

need to invoke Algorithm 5 [YDG+22, Algorithm 3] to give an unbiased estimate Q̂
(t)
n (s, a), where

(s, a) is sampled from d̃
(t)
n (cf. Theorem E.1). As a consequence, in line 4 of Algorithm 4, we have

E
[
∇̂wℓ(w̃k, Q̂

π, d̃fξ)
]
= ∇wℓ(w̃k, Q̂

π, d̃fξ) . (32)

In each actor iteration, agents share with their neighbors actor and critic parameters, where the
tracking scheme is also used.

Algorithm 3 Federated Natural Actor-Critic (FedNAC)
1: Input: number of actor iterations T , number of critic iterations K, actor learning rate α, critic

learning rate β, discounted factor γ ∈ [0, 1)

2: Initialization: initial state-action distribution ν, actor parameter ξ(0) = (ξ
(0)⊤
1 , · · · , ξ(0)⊤N)⊤ ∈

RN×p, h(−1) = w(−1) = 0 ∈ RN×p

3: for t = 0, · · · , T − 1 do
4: Critic update: w(t)

n = Critic(K, ν, ξ(t)n , γ, β, rn), n ∈ [N] (Algorithm 4)
5: Update the critic parameter for estimating the global Q-function:

h(t) = W
(
h(t−1) +w(t) −w(t−1)

)
(33)

6: Actor update:
ξ(t+1) = W

(
ξ(t) + αh(t)

)
(34)

7: end for

Algorithm 4 Critic(K, ν, ξ, γ, β, r): sample-based regression solver to minimize ℓ(w, Q
(t)
n , d̃

(t)
n)

1: Initialize: critic parameter w0 ∈ Rp

2: for k = 0, · · · ,K − 1 do
3: Sampling: (sk, ak), Q̂π(sk, ak) =Q-Sampler(ν, fξ, γ, r) (Algorithm 5)
4: Compute the stochastic gradient estimator of LQ:

∇̂wℓ(w̃k, Q̂
π, d̃fξ) = 2

(
w̃⊤

k ϕ(sk, ak)− Q̂π(sk, ak)
)
ϕ(sk, ak) (35)

5: Critic Update: w̃k+1 = w̃k − β∇̂wℓ(w̃k, Q̂
π, d̃fξ)

6: end for
7: Output: wout =

1
K

∑K
k=1 w̃k

D Convergence analysis of FedNPG

For technical convenience, we present first the analysis for entropy-regularized FedNPG and then for
vanilla FedNPG.

18

Algorithm 5 Q-Sampler(ν, π, γ, r)
1: Initialize: (s0, a0) ∼ ν, time step h, t = 0, variable X ∼ Bernoulli(γ)
2: while X = 1 do
3: Sample sh+1 ∼ P (·|sh, ah)
4: Sample ah+1 ∼ π(·|sh+1)
5: h← h+ 1
6: X ∼ Bernoulli(γ)
7: end while
8: Set xc(sh, ah) = r(sh, ah), X ∼ Bernoulli(γ), t = h
9: while X = 1 do

10: Sample st+1 ∼ P (·|st, at)
11: Sample at+1 ∼ π(·|st+1)

12: Q̂π(sh, ah)← Q̂π(sh, ah) + r(st+1, at+1)
13: t← t+ 1
14: X ∼ Bernoulli(γ)
15: end while
16: Output: (sh, ah) and Q̂π(sh, ah)

D.1 Analysis of entropy-regularized FedNPG with exact policy evaluation

To facilitate analysis, we introduce several notation below. For all t ≥ 0, we recall π(t) as the
normalized geometric mean of {π(t)

n }n∈[N]:

π(t) := softmax

(
1

N

N∑
n=1

log π(t)
n

)
, (36)

from which we can easily see that for each (s, a) ∈ S × A, π(t)(a|s) ∝
(∏N

n=1 π
(t)
n (a|s)

) 1
N

. We

denote the soft Q-functions of π(t) by Q
(t)

τ :

Q
(t)

τ :=


Qπ(t)

τ,1
...

Qπ(t)

τ,N

 . (37)

In addition, we define Q̂
(t)
τ , Q

(t)

τ ∈ R|S||A| and V
(t)

τ ∈ R|S| as follows

Q̂(t)
τ :=

1

N

N∑
n=1

Q
π(t)
n

τ,n , (38a)

Q
(t)

τ := Qπ(t)

τ =
1

N

N∑
n=1

Qπ(t)

τ,n . (38b)

V
(t)

τ := V π(t)

τ =
1

N

N∑
n=1

V π(t)

τ,n . (38c)

For notational convenience, we also denote

α := 1− ητ

1− γ
. (39)

Following [CCC+22b], we introduce the following auxiliary sequence {ξ(t) = (ξ
(t)
1 , · · · , ξ(t)N)⊤ ∈

RN×|S||A|}t=0,1,···, each recursively defined as

∀(s, a) ∈ S ×A : ξ(0)(s, a) :=
∥exp (Q⋆

τ (s, ·)/τ)∥1∥∥∥exp(1
N

∑N
n=1 log π

(0)
n (·|s)

)∥∥∥
1

· π(0)(a|s) , (40a)

log ξ(t+1)(s, a) = W
(
α log ξ(t)(s, a) + (1− α)T (t)(s, a)/τ

)
, (40b)

19

where T (t)(s, a) is updated via (16). Similarly, we introduce an averaged auxiliary sequence {ξ(t) ∈
R|S||A|} given by

∀(s, a) ∈ S ×A : ξ
(0)

(s, a) := ∥exp (Q⋆
τ (s, ·)/τ)∥1 · π

(0)(a|s) , (41a)

log ξ
(t+1)

(s, a) = α log ξ
(t)
(s, a) + (1− α)Q̂(t)

τ (s, a)/τ. (41b)

We introduces four error metrics defined as

Ω
(t)
1 :=

∥∥u(t)
∥∥
∞ , (42a)

Ω
(t)
2 :=

∥∥v(t)∥∥∞ , (42b)

Ω
(t)
3 :=

∥∥Q⋆
τ − τ log ξ

(t)∥∥
∞ , (42c)

Ω
(t)
4 := max

{
0,−min

s,a

(
Q

(t)

τ (s, a)− τ log ξ
(t)
(s, a)

)}
, (42d)

where u(t), v(t) ∈ R|S||A| are defined as

u(t)(s, a) :=
∥∥ log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥
2
, (43)

v(t)(s, a) :=
∥∥T (t)(s, a)− Q̂(t)

τ (s, a)1N

∥∥
2
. (44)

We collect the error metrics above in a vector Ω(t) ∈ R4:

Ω(t) :=
(
Ω

(t)
1 ,Ω

(t)
2 ,Ω

(t)
3 ,Ω

(t)
4

)⊤
. (45)

With the above preparation, we are ready to state the convergence guarantee of Algorithm 2 in
Theorem D.1 below, which is the formal version of Theorem 3.6.
Theorem D.1. For any N ∈ N+, τ > 0, γ ∈ (0, 1), there exists η0 > 0 which depends only on
N, γ, τ, σ, |A|, such that if 0 < η ≤ η0 and 1− σ > 0, then the updates of Algorithm 2 satisfy∥∥Q(t)

τ −Q⋆
τ

∥∥
∞ ≤ 2γρ(η)t

∥∥Ω(0)
∥∥
2
, (46)∥∥ log π⋆

τ − log π(t)
∥∥
∞ ≤

2

τ
ρ(η)t

∥∥Ω(0)
∥∥
2
, (47)

where
ρ(η) ≤ max

{
1− τη

2
,
3 + σ

4

}
< 1 .

Moreover, the consensus errors satisfy:

∀n ∈ [N] :
∥∥ log π(t)

n − log π(t)
∥∥
∞ ≤ 2ρ(η)t

∥∥Ω(0)
∥∥
2
. (48)

The dependency of η0 on N, γ, τ, σ, |A| is made clear in Lemma D.3 that will be presented momen-
tarily in this section. The rest of this section is dedicated to the proof of Theorem D.1. We first state a
key lemma that tracks the error recursion of Algorithm 2.
Lemma D.2. The following linear system holds for all t ≥ 0:

Ω(t+1) ≤


σα ησ

1−γ 0 0

Sσ
(
1 + ηM

√
N

1−γ σ
)
σ (2+γ)ηMN

1−γ σ γηMN
1−γ σ

(1− α)M 0 (1− α)γ + α (1− α)γ
2γ+ητ
1−γ M 0 0 α


︸ ︷︷ ︸

=:A(η)

Ω(t) , (49)

where we let

S := M
√
N

(
2α+ (1− α) ·

√
2N +

1− α

τ
·
√
NM

)
, (50)

and

M :=
1 + γ + 2τ(1− γ) log |A|

(1− γ)2
· γ .

20

In addition, it holds for all t ≥ 0 that∥∥∥Q(t)

τ −Q⋆
τ

∥∥∥
∞
≤ γΩ

(t)
3 + γΩ

(t)
4 , (51)∥∥ log π(t) − log π⋆

τ

∥∥
∞ ≤

2

τ
Ω

(t)
3 . (52)

Proof. See Appendix F.1.

Let ρ(η) denote the spectral norm of A(η). As Ω(t) ≥ 0, it is immediate from (49) that∥∥Ω(t)
∥∥
2
≤ ρ(η)t

∥∥Ω(0)
∥∥
2
,

and therefore we have ∥∥∥Q(t)

τ −Q⋆
τ

∥∥∥
∞
≤ 2γ

∥∥Ω(t)
∥∥
∞ ≤ 2γρ(η)t

∥∥Ω(0)
∥∥
2
,

and ∥∥ log π(t) − log π⋆
τ

∥∥
∞ ≤

2

τ

∥∥Ω(t)
∥∥
∞ ≤

2

τ
ρ(η)t

∥∥Ω(0)
∥∥
2
.

It remains to bound the spectral radius ρ(η), which is achieved by the following lemma.
Lemma D.3 (Bounding the spectral norm of A(η)). Let

ζ :=
(1− γ)(1− σ)2τ

8 (τS0σ2 + 10Mcσ2/(1− γ) + (1− σ)2τ2/16)
, (53)

where S0 := M
√
N
(
2 +
√
2N + M

√
N

τ

)
, c := MN/(1− γ). For any N ∈ N+, τ > 0, γ ∈ (0, 1),

if

0 < η ≤ η0 := min
{1− γ

τ
, ζ
}
, (54)

then we have

ρ(η) ≤ max
{3 + σ

4
,
1 + (1− α)γ + α

2

}
< 1 . (55)

Proof. See Appendix F.2.

D.2 Analysis of entropy-regularized FedNPG with inexact policy evaluation

We define the collection of inexact Q-function estimates as

q(t)
τ :=

(
q
π
(t)
1

τ,1 , · · · , qπ
(t)
N

τ,N

)⊤
,

and then the update rule (UT) should be understood as

T (t+1)(s, a) = W
(
T (t)(s, a) + q(t+1)

τ (s, a)− q(t)
τ (s, a)

)
(56)

in the inexact setting. For notational simplicity, we define en ∈ R as

en := max
t∈[T]

∥∥∥Qπ(t)
n

τ,n − q
π(t)
n

τ,n

∥∥∥
∞

, n ∈ [N] , (57)

and let e = (e1, · · · , en)⊤. Define q̂
(t)
τ , the approximation of Q̂(t)

τ as

q̂(t)τ :=
1

N

N∑
n=1

q
π(t)
n

τ,n . (58)

With slight abuse of notation, we adapt the auxiliary sequence {ξ(t)}t=0,··· to the inexact updates as

ξ
(0)

(s, a) := ∥exp (Q⋆
τ (s, ·)/τ)∥1 · π

(0)(a|s) , (59a)

ξ
(t+1)

(s, a) :=
[
ξ
(t)
(s, a)

]α
exp

(
(1− α)

q̂
(t)
τ (s, a)

τ

)
, ∀(s, a) ∈ S ×A, t ≥ 0 . (59b)

21

In addition, we define

Ω
(t)
1 :=

∥∥∥u(t)
∥∥∥
∞

, (60a)

Ω
(t)
2 :=

∥∥∥v(t)∥∥∥
∞

, (60b)

Ω
(t)
3 :=

∥∥∥Q⋆
τ − τ log ξ

(t)
∥∥∥
∞

, (60c)

Ω
(t)
4 := max

{
0,−min

s,a

(
q(t)τ (s, a)− τ log ξ

(t)
(s, a)

)}
, (60d)

where

u(t)(s, a) :=
∥∥∥log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥∥
2
, (61)

v(t)(s, a) :=
∥∥∥T (t)(s, a)− q̂(t)τ (s, a)1N

∥∥∥
2
. (62)

We let Ω(t) be

Ω(t) :=
(
Ω

(t)
1 ,Ω

(t)
2 ,Ω

(t)
3 ,Ω

(t)
4

)⊤
. (63)

With the above preparation, we are ready to state the inexact convergence guarantee of Algorithm 2
in Theorem D.4 below, which is the formal version of Theorem 3.8.

Theorem D.4. Suppose that qπ
(t)
n

τ,n are used in replace of Qπ(t)
n

τ,n in Algorithm 2. For any N ∈ N+, τ >
0, γ ∈ (0, 1), there exists η0 > 0 which depends only on N, γ, τ, σ, |A|, such that if 0 < η ≤ η0 and
1− σ > 0, we have∥∥∥Q(t)

τ −Q⋆
τ

∥∥∥
∞
≤ 2γ

(
ρ(η)t

∥∥∥Ω(0)
∥∥∥
2
+ C2 max

n∈[N],t∈[T]

∥∥∥Qπ(t)
n

τ,n − q
π(t)
n

τ,n

∥∥∥
∞

)
, (64)∥∥∥log π⋆

τ − log π(t)
∥∥∥
∞
≤ 2

τ

(
ρ(η)t

∥∥∥Ω(0)
∥∥∥
2
+ C2 max

n∈[N],t∈[T]

∥∥∥Qπ(t)
n

τ,n − q
π(t)
n

τ,n

∥∥∥
∞

)
. (65)

Moreover, the consensus errors satisfy:

∀n ∈ [N] :
∥∥ log π(t)

n − log π(t)
∥∥
∞ ≤ 2

(
ρ(η)t

∥∥∥Ω(0)
∥∥∥
2
+ C2 max

n∈[N],t∈[T]

∥∥∥Qπ(t)
n

τ,n − q
π(t)
n

τ,n

∥∥∥
∞

)
,

(66)
where ρ(η) ≤ max{1 − τη

2 , 3+σ
4 } < 1 is the same as in Theorem D.1, and C2 :=

σ
√
N(2(1−γ)+M

√
Nη)+2γ2+ητ

(1−γ)(1−ρ(η)) .

From Theorem D.4, we can conclude that if

max
n∈[N],t∈[T]

∥∥∥Qπ(t)
n

τ,n − q
π(t)
n

τ,n

∥∥∥
∞
≤ (1− γ)(1− ρ(η))ε

2γ
(
σ
√
N(2(1− γ) +M

√
Nη) + 2γ2 + ητ

) , (67)

then inexact entropy-regularized FedNPG could still achieve 2ε-accuracy (i.e.
∥∥∥Q(t)

τ −Q⋆
τ

∥∥∥
∞
≤ 2ε)

within max
{

2
τη ,

4
1−σ

}
log

2γ∥Ω(0)∥
2

ε iterations.

Remark D.5. When η = η0 (cf. (54) and (53)) and τ ≤ 1, the RHS of (67) is of the order

O
(

(1− γ)τη0ε

γ(γ2 + σ
√
N(1− γ))

)
= O

(
(1− γ)8τ2(1− σ)2ε

γ(γ2 + σ
√
N(1− γ))(γ2Nσ2 + (1− σ)2τ2(1− γ)6)

)
,

which can be translated into a crude sample complexity bound when using fresh samples to estimate
the soft Q-functions in each iteration.

The rest of this section outlines the proof of Theorem D.4. We first state a key lemma that tracks
the error recursion of Algorithm 2 with inexact policy evaluation, which is a modified version of
Lemma D.2.

22

Lemma D.6. The following linear system holds for all t ≥ 0:

Ω(t+1) ≤ A(η)Ω(t) +


0

σ
√
N
(
2 + M

√
Nη

1−γ

)
ητ
1−γ
2γ2

1−γ

 ∥e∥∞
︸ ︷︷ ︸

=:b(η)

, (68)

where A(η) is provided in Lemma D.2. In addition, it holds for all t ≥ 0 that∥∥∥Q(t)

τ −Q⋆
τ

∥∥∥
∞
≤ γΩ

(t)
3 + γΩ

(t)
4 , (69)∥∥ log π(t) − log π⋆

τ

∥∥
∞ ≤

2

τ
Ω

(t)
3 . (70)

Proof. See Appendix F.3.

By (68), we have

∀t ∈ N+ : Ω(t) ≤ A(η)tΩ(0) +

t∑
s=1

A(η)t−sb(η) ,

which gives∥∥∥Ω(t)
∥∥∥
2
≤ ρ(η)t

∥∥∥Ω(0)
∥∥∥
2
+

t∑
s=1

ρ(η)t−s ∥b(η)∥2 ∥e∥∞

≤ ρ(η)t
∥∥∥Ω(0)

∥∥∥
2
+

σ
√
N(2(1− γ) +M

√
Nη) + 2γ2 + ητ

(1− γ)(1− ρ(η))
∥e∥∞ . (71)

Here, (71) follows from ∥b(η)∥2 ≤ ∥b(η)∥1 = σ
√
N(2(1−γ)+M

√
Nη)+2γ2+ητ

1−γ ∥e∥∞ and∑t
s=1 ρ(η)

t−s ≤ 1/(1 − ρ(η)). Recall that the bound on ρ(η) has already been established in
Lemma D.3. Therefore we complete the proof of Theorem D.4 by combining the above inequality
with (69) and (70) in a similar fashion as before. We omit further details for conciseness.

D.3 Analysis of FedNPG with exact policy evaluation

We state the formal version of Theorem 3.3 below.
Theorem D.7. Suppose all π(0)

n in Algorithm 1 are initialized as uniform distribution. When

0 < η ≤ η1 :=
(1− σ)2(1− γ)3

8(1 + γ)γ
√
Nσ2

,

we have

1

T

T−1∑
t=0

(
V ⋆(ρ)− V π(t)

(ρ)
)
≤

V ⋆(dπ
⋆

ρ)

(1− γ)T
+

log |A|
ηT

+
8(1 + γ)2γ2Nσ2

(1− γ)9(1− σ)2
η2 (72)

for any fixed state distribution ρ. Furthermore, we have

∀n ∈ [N] :
∥∥∥log π(t)

n − log π(t)
∥∥∥
∞
≤ 32Nσ

3(1− γ)4(1− σ)
η . (73)

The rest of this section is dedicated to prove Theorem D.7. Similar to (37), we denote the Q-functions
of π(t) by Q

(t)
:

Q
(t)

:=

Qπ(t)

1
...

Qπ(t)

N

 . (74)

23

In addition, similar to (38), we define Q̂(t), Q
(t) ∈ R|S||A| and V

(t) ∈ R|S| as follows

Q̂(t) :=
1

N

N∑
n=1

Q
π(t)
n

n , (75a)

Q
(t)

:= Qπ(t)

=
1

N

N∑
n=1

Qπ(t)

n . (75b)

V
(t)

:= V π(t)

=
1

N

N∑
n=1

V π(t)

n . (75c)

Following the same strategy in the analysis of entropy-regularized FedNPG, we introduce the auxiliary
sequence {ξ(t) = (ξ

(t)
1 , · · · , ξ(t)N)⊤ ∈ RN×|S||A|} recursively:

ξ(0)(s, a) :=
1∥∥∥exp(1

N

∑N
n=1 log π

(0)
n (·|s)

)∥∥∥
1

· π(0)(a|s) , (76a)

log ξ(t+1)(s, a) = W

(
log ξ(t)(s, a) +

η

1− γ
T (t)(s, a)

)
, (76b)

as well as the averaged auxiliary sequence {ξ(t) ∈ R|S||A|}:

ξ
(0)

(s, a) := π(0)(a|s) , (77a)

log ξ
(t+1)

(s, a) := log ξ
(t)
(s, a) +

η

1− γ
Q̂(t)(s, a) , ∀(s, a) ∈ S ×A, t ≥ 0 . (77b)

As usual, we collect the consensus errors in a vector Ω(t) = (
∥∥u(t)

∥∥
∞,
∥∥v(t)∥∥∞)⊤, where u(t), v(t) ∈

R|S||A| are defined as:

u(t)(s, a) :=
∥∥ log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥
2
, (78)

v(t)(s, a) :=
∥∥T (t)(s, a)− Q̂(t)(s, a)1N

∥∥
2
. (79)

Step 1: establishing the error recursion. The next key lemma establishes the error recursion of
Algorithm 1.
Lemma D.8. The updates of FedNPG satisfy

Ω(t+1) ≤

(
σ η

1−γσ

Jσ σ
(
1 + (1+γ)γ

√
Nη

(1−γ)3 σ
))

︸ ︷︷ ︸
=:B(η)

Ω(t) +

(
0

(1+γ)γNσ
(1−γ)4 η

)
︸ ︷︷ ︸

=:d(η)

(80)

for all t ≥ 0, where

J :=
2(1 + γ)γ

(1− γ)2

√
N . (81)

In addition, we have

ϕ(t+1)(η) ≤ ϕ(t)(η) +
2(1 + γ)γ

(1− γ)4
η
∥∥u(t)

∥∥
∞ − η

(
V ⋆(ρ)− V

(t)
(ρ)
)
, (82)

where
ϕ(t)(η) := Es∼dπ⋆

ρ

[
KL
(
π⋆(·|s) ∥π(t)(·|s)

)]
− η

1− γ
V

(t)
(dπ

⋆

ρ) , ∀t ≥ 0 . (83)

Moreover, when η ≤ η1, we have

∀n ∈ [N] :
∥∥∥log π(t)

n − log π(t)
∥∥∥
∞
≤ 2

(
3

8
σ +

5

8

)t ∥∥∥Ω(0)
∥∥∥
2
+

32Nσ

3(1− γ)4(1− σ)
η . (84)

Proof. See Appendix F.4.

24

Note that when all π(0)
n in Algorithm 1 are initialized as uniform distribution, Ω(0) = 0 and (84)

indicates (73) in Theorem D.7.

Step 2: bounding the value functions. Let p ∈ R2 be defined as:

p(η) =

(
p1(η)
p2(η)

)
:=

2(1 + γ)γ

(1− γ)4

 σ(1−γ)(1−σ−(1+γ)γ
√
Nση/(1−γ)3)η

(1−γ)(1−σ−(1+γ)γ
√
Nσ2η/(1−γ)3)(1−σ)−Jσ2η

ση2

(1−γ)(1−σ−(1+γ)γ
√
Nσ2η/(1−γ)3)(1−σ)−Jσ2η

 ; (85)

the rationale for this choice will be made clear momentarily. We define the following Lyapunov
function

Φ(t)(η) = ϕ(t)(η) + p(η)⊤Ω(t) , ∀t ≥ 0 , (86)
which satisfies

Φ(t+1)(η) = ϕ(t+1)(η) + p(η)⊤Ω(t+1)

≤ ϕ(t)(η) +
2(1 + γ)γ

(1− γ)4
η
∥∥u(t)

∥∥
∞ − η

(
V ⋆(ρ)− V

(t)
(ρ)
)
+ p(η)⊤

(
B(η)Ω(t) + d(η)

)
= Φ(t)(η) +

[
p(η)⊤ (B(η)− I) +

(
2(1 + γ)γ

(1− γ)4
η, 0

)]
Ω(t) − η

(
V ⋆(ρ)− V

(t)
(ρ)
)

+ p2(η)
(1 + γ)γNσ

(1− γ)4
η . (87)

Here, the second inequality follows from (82). One can verify that the second term vanishes due to
the choice of p(η):

p(η)⊤ (B(η)− I) +

(
2(1 + γ)γ

(1− γ)4
η, 0

)
= (0, 0) . (88)

Therefore, we conclude that

V ⋆(ρ)− V
(t)
(ρ) ≤ Φ(t)(η)− Φ(t+1)(η)

η
+ p2(η)

(1 + γ)γNσ

(1− γ)4
.

Averaging over t = 0, · · · , T − 1,

1

T

T−1∑
t=0

(
V ⋆(ρ)− V

(t)
(ρ)
)

≤ Φ(0)(η)− Φ(T)(η)

ηT
+

2(1 + γ)2γ2

(1− γ)8
· Nσ2η2

(1− γ)(1− σ − (1 + γ)γ
√
Nσ2η/(1− γ)3)(1− σ)− σ2Jη

.

(89)

Step 3: simplifying the expression. We first upper bound the first term in the RHS of (89). Assuming
uniform initialization for all π(0)

n in Algorithm 1, we have
∥∥u(0)

∥∥
∞ =

∥∥v(0)∥∥∞ = 0, and

Es∼dπ⋆
ρ

[
KL
(
π⋆(·|s) ∥π(0)(·|s)

)]
≤ log |A|.

Therefore, putting together relations (86) and (221) we have

Φ(0)(η)− Φ(T)(η)

ηT
≤ log |A|

Tη
+

1

T

(
p(η)⊤Ω(0)/η +

V ⋆(dπ
⋆

ρ)

1− γ

)
=

log |A|
Tη

+
V ⋆(dπ

⋆

ρ)

T (1− γ)
, (90)

To continue, we upper bound the second term in the RHS of (89). Note that

η ≤ η1 ≤
(1− σ)(1− γ)3

2(1 + γ)γ
√
Nσ2

,

which gives
(1 + γ)γ

√
Nσ2

(1− γ)3
η ≤ 1− σ

2
. (91)

25

Thus we have

(1− γ)(1− σ − (1 + γ)γ
√
Nσ2η/(1− γ)3)(1− σ)− Jσ2η

≥ (1− γ)(1− σ)2/2− Jσ2η1
≥ (1− γ)(1− σ)2/4 , (92)

where the first inequality follows from (91) and the second inequality follows from the definition of
η1 and J . By (92), we deduce

2(1 + γ)2γ2

(1− γ)8
· Nσ2η2

(1− γ)(1− σ − (1 + γ)γ
√
Nσ2η/(1− γ)3)(1− σ)− Jσ2η

≤ 8(1 + γ)2γ2Nσ2

(1− γ)9(1− σ)2
η2 ,

(93)
and our advertised bound (72) thus follows from plugging (90) and (93) into (89).

D.4 Analysis of FedNPG with inexact policy evaluation

We state the formal version of Theorem 3.5 below.

Theorem D.9. Suppose that qπ
(t)
n

n are used in replace of Qπ(t)
n

n in Algorithm 1. Suppose all π(0)
n in

Algorithm 1 set to uniform distribution. Let

0 < η ≤ η1 :=
(1− σ)2(1− γ)3

8(1 + γ)γ
√
Nσ2

,

we have

1

T

T−1∑
t=0

(
V ⋆(ρ)− V π(t)

(ρ)
)

≤
V ⋆(dπ

⋆

ρ)

(1− γ)T
+

log |A|
ηT

+
8(1 + γ)2γ2Nσ2

(1− γ)9(1− σ)2
η2

+

[
8(1 + γ)γ

(1− γ)5(1− σ)2

√
Nση

(
(1 + γ)γη

√
N

(1− γ)3
+ 2

)
+

2

(1− γ)2

]
max

n∈[N],t∈[T]

∥∥∥Qπ(t)
n

n − q
π(t)
n

n

∥∥∥
∞

for any fixed state distribution ρ.

Furthermore, we have

∀n ∈ [N] :
∥∥∥log π(t)

n − log π(t)
∥∥∥
∞
≤ 32

3(1− σ)

(
Nσ

(1− γ)4
η +
√
Nσ

(
η
√
N

(1− γ)3
+ 1

)
max

n∈[N],t∈[T]

∥∥∥Qπ(t)
n

n − q
π(t)
n

n

∥∥∥
∞

)
.

(94)

We next outline the proof of Theorem D.9. With slight abuse of notation, we again define en ∈ R as

en := max
t∈[T]

∥∥∥Qπ(t)
n

n − q
π(t)
n

n

∥∥∥
∞

, n ∈ [N] , (95)

and let e = (e1, · · · , en)⊤. We define the collection of inexact Q-function estimates as

q(t) :=
(
q
π
(t)
1

1 , · · · , qπ
(t)
N

N

)⊤
,

and then the update rule (16) should be understood as

T (t+1)(s, a) = W
(
T (t)(s, a) + q(t+1)(s, a)− q(t)(s, a)

)
(96)

in the inexact setting. Define q̂(t), the approximation of Q̂(t) as

q̂(t) :=
1

N

N∑
n=1

q
π(t)
n

n , (97)

26

we adapt the averaged auxiliary sequence {ξ(t) ∈ R|S||A|} to the inexact updates as follows:

ξ
(0)

(s, a) := π(0)(a|s) , (98a)

ξ
(t+1)

(s, a) := ξ
(t)
(s, a) exp

(
η

1− γ
q̂(t)(s, a)

)
, ∀(s, a) ∈ S ×A, t ≥ 0 . (98b)

As usual, we define the consensus error vector as Ω(t) = (
∥∥u(t)

∥∥
∞,
∥∥v(t)∥∥∞)⊤, where u(t), v(t) ∈

R|S||A| are given by

u(t)(s, a) :=
∥∥∥log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥∥
2
, (99)

v(t)(s, a) :=
∥∥∥T (t)(s, a)− q̂(t)(s, a)1N

∥∥∥
2
. (100)

The following lemma characterizes the dynamics of the error vector Ω(t), perturbed by additional
approximation error.

Lemma D.10. The updates of inexact FedNPG satisfy

Ω(t+1) ≤ B(η)Ω(t) + d(η) +

(
0√

Nσ
(

(1+γ)γη
√
N

(1−γ)3 + 2
))∥∥e∥∥∞︸ ︷︷ ︸

=:c(η)

. (101)

In addition, we have

ϕ(t+1)(η) ≤ ϕ(t)(η) +
2(1 + γ)γ

(1− γ)4
η
∥∥∥u(t)

∥∥∥
∞

+
2η

(1− γ)2
∥e∥∞ − η

(
V ⋆(ρ)− V

(t)
(ρ)
)
, (102)

where ϕ(t)(η) is defined in (83).

Moreover, when η ≤ η1, we have

∀n ∈ [N] :
∥∥∥log π(t)

n − log π(t)
∥∥∥
∞
≤ 2

(
3

8
σ +

5

8

)t ∥∥∥Ω(0)
∥∥∥
2
+

32

3(1− σ)

(
Nσ

(1− γ)4
η +
√
Nσ

(
η
√
N

(1− γ)3
+ 1

)
∥e∥∞

)
.

(103)

Proof. See Appendix F.5.

Similar to (87), we can recursively bound Φ(t)(η) (defined in (86)) as

Φ(t+1)(η) = ϕ(t+1)(η) + p(η)⊤Ω(t+1)

(102)
≤ ϕ(t)(η) +

2(1 + γ)γ

(1− γ)4
η
∥∥∥u(t)

∥∥∥
∞

+
2η

(1− γ)2
∥e∥∞ − η

(
V ⋆(ρ)− V

(t)
(ρ)
)

+ p(η)⊤
(
B(η)Ω(t) + d(η) + c(η)

)
= Φ(t)(η) +

[
p(η)⊤ (B(η)− I) +

(
2(1 + γ)γ

(1− γ)4
η, 0

)]
︸ ︷︷ ︸

=(0,0) via (88)

Ω(t) − η
(
V ⋆(ρ)− V

(t)
(ρ)
)

+ p2(η)
(1 + γ)γNσ

(1− γ)4
η +

[
p2(η)

√
Nσ

(
(1 + γ)γη

√
N

(1− γ)3
+ 2

)
+

2η

(1− γ)2

]
∥e∥∞ .

(104)

From the above expression we know that

V ⋆(ρ)−V (t)
(ρ) ≤ Φ(t)(η)− Φ(t+1)(η)

η
+p2(η)

(1 + γ)γNσ

(1− γ)4
+

[
p2(η)

√
Nσ

(
(1 + γ)γ

√
N

(1− γ)3
+

2

η

)
+

2

(1− γ)2

]
∥e∥∞ ,

27

which gives

1

T

T−1∑
t=0

(
V ⋆(ρ)− V

(t)
(ρ)
)
≤ Φ(0)(η)− Φ(T)(η)

ηT
+ p2(η)

(1 + γ)γNσ

(1− γ)4

+

[
p2(η)

√
Nσ

(
(1 + γ)γ

√
N

(1− γ)3
+

2

η

)
+

2

(1− γ)2

]
∥e∥∞

(105)

via telescoping. Combining the above expression with (90), (92) and (93), we have

1

T

T−1∑
t=0

(
V ⋆(ρ)− V

(t)
(ρ)
)
≤ log |A|

Tη
+

V ⋆(dπ
⋆

ρ)

T (1− γ)
+

8(1 + γ)2γ2Nσ

(1− γ)9(1− σ)2
η2

+

[
8(1 + γ)γ

(1− γ)5(1− σ)2

√
Nση

(
(1 + γ)γη

√
N

(1− γ)3
+ 2

)
+

2

(1− γ)2

]
∥e∥∞ ,

(106)

which establishes (94).

E Convergence analysis of FedNAC

Let π⋆ be an optimal policy and does not need to belong to the log-linear policy class. Fix a state
distribution ρ ∈ ∆(S) and a state-action distribution ν. To simplify the notation, we denote dπ

⋆

ρ as

d⋆, dfξ̄(t) as d(t), d̃(t)n as d̃
f
ξ
(t)
n

ν , and define d
(t)
n and d̄

(t)
n analogously. We also let Q(t)

n denote Q
ξ(t)n
n .

Define

ϑρ :=
1

1− γ

∥∥∥∥d⋆ρ
∥∥∥∥
∞
≥ 1

1− γ
(107)

and assume ϑρ <∞.

We also introduce a weighted KL divergence given by

D
(t)
⋆ := Es∼d⋆

[
KL
(
π⋆(·|s) ∥π(t)(·|s)

)]
, (108)

where KL
(
· ∥ ·
)
: R|A| × R|A| → R is the Kullback-Leibler (KL) divergence:

∀f, g ∈ R|A| : KL
(
f ∥ g

)
:=
∑
a∈A

f(a) log

(
f(a)

g(a)

)
. (109)

Given a state distribution ρ and an optimal policy π⋆, we define a state-action measure d̃⋆ as

d̃⋆(s, a) := d⋆(s) · UnifA(a) =
d⋆(s)

|A|
. (110)

The following theorem guarantees that for any fixed policy π and state-action distribution ν ∈
∆(S ×A), the Q-Sampler algorithm (cf. Algorithm 5) samples (s, a) from d̃πν and gives an unbiased
estimate Q̂π(s, a) of Qπ(s, a), whose proof can be found in [YDG+22, Lemma 4].

Lemma E.1 (Lemma 4 in [YDG+22]). Consider the output (sh, ah) and Q̂π(sh, ah) of Algorithm 5.
It follows that

E[h+ 1] =
1

1− γ
,

P (sh = s, ah = a) = d̃πν (s, a) ,

E
[
Q̂π(sh, ah)|sh, ah

]
= Qπ(sh, ah) .

28

To present the convergence results of FedNAC, we further introduce the following notation, where
t ∈ N represents the iteration step in FedNAC:

ŵ(t) :=
1

N

N∑
n=1

w(t)
n , (111a)

ξ̄(t) :=
1

N

N∑
n=1

ξ(t)n , (111b)

f̄ (t) := fξ̄(t) , (111c)

f (t)
n := f

ξ
(t)
n
, (111d)

w
(t)
⋆,n ∈ argmin

w
ℓ
(
w, Q(t)

n , d̃(t)n

)
, (111e)

ŵ
(t)
⋆ :=

1

N

N∑
n=1

w
(t)
⋆,n. (111f)

For convenience of narration, we introduce the following bounded statistical error assumption.

Assumption E.2 (Bounded statistical error). For all n ∈ [N], there exists εnstat > 0 such that for all
t ∈ N in Algorithm 3, we have

E
[
ℓ
(
w(t)

n , Q(t)
n , d̃(t)n

)
− ℓ

(
w

(t)
⋆,n, Q

(t)
n , d̃(t)n

)]
≤ εnstat. (112)

When solving the regression problem with sampling based approaches, we can expect εnstat = O(1/K),
where K is the iteration number of Algorithm 4.

Theorem E.3 (Convergence rate of Critic (Algorithm 4)). For Algorithm 4, let w0 = 0 and β = 1
2Cϕ

.
Then under Assumption 4.1, we have

E
[
ℓ
(
wout, Qξ, d̃ξ

)]
− ℓ

(
w⋆, Qξ, d̃ξ

)
≤ 4

K

(√
2p

1− γ

(
C2

ϕ

µ(1− γ)
+ 1

)
+

C2
ϕ

µ(1− γ)2

)2

, (113)

where w⋆ ∈ argminw ℓ
(
w, Qξ, d̃ξ

)
.

The proof of Theorem E.3 is postponed to Appendix G.5.

The following lemma provide a (very pessimistic) upper bound of Cν in Assumption 4.3.

Lemma E.4 (Upper bound of Cν). If ν(s, a) > 0 for all state-action pairs (s, a) ∈ S ×A, then we
have

Cν ≤
1

(1− γ)2ν2min

.

Proof. We only need to note that√√√√√E(s.a)∼d̃(t)

(h(t)(s, a)

d̃
(t)
n (s, a)

)2
 ≤ max

(s,a)∈S×A

h(t)(s, a)

d̃
(t)
n (s, a)

≤ 1

(1− γ)νmin
,

where the last inequality follows from (??).

We give some key lemmas which will be used in our proof of Theorem 4.4.

Lemma E.5 (consensus properties). For all t ∈ N, we have

ξ
(t+1)

= ξ
(t)

+ αŵ(t), (114)

1

N
1⊤h(t) =

1

N

N∑
n=1

h(t)
n = ŵ(t). (115)

29

Proof. (115) could be obtained directly by using mathematical induction and update rule (33) (note
that 1

N 1⊤h(−1) = ŵ(−1) = 0, see line 2 of Algorithm 3), and (114) could be obtained by averaging
both sides of (34) and using (115).

Lemma E.6 (Young’s inequalities). Let {x1, · · · ,xm} be a set of m vectors in Rl. Then for any
ζ > 0, we have

∥xi + xj∥22 ≤ (1 + ζ) ∥xi∥22 + (1 + 1/ζ) ∥xj∥22 , (116)∥∥∥∥∥
m∑
i=1

xi

∥∥∥∥∥
2

2

≤ m

m∑
i=1

∥xi∥22 . (117)

Lemma E.7 (Lipschitzness of Q-function with function approximation). Assume that r(s, a) ∈
[0, 1],∀(s, a) ∈ S ×A. For any ξ, ξ′ ∈ Rp, we have

∀(s, a) ∈ S ×A : |Qfξ′ (s, a)−Qfξ(s, a)| ≤ 2Cϕγ(1 + γ)

(1− γ)2︸ ︷︷ ︸
:=LQ

∥ξ′ − ξ∥2 . (118)

Proof. See Appendix G.6.

For each iteration step t in Algorithm 3, we let ξ̄(t) := 1
N

∑N
n=1 ξ

(t)
n = 1

N ξ(t)⊤1N . We define

Ω
(t)
1 := E

∥∥∥ξ(t) − 1Nξ
(t)⊤

∥∥∥2
F
, (119)

Ω
(t)
2 := E

∥∥∥h(t) − 1N ŵ(t)⊤
∥∥∥2
F
, (120)

We let

ε̄stat :=
1

N

N∑
n=1

εnstat , (121)

ε̄approx :=
1

N

N∑
n=1

εnapprox , (122)

and define δ(t) := V ⋆ − V̄ (t)(ρ), where V̄ (t) is shorthand for V f̄(t)

. We give the following perfor-
mance improvement lemma.
Lemma E.8 (Performance improvement of FedNAC). Fix a state distribution ρ, then we have

ϑρδ
(t+1) +

D
(t+1)
⋆

(1− γ)α
≤ ϑρδ

(t) +
D

(t)
⋆

(1− γ)α
− δ(t)

+
2
√
Cν(ϑρ + 1)

1− γ

√ε̄stat +
√√√√2

(
ε̄approx +

L2
Q

N

∥∥ξ(t) − 1N ξ̄(t)⊤
∥∥2
F

) .

(123)

Proof. See Appendix G.7.

Lemma E.9 (linear system). For any t ∈ N, we let Ω(t) = (Ω
(t)
1 ,Ω

(t)
2)⊤. Then for any ζ > 0, we

have
Ω(t+1) ≤ CΩ(t) + s, (124)

where

C = (cij) =

(
(1 + ζ)σ2 α2(1 + 1/ζ)σ2

(1 + 1/ζ)
96σ2L2

Q

(1−γ)µ σ2
(
1 + ζ + (1 + 1/ζ)

24L2
Qα2

(1−γ)µ

)) , (125)

and

s =

(
s1
s2

)
=

(
0

(1 + 1/ζ) 6σ2

(1−γ)µ

(
N(ε̄stat + Cν ε̄approx) + 4L2

Q

(
α2Nε̄stat
(1−γ)µ +

α2NC2
ϕ

µ2(1−γ)2

)))
. (126)

30

Proof. See Appendix G.8.

Now we are ready to give the formal version of Theorem 4.4 and its proof.

Theorem E.10 (Convergence rate of FedNAC (formal)). Let ξ(0)1 = · · · = ξ
(0)
N in FedNAC (Algo-

rithm 3), let the w(0) = 0 and the critic stepsize β = 1
2Cϕ

in Algorithm 4. Then under Assumptions 3.1,
4.1, 4.2 and 4.3, when the actor stepsize satisfies

α ≤ α1 :=
(1− σ2)3

√
(1− γ)µ

768
√
6σLQ

, (127)

where LQ is defined in Lemma E.7, we have

V ⋆(ρ)− 1

T

T−1∑
t=0

E
[
V̄ (t)(ρ)

]
≤ D

(0)
⋆ + αϑρ

T (1− γ)α
+

1

T
· 512

√
6Cϕ

√
Cν(ϑρ + 1)σα

(1− σ2)3/2(1− γ)3
√
N

√
Ω

(0)
2

+

2√Cν(ϑρ + 1)

1− γ
+

√
1 +

64C2
ϕα

2

(1− γ)5µ
· 3072

√
3Cϕ

√
Cν(ϑρ + 1)σ2α

(1− σ2)3(1− γ)7/2
√
µ


· 2

(1− γ)2
√
K

(
(
√

2p+ 1)C2
ϕ +

√
2pµ(1− γ)

)
+

[
2
√
2Cν(ϑρ + 1)

1− γ
+

3072
√
3CϕCν(ϑρ + 1)σ2α

(1− σ2)3(1− γ)7/2
√
µ

]√
ε̄approx +

6144
√
2σ2Cν(ϑρ + 1)C3

ϕα
2

(1− γ)13/2µ3/2(1− σ2)3
.

(128)

Moreover, the consensus errors could be upper bounded by

E
∥∥∥ξ(t) − 1Nξ

(t)⊤
∥∥∥2
F
≤
(
49

64
σ2 +

15

64

)t

E
∥∥∥h(0) − 1N ŵ(0)⊤

∥∥∥2
F
+

64δ(α,K)

15(1− σ2)
, (129)

where

δ(α,K) :=
18σ2N

(1− σ2)(1− γ)µ
(ε̄stat + Cν ε̄approx) +

72σ2L2
QN

(1− γ)3µ3(1− σ2)

(
(1− γ)µε̄stat + C2

ϕ

)
α2 ,

(130)
and

ε̄stat ≤
4

(1− γ)4K

(
(
√

2p+ 1)C2
ϕ +

√
2pµ(1− γ)

)2
.

Remark E.11 (Sample and communication complexity). When σ > 0 and

α =

√
µ(D

(0)
⋆)1/3

61441/321/6C
1/3
ν (1 + ϑρ)1/3Cϕ

· (1− γ)11/6(1− σ2)

T 1/3σ2/3
,

it follows from Theorem E.10 that

V ⋆(ρ)− 1

T

T−1∑
t=0

E
[
V̄ (t)(ρ)

]
≤ 31/3 · 229/6(D(0)

⋆)2/3C
1/3
ν (1 + ϑρ)

1/3Cϕσ
2/3

T 2/3(1− γ)17/6(1− σ2)
√
µ

+
ϑρ

(1− γ)T
+

217/331/6C
1/6
ν (1 + ϑρ)

2/3σ1/3√µ(D(0)
⋆)1/3

T 4/3(1− σ2)1/2(1− γ)7/6
√
N

+

2√Cν(ϑρ + 1)

1− γ
+

√√√√1 +
(D

(0)
⋆)2/3(1− σ2)2

33/2 · 4C2/3
ν (1− γ)4/3(1 + ϑρ)1/3T 2/3σ4/3

· 2
37/6 · 37/6C1/6

ν (ϑρ + 1)2/3σ4/3(D
(0)
⋆)1/3

(1− σ2)2(1− γ)5/3T 1/3


· 2

(1− γ)2
√
K

(
(
√
2p+ 1)C2

ϕ +
√
2pµ(1− γ)

)
+

[
2
√
2Cν(ϑρ + 1)

1− γ
+

237/6 · 37/6C1/6
ν (ϑρ + 1)2/3σ4/3(D

(0)
⋆)1/3

(1− σ2)2(1− γ)5/3T 1/3

]√
ε̄approx . (131)

31

Consequently, we need

T ≳

{
σ

ε3/2(1− γ)17/4(1− σ2)3/2
,

1

ε(1− γ)
,

σ1/4

ε3/4(1− σ2)3/8(1− γ)7/8N3/8
,

σ4

(1− γ)2(1− γ2)6

}
and

K = O
(

1

(1− γ)6ε2

)
such that V ⋆(ρ) − 1

T

∑T−1
t=0 E

[
V̄ (t)(ρ)

]
≲ ε +

ε̄approx

1−γ . In Algorithm 5, each trajectory has
the expected length 1/(1 − γ). Consider only the term where ε dominates, FedNAC requires
O
(

1
(1−γ)45/4ε7/2(1−σ2)3/2

)
samples for each agent and O

(
1

ε3/2(1−γ)17/4(1−σ2)3/2

)
rounds of com-

munication.

On the other end, when σ = 0, (128) becomes:

V ⋆(ρ)− 1

T

T−1∑
t=0

E
[
V̄ (t)(ρ)

]
≤ D

(0)
⋆ + αϑρ

T (1− γ)α
+

4
√
Cν(ϑρ + 1)

(1− γ)3
√
K

(
(
√
2p+ 1)C2

ϕ +
√

2pµ(1− γ)
)

+
2
√
2Cν(ϑρ + 1)

1− γ

√
ε̄approx, (132)

Consequently, for any fixed α > 0, when σ = 0 or close to 0, with T = O
(

1
(1−γ)ε

)
and K =

O
(

1
(1−γ)6ε2

)
, FedNAC requires KT/(1 − γ) = O

(
1

(1−γ)8ε3

)
samples for each agent and T =

O
(

1
(1−γ)ε

)
rounds of communication such that V ⋆(ρ)− 1

T

∑T−1
t=0 E

[
V̄ (t)(ρ)

]
≲ ε+

ε̄approx

1−γ .

E.1 Proof of Theorem E.10

We suppose Assumptions 3.1, E.2, 4.1, 4.2 and 4.3 holds. By Lemma E.9 and nonnegativity of each
entry of C, s and Ω(t) where t ∈ N, it’s easy to see that√

Ω(t+1) ≤
√
C
√
Ω(t) +

√
s, (133)

where
√
· is exerted element-wise.

In addition, taking expectation on both sides of (123) and using the act that

E


√√√√2

(
ε̄approx +

L2
Q

N

∥∥ξ(t) − 1N ξ̄(t)⊤
∥∥2
F

) ≤√2ε̄approx +

√
2L2

Q

N
Ω

(t)
1 ,

we have

ϑρE[δ(t+1)] +
E[D(t+1)

⋆]

(1− γ)α
≤ ϑρE[δ(t)] +

E[D(t)
⋆]

(1− γ)α
− E[δ(t)]

+
2
√
Cν(ϑρ + 1)

1− γ

√ε̄stat +
√
2ε̄approx +

√
2L2

Q

N
Ω

(t)
1

 . (134)

We define the Lyapunov function Φ(t) as follows:

Φ(t) := ϑρE[δ(t)] +
E[D(t)

⋆]

(1− γ)α
+ q⊤

√
Ω(t), (135)

where

q =

(
q1
q2

)
=

 2LQ

√
2Cν(ϑρ+1)

(1−γ)
√
N

· 1

1−
√
1+ζσ−

√
(1+1/ζ)c21σα/(1−

√
c22)

2LQ

√
2Cν(ϑρ+1)

(1−γ)
√
N

·
√

1+1/ζσα

(1−
√
1+ζσ)(1−√

c22)−
√

(1+1/ζ)c21σα

 . (136)

32

It’s straightforward to verify that when ζ = 1−σ2

2 , we have the entries in C (cf. (125)) satisfies

c11 <
1 + σ2

2
, (137)

c12 ≤
3σ2α2

1− σ2
. (138)

Moreover, from α ≤
√

(1−γ)µ(1−σ2)

12
√
2σLQ

we deduce

c22 ≤
3 + σ2

4
, (139)

which gives

1−
√
c22 ≥ 1−

√
3 + σ2

4
≥ 1− σ2

8
, (140)

Also note that α ≤ (1−σ2)3
√

(1−γ)µ

768
√
6σ2LQ

yields

√
(1 + 1/ζ)c21σα ≤

(1−
√
1 + ζσ)(1−√c22)

2
.

which together with (140) and the fact 1−
√
1 + ζσ ≥ 1−σ2

4 indicates q1, q2 > 0 and that

q1 ≤
16
√
2LQ

√
Cν(ϑρ + 1)

(1− σ2)(1− γ)
√
N

, (141)

q2 ≤
128
√
6LQ

√
Cν(ϑρ + 1)σα

(1− σ2)5/2(1− γ)
√
N

. (142)

Thus by (133) and (134) we have

Φ(t+1) = ϑρE[δ(t+1)] +
E[D(t+1)

⋆]

(1− γ)α
+ q⊤

√
Ω(t+1)

≤ ϑρE[δ(t)] +
E[D(t)

⋆]

(1− γ)α
− E[δ(t)] + q⊤

(√
C
√

Ω(t) +
√
s
)

+
2
√
Cν(ϑρ + 1)

1− γ

√ε̄stat +
√

2ε̄approx +

√
2L2

Q

N
Ω

(t)
1



= Φ(t) +

q⊤(
√
C − I) +

(
2LQ

√
2Cν(ϑρ + 1)

(1− γ)
√
N

, 0

)
︸ ︷︷ ︸

=(0,0)

√Ω(t)

+
2
√
Cν(ϑρ + 1)

1− γ

(√
ε̄stat +

√
2ε̄approx

)
+ q2
√
s2 − E[δ(t)], (143)

which gives

E[δ(t)] ≤ Φ(t) − Φ(t+1) +
2
√
Cν(ϑρ + 1)

1− γ

(√
ε̄stat +

√
2ε̄approx

)
+ q2
√
s2. (144)

Summing the above inequality over t = 0, 1, · · · , T − 1 and divide both sides by T , we have

1

T

T−1∑
t=0

E[δ(t)] ≤ Φ(0) − Φ(t)

T
+

2
√
Cν(ϑρ + 1)

1− γ

(√
ε̄stat +

√
2ε̄approx

)
+ q2
√
s2. (145)

Since

s2 ≤
18σ2N

(1− σ2)(1− γ)µ
(ε̄stat + Cν ε̄approx)+

72σ2L2
QN

(1− γ)3µ3(1− σ2)

(
(1− γ)µε̄stat + C2

ϕ

)
α2, (146)

33

and

Φ(0)−Φ(t) ≤ Φ(0) ≤ ϑρ

1− γ
+

E[D(0)
⋆]

(1− γ)α
+
16
√
2LQ

√
Cν(ϑρ + 1)

(1− σ2)(1− γ)
√
N

(√
Ω

(0)
1 +

8
√
3σα√

1− σ2

√
Ω

(0)
2

)
,

(147)
we have (recall that LQ =

2Cϕγ(1+γ)
(1−γ)2 ≤ 4Cϕ

(1−γ)2)

V ⋆(ρ)− 1

T

T−1∑
t=0

E
[
V̄ (t)(ρ)

]
≤ D

(0)
⋆ + αϑρ

T (1− γ)α
+

1

T
· 64
√
2Cϕ

√
Cν(ϑρ + 1)

(1− σ2)(1− γ)3
√
N

(√
Ω

(0)
1 +

8
√
3σα√

1− σ2

√
Ω

(0)
2

)

+

2√Cν(ϑρ + 1)

1− γ
+

√
18σ2N

(1− σ2)(1− γ)µ
+

1152σ2C2
ϕNα2

(1− γ)6µ2(1− σ2)
· 512

√
6Cϕ

√
Cν(ϑρ + 1)σα

(1− σ2)5/2(1− γ)3
√
N

√ε̄stat

+

[
2
√
2Cν(ϑρ + 1)

1− γ
+

√
18σ2NCν

(1− σ2)(1− γ)µ
· 512

√
6Cϕ

√
Cν(ϑρ + 1)σα

(1− σ2)5/2(1− γ)3
√
N

]√
ε̄approx

+
6144

√
2σ2
√
Cν(ϑρ + 1)C3

ϕα
2

(1− γ)13/2µ3/2(1− σ2)3
. (148)

By Theorem E.3 we know that
√
ε̄stat could be upper bounded as follows:

√
ε̄stat ≤

2

(1− γ)2
√
K

(
(
√

2p+ 1)C2
ϕ +

√
2pµ(1− γ)

)
. (149)

(128) follows from plugging (149) into (148) and noting that when ξ
(0)
1 = · · · = ξ

(0)
N , Ω(0)

1 = 0.

Bounding the consensus errors. Similar to Step 4 in Appendix F.4, to bound the consensus error∥∥∥log f (t)
n − log f̄ (t)

∥∥∥
∞

for all n ∈ [N], we first upper bound the eigenvalue of ρ(C)—the spectral
norm of C.

The characteristic polynomial of C is
f(λ) = (λ− c11)(λ− c22)− c12c21

= λ2 − (c11 + c22)λ+ c11c22 − c12c21 ,

which gives

ρ(C) ≤
c11 + c22 +

√
(c11 + c22)2 − 4(c11c12 − c12c21)

2

=
c11 + c22 +

√
(c22 − c11)2 + 4c12c21

2

≤
c11 + c22 + c22 − c11 + 2

√
c12c21

2
= c22 +

√
c12c21

≤ 3 + σ2

4
+

√
3σα√

1− σ2
· 12

√
2LQσ√

1− σ2(1− γ)µ

≤ 3 + σ2

4
+

σ(1− σ2)2

64

≤ 49 + 15σ2

64
< 1 , (150)

where the third inequality uses (138), (139), and the fourth inequality uses (127).

Therefore, similar to (230), when α ≤ α1, we have∥∥∥Ω(t)
∥∥∥
2
≤
(
49

64
σ +

15

64

)t ∥∥∥Ω(0)
∥∥∥
2
+

64s2
15(1− σ2)

. (151)

Combining the above inequality with (146), and (149), we obtain (129).

34

E.2 Proof of Theorem E.3

The proof of Theorem E.3 could be found in Appendix C.5 in [YDG+22]. We present it for
completeness. To prove Theorem E.3, we need the following Theorem G.2.

Theorem E.12 (Theorem 1 in [BM13]). Consider the following assumptions:

(i) The observations (ak, bk) ∈ Rp × Rp are independent and identically distributed.

(ii) E
[
∥ak∥2

]
7 and E

[
∥bk∥2

]
are finite. The covariance E

[
aka

⊤
k

]
is invertible.

(iii) The global minimum of g(w) = 1
2E
[
⟨w,ak⟩2 − 2⟨w, bk⟩

]
is attained at a certain w⋆ ∈ Rp.

Let ∆k = bk − ⟨w⋆,ak⟩ak denote the residual. We have E[∆k] = 0.

(iv) ∃R > 0 and σ > 0 such that E
[
∆k∆

⊤
k

]
≤ σ2E

[
aka

⊤
k

]
and E

[
∥ak∥2 aka

⊤
k

]
≤

R2E
[
aka

⊤
k

]
.

Consider the stochastic gradient recursion

wk+1 = wk − η (⟨wk, ak⟩ak − bk)

started from w0 ∈ Rp. Let wout =
1
K

∑K
k=1 wk. When η = 1

4R2 , we have

E [g(wout)− g(w⋆)] ≤ 2

K
(σ
√
p+R ∥w0 − w⋆∥)2. (152)

In the proof of Theorem E.3 we’ll show that for Algorithm 4, the assumptions in Theorem G.2 are all
satisfied and thus we can use the result (267).

Proof of Theorem E.3. We let ak and bk in Theorem G.2 be ϕ(s, a) and Q̂ξϕ(s, a) in Algo-
rithm 4, respectively. And we let ∥·∥ = ∥·∥2 in Theorem G.2. Since the observations(
ϕ(s, a), Q̂ξ(s, a)ϕ(s, a)

)
∈ Rp × Rp are i.i.d., (i) is satisfied.

As we assume ∥ϕ(s, a)∥2 ≤ Cϕ, E
[
∥ϕ(s, a)∥22

]
is finite. From Assumption 4.1 we know that

E
[
ϕ(s, a)ϕ(s, a)⊤

]
is invertible.

Let H be the length of trajectory for estimating Q̂ξ(s, a). Then
(
Q̂ξ(s, a)

)2
is bounded by

E
[(

Q̂ξ(s, a)
)2]

= E
(s,a)∼d̃

πξ
ν

 ∞∑
τ=0

Pr(H = τ)E

(τ∑
t=0

r(st, at)

)2 ∣∣∣∣H = τ, s0 = s, a0 = a


= E

(s,a)∼d̃
πξ
ν

(1− γ)

∞∑
τ=0

γτE

(τ∑
t=0

r(st, at)

)2 ∣∣∣∣H = τ, s0 = s, a0 = a


≤ E

(s,a)∼d̃
πξ
ν

[
(1− γ)

∞∑
τ=0

γτ (τ + 1)2

]
≤ 2

(1− γ)2
, (153)

from which we deduce E
[∥∥∥Q̂ξ(s, a)ϕ(s, a)

∥∥∥2
2

]
≤ C2

ϕE
[
Q̂ξ(s, a)

2
]

is bounded. Thus (ii) holds.

Furthermore, we introduce the residual

∆ :=
(
Q̂ξ(s, a)− ϕ(s, a)⊤w⋆

)
ϕ(s, a) , (154)

then from Lemma 7 in [YDG+22] we know that E[∆] = 1
2∇wℓ(w, Q̂ξ, d

πξ
ν) = 0, which gives (iii).

7Here ∥·∥ could be any norm in Rp.

35

To verify (iv), we let R = Cϕ in Theorem G.2, then E
[
∥ϕ(s, a)∥22 ϕ(s, a)ϕ(s, a)⊤

]
≤

C2
ϕE
[
ϕ(s, a)ϕ(s, a)⊤

]
. Also note that

w⋆ =
(
E
(s,a)∼d̃

πξ
ν

[
ϕ(s, a)ϕ(s, a)⊤

])†
E
(s,a)∼d̃

πξ
ν

[
Q̂ξ(s, a)ϕ(s, a)

]
≤ 1

1− γ

(
E(s,a)∼ν

[
ϕ(s, a)ϕ(s, a)⊤

])† E
(s,a)∼d̃

πξ
ν

[
Q̂ξ(s, a)ϕ(s, a)

]
, (155)

from which we deduce
∥w⋆∥2 ≤

B

µ(1− γ)2
. (156)

E
[(

Q̂ξ(s, a)− ϕ(s, a)⊤w⋆
)2
|s, a

]
= E

[(
Q̂ξ(s, a)

)2
|s, a

]
− 2Qξ(s, a)ϕ(s, a)

⊤w⋆ + (ϕ(s, a)⊤w⋆)2

(157)

≤ 2

(1− γ)2
+

2C2
ϕ

µ(1− γ)3
+

C4
ϕ

µ2(1− γ)4

≤ 2

(1− γ)2

(
C2

ϕ

µ(1− γ)
+ 1

)2

. (158)

The above expression implies

E
[
∆∆⊤] = E

(s,a)∼d̃
πξ
ν

[(
Q̂ξ(s, a)− ϕ(s, a)⊤w⋆

)2
ϕ(s, a)ϕ(s, a)⊤

∣∣s, a]
= E

(s,a)∼d̃
πξ
ν

[
E
[(

Q̂ξ(s, a)− ϕ(s, a)⊤w⋆
)2 ∣∣s, a]ϕ(s, a)ϕ(s, a)⊤]

≤


√
2

1− γ

(
C2

ϕ

µ(1− γ)
+ 1

)
︸ ︷︷ ︸

σ

E[ϕ(s, a)ϕ(s, a)⊤] . (159)

Therefore, (iv) is verified.

Thus by (267), with stepsize β = 1
2C2

ϕ
, initialization w0 = 0 and K steps of critic updates, we have

E
[
ℓ
(
wout, Q̂ξ, d̃ξ

)]
− ℓ

(
w⋆, Q̂ξ, d̃ξ

)
≤ 4

K
(σ
√
p+ Cϕ ∥w⋆∥2)

2

≤ 4

K

(√
2p

1− γ

(
C2

ϕ

µ(1− γ)
+ 1

)
+

C2
ϕ

µ(1− γ)2

)2

,

which gives (113).

F Proof of key lemmas

F.1 Proof of Lemma D.2

Before proceeding, we summarize several useful properties of the auxiliary sequences (cf. (40) and
(41)), whose proof is postponed to Appendix G.1.

Lemma F.1 (Properties of auxiliary sequences {ξ(t)} and {ξ(t)}). {ξ(t)} and {ξ(t)} have the
following properties:

1. ξ(t) can be viewed as an unnormalized version of π(t), i.e.,

π(t)
n (·|s) = ξ

(t)
n (s, ·)∥∥ξ(t)n (s, ·)

∥∥
1

, ∀n ∈ [N], s ∈ S . (160)

36

2. For any t ≥ 0, log ξ
(t)

keeps track of the average of log ξ(t), i.e.,
1

N
1⊤
N log ξ(t) = log ξ

(t)
. (161)

It follows that

∀s ∈ S, t ≥ 0 : π(t)(·|s) = ξ
(t)
(s, ·)∥∥ξ(t)(s, ·)∥∥

1

. (162)

Lemma F.2 ([CCC+22b, Appendix. A.2]). For any vector θ = [θa]a∈A ∈ R|A|, we denote by
πθ ∈ R|A| the softmax transform of θ such that

πθ(a) =
exp(θa)∑

a′∈A exp(θa′)
, a ∈ A . (163)

For any θ1, θ2 ∈ R|A|, we have∣∣ log(∥exp(θ1)∥1)− log(∥exp(θ2)∥1)
∣∣ ≤ ∥θ1 − θ2∥∞ , (164)

∥log πθ1 − log πθ2∥∞ ≤ 2 ∥θ1 − θ2∥∞ . (165)

Step 1: bound u(t+1)(s, a) =
∥∥ log ξ(t+1)(s, a) − log ξ

(t+1)
(s, a)1N

∥∥
2
. By (40b) and (41b) we

have

u(t+1)(s, a) =
∥∥ log ξ(t+1)(s, a)− log ξ

(t+1)
(s, a)1N

∥∥
2

=
∥∥∥α(W log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

)
+ (1− α)

(
WT (t)(s, a)− Q̂(t)

τ (s, a)1N

)
/τ
∥∥∥
2

≤ σα
∥∥ log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥
2
+

1− α

τ
σ
∥∥T (t)(s, a)− Q̂(t)

τ (s, a)1N

∥∥
2

≤ σα
∥∥u(t)

∥∥
∞ +

1− α

τ
σ
∥∥v(t)∥∥∞, (166)

where the penultimate step results from the averaging property of W (property (11)). Taking
maximum over (s, a) ∈ S ×A establishes the bound on Ω

(t+1)
1 in (49).

Step 2: bound v(t+1)(s, a) =
∥∥T (t+1)(s, a)− Q̂

(t+1)
τ (s, a)1N

∥∥
2
. By (UT) we have∥∥T (t+1)(s, a)− Q̂(t+1)

τ (s, a)1N

∥∥
2

=
∥∥∥W (

T (t)(s, a) +Q(t+1)
τ (s, a)−Q(t)

τ (s, a)
)
− Q̂(t+1)

τ (s, a)1N

∥∥∥
2

=
∥∥∥(WT (t)(s, a)− Q̂(t)

τ (s, a)1N

)
+W

(
Q(t+1)

τ (s, a)−Q(t)
τ (s, a)

)
+
(
Q̂(t)

τ (s, a)− Q̂(t+1)
τ (s, a)

)
1N

∥∥∥
2

≤ σ
∥∥T (t)(s, a)− Q̂(t)

τ (s, a)1N

∥∥
2
+ σ

∥∥∥(Q(t+1)
τ (s, a)−Q(t)

τ (s, a)
)
+
(
Q̂(t)

τ (s, a)− Q̂(t+1)
τ (s, a)

)
1N

∥∥∥
2

≤ σ
∥∥T (t)(s, a)− Q̂(t)

τ (s, a)1N

∥∥
2
+ σ

∥∥Q(t+1)
τ (s, a)−Q(t)

τ (s, a)
∥∥
2
, (167)

where the penultimate step uses property (11), and the last step is due to∥∥∥(Q(t+1)
τ (s, a)−Q(t)

τ (s, a)
)
+
(
Q̂(t)

τ (s, a)− Q̂(t+1)
τ (s, a)

)
1N

∥∥∥2
2

=
∥∥Q(t+1)

τ (s, a)−Q(t)
τ (s, a)

∥∥2
2
+N

(
Q̂(t)

τ (s, a)− Q̂(t+1)
τ (s, a)

)2
− 2

N∑
n=1

(
Q

π(t+1)
n

τ,n (s, a)−Q
π(t)
n

τ,n (s, a)
)(

Q̂(t+1)
τ (s, a)− Q̂(t)

τ (s, a)
)

=
∥∥Q(t+1)

τ (s, a)−Q(t)
τ (s, a)

∥∥2
2
−N

(
Q̂(t)

τ (s, a)− Q̂(t+1)
τ (s, a)

)2
≤
∥∥Q(t+1)

τ (s, a)−Q(t)
τ (s, a)

∥∥2
2
.

Step 3: bound
∥∥Q⋆

τ − τ log ξ
(t+1)∥∥

∞. We decompose the term of interest as

Q⋆
τ − τ log ξ

(t+1)
= Q⋆

τ − τα log ξ
(t) − (1− α)Q̂(t)

τ

= α(Q⋆
τ − τ log ξ

(t)
) + (1− α)(Q⋆

τ −Q
(t)

τ) + (1− α)(Q
(t)

τ − Q̂(t)
τ),

37

which gives∥∥Q⋆
τ −τ log ξ

(t+1)∥∥
∞ ≤ α

∥∥Q⋆
τ −τ log ξ

(t)∥∥
∞+(1−α)

∥∥Q⋆
τ −Q

(t)

τ

∥∥
∞+(1−α)

∥∥Q(t)

τ − Q̂(t)
τ

∥∥
∞ .

(168)
Note that we can upper bound

∥∥Q(t)

τ − Q̂
(t)
τ

∥∥
∞ by

∥∥Q(t)

τ − Q̂(t)
τ

∥∥
∞ =

∥∥∥∥∥ 1

N

N∑
n=1

Q
π(t)
n

τ,n −
1

N

N∑
n=1

Qπ(t)

τ,n

∥∥∥∥∥
∞

≤ 1

N

N∑
n=1

∥∥Qπ(t)
n

τ,n −Qπ(t)

τ,n

∥∥
∞

≤ M

N

N∑
n=1

∥∥ log ξ(t)n − log ξ
(t)∥∥

∞⩽M
∥∥u(t)

∥∥
∞. (169)

The last step is due to
∣∣ log ξ(t)n (s, a)− log ξ

(t)
(s, a)

∣∣ ≤ u(t)(s, a), while the penultimate step results
from writing

π(t)(·|s) = softmax
(
log ξ

(t)
(s, ·)

)
,

π(t)
n (·|s) = softmax

(
log ξ(t)n (s, ·)

)
,

and applying the following lemma.
Lemma F.3 (Lipschitz constant of soft Q-function). Assume that r(s, a) ∈ [0, 1],∀(s, a) ∈ S ×A
and τ ≥ 0. For any θ, θ′ ∈ R|S||A|, we have

∥Qπθ′
τ −Qπθ

τ ∥∞ ≤
1 + γ + 2τ(1− γ) log |A|

(1− γ)2
· γ︸ ︷︷ ︸

=:M

∥θ′ − θ∥∞ . (170)

Plugging (169) into (168) gives∥∥Q⋆
τ−τ log ξ

(t+1)∥∥
∞ ≤ α

∥∥Q⋆
τ−τ log ξ

(t)∥∥
∞+(1−α)

∥∥Q⋆
τ−Q

(t)

τ

∥∥
∞+(1−α)M

∥∥u(t)
∥∥
∞ . (171)

Step 4: bound
∥∥Q(t+1)

τ (s, a)−Q
(t)
τ (s, a)

∥∥
2
.

Let w(t) : S ×A → R be defined as

∀(s, a) ∈ S×A : w(t)(s, a) :=
∥∥ log ξ(t+1)(s, a)−log ξ(t)(s, a)−(1−α)V ⋆

τ (s)1N/τ
∥∥
2
. (172)

Again, we treat w(t) as vectors in R|S||A| whenever it is clear from context. For any (s, a) ∈ S ×A
and n ∈ [N], by Lemma F.3 it follows that∣∣∣Qπ(t+1)

n
τ,n (s, a)−Q

π(t)
n

τ,n (s, a)
∣∣∣ ≤M max

s∈S

∥∥ log ξ(t+1)
n (s, ·)− log ξ(t)n (s, ·)− (1− α)V ⋆

τ (s)1|A|/τ
∥∥
∞

≤M max
s∈S

max
a∈A

w(t)(s, a) ≤M
∥∥w(t)

∥∥
∞ , (173)

and consequently ∥∥Q(t+1)
τ (s, a)−Q(t)

τ (s, a)
∥∥
2
≤M

√
N
∥∥w(t)

∥∥
∞ . (174)

It boils down to control
∥∥w(t)

∥∥
∞. To do so, we first note that for each (s, a) ∈ S ×A, we have

w(t)(s, a)

=
∥∥W (

α log ξ(t)(s, a) + (1− α)T (t)(s, a)/τ
)
− log ξ(t)(s, a)− (1− α)V ⋆

τ (s)1N/τ
∥∥
2

(a)
=
∥∥∥α(W − IN)

(
log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

)
+ (1− α)

(
WT (t)(s, a)/τ − log ξ(t)(s, a)− V ⋆

τ (s)1N/τ
)∥∥∥

2
(b)

≤ 2α
∥∥ log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥
2
+

1− α

τ

∥∥WT (t)(s, a)− τ log ξ(t)(s, a)− V ⋆
τ (s)1N

∥∥
2

(175)

38

where (a) is due to the doubly stochasticity property of W and (b) is from the fact ∥W − IN∥2 ≤ 2.
We further bound the second term as follows:∥∥∥WT (t)(s, a)− τ log ξ(t)(s, a)− V ⋆

τ (s)1N

∥∥∥
2

=
∥∥∥WT (t)(s, a)− τ log ξ(t)(s, a)−

(
Q⋆

τ (s, a)− τ log π⋆
τ (a|s)

)
1N

∥∥∥
2

≤
∥∥WT (t)(s, a)−Q⋆

τ (s, a)1N

∥∥
2
+ τ
∥∥ log ξ(t)(s, a)− log π⋆

τ (a|s)1N

∥∥
2

≤
∥∥WT (t)(s, a)− Q̂τ (s, a)1N

∥∥
2
+
∥∥Q̂τ (s, a)1N −Q⋆

τ (s, a)1N

∥∥
2

+ τ
∥∥ log ξ(t)(s, a)− log π(t)(a|s)1N

∥∥
2
+ τ
∥∥ log π(t)(a|s)1N − log π⋆

τ (a|s)1N

∥∥
2

= σ
∥∥T (t)(s, a)− Q̂(t)

τ (s, a)1N

∥∥
2
+
√
N
∣∣Q̂(t)

τ (s, a)−Q⋆
τ (s, a)

∣∣
+ τ
∥∥ log ξ(t)(s, a)− log π(t)(a|s)1N

∥∥
2
+ τ
√
N
∣∣ log π(t)(a|s)− log π⋆

τ (a|s)
∣∣ . (176)

Here, the first step results from the following relation established in [NNXS17]:

∀(s, a) ∈ S ×A : V ⋆
τ (s) = −τ log π⋆

τ (a|s) +Q⋆
τ (s, a) , (177)

which also leads to ∥∥ log π(t) − log π⋆
τ

∥∥
∞ ≤

2

τ

∥∥Q⋆
τ − τ log ξ

(t)∥∥
∞ (178)

by Lemma F.2. For the remaining terms in (176), we have∣∣Q̂(t)
τ (s, a)−Q⋆

τ (s, a)
∣∣ ≤ ∥∥Q̂(t)

τ −Q
(t)

τ

∥∥
∞ +

∥∥Q(t)

τ −Q⋆
τ

∥∥
∞ , (179)

and

∥∥ log ξ(t)(s, a)− log π(t)(a|s)1N

∥∥
2
=

√√√√ N∑
n=1

(
log ξ

(t)
n (s, a)− log π(t)(a|s)

)2

≤

√√√√ N∑
n=1

2
∥∥ log ξ(t)n − log ξ

(t)∥∥2
∞

≤

√√√√ N∑
n=1

2
∥∥u(t)

∥∥2
∞ =

√
2N
∥∥u(t)

∥∥
∞ , (180)

where the first inequality again results from Lemma F.2. Plugging (178), (179), (180) into (176) and
using the definition of u(t), v(t), we arrive at

w(t)(s, a) ≤
(
2α+ (1− α) ·

√
2N
)∥∥u(t)

∥∥
∞ +

1− α

τ

∥∥v(t)∥∥∞ +
1− α

τ
·
√
N
(∥∥Q̂(t)

τ −Q
(t)

τ

∥∥
∞ +

∥∥Q(t)

τ −Q⋆
τ

∥∥
∞

)
+

1− α

τ
· 2
√
N
∥∥Q⋆

τ − τ log ξ
(t)∥∥

∞ .

Using previous display, we can write (174) as∥∥Q(t+1)
τ (s, a)−Q(t)

τ (s, a)
∥∥
2

≤M
√
N

{(
2α+ (1− α) ·

√
2N
)∥∥u(t)

∥∥
∞ +

1− α

τ
σ
∥∥v(t)∥∥∞

+
1− α

τ
·
√
N
(
M
∥∥u(t)

∥∥
∞ +

∥∥Q(t)

τ −Q⋆
τ

∥∥
∞

)
+

1− α

τ
· 2
√
N
∥∥Q⋆

τ − τ log ξ
(t)∥∥

∞

}
.

(181)

Combining (167) with the above expression (181), we get∥∥v(t+1)
∥∥
∞ ≤ σ

(
1 +

ηM
√
N

1− γ
σ

)∥∥v(t)∥∥∞ + σM
√
N

{(
2α+ (1− α) ·

√
2N +

1− α

τ
·
√
NM

)∥∥u(t)
∥∥
∞

+
1− α

τ
·
√
N
∥∥Q(t)

τ −Q⋆
τ

∥∥
∞ +

1− α

τ
· 2
√
N
∥∥Q⋆

τ − τ log ξ
(t)∥∥

∞

}
. (182)

39

Step 5: bound
∥∥Q(t+1)

τ −Q⋆
τ

∥∥
∞. For any state-action pair (s, a) ∈ S ×A, we observe that

Q⋆
τ (s, a)−Q

(t+1)

τ (s, a)

= r(s, a) + γ E
s′∼P (·|s,a)

[V ⋆
τ (s

′)]−
(
r(s, a) + γ E

s′∼P (·|s,a)

[
V π(t+1)

τ (s′)
])

= γ E
s′∼P (·|s,a)

[
τ log

(∥∥∥∥exp(Q⋆
τ (s

′, ·)
τ

)∥∥∥∥
1

)]
− γ E

s′∼P (·|s,a),

a′∼π(t+1)(·|s′)

[
Q

(t+1)

τ (s′, a′)− τ log π(t+1)(a′|s′)
]
,

(183)

where the first step invokes the definition of Qτ (cf. (6a)), and the second step is due to the following
expression of V ⋆

τ established in [NNXS17]:

V ⋆
τ (s) = τ log

(∥∥∥∥exp(Q⋆
τ (s, ·)
τ

)∥∥∥∥
1

)
. (184)

To continue, note that by (162) and (41b) we have

log π(t+1)(a|s) = log ξ
(t+1)

(s, a)− log
(∥∥ξ(t+1)

(s, ·)
∥∥
1

)
= α log ξ

(t)
(s, a) + (1− α)

Q̂
(t)
τ (s, a)

τ
− log

(∥∥ξ(t+1)
(s, ·)

∥∥
1

)
. (185)

Plugging (185) into (183) and (181) establishes the bounds on

Q⋆
τ (s, a)−Q

(t+1)

τ (s, a) = γ E
s′∼P (·|s,a)

[
τ log

(∥∥∥∥exp(Q⋆
τ (s

′, ·)
τ

)∥∥∥∥
1

)
− τ log

(∥∥∥ξ(t+1)
(s′, ·)

∥∥∥
1

)]
− γ E

s′∼P (·|s,a),

a′∼π(t+1)(·|s′)

[
Q

(t+1)

τ (s′, a′)− τ

(
α log ξ

(t)
(s′, a′) + (1− α)

Q̂
(t)
τ (s′, a′)

τ

)
︸ ︷︷ ︸

=log ξ
(t+1)

(s′,a′)

]

(186)

for any (s, a) ∈ S ×A. In view of property (164), the first term on the right-hand side of (186) can
be bounded by

τ log

(∥∥∥∥exp(Q⋆
τ (s

′, ·)
τ

)∥∥∥∥
1

)
− τ log

(∥∥ξ(t+1)
(s′, ·)

∥∥
1

)
≤
∥∥Q⋆

τ − τ log ξ
(t+1)∥∥

∞ .

Plugging the above expression into (186), we have

0 ≤ Q⋆
τ (s, a)−Q

(t+1)

τ (s, a) ≤ γ
∥∥Q⋆

τ−τ log ξ
(t+1)∥∥

∞−γmin
s,a

(
Q

(t+1)

τ (s, a)− τ log ξ
(t+1)

(s, a)
)
,

which gives∥∥Q⋆
τ−Q

(t+1)

τ

∥∥
∞ ≤ γ

∥∥Q⋆
τ−τ log ξ

(t+1)∥∥
∞+γmax

{
0,−min

s,a

(
Q

(t+1)

τ (s, a)− τ log ξ
(t+1)

(s, a)
)}

.

(187)
Plugging the above inequality into (171) and (182) establishes the bounds on Ω

(t+1)
3 and Ω

(t+1)
2

in (49), respectively. Step 6: bound −mins,a
(
Q

(t+1)

τ (s, a) − τ log ξ
(t+1)

(s, a)
)
. We need the

following lemma which is adapted from Lemma 1 in [CCC+22b]:
Lemma F.4 (Performance improvement of FedNPG with entropy regularization). Suppose 0 < η ≤
(1− γ)/τ . For any state-action pair (s0, a0) ∈ S ×A, one has

V
(t+1)

τ (s0)− V
(t)

τ (s0) ≥
1

η
E

s∼dπ(t+1)
s0

[
αKL

(
π(t+1)(·|s0) ∥π(t)(·|s0)

)
+ KL

(
π(t)(·|s0) ∥π(t+1)(·|s0)

)]
− 2

1− γ

∥∥Q̂(t)
τ −Q

(t)

τ

∥∥
∞ , (188)

Q
(t+1)

τ (s0, a0)−Q
(t)

τ (s0, a0) ≥ −
2γ

1− γ

∥∥Q̂(t)
τ −Q

(t)

τ

∥∥
∞ . (189)

40

Proof. See Appendix G.3.

Using (189), we have

Q
(t+1)

τ (s, a)− τ

(
α log ξ

(t)
(s, a) + (1− α)

Q̂
(t)
τ (s, a)

τ

)

≥ Q
(t)

τ (s, a)− τ

(
α log ξ

(t)
(s, a) + (1− α)

Q̂
(t)
τ (s, a)

τ

)
− 2γ

1− γ

∥∥Q̂(t)
τ −Q

(t)

τ

∥∥
∞

≥ α
(
Q

(t)

τ (s, a)− τ log ξ
(t)
(s, a)

)
− 2γ + ητ

1− γ

∥∥Q̂(t)
τ −Q

(t)

τ

∥∥
∞ , (190)

which gives

−min
s,a

(
Q

(t+1)

τ (s, a)− τ log ξ
(t+1)

(s, a)
)

≤ −αmin
s,a

(
Q

(t)

τ (s, a)− τ log ξ
(t)
(s, a)

)
+

2γ + ητ

1− γ
M
∥∥u(t)

∥∥
∞

≤ αmax
{
0,min

s,a

(
Q

(t)

τ (s, a)− τ log ξ
(t)
(s, a)

)}
+

2γ + ητ

1− γ
M
∥∥u(t)

∥∥
∞ . (191)

This establishes the bounds on Ω
(t+1)
4 in (49).

F.2 Proof of Lemma D.3

Let f(λ) denote the characteristic function. In view of some direct calculations, we obtain

f(λ) = (λ− α)

{
(λ− σα)(λ− σ(1 + σbη))(λ− (1− α)γ − α)︸ ︷︷ ︸

=:f0(λ)

− ησ2

1− γ
[S(λ− (1− α)γ − α) + γcdMη + (1− α)(2 + γ)Mcη]︸ ︷︷ ︸

=:f1(λ)

}

− τη3γ

(1− γ)2
· 2cdMσ2 ,

(192)

where, for the notation simplicity, we let

b :=
M
√
N

1− γ
, (193a)

c :=
MN

1− γ
=
√
Nb , (193b)

d :=
2γ + ητ

1− γ
. (193c)

Note that among all these new notation we introduce, S, d are dependent of η. To decouple the
dependence, we give their upper bounds as follows

d0 :=
1 + γ

1− γ
≥ d , (194)

S0 := M
√
N

(
2 +
√
2N +

M
√
N

τ

)
≥ S , (195)

where (194) follows from η ≤ (1− γ)/τ , and (195) uses the fact that α ≤ 1 and 1− α ≤ 1.

Let

λ⋆ := max
{3 + σ

4
,
1 + (1− α)γ + α

2

}
. (196)

Since A(ρ) is a nonnegative matrix, by Perron-Frobenius Theorem (see [HJ12], Theorem 8.3.1), ρ(η)
is an eigenvalue of A(ρ). So to verify (55), it suffices to show that f(λ) > 0 for any λ ∈ [λ⋆,∞).
To do so, in the following we first show that f(λ⋆) > 0, and then we prove that f is non-decreasing
on [λ⋆,∞).

41

• Showing f(λ⋆) > 0. We first lower bound f0(λ
⋆). Since λ⋆ ≥ 3+σ

4 , we have

λ⋆ − σ(1 + σbη) ≥ 1− σ

4
, (197)

and from λ⋆ ≥ 1+(1−α)γ+α
2 we deduce

λ⋆ − (1− α)γ − α ≥ (1− γ)(1− α)

2
(198)

and

λ⋆ >
1 + α

2
, (199)

which gives

λ⋆ − σα ≥ 1 + α

2
− σα . (200)

Combining (200), (197), (198), we have that

f0(λ
⋆) ≥ 1− σ

8

(
1 + α

2
− σα

)
ητ . (201)

To continue, we upper bound f1(λ
⋆) as follows.

f1(λ
⋆) ≤ Sτη + γcdMη +

2 + γ

1− γ
cMτη2

= η

(
τ

(
S +

2 + γ

1− γ
Mcη

)
+ γcdM

)
. (202)

Plugging (201),(202) into (192) and using (199), we have

f(λ⋆) >
1− α

2

(
f0(λ

⋆)− ησ2

1− γ
f1(λ

⋆)

)
− τη3γ

(1− γ)2
· 2cdMσ2

≥ τη2

2(1− γ)

[
1− σ

8
τ

(
1− σ + (1− α)(σ − 1

2
)

)
− ησ2

1− γ

(
τ

(
S +

2 + γ

1− γ
Mcη

)
+ 5γcdM

)]
=

τη2

2(1− γ)

[
(1− σ)2

8
τ − η

1− γ

(
Sτσ2 +

2 + γ

1− γ
Mcσ2τη + τ2

(
1

2
− σ2

)
· 1− σ

8
+ 5γcdMσ2

)]
≥ τη2

2(1− γ)

[
(1− σ)2

8
τ − η

1− γ

(
S0τσ

2 +
(1− σ)2

16
τ2 + (2 + γ + 5γd0) cMσ2

)]
≥ 0 ,

where the penultimate inequality uses 1
2 − σ ≤ 1−σ

2 , and the last inequality follows from
the definition of ζ (cf. (53)).

• Proving f is non-decreasing on [λ⋆,∞). Note that

η ≤ ζ ≤ (1− γ)(1− σ)2

8S0σ2
,

thus we have

∀λ ≥ λ⋆ : f ′
0(λ)−

ησ2

1− γ
f ′
1(λ) ≥ (λ− σα)(λ− σ(1 + σbη))− η

1− γ
Sσ2 ≥ 0 ,

which indicates that f0 − f1 is non-decreasing on [λ⋆,∞). Therefore, f is non-decreasing
on [λ⋆,∞).

F.3 Proof of Lemma D.6

Note that bounding u(t+1)(s, a) is identical to the proof in Appendix F.1 and shall be omitted. The
rest of the proof also follows closely that of Lemma D.2, and we only highlight the differences due to
approximation error for simplicity.

42

Step 2: bound v(t+1)(s, a) =
∥∥T (t+1)(s, a)− q̂

(t+1)
τ (s, a)1N

∥∥
2
. Let q(t)

τ :=
(
q
π
(t)
1

τ,1 , · · · , qπ
(t)
N

τ,N

)⊤
.

Similar to (167) we have∥∥T (t+1)(s, a)− q̂(t+1)
τ (s, a)1N

∥∥
2

≤ σ
∥∥T (t)(s, a)− q̂(t)τ (s, a)1N

∥∥
2
+ σ

∥∥q(t+1)
τ (s, a)− q(t)

τ (s, a)
∥∥
2

≤ σ
∥∥T (t)(s, a)− q̂(t)τ (s, a)1N

∥∥
2
+ σ

∥∥Q(t+1)
τ (s, a)−Q(t)

τ (s, a)
∥∥
2
+ 2σ ∥e∥2 . (203)

Step 3: bound
∥∥Q⋆

τ − τ log ξ
(t+1)∥∥

∞. In the context of inexact updates, (168) writes∥∥Q⋆
τ − τ log ξ

(t+1)∥∥
∞ ≤ α

∥∥Q⋆
τ − τ log ξ

(t)∥∥
∞+(1−α)

∥∥Q⋆
τ −Q

(t)

τ

∥∥
∞+(1−α)

∥∥Q(t)

τ − q̂(t)τ

∥∥
∞ .

For the last term, following a similar argument in (169) leads to

∥∥Q(t)

τ − q̂(t)τ

∥∥
∞ =

∥∥∥∥∥ 1

N

N∑
n=1

Q
π(t)
n

τ,n −
1

N

N∑
n=1

Qπ(t)

τ,n

∥∥∥∥∥
∞

+

∥∥∥∥∥ 1

N

N∑
n=1

(
Q

π(t)
n

τ,n − q
π(t)
n

τ,n

)∥∥∥∥∥
∞

≤M · 1
N

N∑
n=1

∥∥ log ξ(t)n − log ξ
(t)∥∥

∞ +
1

N

N∑
n=1

en

≤M
∥∥u(t)

∥∥
∞ + ∥e∥∞ .

Combining the above two inequalities, we obtain∥∥Q⋆
τ−τ log ξ

(t+1)∥∥
∞ ≤ α

∥∥Q⋆
τ−τ log ξ

(t)∥∥
∞+(1−α)

∥∥Q⋆
τ−Q

(t)

τ

∥∥
∞+(1−α)

(
M
∥∥u(t)

∥∥
∞ +

∥∥e∥∥∞) .

(204)

Step 4: bound
∥∥∥Q(t+1)

τ (s, a)−Q
(t)
τ (s, a)

∥∥∥
2
. We remark that the bound established in (174) still

holds in the inexact setting, with the same definition for w(t):∥∥∥Q(t+1)
τ (s, a)−Q(t)

τ (s, a)
∥∥∥
2
≤M

√
N
∥∥∥w(t)

∥∥∥
∞

. (205)

To deal with the approximation error, we rewrite (176) as∥∥∥WT (t)(s, a)− τ log ξ(t)(s, a)− V ⋆
τ (s)1N

∥∥∥
2

=
∥∥∥WT (t)(s, a)− τ log ξ(t)(s, a)−

(
Q⋆

τ (s, a)− τ log π⋆
τ (a|s)

)
1N

∥∥∥
2

≤
∥∥WT (t)(s, a)−Q⋆

τ (s, a)1N

∥∥
2
+ τ
∥∥ log ξ(t)(s, a)− log π⋆

τ (a|s)1N

∥∥
2

≤
∥∥WT (t)(s, a)− q̂τ (s, a)1N

∥∥
2
+
∥∥q̂τ (s, a)1N −Q⋆

τ (s, a)1N

∥∥
2

+ τ
∥∥ log ξ(t)(s, a)− log π(t)(a|s)1N

∥∥
2
+ τ
∥∥ log π(t)(a|s)1N − log π⋆

τ (a|s)1N

∥∥
2

≤ σ
∥∥∥T (t)(s, a)− q̂(t)τ (s, a)1N

∥∥∥
2
+
√
N
∣∣q̂(t)τ (s, a)−Q⋆

τ (s, a)
∣∣

+ τ
∥∥∥log ξ(t)(s, a)− log π(t)(a|s)1

∥∥∥
2
+ τ
√
N
∣∣ log π(t)(a|s)− log π⋆

τ (a|s)
∣∣ , (206)

where the second term can be upper-bounded by∣∣q̂(t)τ (s, a)−Q⋆
τ (s, a)

∣∣ ≤ ∥∥Q̂(t)
τ −Q

(t)

τ

∥∥
∞ +

∥∥Q(t)

τ −Q⋆
τ

∥∥
∞ +

∥∥∥q̂(t)τ (s, a)− Q̂(t)
τ (s, a)

∥∥∥
∞

≤
∥∥Q̂(t)

τ −Q
(t)

τ

∥∥
∞ +

∥∥Q(t)

τ −Q⋆
τ

∥∥
∞ + ∥e∥∞ . (207)

Combining (207), (206) and the established bounds in (175), (178), (180) leads to

w(t)(s, a) ≤
(
2α+ (1− α) ·

√
2N
)∥∥∥u(t)

∥∥∥
∞

+
1− α

τ

∥∥∥v(t)∥∥∥
∞

+
1− α

τ
·
√
N
(∥∥∥Q̂(t)

τ −Q
(t)

τ

∥∥∥
∞

+
∥∥∥Q(t)

τ −Q⋆
τ

∥∥∥
∞

+ ∥e∥∞
)
+

1− α

τ
· 2
√
N
∥∥∥Q⋆

τ − τ log ξ
(t)
∥∥∥
∞

.

43

Combining the above inequality with (205) and (203) gives∥∥v(t+1)
∥∥
∞ ≤ σ

(
1 +

ηM
√
N

1− γ
σ

)∥∥v(t)∥∥∞ + σM
√
N

{(
2α+ (1− α) ·

√
2N +

1− α

τ
·
√
NM

)∥∥u(t)
∥∥
∞

+
1− α

τ
·
√
N
(∥∥Q(t)

τ −Q⋆
τ

∥∥
∞ +

∥∥e∥∥∞)+ 1− α

τ
· 2
√
N
∥∥Q⋆

τ − τ log ξ
(t)∥∥

∞

}
+ 2σ

√
N ∥e∥∞ .

(208)

Step 5: bound
∥∥∥Q(t+1)

τ −Q⋆
τ

∥∥∥
∞

. It is straightforward to verify that (187) applies to the inexact
updates as well:∥∥∥Q⋆

τ −Q
(t+1)

τ

∥∥∥
∞
≤ γ

∥∥∥Q⋆
τ − τ log ξ

(t+1)
∥∥∥
∞

+ γ

(
−min

s,a

(
Q

(t+1)

τ (s, a)− τ log ξ
(t+1)

(s, a)
))

.

Plugging the above inequality into (204) and (208) establishes the bounds on Ω
(t+1)
3 and Ω

(t+1)
2 in

(68), respectively. Step 6: bound−mins,a
(
Q

(t+1)

τ (s, a)−τ log ξ(t+1)
(s, a)

)
. We obtain the follow-

ing lemma by interpreting the approximation error e as part of the consensus error
∥∥∥Q̂(t)

τ −Q
(t)

τ

∥∥∥
∞

in Lemma F.4.
Lemma F.5 (inexact version of Lemma F.4). Suppose 0 < η ≤ (1− γ)/τ . For any state-action pair
(s0, a0) ∈ S ×A, one has

V
(t+1)

τ (s0)− V
(t)

τ (s0) ≥
1

η
E

s∼dπ(t+1)
s0

[
αKL

(
π(t+1)(·|s0) ∥π(t)(·|s0)

)
+ KL

(
π(t)(·|s0) ∥π(t+1)(·|s0)

)]
− 2

1− γ

(∥∥∥Q̂(t)
τ −Q

(t)

τ

∥∥∥
∞

+ ∥e∥∞
)
, (209)

Q
(t+1)

τ (s0, a0)−Q
(t)

τ (s0, a0) ≥ −
2γ

1− γ

(∥∥∥Q̂(t)
τ −Q

(t)

τ

∥∥∥
∞

+ ∥e∥∞
)
. (210)

Using (210), we have

Q
(t+1)

τ (s, a)− τ

(
α log ξ

(t)
(s, a) + (1− α)

Q̂
(t)
τ (s, a)

τ

)

≥ Q
(t)

τ (s, a)− τ

(
α log ξ

(t)
(s, a) + (1− α)

Q̂
(t)
τ (s, a)

τ

)
− 2γ

1− γ

(∥∥∥Q̂(t)
τ −Q

(t)

τ

∥∥∥
∞

+ ∥e∥∞
)

≥ α
(
Q

(t)

τ (s, a)− τ log ξ
(t)
(s, a)

)
− 2γ + ητ

1− γ

∥∥∥Q̂(t)
τ −Q

(t)

τ

∥∥∥
∞
− 2γ

1− γ
∥e∥∞ , (211)

which gives

−min
s,a

(
Q

(t+1)

τ (s, a)− τ log ξ
(t+1)

(s, a)
)

≤ −αmin
s,a

(
Q

(t)

τ (s, a)− τ log ξ
(t)
(s, a)

)
+

2γ + ητ

1− γ
M
∥∥∥u(t)

∥∥∥
∞

+
2γ

1− γ
∥e∥∞ .

(212)

F.4 Proof of Lemma D.8

Step 1: bound u(t+1)(s, a) =
∥∥∥log ξ(t+1)(s, a)− log ξ

(t+1)
(s, a)1N

∥∥∥
2
. Following the same strat-

egy in establishing (166), we have∥∥∥log ξ(t+1)(s, a)− log ξ
(t+1)

(s, a)1N

∥∥∥
2

=

∥∥∥∥(W log ξ(t)(s, a)− log ξ
(t)
(s, a)1N

)
+

η

1− γ

(
WT (t)(s, a)− Q̂(t)(s, a)1N

)∥∥∥∥
2

≤ σ
∥∥∥log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥∥
2
+

η

1− γ
σ
∥∥∥T (t)(s, a)− Q̂(t)(s, a)1N

∥∥∥
2
, (213)

44

or equivalently ∥∥u(t+1)
∥∥
∞ ≤ σ

∥∥u(t)
∥∥
∞ +

η

1− γ
σ
∥∥v(t)∥∥∞ . (214)

Step 2: bound v(t+1)(s, a) =
∥∥T (t+1)(s, a)− Q̂(t+1)(s, a)1N

∥∥
2
. In the same vein of establishing

(167), we have∥∥T (t+1)(s, a)− Q̂(t+1)(s, a)1N

∥∥
2

≤ σ
∥∥T (t)(s, a)− Q̂(t)(s, a)1N

∥∥
2
+ σ

∥∥Q(t+1)(s, a)−Q(t)(s, a)
∥∥
2
, (215)

The term
∥∥Q(t+1)(s, a)−Q(t)(s, a)

∥∥
2

can be bounded in a similar way in (174):∥∥Q(t+1)(s, a)−Q(t)(s, a)
∥∥
2
≤ (1 + γ)γ

(1− γ)2

√
N
∥∥w(t)

0

∥∥
∞ , (216)

where the coefficient (1+γ)γ
(1−γ)2 comes from M in Lemma F.3 when τ = 0, and w

(t)
0 ∈ R|S||A| is defined

as

∀(s, a) ∈ S ×A : w
(t)
0 (s, a) :=

∥∥∥∥log ξ(t+1)(s, a)− log ξ(t)(s, a)− η

1− γ
V ⋆(s)1N

∥∥∥∥
2

. (217)

It remains to bound
∥∥w(t)

0

∥∥
∞. Towards this end, we rewrite (175) as

w
(t)
0 (s, a)

=
∥∥W (

log ξ(t)(s, a) +
η

1− γ
T (t)(s, a)

)
− log ξ(t)(s, a)− η

1− γ
V ⋆(s)1N

∥∥
2

=

∥∥∥∥(W − I)
(
log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

)
+

η

1− γ

(
WT (t)(s, a)− V ⋆(s)1N

)∥∥∥∥
2

≤ 2
∥∥ log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥
2
+

η

1− γ

∥∥WT (t)(s, a)− V ⋆(s)1N

∥∥
2

≤ 2
∥∥ log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥
2
+

η

1− γ

∥∥WT (t)(s, a)− Q̂(t)(s, a)1N

∥∥
2

+
η

1− γ
·
√
N
∣∣Q̂(t)(s, a)− V ⋆(s)

∣∣ . (218)

Note that it holds for all (s, a) ∈ S ×A:∣∣Q̂(t)(s, a)− V ⋆(s)
∣∣ ≤ 1

1− γ

since Q̂(t)(s, a) and V ⋆(s) are both in [0, 1/(1− γ)]. This along with (218) gives

w
(t)
0 (s, a) ≤ 2

∥∥u(t)
∥∥
∞ +

η

1− γ

∥∥v(t)∥∥∞ +
η
√
N

(1− γ)2
.

Combining the above inequality with (216) and (215), we arrive at∥∥v(t+1)
∥∥
∞ ≤ σ

(
1 +

(1 + γ)γ
√
Nη

(1− γ)3
σ

)∥∥v(t)∥∥∞ +
(1 + γ)γ

(1− γ)2

√
Nσ

{
2
∥∥u(t)

∥∥
∞ +

η

(1− γ)2
·
√
N

}
.

(219)

Step 3: establish the descent equation. The following lemma characterizes the improvement in
ϕ(t)(η) for every iteration of Algorithm 1, with the proof postponed to Appendix G.4.
Lemma F.6 (Performance improvement of exact FedNPG). For all starting state distribution ρ ∈
∆(S), we have the iterates of FedNPG satisfy

ϕ(t+1)(η) ≤ ϕ(t)(η) +
2η

(1− γ)2
∥∥Q̂(t) −Q

(t)∥∥
∞ − η

(
V ⋆(ρ)− V

(t)
(ρ)
)
, (220)

where
ϕ(t)(η) := Es∼dπ⋆

ρ

[
KL
(
π⋆(·|s) ∥π(t)(·|s)

)]
− η

1− γ
V

(t)
(dπ

⋆

ρ) , ∀t ≥ 0 . (221)

45

It remains to control the term
∥∥Q(t) − Q̂(t)

∥∥
∞. Similar to (169), for all t ≥ 0, we have

∥∥Q(t) − Q̂(t)
∥∥
∞ =

∥∥∥∥∥ 1

N

N∑
n=1

Q
π(t)
n

n − 1

N

N∑
n=1

Qπ(t)

n

∥∥∥∥∥
∞

(a)

≤ (1 + γ)γ

(1− γ)2
· 1
N

N∑
n=1

∥∥ log ξ(t)n − log ξ
(t)∥∥

∞

(b)

≤ (1 + γ)γ

(1− γ)2
∥∥u(t)

∥∥
∞ , (222)

where (a) invokes Lemma F.3 with τ = 0 and (b) stems from the definition of u(t). This along with
(220) gives

ϕ(t+1)(η) ≤ ϕ(t)(η) +
2(1 + γ)γ

(1− γ)4
η
∥∥u(t)

∥∥
∞ − η

(
V ⋆(ρ)− V

(t)
(ρ)
)
.

Step 4: bound the consensus error. To bound the consensus error
∥∥∥log π(t)

n − log π̄(t)
∥∥∥
∞

for all

n ∈ [N], we first upper bound the spectral norm of B(η) which we denote as ρ(B(η)). Since B(η)
is a nonnegative matrix, by Perron-Frobenius Theorem, ρ(B(η)) is an eigenvalue of B(η). So we
only need to upper bound the eigenvalue of ρ(B(η)).

The characteristic polynomial of B(η) is

f(λ) =(λ− σ)

(
λ− σ

(
1 +

(1 + γ)γ
√
Nη

(1− γ)3
σ

))
− ηJ

1− γ
σ2

=λ2 −

(
2 +

(1 + γ)γ
√
Nη

(1− γ)3
σ

)
σλ+

(
1 +

(1 + γ)γ
√
Nη

(1− γ)3
σ − ηJ

1− γ

)
σ2 .

which gives

ρ(B(η)) ≤σ

2

(2 + (1 + γ)γ
√
Nη

(1− γ)3
σ

)
+

√√√√(2 + (1 + γ)γ
√
Nη

(1− γ)3
σ

)2

− 4

(
1 +

(1 + γ)γ
√
Nη

(1− γ)3
σ

)
+ 4

ηJ

1− γ


≤σ

2

(2 + (1 + γ)γ
√
Nη

(1− γ)3
σ

)
+

√√√√((1 + γ)γ
√
Nη

(1− γ)3
σ

)2

+ 4
ηJ

1− γ


≤σ

[
1 +

(1 + γ)γ
√
Nη

(1− γ)3
σ +

√
ηJ

1− γ

]
. (223)

Note that when η ≤ η1, we have (recall that J = 2(1+γ)γ
(1−γ)2

√
N):

(1 + γ)γ
√
Nη

(1− γ)3
σ ≤ (1− σ)2

8
,

and
ηJ

1− γ
≤ (1− σ)2

4σ
.

Plugging the above two expressions into (223) yields

ρ(B(η)) ≤σ
(
1 + (1− σ)2/8 + (1− σ)/(2

√
σ)
)

≤σ (1 + (1− σ)/(8σ) + (1− σ)/(2σ)) =
3

8
σ +

5

8
< 1 .

46

Therefore, when η ≤ η1, we have∥∥∥Ω(t)
∥∥∥
2
≤ρ(B(η))

∥∥∥Ω(t−1)
∥∥∥
2
+ d2(η)

≤ · · · ≤ ρt(B(η))
∥∥∥Ω(0)

∥∥∥
2
+

t−1∑
i=0

ρi(B(η))
(1 + γ)γNσ

(1− γ)4
η

≤ρt(B(η))
∥∥∥Ω(0)

∥∥∥
2
+

2Nσ

(1− γ)4(1− ρ(B(η)))
η

≤
(
3

8
σ +

5

8

)t ∥∥∥Ω(0)
∥∥∥
2
+

16Nσ

3(1− γ)4(1− σ)
η . (224)

Combining the above inequality with the following fact:

∀n ∈ [N] :
∥∥∥log π(t)

n − log π̄(t)
∥∥∥
∞
≤ 2

∥∥∥log ξ(t)n − log ξ̄(t)
∥∥∥
∞
≤ Ω

(t)
1 ≤

∥∥∥Ω(t)
∥∥∥
2

where the first inequality uses (165), we obtain (84).

F.5 Proof of Lemma D.10

The bound on u(t+1)(s, a) is already established in Step 1 in Appendix F.1 and shall be omitted. As
usual we only highlight the key differences with the proof of Lemma D.8 due to approximation error.

Step 1: bound v(t+1)(s, a) =
∥∥T (t+1)(s, a)− q̂(t+1)(s, a)1N

∥∥
2
. Let q(t) :=

(
q
π
(t)
1

1 , · · · , qπ
(t)
N

N

)⊤
.

From (96), we have∥∥∥T (t+1)(s, a)− q̂(t+1)(s, a)1N

∥∥∥
2

=
∥∥∥W (

T (t)(s, a) + q(t+1)(s, a)− q(t)(s, a)
)
− q̂(t+1)(s, a)1N

∥∥∥
2

=
∥∥∥(WT (t)(s, a)− q̂(t)(s, a)1N

)
+W

(
q(t+1)(s, a)− q(t)(s, a)

)
+
(
q̂(t)(s, a)− q̂(t+1)(s, a)

)
1N

∥∥∥
2

≤ σ
∥∥T (t)(s, a)− q̂(t)(s, a)1N

∥∥
2
+ σ

∥∥∥(q(t+1)(s, a)− q(t)(s, a)
)
+
(
q̂(t)(s, a)− q̂(t+1)(s, a)

)
1N

∥∥∥
2

≤ σ
∥∥T (t)(s, a)− q̂(t)(s, a)1N

∥∥
2
+ σ

∥∥q(t+1)(s, a)− q(t)(s, a)
∥∥
2

≤ σ
∥∥T (t)(s, a)− q̂(t)(s, a)1N

∥∥
2
+ σ

∥∥Q(t+1)(s, a)−Q(t)(s, a)
∥∥
2
+ 2σ

√
N ∥e∥∞ . (225)

Note that (216) still holds for inexact FedNPG:∥∥∥Q(t+1)(s, a)−Q(t)(s, a)
∥∥∥
2
≤ (1 + γ)γ

(1− γ)2

√
N
∥∥∥w(t)

0

∥∥∥
∞

, (226)

where w
(t)
0 is defined in (217). We rewrite (218), the bound on w

(t)
0 (s, a), as

w
(t)
0 (s, a) ≤ 2

∥∥ log ξ(t)(s, a)− log ξ
(t)
(s, a)1N

∥∥
2

+
η

1− γ

∥∥T (t)(s, a)− q̂(t)(s, a)1N

∥∥
2
+

ησ

1− γ
·
√
N
∣∣q̂(t)(s, a)− V ⋆(s)

∣∣ . (227)

With the following bound

∀(s, a) ∈ S ×A :
∣∣q̂(t)(s, a)− V ⋆(s)

∣∣ ≤ ∥∥q̂(t) −Q
(t)∥∥

∞ +
1

1− γ

in mind, we write (218) as

w
(t)
0 (s, a) ≤ 2

∥∥u(t)
∥∥
∞ +

ησ

1− γ

∥∥v(t)∥∥∞ +
η

1− γ
·
√
N

(∥∥q̂(t) − q(t)
∥∥
∞ +

1

1− γ

)
.

Putting all pieces together, we obtain∥∥v(t+1)
∥∥
∞ ≤ σ

(
1 +

(1 + γ)γ
√
Nη

(1− γ)3
σ

)∥∥v(t)∥∥∞
+

(1 + γ)γ

(1− γ)2

√
Nσ

{
2
∥∥u(t)

∥∥
∞ +

η
√
N

(1− γ)2
+

η
√
N

1− γ
∥e∥∞

}
+ 2σ

√
N ∥e∥∞ .

(228)

47

Step 2: establish the descent equation. Note that Lemma F.6 directly applies by replacing Q̂(t)

with q̂(t):

ϕ(t+1)(η) ≤ ϕ(t)(η) +
2η

(1− γ)2

∥∥∥q̂(t) −Q
(t)
∥∥∥
∞
− η

(
V ⋆(ρ)− V

(t)
(ρ)
)
.

To bound the middle term, for all t ≥ 0, we have∥∥∥Q(t) − q̂(t)
∥∥∥
∞

=

∥∥∥∥∥ 1

N

N∑
n=1

Q
π(t)
n

n − 1

N

N∑
n=1

Qπ(t)

n

∥∥∥∥∥
∞

+
1

N

∥∥∥∥∥
N∑

n=0

(
q
π(t)
n

n −Q
π(t)
n

n

)∥∥∥∥∥
∞

≤ (1 + γ)γ

(1− γ)2
· 1
N

N∑
n=1

∥∥∥log ξ(t)n − log ξ
(t)
∥∥∥
∞

+
1

N

N∑
n=1

en

≤ (1 + γ)γ

(1− γ)2

∥∥∥u(t)
∥∥∥
∞

+ ∥e∥∞ . (229)

Hence, (102) is established by combining the above two inequalities.

Step 4: bound the consensus error. Similar as (224), here we have∥∥∥Ω(t)
∥∥∥
2
≤ρ(B(η))

∥∥∥Ω(t−1)
∥∥∥
2
+ (d2(η) + c2(η))

≤ · · · ≤ ρt(B(η))
∥∥∥Ω(0)

∥∥∥
2
+

t−1∑
i=0

ρi(B(η))

(
(1 + γ)γNσ

(1− γ)4
η +
√
Nσ

(
(1 + γ)γη

√
N

(1− γ)3
+ 2

)
∥e∥∞

)

≤ρt(B(η))
∥∥∥Ω(0)

∥∥∥
2
+

2

1− ρ(B(η))

(
Nσ

(1− γ)4
η +
√
Nσ

(
η
√
N

(1− γ)3
+ 1

)
∥e∥∞

)

≤
(
3

8
σ +

5

8

)t ∥∥∥Ω(0)
∥∥∥
2
+

16

3(1− σ)

(
Nσ

(1− γ)4
η +
√
Nσ

(
η
√
N

(1− γ)3
+ 1

)
∥e∥∞

)
,

(230)

which indicates 103.

G Proof of auxiliary lemmas

G.1 Proof of Lemma F.1

The first claim is easily verified as log ξ(t)n (s, ·) always deviate from log π
(t)
n (·|s) by a global constant

shift, as long as it holds for t = 0:

log ξ(t+1)
n (s, ·) =

N∑
n′=1

[W]n,n′

(
α log ξ

(t)
n′ (s, ·) + (1− α)T (t)

n (s, ·)/τ
)

= α

N∑
n′=1

[W]n,n′

(
α
(
log π

(t)
n′ (s, ·) + c

(t)
n′ (s)1|A|

)
+ (1− α)T (t)

n (s, ·)/τ
)

= α

N∑
n′=1

[W]n,n′

(
α log π

(t)
n′ (s, ·) + (1− α)T (t)

n (s, ·)/τ
)
− log z(t)n (s)1|A| + c(t+1)

n (s)1|A|

= log π(t+1)
n (·|s) + c(t+1)

n (s)1|A|,

where z
(t)
n is the normalization term (cf. line 5, Algorithm 2) and {c(t)n (s)} are some constants. To

prove the second claim, ∀t ≥ 0,∀(s, a) ∈ S ×A, let

T
(t)
(s, a) :=

1

N
1⊤T (t)(s, a) . (231)

Taking inner product with 1
N 1 for both sides of (UT) and using the double stochasticity property of

W , we get
T

(t+1)
(s, a) = T

(t)
(s, a) + Q̂(t+1)

τ (s, a)− Q̂(t)
τ (s, a) . (232)

48

By the choice of T (0) (line 2 of Algorithm 2), we have T
(0)

= Q̂
(0)
τ and hence by induction

∀t ≥ 0 : T
(t)

= Q̂(t)
τ . (233)

This implies

log ξ
(t+1)

(s, a)− α log ξ
(t)
(s, a) = (1− α)Q̂(t)

τ (s, a)/τ

= (1− α)T
(t)
(s, a)/τ

=
1

N
1⊤ log ξ(t+1)(s, a)− α

1

N
1⊤ log ξ(t)(s, a).

Therefore, to prove (161), it suffices to verify the claim for t = 0:

1

N
1⊤ log ξ(0)(s, a) = log ∥exp (Q⋆

τ (s, ·)/τ)∥1 +
1

N
1⊤ logπ(0)(a|s)− log

∥∥∥∥∥exp
(

1

N

N∑
n=1

log π(0)
n (·|s)

)∥∥∥∥∥
1

= log ∥exp (Q⋆
τ (s, ·)/τ)∥1 + log π(0)(a|s) = log ξ

(0)
(s, a) .

By taking logarithm over both sides of the definition of π(t+1) (cf. (27)), we get

log π(t+1)(a|s) = α log π(t)(a|s) + (1− α)Q̂(t)(s, a)/τ − z(t)(s) (234)

for some constant z(t)(s), which deviate from the update rule of log ξ
(t+1)

by a global constant shift
and hence verifies (162).

G.2 Proof of Lemma F.3

For notational simplicity, we let Qθ′

τ and Qθ
τ denote Q

πθ′
τ and Qπθ

τ , respectively. From (6a) we
immediately know that to bound

∥∥∥Qθ′

τ −Qθ
τ

∥∥∥
∞

, it suffices to control
∣∣V θ

τ (s) − V θ′

τ (s)
∣∣ for each

s ∈ S. By (4) we have∣∣V θ
τ (s)− V θ′

τ (s)
∣∣ ≤ ∣∣V θ(s)− V θ′

(s)
∣∣+ τ

∣∣H(s, πθ)−H(s, πθ′)
∣∣ , (235)

so in the following we bound both terms in the RHS of (235).

Step 1: bounding
∣∣H(s, πθ)−H(s, πθ′)

∣∣. We first bound
∣∣H(s, πθ)−H(s, πθ′)

∣∣ using the idea in
the proof of Lemma 14 in [MXSS20]. We let

θ(t) = θ + t(θ′ − θ) , ∀t ∈ R , (236)

and let h(t) ∈ R|S| be
∀s ∈ S : h(t)(s) := −

∑
a∈A

πθ(t)(a|s) log πθ(t)(a|s) . (237)

Note that
∥∥h(t)

∥∥
∞ ≤ log |A|. We also denote H(t) : S → R|A|×|A| by:

∀s ∈ S : H(t)(s) :=
∂πθ(·|s)

∂θ

∣∣∣∣
θ=θ(t)

= diag{πθ(t)(·|s)} − πθ(t)(·|s)πθ(t)(·|s)⊤ , (238)

then we have

∀s ∈ S :

∣∣∣∣dh(t)(s)

dt

∣∣∣∣ = ∣∣∣∣〈 ∂h(t)(s)

∂θ(t)(·|s)
, θ′(s, ·)− θ(s, ·)

〉∣∣∣∣
=
∣∣∣〈H(t)(s) log πθ(t)(·|s), θ′(s, ·)− θ(s, ·)

〉∣∣∣
≤
∥∥∥H(t)(s) log πθ(t)(·|s)

∥∥∥
1
∥θ′(s, ·)− θ(s, ·)∥∞ , (239)

where ∂h(t)(s)
∂θ(t)(·|s) stands for ∂h(t)(s)

∂θ(·|s)
∣∣
θ=θ(t) . The first term in (239) is further upper bounded as∥∥∥H(t)(s) log πθ(t)(·|s)

∥∥∥
1
=
∑
a∈A

πθ(t)(a|s)
∣∣log πθ(t)(a|s)− πθ(t)(·|s)⊤ log πθ(t)(·|s)

∣∣
≤
∑
a∈A

πθ(t)(a|s)
(
|log πθ(t)(a|s)|+

∣∣πθ(t)(·|s)⊤ log πθ(t)(·|s)
∣∣)

= −2
∑
a∈A

πθ(t)(a, s) log πθ(t)(a|s) ≤ 2 log |A| .

49

By Lagrange mean value theorem, there exists t ∈ (0, 1) such that

|h1(s)− h0(s)| =
∣∣∣∣dh(t)(s)

dt

∣∣∣∣ ≤ 2 log |A| ∥θ′(s, ·)− θ(s, ·)∥∞ ,

where the inequality follows from (239) and the above inequality. Combining (5) with the above
inequality, we arrive at ∣∣H(s, πθ)−H(s, πθ′)

∣∣ ≤ 2 log |A|
1− γ

∥θ′ − θ∥∞ . (240)

Step 2: bounding
∣∣V θ(s)− V θ′

(s)
∣∣. Similar to the previous proof, we bound

∣∣V θ(s)− V θ′
(s)
∣∣ by

bounding
∣∣∣∣dV θ(t)

dt (s)

∣∣∣∣. By Bellman’s consistency equation, the value function of πθ(t) is given by

V θ(t)

(s) =
∑
a∈A

πθ(t)(a|s)r(s, a) + γ
∑
a

πθα(a|s)
∑
s′∈S
P(s′|s, a)V θ(t)

(s′) ,

which can be represented in a matrix-vector form as

V θ(t)
⋆ (s) = e⊤s Mtrt , (241)

where es ∈ R|S| is a one-hot vector whose s-th entry is 1,

Mt := (I − γPt)
−1 , (242)

with Pt ∈ R|S|×|S| denoting the induced state transition matrix by πθ(t)

Pt(s, s
′) =

∑
a∈A

πθ(t)(a|s)P(s′|s, a) , (243)

and rt ∈ R|S| is given by

∀s ∈ S : rt(s) :=
∑
a∈A

πθ(t)(a|s)r(s, a) . (244)

Taking derivative w.r.t. t in (241), we obtain [PP08]

dV θ(t)

(s)

dt
= γ · e⊤s Mt

dPt

dt
Mtrt + e⊤s Mt

drt
dt

. (245)

We now calculate each term respectively.

• For the first term, it follows that∣∣∣∣γ · e⊤s Mt
dPt

dt
Mtrt

∣∣∣∣ ≤ γ

∥∥∥∥Mt
dPt

dt
Mtrt

∥∥∥∥
∞

≤ γ

1− γ

∥∥∥∥dPt

dt
Mtrt

∥∥∥∥
∞

≤ 2γ

1− γ
∥Mtrt∥∞ ∥θ

′ − θ∥∞ (246)

≤ 2γ

(1− γ)2
∥rt∥∞ ∥θ

′ − θ∥∞

≤ 2γ

(1− γ)2
∥θ′ − θ∥∞ . (247)

where the second and fourth lines use the fact ∥Mt∥1 ≤ 1/(1 − γ) [LWCC23a, Lemma
10], and the last line follow from

∥rt∥∞ = max
s∈S

∣∣∣∣∣∑
a∈A

πθ(t)(a|s)r(s, a)

∣∣∣∣∣ ≤ 1.

We defer the proof of (246) to the end of proof.

50

• For the second term, it follows that∣∣∣∣e⊤s Mt
drt
dt

∣∣∣∣ ≤ 1

1− γ

∥∥∥∥drtdt

∥∥∥∥
∞
≤ 1

1− γ
∥θ′ − θ∥∞ . (248)

where the first inequality follows again from ∥Mt∥1 ≤ 1/(1−γ), and the second inequality
follows from∥∥∥∥drtdt

∥∥∥∥
∞

= max
s∈S

∣∣∣∣drt(s)dt

∣∣∣∣ = max
s∈S

∣∣∣∣〈∂πθ(t)(·|s)⊤r(s, ·)
∂θ(t)(s, ·)

, θ′(s, ·)− θ(s, ·)
〉∣∣∣∣

≤ max
s∈S

∥∥∥∥∂πθ(t)(·|s)⊤

∂θ(t)(s, ·)
r(s, ·)

∥∥∥∥
1

∥θ′(s, ·)− θ(s, ·)∥∞

= max
s∈S

(∑
a∈A

πθ(t)(a|s)
∣∣r(s, a)− πθ(t)(·|s)⊤r(s, ·)

∣∣) ∥θ′(s, ·)− θ(s, ·)∥∞

≤ max
s∈S

max
a∈A

∣∣r(s, a)− πθ(t)(·|s)⊤r(s, ·)
∣∣︸ ︷︷ ︸

≤1 since r(s,a)∈[0,1]

∥θ′(s, ·)− θ(s, ·)∥∞

≤ max
s∈S
∥θ′(s, ·)− θ(s, ·)∥∞ = ∥θ′ − θ∥∞ . (249)

Plugging the above two inequalities into (245) and using Lagrange mean value theorem, we have∣∣V θ(s)− V θ′
(s)
∣∣ ≤ 1 + γ

(1− γ)2
∥θ′ − θ∥∞ . (250)

Step 3: sum up. Combining (250), (240) and (235), we have

∀s ∈ S :
∣∣V θ

τ (s)− V θ′

τ (s)
∣∣ ≤ 1 + γ + 2τ(1− γ) log |A|

(1− γ)2
∥log π − log π′∥∞ . (251)

Combining (251) and (6a), (170) immediately follows.

Proof of (246). For any vector x ∈ R|S|, we have[
dPt

dt
x

]
s

=
∑
s′∈S

∑
a∈A

dπθ(t)(a|s)
dt

P(s′|s, a)x(s′) ,

from which we can bound the l∞ norm as∥∥∥∥dPt

dt
x

∥∥∥∥
∞
≤ max

s

∑
a∈A

∑
s′∈S
P(s′|s, a)

∣∣∣∣dπθ(t)(a|s)
dt

∣∣∣∣ ∥x∥∞
= max

s

∑
a∈A

∣∣∣∣dπθ(t)(a|s)
dt

∣∣∣∣ ∥x∥∞
≤ 2 ∥θ′ − θ∥∞ ∥x∥∞ (252)

as desired, where the last line follows from the following fact:∑
a∈A

∣∣∣∣dπθ(t)(a|s)
dt

∣∣∣∣ = ∑
a∈A

∣∣∣∣〈∂πθ(t)(a|s)
∂θ(t)

, θ′ − θ

〉∣∣∣∣
=
∑
a∈A

∣∣∣∣〈∂πθ(t)(a|s)
∂θ(t)(s, ·)

, θ′(s, ·)− θ(s, ·)
〉∣∣∣∣

=
∑
a∈A

πθ(t)(a|s)
∣∣(θ′(s, a)− θ(s, a))− πθ(t)(·|s)⊤ (θ′(s, ·)− θ(s, ·))

∣∣
≤ max

a
|θ′(s, a)− θ(s, a)|+

∣∣πθ(t)(·|s)⊤ (θ′(s, ·)− θ(s, ·))
∣∣

≤ 2 ∥θ′ − θ∥∞ .

51

G.3 Proof of Lemma F.4

To simplify the notation, we denote

δ(t) := Q̂(t)
τ −Q

(t)

τ . (253)

We first rearrange the terms of (234) and obtain

−τ log π(t)(a|s)+
(
Q

(t)

τ (s, a) + δ(t)(s, a)
)
=

1− γ

η

(
log π(t+1)(a|s)− log π(t)(a|s)

)
+
1− γ

η
z(t)(s) .

(254)
This in turn allows us to express V

(t)

τ (s0) for any s0 ∈ S as follows

V
(t)

τ (s0) = E
a0∼π(t)(·|s0)

[
−τ log π(t)(a0|s0) +Q

(t)

τ (s0, a0)
]

= E
a0∼π(t)(·|s0)

[
1− γ

η
z(t)(s0)

]
+ E

a0∼π(t)(·|s0)

[
1− γ

η

(
log π(t+1)(a0|s0)− log π(t)(a0|s0)

)
− δ(t)(s0, a0)

]
=

1− γ

η
z(t)(s0)−

1− γ

η
KL
(
π(t)(·|s0) ∥π(t+1)(·|s0)

)
− E

a0∼π(t)(·|s0)

[
δ(t)(s0, a0)

]
= E

a0∼π(t+1)(·|s0)

[
1− γ

η
z(t)(s0)

]
− 1− γ

η
KL
(
π(t)(·|s0) ∥π(t+1)(·|s0)

)
− E

a0∼π(t)(·|s0)

[
δ(t)(s0, a0)

]
,

(255)

where the first identity makes use of (6b), the second line follows from (254). Invoking (6b) again to
rewrite the z(s0) appearing in the first term of (255), we reach

V
(t)

τ (s0)

= E
a0∼π(t+1)(·|s0)

[
−τ log π(t+1)(a0|s0) +Q

(t)

τ (s0, a0) +

(
τ − 1− γ

η

)(
log π(t+1)(a0|s0)− log π(t)(a|s)

)]
− 1− γ

η
KL
(
π(t)(·|s0) ∥π(t+1)(·|s0)

)
− E

a0∼π(t)(·|s0)

[
δ(t)(s0, a0)

]
+ E

a0∼π(t+1)(·|s0)

[
δ(t)(s0, a0)

]
= E

a0∼π(t+1)(·|s0),

s1∼P (·|s0,a0)

[
−τ log π(t+1)(a0|s0) + r(s0, a0) + γV

(t)

τ (s0)
]

−
(
1− γ

η
− τ

)
KL
(
π(t+1)(·|s0) ∥π(t)(·|s0)

)
− 1− γ

η
KL
(
π(t)(·|s0) ∥π(t+1)(·|s0)

)
− E

a0∼π(t)(·|s0)

[
δ(t)(s0, a0)

]
+ E

a0∼π(t+1)(·|s0)

[
δ(t)(s0, a0)

]
. (256)

Note that for any (s0, a0) ∈ S ×A, we have

− E
a0∼π(t)(·|s0)

[
δ(t)(s0, a0)

]
+ E

a0∼π(t+1)(·|s0)

[
δ(t)(s0, a0)

]
=
∑
a0∈A

(
π(t+1)(a0|s0)− π(t)(a0|s0)

)
δ(t)(s0, a0)

≤
∥∥π(t+1)(·|s0)− π(t)(·|s0)

∥∥
1

∥∥δ(t)∥∥∞ ≤ 2
∥∥δ(t)∥∥∞ . (257)

52

To finish up, applying (256) recursively to expand V
(t)

τ (si), i ≥ 1 and making use of (257), we arrive
at

V
(t)

τ (s0)

≤
∞∑
i=1

γi · 2
∥∥∥δ(t)∥∥∥

∞
+ E

ai∼π(t+1)(·|si),
si+1∼P (·|si,ai),∀i≥0

[∞∑
i=1

γi
{
r(si, ai)− τ log π(t+1)(ai|si)

}

−
∞∑
i=1

γi

{(
1− γ

η
− τ

)
KL
(
π(t+1)(·|si) ∥π(t)(·|si)

)
+

1− γ

η
KL
(
π(t)(·|si) ∥π(t+1)(·|si)

)}]
=

2

1− γ

∥∥∥δ(t)∥∥∥
∞

+ V
(t+1)

τ (s0)

− E
s∼dπ(t+1)

s0

[(
1

η
− τ

1− γ

)
KL
(
π(t+1)(·|si) ∥π(t)(·|si)

)
+

1

η
KL
(
π(t)(·|si) ∥π(t+1)(·|si)

)]
,

(258)

where the third line follows since V
(t+1)

τ can be viewed as the value function of π(t+1) with adjusted
rewards r(t+1)(s, a) := r(s, a)− τ log π(t+1)(s|a). And (188) follows immediately from the above
inequality (258). By (6a) we can easily see that (189) is a consequence of (188).

G.4 Proof of Lemma F.6

We first introduce the famous performance difference lemma which will be used in our proof.

Lemma G.1 (Performance difference lemma). For any policy π, π′ ∈ ∆(A)S and ρ ∈ ∆(S), we
have

V π(ρ)− V π′
(ρ) =

1

1− γ
E(s,a)∼d̄π

[
Aπ′

(s, a)
]

(259)

=
1

1− γ
Es∼dπ

[
⟨Qπ′

(s), π(s)− π′(s)⟩
]
. (260)

Proof. See Lemma 3 in [YDG+22].

For all t ≥ 0, we define the advantage function A
(t)

as:

∀(s, a) ∈ S ×A : A
(t)
(s, a) := Q

(t)
(s, a)− V

(t)
(s) . (261)

Then for Alg. 1, the update rule of π (Eq. (234)) can be written as

log π(t+1)(a|s) = log π(t)(a|s) + η

1− γ

(
A

(t)
(s, a) + δ(t)(s, a)

)
− log ẑ(t)(s) , (262)

where δ(t) is defined in (253) and

log ẑ(t)(s) = log
∑
a′∈A

π(t)(a′|s) exp
{

η

1− γ

(
A

(t)
(s, a′) + δ(t)(s, a′)

)}
≥
∑
a′∈A

π(t)(a′|s) log exp
{

η

1− γ

(
A

(t)
(s, a′) + δ(t)(s, a′)

)}
=

η

1− γ

∑
a′∈A

π(t)(a′|s)
(
A

(t)
(s, a′) + δ(t)(s, a′)

)
=

η

1− γ

∑
a′∈A

π(t)(a′|s)δ(t)(s, a′) ≥ − η

1− γ

∥∥∥δ(t)∥∥∥
∞

, (263)

where the first inequality follows by Jensen’s inequality on the concave function log x and the last
equality uses

∑
a′∈A π(t)(a′|s)A(t)

(s, a′) = 0.

53

For all starting state distribution µ, we use d(t+1) as shorthand for dπ
(t+1)

µ , the performance difference
lemma (Lemma G.1) implies:

V
(t+1)

(µ)− V
(t)
(µ)

=
1

1− γ
Es∼d(t+1)

∑
a∈A

π(t+1)(a|s)
(
A

(t)
(s, a) + δ(t)(s, a)

)
− 1

1− γ
Es∼d(t+1)Ea∼π(t+1)(·|s)

[
δ(t)(s, a)

]
=

1

η
Es∼d(t+1)

∑
a∈A

π(t+1)(a|s) log π(t+1)(a|s)ẑ(t)(s)
π(t)(a|s)

− 1

1− γ
Es∼d(t+1)Ea∼π(t+1)(·|s)

[
δ(t)(s, a)

]
=

1

η
Es∼d(t+1)KL

(
π(t+1)(·|s) ∥π(t)(·|s)

)
+

1

η
Es∼d(t+1) log ẑ(t)(s)−

1

1− γ
Es∼d(t+1)Ea∼π(t+1)(·|s)

[
δ(t)(s, a)

]
≥ 1

η
Es∼d(t+1)

(
log ẑ(t)(s) +

η

1− γ

∥∥δ(t)∥∥∞)− 2

1− γ

∥∥δ(t)∥∥∞ ,

from which we can see that

V
(t+1)

(µ)− V
(t)
(µ) ≥ − 2

1− γ

∥∥δ(t)∥∥∞ , (264)

where we use (263), and that

V
(t+1)

(µ)− V
(t)
(µ) ≥ 1− γ

η
Es∼µ

(
log ẑ(t)(s) +

η

1− γ

∥∥δ(t)∥∥∞)− 2

1− γ

∥∥δ(t)∥∥∞ , (265)

which follows from d(t+1) = dπ
(t+1)

µ ≥ (1 − γ)µ and the fact that log ẑ(t)(s) + η
1−γ

∥∥δ(t)∥∥∞ ≥ 0

(by (263)).

For any fixed ρ, we use d⋆ as shorthand for dπ
⋆

ρ . By the performance difference lemma (Lemma G.1),

V ⋆(ρ)− V
(t)
(ρ)

=
1

1− γ
Es∼d⋆

∑
a∈A

π⋆(a|s)
(
A

(t)
(s, a) + δ(t)(s, a)

)
− 1

1− γ
Es∼d⋆Ea∼π⋆(·|s)

[
δ(t)(s, a)

]
=

1

η
Es∼d⋆

∑
a∈A

π⋆(a|s) log π(t+1)(a|s)ẑ(t)(s)
π(t)(a|s)

− 1

1− γ
Es∼d⋆Ea∼π⋆(·|s)

[
δ(t)(s, a)

]
=

1

η
Es∼d⋆

(
KL
(
π⋆(·|s) ∥π(t)(·|s)

)
− KL

(
π⋆(·|s) ∥π(t+1)(·|s)

)
+ log ẑ(t)(s)

)
− 1

1− γ
Es∼d⋆Ea∼π⋆(·|s)

[
δ(t)(s, a)

]
≤ 1

η
Es∼d⋆

(
KL
(
π⋆(·|s) ∥π(t)(·|s)

)
− KL

(
π⋆(·|s) ∥π(t+1)(·|s)

)
+

(
log ẑ(t)(s) +

η

1− γ

∥∥δ(t)∥∥∞)) ,

(266)

where we use (262) in the second equality.

By applying (265) with µ = d⋆ as the initial state distribution, we have

1

η
Es∼µ

(
log ẑ(t)(s) +

η

1− γ

∥∥δ(t)∥∥∞) ≤ 1

1− γ

(
V

(t+1)
(d⋆)− V

(t)
(d⋆)

)
+

2

(1− γ)2
∥∥δ(t)∥∥∞ .

Plugging the above equation into (266), we obtain

V ⋆(ρ)− V
(t)
(ρ) ≤ 1

η
Es∼d⋆

(
KL
(
π⋆(·|s) ∥π(t)(·|s)

)
− KL

(
π⋆(·|s) ∥π(t+1)(·|s)

))
+

1

1− γ

(
V

(t+1)
(d⋆)− V

(t)
(d⋆)

)
+

2

(1− γ)2
∥∥δ(t)∥∥∞ ,

which gives Lemma F.6.

G.5 Proof of Theorem E.3

The proof of Theorem E.3 could be found in Appendix C.5 in [YDG+22]. We present it for
completeness. To prove Theorem E.3, we need the following Theorem G.2.

54

Theorem G.2 (Theorem 1 in [BM13]). Consider the following assaumptions:

(i) The observations (ak, bk) ∈ Rp × Rp are independent and identically distributed.

(ii) E
[
∥ak∥2

]
8 and E

[
∥bk∥2

]
are finite. The covariance E

[
aka

⊤
k

]
is invertible.

(iii) The global minimum of g(w) = 1
2E
[
⟨w,ak⟩2 − 2⟨w, bk⟩

]
is attained at a certain w⋆ ∈ Rp.

Let ∆k = bk − ⟨w⋆,ak⟩ak denote the residual. We have E[∆k] = 0.

(iv) ∃R > 0 and σ > 0 such that E
[
∆k∆

⊤
k

]
≤ σ2E

[
aka

⊤
k

]
and E

[
∥ak∥2 aka

⊤
k

]
≤

R2E
[
aka

⊤
k

]
.

Consider the stochastic gradient recursion
wk+1 = wk − η (⟨wk,ak⟩ak − bk)

started from w0 ∈ Rp. Let wout =
1
K

∑K
k=1 wk. When η = 1

4R2 , we have

E [g(wout)− g(w⋆)] ≤ 2

K
(σ
√
p+R ∥w0 −w⋆∥)2. (267)

In the proof of Theorem E.3 we’ll show that for Algorithm 4, the assumptions in Theorem G.2 are all
satisfied and thus we can use the result (267).

Proof of Theorem E.3. We let ak and bk in Theorem G.2 be ϕ(s, a) and Q̂ξϕ(s, a) in Algo-
rithm 4, respectively. And we let ∥·∥ = ∥·∥2 in Theorem G.2. Since the observations(
ϕ(s, a), Q̂ξ(s, a)ϕ(s, a)

)
∈ Rp × Rp are i.i.d., (i) is satisfied.

As we assume ∥ϕ(s, a)∥2 ≤ Cϕ, E
[
∥ϕ(s, a)∥22

]
is finite. From Assumption 4.1 we know that

E
[
ϕ(s, a)ϕ(s, a)⊤

]
is invertible.

Let H be the length of trajectory for estimating Q̂ξ(s, a). Then
(
Q̂ξ(s, a)

)2
is bounded by

E
[(

Q̂ξ(s, a)
)2]

= E
(s,a)∼d̃

πξ
ν

 ∞∑
τ=0

Pr(H = τ)E

(τ∑
t=0

r(st, at)

)2 ∣∣∣∣H = τ, s0 = s, a0 = a


= E

(s,a)∼d̃
πξ
ν

(1− γ)

∞∑
τ=0

γτE

(τ∑
t=0

r(st, at)

)2 ∣∣∣∣H = τ, s0 = s, a0 = a


≤ E

(s,a)∼d̃
πξ
ν

[
(1− γ)

∞∑
τ=0

γτ (τ + 1)2

]
≤ 2

(1− γ)2
, (268)

from which we deduce E
[∥∥∥Q̂ξ(s, a)ϕ(s, a)

∥∥∥2
2

]
≤ C2

ϕE
[
Q̂ξ(s, a)

2
]

is bounded. Thus (ii) holds.

Furthermore, we introduce the residual

∆ :=
(
Q̂ξ(s, a)− ϕ(s, a)⊤w⋆

)
ϕ(s, a) , (269)

then from [YDG+22, Lemma 7] we know that E[∆] = 1
2∇wℓ(w

⋆, Q̂ξ, d
πξ
ν) = 0, which gives (iii).

To verify (iv), we let R = Cϕ in Theorem G.2, then E
[
∥ϕ(s, a)∥22 ϕ(s, a)ϕ(s, a)⊤

]
≤

C2
ϕE
[
ϕ(s, a)ϕ(s, a)⊤

]
. Also note that

w⋆ =
(
E
(s,a)∼d̃

πξ
ν

[
ϕ(s, a)ϕ(s, a)⊤

])†
E
(s,a)∼d̃

πξ
ν

[
Q̂ξ(s, a)ϕ(s, a)

]
≤ 1

1− γ

(
E(s,a)∼ν

[
ϕ(s, a)ϕ(s, a)⊤

])† E
(s,a)∼d̃

πξ
ν

[
Q̂ξ(s, a)ϕ(s, a)

]
, (270)

8Here ∥·∥ could be any norm in Rp.

55

from which we deduce

∥w⋆∥2 ≤
B

µ(1− γ)2
. (271)

E
[(

Q̂ξ(s, a)− ϕ(s, a)⊤w⋆
)2
|s, a

]
= E

[(
Q̂ξ(s, a)

)2
|s, a

]
− 2Qξ(s, a)ϕ(s, a)

⊤w⋆ + (ϕ(s, a)⊤w⋆)2

(272)

≤ 2

(1− γ)2
+

2C2
ϕ

µ(1− γ)3
+

C4
ϕ

µ2(1− γ)4

≤ 2

(1− γ)2

(
C2

ϕ

µ(1− γ)
+ 1

)2

. (273)

The above expression implies

E
[
∆∆⊤] = E

(s,a)∼d̃
πξ
ν

[(
Q̂ξ(s, a)− ϕ(s, a)⊤w⋆

)2
ϕ(s, a)ϕ(s, a)⊤

∣∣s, a]
= E

(s,a)∼d̃
πξ
ν

[
E
[(

Q̂ξ(s, a)− ϕ(s, a)⊤w⋆
)2 ∣∣s, a]ϕ(s, a)ϕ(s, a)⊤]

≤


√
2

1− γ

(
C2

ϕ

µ(1− γ)
+ 1

)
︸ ︷︷ ︸

σ

E[ϕ(s, a)ϕ(s, a)⊤] . (274)

Therefore, (iv) is verified.

Thus by (267), with stepsize β = 1
2C2

ϕ
, initialization w0 = 0 and K steps of critic updates, we have

E
[
ℓ
(
wout, Qξ, d̃ξ

)]
− ℓ

(
w⋆, Qξ, d̃ξ

)
≤ 4

K
(σ
√
p+ Cϕ ∥w⋆∥2)

2

≤ 4

K

(√
2p

1− γ

(
C2

ϕ

µ(1− γ)
+ 1

)
+

C2
ϕ

µ(1− γ)2

)2

,

which gives (113).

G.6 Proof of Lemma E.7

Proof of Lemma E.7. For notational simplicity we let V ξ, V ξ′ denote V fξ , V fξ′ , resp. Same as in
Lemma F.3, We define ξ(t) = ξ + t(ξ′ − ξ) and define Pt,Mt, rt by replacing πξ(t) with fξ(t) in
(243),(242) and (244), respectively. Define

ϕ̄ξ(s, a) = ϕ(s, a)− Ea′∼f
ξ(t)

[ϕ(s, a′)],

then we have
∂fξ(a|s)

∂ξ
= fξ(a|s)ϕ̄ξ(s, a) . (275)

Analogous to (252), we have∥∥∥∥dPt

dt
x

∥∥∥∥
∞
≤ max

s

∑
a∈A

∑
s′∈S
P(s′|s, a)

∣∣∣∣dπξ(t)(a|s)
dt

∣∣∣∣ ∥x∥∞
= max

s

∑
a∈A

∣∣∣∣dπξ(t)(a|s)
dt

∣∣∣∣ ∥x∥∞
≤ 2Cϕ ∥ξ′ − ξ∥2 ∥x∥∞

56

where the last line follows is due to∑
a∈A

∣∣∣∣dfξ(t)(a|s)dt

∣∣∣∣ = ∑
a∈A

∣∣∣∣〈∂fξ(t)(a|s)
∂ξ(t)

, ξ′ − ξ

〉∣∣∣∣
=
∑
a∈A

fξ(t)(a|s)
∣∣⟨ϕ̄ξ(s, a), ξ

′ − ξ⟩
∣∣

≤
∑
a∈A

fξ(t)(a|s)
∥∥ϕ̄ξ(s, a)

∥∥
2
∥ξ′ − ξ∥2

≤ 2Cϕ ∥ξ′ − ξ∥∞ .

Same as (245) in Lemma F.3, we have

dV ξ(t)(s)

dt
= γ · e⊤s Mt

dPt

dt
Mtrt + e⊤s Mt

drt
dt

. (276)

And similar to (249), we deduce∥∥∥∥drtdt

∥∥∥∥
∞

= max
s∈S

∣∣∣∣drt(s)dt

∣∣∣∣ = max
s∈S

∣∣∣∣∣
〈
∂fξ(t)(·|s)⊤r(s, ·)

∂ξ(t)
, ξ′ − ξ

〉∣∣∣∣∣
=

∣∣∣∣∣⟨∑
a∈A

fξ(a|s)ϕ̄ξ(s, a)r(s, a), ξ
′ − ξ⟩

∣∣∣∣∣
=
∑
a∈A

fξ(a|s)r(s, a)
∣∣⟨ϕ̄ξ(s, a), ξ

′ − ξ⟩
∣∣

≤ 2Cϕ ∥ξ′ − ξ∥2 ,

which gives ∣∣∣∣e⊤s Mt
drt
dt

∣∣∣∣ ≤ 1

1− γ

∥∥∥∥drtdt

∥∥∥∥
∞
≤ 2Cϕ

1− γ
∥ξ′ − ξ∥2 . (277)

Following the same steps in (247), we deduce∣∣∣∣γ · e⊤s Mt
dPt

dt
Mtrt

∣∣∣∣ ≤ 2γCϕ

(1− γ)2
∥ξ′ − ξ∥2 . (278)

Combining the above two expressions (277) and (278) with (276), we deduce

|V ξ(s)− V ξ′(s)| ≤ 2Cϕ(1 + γ)

(1− γ)2
∥ξ′ − ξ∥2 , (279)

which implies

∀(s, a) ∈ S ×A : |Qξ(s, a)−Qξ′(s, a)| ≤ 2Cϕγ(1 + γ)

(1− γ)2
∥ξ′ − ξ∥2 . (280)

G.7 Proof of Lemma E.8

This proof is inspired by the proof of [YDG+22, Theorem 1]. To give the proof, we first introduce
the following three-point descent lemma:
Lemma G.3 (Three-point descent lemma Lemma 6 in [Xia22]). Suppose that C ⊂ Rm is a closed
convex set, g : C → R is a proper, closed, convex function, Dh(·, ·) is the Bregman divergence
generated by a function h of Lengendre type and rint domh ∩ C ̸= ∅. For any x ∈ rintdomh, let

x+ ∈ arg min
u∈domh∩C

{f(u) +Dh(u, x)} ,

then x+ ∈ domh ∩ C and for any u ∈ domh ∩ C, it holds that

f(x+) +Dh(x
+, x) ≤ f(u) +Dh(u, x)−Dh(u, x

+) . (281)

57

Proof of Lemma E.8. By the update rule (114) and the parameterization (24) we know know that

∀(s, a) ∈ S ×A : f̄ (t+1)(a|s) = 1

Z(t)(s)
f (t)(a|s) exp

(
αϕ⊤(s, a)ŵ(t)

)
,

where Z(t)(s) is a normalization coefficient to ensure
∑

a∈A f (t+1)(s, a) = 1 for each s ∈ S . Note
that the above π(t+1) could also be obtained by a mirror descent update:

∀s ∈ S : f (t+1)(·|s) = arg min
g∈∆(A)

{
−α⟨Φ(s)ŵ(t), g⟩+D(g, f (t)(·|s))

}
, (282)

where Φ(s) ∈ R|A|×p is a matrix with rows ϕ⊤(s, a) ∈ Rp for a ∈ A, and D(·, ·) denotes the KL
divergence defined in (109).

We apply the three-point descent lemma—Lemma G.3 with C = ∆(A), f = −α⟨Φ(s)ŵ(t), ·⟩ and
h : ∆(A) → R is the negative entropy with h(q) =

∑
a∈A q(a) log q(a) and deduce that for any

q ∈ ∆(A), we have

−α⟨Φ(s)ŵ(t), f̄ (t+1)(·|s)⟩+D
(
f̄ (t+1)(·|s), f̄ (t)(·|s)

)
≤ −α⟨Φ(s)ŵ(t), q⟩+D

(
q, f̄ (t)(·|s)

)
−D

(
q, f̄ (t+1)(·|s)

)
.

Rearranging terms and dividing both sides by −α, we obtain

⟨Φ(s)ŵ(t), f̄ (t+1)(·|s)−q⟩− 1

α
D
(
f̄ (t+1)(·|s), f̄ (t)(·|s)

)
≥ − 1

α
D
(
q, f̄ (t)(·|s)

)
+
1

α
D
(
q, f̄ (t+1)(·|s)

)
.

(283)

Let q = f̄ (t)(·|s) and π⋆(·|s),resp., we have the following two inequalities:

⟨Φ(s)ŵ(t), f̄ (t+1)(·|s)−f̄ (t)(·|s)⟩ ≥ 1

α
D
(
f̄ (t+1)(·|s), f̄ (t)(·|s)

)
+
1

α
D
(
f̄ (t)(·|s), f̄ (t+1)(·|s)

)
≥ 0 .

(284)

⟨Φ(s)ŵ(t), f̄ (t+1)(·|s)− f̄ (t)(·|s)⟩+ ⟨Φ(s)ŵ(t), f̄ (t)(·|s)− π⋆(·|s)⟩

≥ − 1

α
D
(
π⋆(·|s), f̄ (t)(·|s)

)
+

1

α
D
(
π⋆(·|s), f̄ (t+1)(·|s)

)
. (285)

Taking expectation w.r.t. distribution d⋆ on both sides of (285), we arrive at

Es∼d⋆

[
⟨Φ(s)ŵ(t), f̄ (t+1)(·|s)− f̄ (t)(·|s)⟩

]
+Es∼d⋆

[
⟨Φ(s)ŵ(t), f̄ (t)(·|s)− π⋆(·|s)⟩

]
≥ 1

α
(D

(t+1)
⋆ −D(t)

⋆) .

(286)

To simplify the notation we let Q̄(t) and V̄ (t) denote Qf̄(t)

and V f̄(t)

, respectively. Note that the first
expectation in the above expression (286) could be upper bounded as follows:

Es∼d⋆

[
⟨Φ(s)ŵ(t), f̄ (t+1)(·|s)− f̄ (t)(·|s)⟩

]
=
∑
s∈S

d⋆(s)⟨Φ(s)ŵ(t), f̄ (t+1)(·|s)− f̄ (t)(·|s)⟩

=
∑
s∈S

d⋆(s)

df̄(k+1)(s)
df̄

(k+1)

(s)⟨Φ(s)ŵ(t), f̄ (t+1)(·|s)− f̄ (t)(·|s)⟩

≤ ϑρ

∑
s∈S

df̄
(k+1)

(s)⟨Φ(s)ŵ(t), f̄ (t+1)(·|s)− f̄ (t)(·|s)⟩

= ϑρ

∑
s∈S

df̄
(k+1)

(s)⟨Q̄(t)(s, ·), f̄ (t+1)(·|s)− f̄ (t)(·|s)⟩+ ϑρ

∑
s∈S

df̄
(k+1)

(s)⟨Φ̄(s)ŵ(t) − Q̄(t)(s, ·), f̄ (t+1)(·|s)− f̄ (t)(·|s)⟩

= ϑρ(1− γ)
(
V̄ (t+1)(ρ)− V̄ (t)(ρ)

)
+ ϑρ

∑
s∈S

df̄
(k+1)

(s)⟨Φ̄(s)ŵ(t) − Q̄(t)(s, ·), f̄ (t+1)(·|s)− f̄ (t)(·|s)⟩ ,

(287)

58

where the first inequality uses (??) and the definition of ϑρ (107) and the last line follows from (260)
in Lemma G.1. We separate the second term of the last line into four terms as follows:∑
s∈S

df̄
(t+1)

(s)⟨Φ̄(s)ŵ(t) − Q̄(t)(s, ·), f̄ (t+1)(·|s)− f̄ (t)(·|s)⟩

=
∑
s∈S

∑
a∈A

df̄
(t+1)

(s)f̄ (t+1)(a|s)ϕ⊤(s, a)(ŵ(t) − ŵ
(t)
⋆)︸ ︷︷ ︸

(I)

+
∑
s∈S

∑
a∈A

df̄
(t+1)

(s)f̄ (t+1)(a|s)
(
ϕ⊤(s, a)ŵ

(t)
⋆ − Q̄(t)(s, a)

)
︸ ︷︷ ︸

(II)

+
∑
s∈S

∑
a∈A

df̄
(t+1)

(s)f̄ (t)(a|s)ϕ⊤(s, a)(ŵ
(t)
⋆ − ŵ(t))︸ ︷︷ ︸

(III)

+
∑
s∈S

∑
a∈A

df̄
(t+1)

(s)f̄ (t)(a|s)
(
Q̄(t)(s, a)− ϕ⊤(s, a)ŵ

(t)
⋆

)
︸ ︷︷ ︸

(IV)

.

(288)

Applying again Lemma G.1, we deduce the equivalent form of the second expectation in (286) as
follows:

Es∼d⋆

[
⟨Φ(s)ŵ(t), f̄ (t)(·|s)− π⋆(·|s)⟩

]
= Es∼d⋆

[
⟨Q̄(t)(s, ·), f̄ (t)(·|s)− π⋆(·|s)⟩

]
+ Es∼d⋆

[
⟨Φ(s)ŵ(t) − Q̄(t)(s, ·), f̄ (t)(·|s)− π⋆(·|s)⟩

]
= (1− γ)

(
V̄ (t)(ρ)− V π⋆

(ρ)
)
+ Es∼d⋆

[
⟨Φ(s)ŵ(t) − Q̄(t)(s, ·), f̄ (t)(·|s)− π⋆(·|s)⟩

]
, (289)

where the second term of the last line could be decomposed into the following terms:

Es∼d⋆

[
⟨Φ(s)ŵ(t) − Q̄(t)(s, ·), f̄ (t)(·|s)− π⋆(·|s)⟩

]
=
∑
s∈S

∑
a∈A

d⋆(s)f̄ (t)(a|s)ϕ⊤(s, a)(ŵ(t) − ŵ
(t)
⋆)︸ ︷︷ ︸

(A)

+
∑
s∈S

∑
a∈A

d⋆(s)f̄ (t)(a|s)
(
ϕ⊤(s, a)ŵ

(t)
⋆ − Q̄(t)(s, a)

)
︸ ︷︷ ︸

(B)

+
∑
s∈S

∑
a∈A

d⋆(s)π⋆(a|s)ϕ⊤(s, a)(ŵ
(t)
⋆ − ŵ(t))︸ ︷︷ ︸

(C)

+
∑
s∈S

∑
a∈A

d⋆(s)π⋆(a|s)
(
Q̄(t)(s, a)− ϕ⊤(s, a)ŵ

(t)
⋆

)
︸ ︷︷ ︸

(D)

.

(290)

Plugging (288), (290) into (287) and (289), resp., and making use of (286), we have

ϑρ(1− γ)
(
V̄ (t+1)(ρ)− V̄ (t)(ρ)

)
+ (1− γ)

(
V̄ (t)(ρ)− V π⋆

(ρ)
)

+ ϑρ

(∑
s∈S

∑
a∈A

df̄
(t+1)

(s)f̄ (t+1)(a|s)ϕ⊤(s, a)(ŵ(t) − ŵ
(t)
⋆)︸ ︷︷ ︸

(I)

+
∑
s∈S

∑
a∈A

df̄
(t+1)

(s)f̄ (t+1)(a|s)
(
ϕ⊤(s, a)ŵ

(t)
⋆ − Q̄(t)(s, a)

)
︸ ︷︷ ︸

(II)

+
∑
s∈S

∑
a∈A

df̄
(t+1)

(s)f̄ (t)(a|s)ϕ⊤(s, a)(ŵ
(t)
⋆ − ŵ(t))︸ ︷︷ ︸

(III)

+
∑
s∈S

∑
a∈A

df̄
(t+1)

(s)f̄ (t)(a|s)
(
Q̄(t)(s, a)− ϕ⊤(s, a)ŵ

(t)
⋆

)
︸ ︷︷ ︸

(IV)

)

+
∑
s∈S

∑
a∈A

d⋆(s)f̄ (t)(a|s)ϕ⊤(s, a)(ŵ(t) − ŵ
(t)
⋆)︸ ︷︷ ︸

(A)

+
∑
s∈S

∑
a∈A

d⋆(s)f̄ (t)(a|s)
(
ϕ⊤(s, a)ŵ

(t)
⋆ − Q̄(t)(s, a)

)
︸ ︷︷ ︸

(B)

+
∑
s∈S

∑
a∈A

d⋆(s)π⋆(a|s)ϕ⊤(s, a)(ŵ
(t)
⋆ − ŵ(t))︸ ︷︷ ︸

(C)

+
∑
s∈S

∑
a∈A

d⋆(s)π⋆(a|s)
(
Q̄(t)(s, a)− ϕ⊤(s, a)ŵ

(t)
⋆

)
︸ ︷︷ ︸

(D)

≥ 1

α
(D

(t+1)
⋆ −D

(t)
⋆).

(291)

59

Below we upper bound |(I)|-|(IV)| and |(A)|-|(D)|.
For any t ∈ N and n ∈ [N], we define matrix Σ

d̃
(t)
n
∈ Rp×p as

Σ
d̃
(t)
n

:= E
(s,a)∼d̃

(t)
n

[
ϕ(s, a)ϕ⊤(s, a)

]
, (292)

and we define

ε
(t)
stat,n := ℓ

(
w(t)

n , Q(t)
n , d̃(t)n

)
− ℓ

(
w

(t)
⋆,n, Q

(t)
n , d̃(t)n

)
, (293)

ε(t)approx,n := ℓ
(
w

(t)
⋆,n, Q

(t)
n , d̃(t)n

)
, (294)

then for all n ∈ [N], by Assumption E.2 and Assumption 4.2 we have

E
[
ε
(t)
stat,n

]
≤ εnstat , and E

[
ε(t)approx,n

]
≤ εnapprox . (295)

We let ε̄(t)stat :=
1
N

∑N
n=1 ε

(t)
stat,n and ε̄

(t)
approx := 1

N

∑N
n=1 ε

(t)
approx,n. By Cauchy-Schwartz’s inequality

we have

|(I)| ≤ 1

N

N∑
n=1

∑
(s,a)∈S×A

df̄
(t+1)

(s)f̄ (t+1)(a|s)|ϕ⊤(s, a)(w(t)
n −w

(t)
⋆,n)|

≤ 1

N

N∑
n=1

√√√√ ∑
(s,a)∈S×A

(
df̄(t+1)(s)

)2 (
f̄ (t+1)(a|s)

)2
d̃
(t)
n (s, a)

·
∑

(s,a)∈S×A

d̃
(t)
n (s, a)

(
ϕ⊤(s, a)(w

(t)
n −w

(t)
⋆,n)
)2

=
1

N

N∑
n=1

√√√√√E
(s,a)∼d̃

(t)
n

((df̄(t+1)(s)
) (

f̄ (t+1)(a|s)
)

d̃
(t)
n (s, a)

)2
∥∥∥w(t)

n −w
(t)
⋆,n

∥∥∥2
Σ

d̃
(t)
n

≤ 1

N

N∑
n=1

√
Cν

∥∥∥w(t)
n −w

(t)
⋆,n

∥∥∥2
Σ

d̃
(t)
n

≤ 1

N

N∑
n=1

√
Cνε

(t)
stat,n ≤

√
Cν ε̄

(t)
stat , (296)

where the third inequality follows from Assumption 4.3, the last inequality uses Jensen’s inequality,
and the penultimate inequality by Assumption E.2 and by noticing that for all w ∈ Rp, we have

ℓ
(
w, Q(t)

n , d̃(t)n

)
− ℓ

(
w

(t)
⋆,n, Q

(t)
n , d̃(t)n

)
= E

(s,a)∼d̃
(t)
n

[(
ϕ⊤(s, a)w − ϕ⊤(s, a)w

(t)
⋆,n + ϕ⊤(s, a)w

(t)
⋆,n −Q(t)

n (s, a)
)2]
− ℓ

(
w

(t)
⋆,n, Q

(t)
n , d̃(t)n

)
= E

(s,a)∼d̃
(t)
n

[(
ϕ⊤(s, a)w − ϕ⊤(s, a)w

(t)
⋆,n

)2]
+ 2

(
w −w

(t)
⋆,n

)⊤
E
(s,a)∼d̃

(t)
n

[(
ϕ⊤(s, a)w

(t)
⋆,n −Q(t)

n (s, a)
)
ϕ(s, a)

]
=
∥∥∥w −w

(t)
⋆,n

∥∥∥
Σ

d̃
(t)
n

+
(
w −w

(t)
⋆,n

)⊤
∇wℓ

(
w

(t)
⋆,n, Q

(t)
n , d̃(t)n

)
≥
∥∥∥w −w

(t)
⋆,n

∥∥∥
Σ

d̃
(t)
n

, (297)

where the last line follows from the first-order optimality condition for the minimum point w(t)
⋆,n ∈

argminw ℓ
(
w, Q

(t)
n , d̃

(t)
n

)
:

∀w ∈ Rp :
(
w −w

(t)
⋆,n

)⊤
∇wℓ

(
w

(t)
⋆,n, Q

(t)
n , d̃(t)n

)
≥ 0.

Analogous to bounding |(I)|, by simply substituting f̄ (t+1) with f̄ (t) or π⋆ or substituting df̄
(t+1)

into d⋆, we obtain the same upper bound for |(III)|, |(A)| and |(C)|, i.e.,

|(III)|, |(A)|, |(C)| ≤
√
Cν ε̄

(t)
stat . (298)

60

Now we upper bound |(II)| as follows:

|(II)| ≤ 1

N

N∑
n=1

∑
(s,a)∈S×A

df̄
(t+1)

(s)f̄ (t+1)(a|s)
(
|ϕ⊤(s, a)w

(t)
⋆,n −Q(t)

n (s, a)|+ |Q(t)
n (s, a)− Q̄(t)(s, a)|

)

≤ 1

N

N∑
n=1

√√√√ ∑
(s,a)∈S×A

(
df̄(t+1)(s)

)2 (
f̄ (t+1)(a|s)

)2
d̃
(t)
n (s, a)

·

·

√√√√2
∑

(s,a)∈S×A

d̃
(t)
n (s, a)

((
ϕ⊤(s, a)w

(t)
⋆,n −Q

(t)
n (s, a)

)2
+
(
Q

(t)
n (s, a)− Q̄(t)(s, a)

)2)

=
1

N

N∑
n=1

√√√√√E
(s,a)∼d̃

(t)
n

((df̄(t+1)(s)
) (

f̄ (t+1)(a|s)
)

d̃
(t)
n (s, a)

)2
 · 2(ε(t)approx,n + L2

Q

∥∥∥ξ(t)n − ξ̄(t)
∥∥∥2
2

)

≤

√√√√2Cν

(
ε̄
(t)
approx +

L2
Q

N

∥∥ξ(t) − 1(ξ̄(t))⊤
∥∥2
F

)
, (299)

where LQ is defined in Lemma E.7, the second line uses Cauchy-Schwartz’s inequality and Young’s
inequality (117) and the last inequality uses Assumption 4.3 and Jensen’s inequality.

Analogous to bounding |(II)|, by simply substituting f̄ (t+1) with f̄ (t) or π⋆ or substituting df̄
(t+1)

into d⋆, we obtain the same upper bound for |(IV)|, |(B)| and |(D)|, i.e.,

|(IV)|, |(B)|, |(D)| ≤

√√√√2Cν

(
ε̄
(t)
approx +

L2
Q

N

∥∥ξ(t) − 1(ξ̄(t))⊤
∥∥2
F

)
. (300)

Plugging (296),(298),(299),(300) into (291) and dividing both sides by (1− γ) yield

ϑρ

(
δ(t+1) − δ(t)

)
+δ(t) ≤ D

(t)
⋆

(1− γ)α
− D

(t+1)
⋆

(1− γ)α
+
2
√
Cν(ϑ+ 1)

1− γ

√ε̄
(t)
stat +

√√√√2

(
ε̄
(t)
approx +

L2
Q

N

∥∥ξ(t) − 1(ξ̄(t))⊤
∥∥2
F

) .

Taking expectation on both sides of the above expression and making use of the simple fact that

E
[√

x
]
≤
√
E[x] ,

we reach the conclusion (123).

G.8 Proof of Lemma E.9

Proof of Lemma E.9. For any ζ > 0, by the actor update rule (34) and (114) we have that∥∥∥ξ(t+1) − 1N ξ̄(t+1)⊤
∥∥∥2
F
=
∥∥∥W (ξ(t) + αh(t))− 1N (ξ̄(t) + αŵ(t))⊤

∥∥∥2
F

≤ (1 + ζ)σ2
∥∥∥ξ(t) − 1N ξ̄(t)⊤

∥∥∥2
F
+ α2(1 + 1/ζ)σ2

∥∥∥h(t) − 1N ŵ(t)⊤
∥∥∥2
F
,

(301)

where the last line follows from Young’s inequality (116) and (11). By the gradient tracking step (33)
, Young’s inequality (116) and (11), we have∥∥∥h(t+1) − 1ŵ(t+1)⊤

∥∥∥2
F
=
∥∥∥W (h(t) +w(t+1) −w(t))− 1ŵ(t)⊤ + 1(ŵ(t)⊤ − ŵ(t+1)⊤)

∥∥∥2
F

=
∥∥∥Wh(t) − 1ŵ(t)⊤ +W (w(t+1) −w(t))− 1(ŵ(t+1)⊤ − ŵ(t)⊤)

∥∥∥2
F

≤ (1 + ζ)σ2
∥∥∥h(t) − 1N ŵ(t)⊤

∥∥∥+ (1 + 1/ζ)σ2
∥∥∥w(t+1) −w(t) − 1(ŵ(t+1)⊤ − ŵ(t)⊤)

∥∥∥2
F

≤ (1 + ζ)σ2
∥∥∥h(t) − 1N ŵ(t)⊤

∥∥∥+ (1 + 1/ζ)σ2
∥∥∥w(t+1) −w(t)

∥∥∥2
F
,

(302)

61

where the last inequality follows from the fact∥∥∥w(t+1) −w(t) − 1(ŵ(t+1)⊤ − ŵ(t)⊤)
∥∥∥2
F

=
∥∥∥w(t+1) −w(t)

∥∥∥2
F
+N

∥∥∥ŵ(t+1) − ŵ(t)
∥∥∥2
2
− 2

N∑
n=1

⟨w(t+1)
n −w(t)

n , ŵ(t+1) − ŵ(t)⟩

=
∥∥∥w(t+1) −w(t)

∥∥∥2
F
−N

∥∥∥ŵ(t+1) − ŵ(t)
∥∥∥2
2

≤
∥∥∥w(t+1) −w(t)

∥∥∥2
F
. (303)

Then for any n ∈ [N], t ∈ N and w ∈ Rp, we have

ℓ(w, Q(t)
n , d̃(t)n)− ℓ(w

(t)
⋆,n, Q

(t)
n , d̃(t)n)

= E
(s,a)∼d̃

(t)
n

[(
ϕ⊤(s, a)w − ϕ⊤(s, a)w

(t)
⋆,n + ϕ⊤(s, a)w

(t)
⋆,n −Q(t)

n (s, a)
)2]
− ℓ(w

(t)
⋆,n, Q

(t)
n , d̃(t)n)

= E
(s,a)∼d̃

(t)
n

[(
ϕ⊤(s, a)w − ϕ⊤(s, a)w

(t)
⋆,n

)2]
+ 2(w −w

(t)
⋆,n)

⊤E
(s,a)∼d̃

(t)
n

[(
ϕ⊤(s, a)w

(t)
⋆,n −Q(t)

n (s, a)
)
ϕ(s, a)

]
=
∥∥∥w −w

(t)
⋆,n

∥∥∥2
Σ

d̃
(t)
n

+ (w −w
(t)
⋆,n)

⊤∇wℓ(w
(t)
⋆,n, Q

(t)
n , d̃(t)n)

≥
∥∥∥w −w

(t)
⋆,n

∥∥∥2
Σ

d̃
(t)
n

≥ (1− γ)µ
∥∥∥w −w

(t)
⋆,n

∥∥∥2
2
, (304)

where the penultimate line follows from the first-order optimality conditions for the optima w
(t)
⋆,n:

∀w ∈ Rp : (w −w
(t)
⋆,n)

⊤∇wℓ(w
(t)
⋆,n, Q

(t)
n , d̃(t)n) ≥ 0 (305)

and the last line is by Assumption 4.1 and (??).

Note that

ℓ(w
(t)
⋆,n, Q

(t+1)
n , d̃(t+1)

n)

= E
(s,a)∼d̃

(t+1)
n

[
(ϕ⊤(s, a)w

(t)
⋆,n −Q(t+1)

n (s, a))2
]

≤ 2
∑

(s,a)∈S×A

d̃(t)n (s, a)
d̃
(t+1)
n (s, a)

d̃
(t)
n (s, a)

(ϕ⊤(s, a)w
(t)
⋆,n −Q(t)

n (s, a))2 + 2E
(s,a)∼d̃

(t+1)
n

(Q(t+1)
n (s, a)−Q(t)

n (s, a))2

≤ 2CνE(s,a)∼d̃
(t)
n
(ϕ⊤(s, a)w

(t)
⋆,n −Q(t)

n (s, a))2 + 2LQ

∥∥∥ξ(t+1)
n − ξ(t)n

∥∥∥2
2

≤ 2Cνε
n
approx + 2L2

Q

∥∥∥ξ(t+1)
n − ξ(t)n

∥∥∥2
2
, (306)

where the second inequality uses Assumption 4.3 and Lemma E.7, and the last line uses Assump-
tion 4.2.

The above equation (306) together with (304) gives∥∥∥w(t+1)
⋆ −w

(t)
⋆

∥∥∥2
F
=

N∑
n=1

∥∥∥w(t+1)
⋆,n −w

(t)
⋆,n

∥∥∥2
2

≤ 1

(1− γ)µ

N∑
n=1

(
ℓ(w

(t)
⋆,n, Q

(t+1)
n , d̃(t+1)

n)− ℓ(w
(t+1)
⋆,n , Q(t+1)

n , d̃(t+1)
n)

)
≤ 2

(1− γ)µ

(
Cν

N∑
n=1

εnapprox + L2
Q

∥∥∥ξ(t+1) − ξ(t)
∥∥∥2
F

)
. (307)

where w
(t)
⋆ := (w

(t)
1 , · · · ,w(t)

N)⊤, ∀t.

62

Also note that by Assumption E.2 and (304) we have

∀t ∈ N :
∥∥∥w(t) −w

(t)
⋆

∥∥∥2
F
≤
∑N

n=1 ε
n
stat

(1− γ)µ
. (308)

Therefore, by (306) and (308) we have∥∥∥w(t+1) −w(t)
∥∥∥2
F
≤ 3

(∥∥∥w(t+1) −w
(t+1)
⋆

∥∥∥2
F
+
∥∥∥w(t+1)

⋆ −w
(t)
⋆

∥∥∥2
F
+
∥∥∥w(t) −w

(t)
⋆

∥∥∥2
F

)
≤ 6

(1− γ)µ

(
N(Cν ε̄approx + ε̄stat) + L2

Q

∥∥∥ξ(t+1) − ξ(t)
∥∥∥2
F

)
. (309)

where the first inequality uses Young’s inequality (117).

Note that by the update rule (34), the double stochasticity of the mixing matrix W and the consensus
property (11) we have∥∥∥ξ(t+1) − ξ(t)

∥∥∥2
F

=
∥∥∥W (ξ(t) + αh(t))− ξ(t)

∥∥∥2
F

=
∥∥∥(W − I)(ξ(t) − 1N ξ̄(t)⊤) + α(Wh(t) − 1N ŵ(t)⊤) + α1(ŵ(t) − ŵ

(t)
⋆)⊤ + 1(ŵ

(t)
⋆)⊤

∥∥∥2
F

≤ 16
∥∥∥ξ(t) − 1N ξ̄(t)⊤

∥∥∥2
F
+ 4α2σ2

∥∥∥h(t) − 1N ŵ(t)⊤
∥∥∥2
F
+ 4α2N

∥∥∥ŵ(t) − ŵ
(t)
⋆

∥∥∥2
2
+ 4α2N

∥∥∥ŵ(t)
⋆

∥∥∥2
2

≤ 16
∥∥∥ξ(t) − 1N ξ̄(t)⊤

∥∥∥2
F
+ 4α2σ2

∥∥∥h(t) − 1N ŵ(t)⊤
∥∥∥2
F
+ 4α2

N∑
n=1

∥∥∥w(t)
n −w

(t)
⋆,n

∥∥∥2
2
+ 4α2

N∑
n=1

∥∥∥w(t)
⋆,n

∥∥∥2
2

≤ 16
∥∥∥ξ(t) − 1N ξ̄(t)⊤

∥∥∥2
F
+ 4α2σ2

∥∥∥h(t) − 1N ŵ(t)⊤
∥∥∥2
F
+

4α2Nε̄stat

(1− γ)µ
+

4α2NC2
ϕ

µ2(1− γ)4
, (310)

where the penultimate line uses Jensen’s inequality and the last line follows from (304), Assump-
tion E.2 and (271).

Combining (310) and (309) with (302), we deduce∥∥∥h(t+1) − 1ŵ(t+1)⊤
∥∥∥2
F

≤ (1 + 1/ζ)
96σ2L2

Q

(1− γ)µ

∥∥∥ξ(t) − 1ξ̄(t)⊤
∥∥∥2
F
+ σ2

(
1 + ζ + (1 + 1/ζ)

24L2
Qα

2

(1− γ)µ

)∥∥∥h(t) − 1ŵ(t)⊤
∥∥∥2
F

+ (1 + 1/ζ)
6σ2

(1− γ)µ

(
N(ε̄stat + Cν ε̄approx) + 4L2

Q

(
α2Nε̄stat

(1− γ)µ
+

α2NC2
ϕ

µ2(1− γ)2

))
. (311)

Finally, (124) follows from taking expectations on both sides of (301) and (311).

H Numerical experiments

Experimental setup. We study the empirical performance of FedNPG (Algorithm 1) and entropy-
regularized FedNPG (Algorithm 2) on a K ×K GridWorld problem. To be specific, the collective
goal of N agents is to learn a global optimal policy to follow a predetermined path which starts at the
top left corner and ends at the bottom right corner. However, each agent only has access to partial
information about the whole map: in figure 1 (where we take N = 3 and K = 9 as an example),
agent n explores on map n, n ∈ [N]. After taking an action, only when the agent is at the shaded
positions can it get reward 1, otherwise it gets 0. We stipulate the action space of all agents to be
A = {right, down}, i.e. movement is allowed only to the right or down. If an agent takes an action
that will lead it out of the boarder of the map, we stipulate the agent’s state doesn’t change and receive
reward 0. Each agent starts at the top left corner. To learn a shared policy to follow the path, we aim
to maximize the average value function of all agents.

Results. In the following we discuss the empirical results of our algorithms. In all the experiments,
we fix the discounted factor γ = 0.99. In our experiments, we also don’t require the mixing matrix to

63

Figure 1: Gridworld experiement. N agents (N = 3 here) aim to learn a shared policy to follow a
predetermined path, which is the red dashed line in the complete map. Each agent only has access
to partial information about the path and gets reward 1 only at the shaded positions and 0 at other
positions. Each agent starts at the top left corner.

strictly adhere to Assumption 3.1. In Figure 2, we validate the effectiveness of vanilla FedNPG and
entropy-regularized FedNPG across different map size K, where we set τ = 0, 0.005, 0.05, η = 0.1,
N = 10, and use a standard ring graph where agent n receives information from agent n + 1 for
n ∈ [N − 1], and agent N receives information from agent 1, and we set all the weights on each edge
of the communication graph to be 0.5. The corresponding mixing matrix of the standard ring graph is
as follows:

W =



0.5 0.5 0 0 · · · 0 0
0 0.5 0.5 0 · · · 0 0
0 0 0.5 0.5 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 0.5 0.5
0.5 0 0 0 · · · 0 0.5

 . (312)

Here, W in (312) satisfies the double stochasticity assumption but is not symmetric.

2 4 6 8 10 12 14
iteration number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(V
*

V
)/V

*

K = 5
K = 10
K = 20
K = 30
K = 50
K = 70

(a) τ = 0

2 4 6 8 10 12 14
iteration number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(V
*

V
)/V

*

K = 5
K = 10
K = 20
K = 30
K = 50
K = 70

(b) τ = 0.005

Figure 2: Changing map size K. we let τ = 0, 0.005 and change K for each τ . We plot the curves
of (V ⋆

τ − V
(t)

τ)/V ⋆
τ changing with the iteration number. We can see that both vanilla and entropy-

regularized NPG converges to the optimal value function in a few iterations, and the convergence
speed is almost the same across different K.

64

Figure 2 illustrates the normalized sub-optimality gap (V ⋆
τ − V

(t)

τ)/V ⋆
τ with respect to the iteration

number. It can be seen that both vanilla and entropy-regularized NPG converge to the optimal value
function in a few iterations, and the convergence speed is almost the same across different K, i.e. the
impact of K on the convergence speed is minimal.

0 5 10 15 20 25
iteration number

9

10

11

12

13

14

15

16

va
lu

e
fu

nc
tio

n

10

20

30

40

50

N

(a) K = 10

0 5 10 15 20 25
iteration number

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

va
lu

e
fu

nc
tio

n

10

20

30

40

50

N

(b) K = 20

0 5 10 15 20 25
iteration number

20

25

30

35

40

45

va
lu

e
fu

nc
tio

n

10

20

30

40

50

N

(c) K = 30

Figure 3: Changing number of agents N . we let K = 10, 20, 30 and change N for each K.
We plot the curves of value functions changing with the iteration number. The green dashed line
represents the optimal value. We can see that the convergence speed decreases as N increases. Same
as before, the convergence speed is insensitive to the change of K.

In Figure 3, we study the performance of our algorithms when the number of agents N varies. We set
K = 10, 20, 30, τ = 0.005, η = 0.1 and the communication graph to be the standard ring graph. We
can see that the convergence speed decreases as N increases. Same as before, the convergence speed
is insensitive to the change of K.

In Figure 4, we illustrate the effect of the communication network topology to our algorithms. To
be specific, we change the number of neighbors of each agent (i.e., the number of non-zero entries
in each row of W) and (i) randomly generalize the weights of the graph such that each row of W
sum up to 1, i.e.,W1 = 1, see Figure 4(a); (ii) set the non-zero entries in each row of W all to be

1
number of neighbors , see Figure 4(b). We fix η = 0.1, K = 10, τ = 0.005. We plot the curves of value
functions changing with the iteration number. The green dashed line represents the optimal value. For
both 4(a) and 4(b), the convergence speed increase as number of neighbors of each agent increases.
FedNPG performs better when using equal weights.

0 10 20 30 40 50 60
iteration number

6

8

10

12

14

16

va
lu

e
fu

nc
tio

n

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

#n
ei

gh
bo

rs

(a) Random weights

0 10 20 30 40 50 60
iteration number

6

8

10

12

14

16

va
lu

e
fu

nc
tio

n

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

#n
ei

gh
bo

rs

(b) Equal weights

Figure 4: Changing communication network topology. We change the number of neighbors
of each agent. (i) In Figure 4(a), we randomly generalize the weights of the graph such that each
row of W sum up to 1; (ii) In Figure 4(b), we set the non-zero entries in each row of W all to be

1
number of neighbors . We plot the curves of value functions changing with the iteration number. The green
dashed line represents the optimal value. For both 4(a) and 4(b), the convergence speed increase as
number of neighbors increases. FedNPG performs better when using equal weights.

H.1 Discussion on the Experiments

Note that even though there are many existing works in federated RL, none of the existing works, to
the best of our knowledge, studies federated multi-tasks RL in the decentralized setting. Therefore,

65

we are not able to compare our work with existing works. However, here we include a comparison
between FedNPG and a naïve baseline without the Q-tracking technique (line 6 in Algorithm 1).

0 5 10 15 20 25
iteration number

10

15

20

25

30

35

40

45

va
lu

e
fu

nc
tio

n

V *

N = 10, tracking:
N = 20, tracking:
N = 30, tracking:
N = 10, tracking:×
N = 20, tracking:×
N = 30, tracking:×

Figure 5: Comparison between FedNPG and a naïve baseline without the Q-tracking technique. The
plot shows that while FedNPG converges within a few iterates, the algorithm without Q-tracking
diverges, confirming the positive role of Q-tracking in ensuring convergence.

For this plot, we use the standard ring graph (Eq. 312). We fix the size of the maze K = 30, learning
rate η = 0.1, and regularity coefficient τ = 0.005. We experiment on different number of agents N
and plot the curves of value function changing with the iteration number. The plot shows that while
FedNPG converges within a few iterates, the algorithm without Q-tracking diverges, confirming the
positive role of Q-tracking in ensuring convergence.

66

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: we clearly state in the abstract and introduction the claims we made, including
the contributions made in the paper and important assumptions and limitations.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: we clearly state our assumptions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

67

Justification: we provide the full set of assumptions and a complete (and correct) proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: see Appendix H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

68

Answer: [No]

Justification: The experiments are simple and can be easily reproduced by following the
instructions in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experiment details are included in Section H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: stochasticity is not critical in our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

69

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: the results are irrelevant to the compute resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: the research conducted in the paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: this is a theoretical paper and it has no societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

70

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: the paper aims to provide a better understanding on existing algorithms and
thus poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: the paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

71

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: the paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

72

	Introduction
	Our contributions

	Model and backgrounds
	Federated NPG methods for multi-task RL
	Proposed federated NPG algorithms
	Theoretical guarantees

	Federated NAC with function approximation and stochastic evaluation
	Conclusions
	Related work
	Additional Discussion
	Application Related to Federated Multi-task RL
	Theoretical Contribution

	Omitted Algorithms
	Federated NPG (FedNPG) with entropy regularization
	Development of FedNAC

	Convergence analysis of FedNPG
	Analysis of entropy-regularized FedNPG with exact policy evaluation
	Analysis of entropy-regularized FedNPG with inexact policy evaluation
	Analysis of FedNPG with exact policy evaluation
	Analysis of FedNPG with inexact policy evaluation

	Convergence analysis of FedNAC
	Proof of Theorem E.10
	Proof of Theorem E.3

	Proof of key lemmas
	Proof of Lemma D.2
	Proof of Lemma D.3
	Proof of Lemma D.6
	Proof of Lemma D.8
	Proof of Lemma D.10

	Proof of auxiliary lemmas
	Proof of Lemma F.1
	Proof of Lemma F.3
	Proof of Lemma F.4
	Proof of Lemma F.6
	Proof of Theorem E.3
	Proof of Lemma E.7
	Proof of Lemma E.8
	Proof of Lemma E.9

	Numerical experiments
	Discussion on the Experiments

