Under review as submission to TMLR

Uncovering Language Model Processing Strategies with
Non-Negative Per-Example Fisher Factorization

Anonymous authors
Paper under double-blind review

Abstract

Understanding the heuristics and algorithms that comprise a model’s behavior is important
for safe and reliable deployment. While gradient clustering has been used for this purpose,
gradients of a single log probability capture only a slice of the model’s behavior, and cluster-
ing can only assign a single factor to each behavior. We introduce NPEFF (Non-Negative
Per-Example Fisher Factorization), an interpretability method that overcomes these limita-
tions by decomposing per-example Fisher matrices using a novel decomposition algorithm
that learns a set of components represented by learned rank-1 positive semi-definite matrices.
Through a combination of human evaluation and automated analysis, we demonstrate that
these NPEFF components correspond to heuristics used by language models on a variety
of text processing tasks. We find that NPEFF excels at decomposing behaviors comprised
of multiple factors compared to the baselines of gradient clustering and activation sparse
autoencoders. We also show how NPEFF can be adapted to be more efficient on tasks
with few classes. We further show how to construct parameter perturbations from NPEFF
components to selectively disrupt a given component’s role in the model’s processing. Along
with conducting extensive ablation studies, we include experiments using NPEFF to study
in-context learning.

1 Introduction

Transformer-based large language models (LLMs) have proven to be capable of a wide range of text-based
tasks (Devlin, 2018; Achiam et al., 2023; Dubey et al., 2024; Yang et al., 2025). However, there is not yet a
reliable means of understanding why a language model generated a given prediction. Towards this end, work
on Transformer circuits aims to uncover interpretable computational graphs that underlie specific model
behaviors such as indirect object identification, greater-than comparisons, and docstring completion (Elhage
et al., 2021; Wang et al., 2022; Hanna et al., 2023; O’Neill & Bui, 2024; Hsu et al., 2024). While these circuits
do appear to be directly related to model processing strategies, the behaviors under study must be specified
ahead of time (via researcher intuition or expertise) instead of being uncovered in an unsupervised manner.
This introduces bias and risks missing unintuitive model behaviors.

Recently, Michaud et al. (2023) and Marks et al. (2024) proposed clustering the gradient of the model’s
loss with respect to its parameters to unsupervisedly discover model behaviors. Intuitively, these methods
conceptualize the model’s processing as being comprised of a set of abstract internal modules. When a module
is used to process an individual example, its corresponding parameters are reflected within the gradients of
the loss. Under the strong assumption that a single module is used for each example — deemed “monogenic
behaviors” by Michaud et al. (2023) — gradient clustering groups examples by the module used, and thus
clusters correspond to model behaviors. However, model behaviors are likely to be polygenic in general, i.e.
influenced by multiple factors from within the model. For example, contexts with ambiguous continuations
will have at least one factor corresponding to each possibility. This mismatch has led to gradient clustering
only being applied to contexts where the model correctly predicts the next token with low entropy (Michaud
et al., 2023; Marks et al., 2024), leading to a heavy bias towards simple linguistic behaviors and precluding
its application to studying more complex tasks. A more subtle issue comes from the use of loss gradients
since they will capture only a narrow slice of the model’s predictive distribution. This makes them poorly

Under review as submission to TMLR

suited for capturing information when, for example, a polygenic behavior consists of factors that influence
predictions over different classes. Furthermore, this representation of model processing is biased towards
factors influencing the specific class that the gradient is taken with respect to.

In this work, we introduce a method called NPEFF (non-negative per-example Fisher factorization) that
is well suited for uncovering factors of polygenic behaviors. NPEFF uses the “per-example Fisher (PEF)”
matrix to capture the model’s processing for each example. The PEF matrix is a positive semi-definite (PSD)
matrix that relates perturbations in parameters to changes in the model’s predictive distribution (Fisher,
1922; Amari, 2016; Soen & Sun, 2021). A parameter perturbation will affect the model’s behavior on an
example if and only if it disrupts one or more of the internal modules used in its processing. Thus the internal
modules used in an example’s processing will get imprinted into the PEF. Unlike loss gradients, the PEF
matrix takes into account the model’s entire predictive distribution. NPEFF uses a novel decomposition
algorithm to approximate PEFs as a non-negative combination of rank-1 PSD matrices. Thus NPEFF can
directly represent polygenicity as a weighted combination of multiple factors influencing an example’s predic-
tion. We also introduce a cheaper variant of NPEFF called G-NPEFF that applies NPEFF’s decomposition
algorithm to PEF stand-ins constructed using the gradient of the log probability of the model’s prediction.
G-NPEFF performs similarly to NPEFF when the number of classes is small. As the number of classes
grows, however, it misses polygenic factors and becomes biased towards dominant factors influencing the top
predicted class.

While PEFs capture a meaningful notion of a prediction’s sensitivity to different parameter values, their large
size (quintillions of entries for modern-scale models with billions of parameters) makes them intractable to
use. Analogous to Marks et al. (2024), we therefore use random projections (Achlioptas, 2003; Bingham &
Mannila, 2001; Xie et al., 2017) to make representing PEFs tractable. Importantly, we demonstrate that
is possible to essentially “reverse” the random projection using methods from compressed sensing (Donoho,
2006; Candes & Tao, 2006; Tropp, 2006). This allow us to associate directions in parameter space to the
behavioral factors that NPEFF uncovers. Perturbing the model parameters along these directions provides
a means to selectively disrupt these factors and thus test whether they are genuinely used by the model.

After introducing methods that enable us to work efficiently with PEFs, we run NPEFF analysis on a
variety of text processing tasks. We then explore properties of these decompositions through automated and
human analysis while comparing to the baselines of gradient clustering and activation sparse autoencoders.
We additionally demonstrate that our approach can recover parameter-space representations of behavioral
factors, and we explore using NPEFF to analyze how in-context learning (ICL) can be explained in terms
of behavioral factors of the zero-shot model. Finally, we conduct extensive ablation studies on NPEFF
hyperparameters, exploring the impact of varying the number of components and demonstrating the validity
of our PEF tooling.

2 Non-Negative Per-Example Fisher Factorization (NPEFF)

2.1 Collection of PEFs

Consider the conditional distribution py(y|x) produced by a model parameterized by § € R™ given an example
x. We define the per-example Fisher (Fisher, 1922), or PEF, as the positive semidefinite (PSD) n X n-matrix

F(x) = Eypyix) Vo log po(y|x) Vg log pg (yx)". (1)

The PEF allows us to relate small perturbations 6 € R™ in the model parameters to changes in the model’s
predictive distribution pg(y|x) via (Amari, 2016):

Dk (po(y[x)[lpo+s(ylx)) = %5TF(X)5~ (2)

For a typical classification model, py(y|x) corresponds to a categorical distribution over class labels. In this
work, we additionally consider language models, which predict a sequence of token IDs from a vocabulary
of tokens conditioned on a prefix. In this case, py(y|x) is a distribution over a set of potential endings to a

Under review as submission to TMLR

prefix x, defined over a subset of the vocabulary, or the entire vocabulary. We consider any of these options
to effectively define a set of possible predictions and continue to treat py(y|x) as a categorical distribution
(though we will consider a series of approximations to make calculation of the expectation in Equation (1)
tractable in Section 2.1.1). Letting r denote the number of categories, we can exactly represent the PEF using
an r X n-matrix G(x) as F(x) = G(x)T G(x) where the i-th row of G(x) is equal to \/pg(y;|x) Vg log pa (y:|x).
We call G(x) the low-rank matrix representation of the PEF, or the LRM-PEF.

2.1.1 Approximating the Expectation

While we can conceptually consider the distribution over the set of possible continuations produced by a
language model as a categorical distribution, handling the expectation over y in equation 1 exactly is infeasible
due to the large number of options (typically tens of thousands or more). While we could approximate the
expectation by sampling multiple y ~ pg(y|x), we instead opt for a method based on random projections. This
method allows for the PEF to capture information across the whole distribution of next-token probabilities.

Let q(x;0) € R” be defined element-wise with its i-th entry equal to stop_grad(y/pe(y:|x)) log pe(y:|x),
where stop_grad treats a quantity as a constant while backpropagating. If A € R"™ %" is a random projection
matrix (i.e. ATA ~), then G(x) = VyAq(x;0) € R”*" works well as a stand-in for the LRM-PEF G(x)
in the sense that G(x)G(x)T ~ G(x)G(x)T = F(x). See Appendix B for a proof.

2.1.2 Rank Reduction

While the LRM-PEF representation G € R"*" is exact, we can construct a lower-rank approzimation G’ €
R’”/X”, where ' < r, to the PEF using SVD to further reduce its storage costs. Notably, we can apply SVD
after the random projection step (Section 2.2.1), which greatly reduces its computational cost. Consider
the SVD G = USVT. Let & € R™ % and V' € R"*" be the submatrices corresponding to the top r’
singular values. The reduced rank LRM-PEF is given by G’ = ¥'V’T. We can ignore the U matrix since it
is orthogonal and thus UTU = I, so it does not affect the transformation from the LRM-PEF to the PEF
matrix.

2.2 Decomposition

Given a set Gy,...,G,, of LRM-PEFs over a set of m examples and C' components to learn, we define
NPEFF as a non-negative factorization expressed as the non-convex optimization problem

minimize Y7, |GT Gy — Y51, WyhyhT (13
subject to W;; > 0.

(3)

where h; € R" is the vector corresponding to component j, which we refer to as the component’s “pseudo-
Fisher”. In words, NPEFF aims to find a set of C' rank-1 PSD matrices hjth and a set of non-negative
coefficients W;; for each PEF that produces a good reconstruction in terms of Frobenius distance.

Our algorithm for efficiently solving equation 3 at scale is presented in Algorithm 1 with details in Ap-
pendix C. As a high level overview, we alternate between updating the coefficients W;; and updating the
pseudo-Fisher vectors h;. The coefficient update is similar to a multiplicative update step in non-negative
matrix factorization (Lee & Seung, 1999). The pseudo-Fisher update step is a gradient descent step. Notably,
our implementation directly operates on the low-rank representations and does not require materializing any
full PSD matrices.

We found it important for training stability to initialize the pseudo-Fisher vectors by performing only the
pseudo-Fisher vector update step (i.e., skipping the coefficient update step) at the start of the optimization
process. Furthermore, we normalize each PEF GT'G; to unit Frobenius norm. Failure to do this leads to the
optimization loss being dominated by examples with large norm PEFs, which are usually atypical examples.
Following completion of the decomposition, we normalize each component’s rank-1 matrix to unit Frobenius
norm and rescale the coefficients accordingly. This puts coefficients across components on the same scale. We
finally note that given the pseudo-Fisher vectors of a decomposition, we can fit coefficients to an arbitrary
(fixed) set of PEFs by only performing the coefficient update step repeatedly.

Under review as submission to TMLR

Algorithm 1 NPEFF decomposition

Require: LRM-PEFs {Gy,...,G;} C R™™, number of components C' € N, learning rate > 0, number of
pseudo-Fisher only steps N7 € N, number of joint steps N € N
initialize pseudo-Fisher vectors H € RE*", coefficients W € R™*¢ s.t. Wi; >0
allocate B € R™*™*¢ N D e R™*C T, T, € RE*"
fOI‘t: 1,...,N1 +N2 dO
Bijk < > y_q GijeHre
if ¢t > N; then > Start of coefficient update step
Nig < Z§=1 Bi2jk
D+ W(HHT)® (HHT))
Wij <= WijNij/ Dy
end if
T+ 4(WTW)o (HHT))H > Start of pseudo-Fisher update step
[Toie = =4 3770 Doy WiiBjkiGjine
H« H—y(T) + 1)
end for
return H, W

2.2.1 Random Projections

To make storing LRM-PEFs across a data set tractable, we apply a sparse random projection (Li et al.,
2006) to the rows of G(x). Random projections are a dimensionality reduction procedure that approximately
preserves inner products between vectors (Achlioptas, 2003; Vempala, 2005; Li et al., 2006). We developed a
custom CUDA kernel that computes these projections efficiently without needing to materialize the projection
matrix. See Appendix A for details.

In Appendix C.6, we provide a theoretical justification that the optimization problem equation 3 (and,
consequently, our algorithm) is still meaningful when operating on randomly projected PEFs. We show
that using projected PEFs should lead to approximately the same coefficients and pseudo-Fisher vectors
as those that would have been produced if no random project was used. One drawback of operating on
projected PEFs, however, is that the pseudo-Fisher vectors h; belong to the projected space rather than
the original parameter space. Parameter-space pseudo-Fisher vectors can be useful for confirming that
NPEFF components do correspond to processing strategies used by the model. For example, consider
perturbing the model parameters in the direction of the pseudo-Fisher vector. Following the information
geometric interpretation equation 2 of PEF matrices, this should preferentially affect the model’s predictions
on examples with a large coefficient for that component.

When a vector is sparse, it can be possible to “reverse” a random projection and recover the projected vector
from its projection via compressed sensing (Donoho, 2006). We have good reason to expect parameter-space
pseudo-Fisher vectors to be sparse because the overparameterization of models leads to gradients with respect
many of the parameters being consistently insignificant (Frankle & Carbin, 2018). Since the pseudo-Fisher
vector corresponds to the subset of parameters responsible for a particular behavioral factor, we can expect
them to be even sparser.

We make use of the compressed sensing algorithm introduced in Hale et al. (2007). Given a random projection
matrix A € R"*P and projected pseudo-Fisher vector h € RP, this solves the compressed sensing problem
arg ming,cpn [ulls + i”Au — h||3 by starting with u = 0 and iteratively setting v = u — 7A%(4Au — h)
and u < sign(v) max{|v| — 7,0}, where | - | is the element-wise absolute value and 7,77 € R vary between
steps. Notably, this algorithm only requires matrix-vector products with the random projection matrix and
its transpose, which our custom CUDA kernels efficiently support. We leave development of more bespoke
parameter-space pseudo-Fisher recovery algorithms to future work.

Under review as submission to TMLR

2.3 G-NPEFF

Although we have introduced methods for reducing the costs of computing and processing PEFs, they
remain inherently more expensive than gradients. To explore the consequences of eliminating this overhead,
we introduce G-NPEFF, which applies the NPEFF decomposition to rank-1 PEFs constructed using the
gradient of the log-probability of the predicted class/token. More precisely, let g(x) = Vg log pg(y'|x), where
Y = argmax, py(y[x), denote the gradient. G-NPEFF uses g’ (x) in-place of the LRM-PEF G(x) when
performing the decomposition in Section 2.2. Analogously to PEFs, we use random projections to make
storage and handling of these gradients tractable, and we normalized the gradients such that g(x)g” (x) had
unit Frobenius norm. G-NPEFF provides a cheaper alternative to full NPEFF since the gradients are cheaper
to compute and store than the LRM-PEF estimates. It also allows us to explore the different information
captured by PEFs and gradients without being confounded by a different decomposition algorithm. The
gradients used by G-NPEFF coincide with the gradient of the loss on examples where the model happens to
make the correct prediction, which was a restriction imposed by previous work using gradients to characterize
model processing (Michaud et al., 2023; Marks et al., 2024). Like full NPEFF, this also allows G-NPEFF to
not require ground truth labels.

3 Experiments

3.1 Characterizing Component Tunings

Setup To determine the types of behaviors uncovered by NPEFF and compare to baselines, we ran NPEFF
and G-NPEFF on a representative group of models and tasks to explore the components they produced. We
focus on language models and natural language tasks, but we expect that NPEFF would be effective in other
modalities as well. We used the 360M parameter version of SmolLM2 (Allal et al., 2024) on the sentiment
analysis task SST2 (Socher et al., 2013) with 2 classes, the topic identification task Yahoo Answers Topics
(YAT) (Zhang et al., 2015) with 10 classes, the intent classification task CLINC150 (Larson et al., 2019) with
151 classes, and the open question answering task TriviaQA (Joshi et al., 2017). The pg(y|x) ranges over a
set of suffixes for CLINC150, the entire vocabulary for TriviaQA, and a subset of the vocabulary for SST2
and YAT. We use a zero-shot formulation for the language models. See Appendix D for more information
on the formulation of these tasks and how we constructed py(y|x) for them.

For SST2, we used 60,000 examples, a projected dimension of 16,192, and 512 components. For YAT, we
used 100,000 examples, a projected dimension of 16,192, and 2048 components. For CLINC150, we used
23,700 examples, approximated the expectation using 8 projections, SVD reduced the PEF rank to 4, a
projected dimension of 16,192, and 512 components. For TriviaQA, we used 133,838 examples, a projected
dimension of 8192, approximated the expectation using 16 projections, SVD reduced the PEF rank to 4, and
used 2048 components. Analogous to Marks et al. (2024), we ignore the embedding and Layer Normalization
(Zhang & Sennrich, 2019) parameters when computing the PEFs. For all NPEFF decompositions, we used a
warm-up of 1000 frozen coeflicient steps with a learning rate of le-5 and another 3000 steps with a learning
rate of 3e-4.

Baselines We compare NPEFF and G-NPEFF to two baselines: gradient clustering (Michaud et al., 2023)
and activation SAEs (Gao et al., 2024).

Gradient clustering (GC) performs k-means clustering on gradients of the log-probability of the predicted
class/token for each example, which are the same gradients used by G-NPEFF. In all experiments, we applied
the same random projection to the gradients as was applied to the PEFs. For the same reason as for PEFs,
the gradients were normalized to unit L2 norm, and we ignored the embedding and LayerNorm parameters.

To adapt activations SAEs as a baseline method for uncovering model behaviors, we trained TopK-SAEs
(Makhzani & Frey, 2013; Gao et al., 2024) over the task data using a single token’s activations for each
example. For the BERT model, this activation was taken from the output of the residual stream for the
[CLS] token. For the SmolLM2 models, we take this activation from the output of the residual stream for
the final token in the context. In all experiments, we used a value of £ = 32 non-zero latents per example to

Under review as submission to TMLR

control the sparsity. We also used the same total number of latents as the number of NPEFF components
in the comparable experiments. Details on the training of these SAEs can be found in Appendix G.

SST2

slightly disappointed CLINC150

left slightly disappointed what does anachronistic mean

disappointing to a certain degree what does assiduous mean

falls somewhat short what does circuitous mean
what’s the meaning of a fortnight

YAT

How do i become slim in 3 months..i weigh 52 kg n im 5°1".7 TriviaQA

how can i lose 10 lbs in a short amount of time? In which year did Mozart die?

how can i lose 30 pounds and it not take me a whole lot of In which year did General Franco die?

time? In which year did Elvis die?

how can i lose 20 lbs in a hurry(i mean fast!) no drugs or In which year did Beethoven die?

supplements please?
Figure 1: Top examples of selected components from NPEFF decompositions.

Top component examples Following existing work on interpretability methods that use sparse autoen-
coders to decompose activations (Rajamanoharan et al., 2024a), we begin to get a qualitative sense for a
component’s tuning by looking at the examples with the highest coefficient for each component. Top ex-
amples from a component selected from each of our NPEFF decompositions are presented in Figure 1. Top
examples from random components can be found in Appendix H. These groups of top examples each have
a clear theme relevant to the task and thus represent factors of the model’s behavior. For example, the ex-
ample compoment for YAT is most activated by questions about rapidly losing weight (generally indicating
a “health® topic label).

To quantify these intuitions, we performed a human evaluation study, which was restricted to the NPEFF
decomposition on TriviaQA due to cost. We created groups of examples that were either the top examples
for a component or random examples (called “control”). Evaluators were asked to answer yes/maybe/no if
the examples had a common theme and write a short description of the theme if present. Each group was
seen by 2 different evaluators. We found that 79% of components had a detectable theme, determined by
a yes or maybe label, with a false positive rate of only 3% on the control example groups. This analysis
supports NPEFF components representing interpretable factors of behavior.

Verifying polygenicity Apart from manually inspecting top examples, we also hope to determine whether
components have properties consistent with those of factors of polygenic behaviors. We can perform an
automated analysis by considering a component as tuned if all of its top 16 examples had the same prediction
or ground truth label, if present. Components with fewer than 16 examples were excluded from this analysis.
For (G-)NPEFF, we rank examples in accordance to their component weighting. For gradient clustering,
we rank based on the proximity to the cluster centroid. For SAE, we rank examples in descending order of
their component coefficient.

For polygenic behaviors, we would expect factors that frequently dominate behavior would be marked as
prediction-tuned. However polygenic factors that rarely present by themselves might not be marked as such
since their influence is likely to be countered by other factors on some of their top examples. Hence we would
expect a significant fraction of both prediction-tuned and non-prediction-tuned factors. In contrast, we would
expect all components to be prediction-tuned if they corresponded to monogenic factors since each example’s
prediction is the result of exactly one factor. While genuine factors can still be marked as not label-tuned if
they correspond to flawed heuristics, label-tuned components by definition correspond to meaningful task-
relevant factors. Overall, the presence of components that are label-tuned but not prediction-tuned (which
we call “LnP-tuned”) is the clearest single indicator of the recovery of genuine polygenic factors for tasks
with a fixed set of labels.

Under review as submission to TMLR

Table 1: Percentages of components exhibiting tunings across methods and tasks. The “LnP” metric means
tuned to labels but not predictions. For each task, the highest LnP percentage is bold and second highest is
underlined. This metric is not present for TriviaQA since it is an open-vocabulary question answering task
without a fixed set of labels.

SST2 YAT CLINC150 TriviaQA
Method Pred ILnP Pred LnP Pred LnP Pred
NPEFF 69.1 15.0 357 1.9 261 19.1 23.6

G-NPEFF 69.5 146 947 034 87.1 1.8 85.7
GC 1000 0.0 999 00 969 0.0 75.5
SAE 10.2 098 6.3 1.0 3.5 6.3 2.1

Our results are presented in Table 1. We see that NPEFF’s fraction of prediction-tuned components is
most consistent with recovery of polygenic factors among all the methods with a significant fraction of both
prediction-tuned and non-prediction-tuned components on all tasks. Furthermore, it recovers the largest
fraction of verifiably polygenic factors for all tasks as measured by the LnP-tuned fraction.

The comparison between NPEFF and G-NPEFF highlights the additional information captured by PEFs
over gradients especially as the number of classes grows. When the number of classes is small, gradients
capture a significant slice of the model’s behavior, so the difference between G-NPEFF and NPEFF is small.
For tasks with many classes, however, the information captured by gradients becomes heavily biased towards
the predicted class. This leaves out polygenic factors influencing predictions over other classes, and thus the
decomposition becomes increasingly monogenic as indicated by the increasing fraction of prediction-tuned
components and decreasing fraction of LnP-tuned components.

Gradient clustering captured almost entirely monogenic factors with most to all components being prediction-
tuned and almost no verifiably polygenic factors recovered on any tasks. Since clustering assigns exactly one
factor to each example, it essentially guarantees the recovery of only monogenic factors.

The tuning of SAE components followed a different pattern to the other methods, which can be explained by
their use of activations to represent per-example processing. Since they are not computed using gradients of
the model log probabilities like the other methods, they contain a significant portion of information irrelevant
to the model’s predictions. This makes them a more muddled representation of model behavior and leads
to the low fraction of prediction-tuned components on all tasks. However, they still contain an unfiltered
snapshot of the information influencing predictions unlike the gradients used by G-NPEFF and gradient
clustering. Hence SAEs can uncover some verifiably polygenic factors even as the number of classes grows.

3.2 Perturbations

Following the method described in Section 2.2.1, we can design perturbations using compressed sensing to
reconstruct pseudo-Fisher vectors in parameter space from their projections. Instead of using the pseudo-
Fisher vector directly as the perturbation, we can improve the selectivity of the perturbation’s impact by
orthogonally rejecting it from the other pseudo-Fisher vectors. This arises from wanting a perturbation
orthogonal to all pseudo-Fisher vectors other than the one we want to affect. In practice, we found that
only rejecting from vectors with an absolute cosine similarity less than a threshold worked best. More
precisely, let h denote the pseudo-Fisher vector for the component we wish to perturb. Iterating over the
components i = 1,...,C, let h; be the L2-normalized pseudo-Fisher vector for the i-th component. If the
absolute cosine similarity |hZh,|/||h|| < 0.5, we replace h with the orthogonal rejection h — (hZh;)h;. These
similarity testing and orthogonal rejection steps can be performed using the projected vectors, i.e. before the
compressed sensing step.

To evaluate the perturbed model, we are interested in measuring how much the predictions from a given
component’s top examples change. We therefore first compute the average KL-divergence of the perturbed
model’s predictions from the original model’s predictions on a per-example basis and then report the ratio

Under review as submission to TMLR

Table 2: Perturbation results, where the values are the geometric mean of ratios across components. The
largest KL ratio for each task is bold.

SST2 YAT CLINC150 TriviaQA
Method KL Norm KL Norm KL Norm KL Norm

NPEFF 16,5 082 220 094 070 083 088 0.84
G-NPEFF 19.9 082 25.5 090 155 0.88 51.1 0.90
GC 3.79 084 077 08 104 0.66 33.0 0.80

of the mean KL-divergence for the component’s top examples to the mean KL-divergence over a set of
random examples. We also report the ratios of the average PEF norms for these groups to represent how
relatively sensitive top examples are to perturbations. This follows from equation 1, which relates parameter
perturbations to the KL-divergence using the PEF, where we can see that increasing the scale of the PEF
will increase the KL-divergence given a fixed perturbation. Since the rank-1 PSD matrix corresponding to a
Fisher pseudo-vector is invariant under multiplying the vector by -1, we try perturbations in both directions
and report the higher KL-ratio.

We ran perturbations experiments using the decompositions from Section 3.1. We used 128 randomly
selected components for all tasks except for CLINC150, where we used 32 components. We used a similarity
threshold of 0.5 for orthogonal rejection, used 16 component top examples, and a random set of 1,000 baseline
examples except for CLINC150 where we used a random set of 200 baselines examples due to computational
constraints. We used a perturbation L2 magnitude of 2el. For the gradient clusters, we used the cluster
centroids in place of the pseudo-Fishers. We restricted our analysis to clusters with at least 16 examples.
We excluded SAEs since there is not an analogous way to use them to modify the model parameters.

Results are summarized in Table 2 with more experimental details presented in Appendix E. For most
settings, the component top examples were significantly more affected by the perturbations than the random
examples. This difference cannot be explained by component top examples simply being more sensitive to
perturbations as indicated by the PEF norm ratios. These results indicate that the uncovered behavior
factors play a genuine role in the model behavior.

The three failure cases were gradient clustering on YAT and NPEFF on CLINC150 and TriviaQA. Seeing
as components from these decomposition had reasonable tunings, we suspect that these decompositions did
not fail to capture behavioral factors. Instead, either the projected parameter space representations learned
in the decompositions were of low quality, or the compressed sensing failed to accurately recover the original
parameter space representations. For NPEFF, these issues might have arisen from the approximations needed
to estimate the large rank PEFs. In contrast, the gradients used by G-NPEFF provide a narrower but less
muddled snapshot of the model’s processing.

Excluding these failure cases, we generally found G-NPEFF to produce the most selective perturbations
with NPEFF being a bit less selective, which can be explained by G-NPEFF being biased towards recovering
factors influencing the class with the highest probability. These factors are more likely to play a dominant
role in the model’s behavior on their top examples, and thus perturbing them will be more disruptive.

Perturbations from gradient clusters were significantly less selective than either NPEFF variant. This dif-
ference might be due to NPEFF’s better handling of polygenic model behavior: Multiple factors would be
imprinted into the gradients for each example under this hypothesis. While a single factor would dominate
the examples in each cluster, other factors, especially correlated ones, would be present and thus contaminate
the centroids. By contrast, NPEFF is free to disentangle the factors present in each example. Hence, the
pseudo-Fisher for a component can be a purer representation of its corresponding factor.

Under review as submission to TMLR

Table 3: Accuracies and similarities (in terms of percentage of identical predictions) to the zero-shot and
6-shot ICL set-ups for the coefficients-based linear classifier for SmolLM2-360M on SST2. Values are per-
centages. The highest value in each column is bold.

Method Accuracy Similarity Zero-Shot Similarity ICL

NPEFF 88.7 69.2 89.0
G-NPEFF 88.6 69.0 89.0
GC 84.8 58.9 86.3
SAE 56.3 91.7 53.7

3.3 Application — Analyzing ICL

In-context learning (ICL) involves including a prefix consisting of labeled examples when prompting a lan-
guage model to perform a task. Some work has suggested that models often do not learn the rules of the
task per se but rather learn the how the task is structured from the examples in the context (Min et al.,
2022; Brown et al., 2020; Zhao et al., 2021; Liu et al., 2021a; Razeghi et al., 2022). Interestingly, for zero-
shot SmolLM2-360M on SST2, we found that while many components were tuned to ground truth labels
and the model’s predictions, the ground truth and predicted label were often different. This indicates that
the model’s ability to distinguish between the classes is not being fully reflected in its predictions, further
supporting a claim from Min et al. (2022) that the model has the capabilities to solve the zero-shot task but
is not adapted to its specific formulation and label distribution.

Based on this, we constructed a linear classifier based on zero-shot NPEFF component tunings for SST2 from
Section 3.1. Namely, we constructed a matrix W € R?*¢, where C is the number of NPEFF components.
We set W;; to 1 if the j-th component is tuned to the i-th ground truth label, which here means that 75%
of its top 16 examples had ¢ as their ground truth label. We set W;; to 0 otherwise. Given the NPEFF
coefficients w for a particular example, this classifier predicts arg max Ww as the label. This classifier can
be seen as forming predictions based on a weighted score of the factors that formed the model’s prediction.
This classifier can be seen as simulating the effects of ICL under the hypothesis that the model learns no new
behaviors from the context and simply re-weights its existing behaviors to adapt to the task formulation.

We present our results for NPEFF and baselines in Table 3. The 6-shot ICL context was found using the
6 examples that produced the best performance on a subset of 1024 examples out of 50 randomly sampled
sets of 6 examples, following Zhang et al. (2022). This context had an accuracy of 91.6% across the entire
dataset compared to 63.8% for the zero-shot setting. For gradient clusters, we used a one-hot representation
of clusters in place of the coefficients. Clusters with fewer than 16 examples were ignored.

The classifiers based on NPEFF and G-NPEFF coefficients were able to achieve accuracies comparable to
ICL, and they made very similar predictions to the ICL set-up. Hence much of the performance gains of
ICL can be explained by behaviors already present in the zero-shot set-up. This indicates, at least in this
scenario, much of the gains from ICL come from adapting to the specific presentation of the task rather than
the model learning new behaviors from the context. Comparatively, the classifier based on gradient clusters
achieved a lower accuracy than the NPEFF variants and was less similar to both the zero shot and ICL
set-ups. Again, this can be explained by NPEFF’s better handling of polygenic behaviors. When multiple
factors influence a model’s prediction, gradient clustering is unable to disentangle them. Hence, the linear
classifier will incorporate only the most dominant behavior of the zero-shot model. By contrast, NPEFF
allows for a fine-grained view into the set of factors that the model can use in its predictions.

4 Ablations

We explored the impact of various hyperparameters of the PEF computation and NPEFF decomposition
on the resultant components. Unless mentioned otherwise, the experimental settings were taken from Sec-
tion 3.1.

Under review as submission to TMLR

Table 4: Component tuning information in percentages for SST2 as we vary the dimension of the random
projection for NPEFF with 512 components.

dproj | 128 1024 8192 16,192 32,768 65,536

Pred | 65.4 69.1 70.5 69.1 69.1 70.9
LnP | 13.7 15.0 15.2 14.6 14.8 14.6

Random Projection Size We experimented with using random projection sizes of 128, 1024, 8192, 16,192,
32,768, and 65,536 for the SST2 NPEFF set-up from Section 3.1. Note that the 128 and 1024 sizes used a
dense projection matrix since our implementation was significantly faster in those cases. Using the fractions
of prediction-tuned and LnP-tuned components as a proxy for decomposition quality, we see from Table 4
all decompositions with a projected dimension of 1024 or greater performed similarly while the extremely
small projected dimension of 128 only slightly deteriorated. The plateauing of decomposition quality with
increasing projection dimension highlights that much of the information on model behavior is retained with
even relatively aggressive projections.

Number of Components We ran experiments varying the number of NPEFF components using set-ups
similar to SST2 from Section 3.1. We tried using 32, 64, 128, 256, and 512 components. We found that
components tend to “split” as the number of components increase: Essentially, a component representing to a
more general behavior gets converted to multiple components tuned to specific instantiations of that behavior.
To map a component to its corresponding splits from another decomposition, we use the cosine similarity
of component coefficient vectors to compare components between decompositions. For each component in
the fine-grained decomposition, we find the coarse-grained component with the largest similarity score. This
creates a map from each coarse-grained component to its set of corresponding fine-grained splits.

When running this identification, we find that all or almost all of the coarse-grained components have at
least one matching fine-grained component among pairs of decompositions. Note that we would expected
coarse-grained prediction-tuned components to have their prediction tuning preserved in their fine-grained
splits since they just represent more specific instantiations of a prediction-tuned behavior. For each pair
of decompositions, we restrict our analysis to coarse-grained components with all of their top 16 examples
having the same predicted label. We then count the number of fine-grained matches with the same prediction
tuning and divide by the total number of matches to get the fraction of tunings preserved. We get a value of
85.9% for averaged across all pairs of decompositions, which indicates that tunings tend to carry over from
the coarse-grained components to their splits. A full breakdown in provided in Appendix F.

Expectation Approximation and SVD Rank Reduction Recall that to efficiently compute the ex-
pectation in Equation (1) when the space of possible outputs is large, we introduced a strategy using random
projections. To experiment with the effect of this projection step, we ran experiments using SmolLLM2-360M
on TriviaQA using 1, 4, 16, and 64 expectation projections. Further, recall that as discussed in Section 2.1.2,
we use SVD to reduce the rank of the PEFs to reduce computational costs. To study the impact of using
the SVD, we explore ranks of 1, 2, 4, 8, 16, 32, and 64, where applicable. We used a random projection size
of 8192, used 40,000 examples, and 256 NPEFF components.

To create a similarity metric between a pair of NPEFF decompositions, we started with the cosine similarity
of a pair of component coefficient vectors to compare components. For each component in one decomposition,
we take the maximum cosine similarity with a component in the other decomposition. If this value is high
for every component in both decomposition, then each component has a corresponding similar component
in the other decomposition. We take the mean of this max cosine similarity across all components in the
decompositions to get a single score.

Results for varying the SVD-reduced rank while holding the expectation projection size (EPS) fixed are
provided in Figure 2. Each row contains the similarity score to the decomposition with the SVD rank set to
the EPS. The last, italicized value in each row is the similarity between two full EPS rank decompositions

10

Under review as submission to TMLR

Figure 2: LRM-PEF SVD rank reduction on TriviaQA 8
NPEFF decomposition. Each row represents SVD rank reduc- g 107
tions for PEFs computed with a fixed EPS. Values are simi- §
larity scores to the full EPS rank decomposition within each E 107
row. Italicized values represent the similarity of two full rank £
EPS decompositions with different NPEFF random seeds. 2 10

0 10 20 30 40 50 60
SVD rank Eigenvalue index

EPS 1 2 4 8 16 32 64

64 | 0.75 0.83 087 090 091 094 089 Figure3: Log-scale plot of the mean decay
16 | 0.75 082 087 089 0.89 of normalized eigenvalues of PEF matrices

4 0.74 084 0.86 with 64 expectation random projections.

from different NPEFF random seeds. Modest rank reduction has an effect on decomposition similarity
close to that of changing the random seed, and even reducing the rank to 1 results in a fairly similar
decomposition. We present a log-scale plot of the mean decay of normalized eigenvalues for the PEFs with
expectation projection size 64 in Figure 3. Since the eigenvalues drop off quickly, we conclude that the SVD
rank reduction can retain much of the information contained in the PEFs.

We also study the effects on the decomposition of varying the EPS while setting the SVD rank to the EPS.
When compared to the EPS 64 decomposition, using an EPS of 1 produces a similarity score of 0.51, an
EPS of 4 produces a similarity score of 0.66, and an EPS of 16 produces a similarity score of 0.79. This
suggests that while using more projections in the expectation captures more information, even using a single
projection can produce fairly similar decompositions. We leave further improvements, such as varying the
number of projections used based on the entropy of the model’s predictive distribution, to future work.

5 Related Work

Fisher for ML The Fisher information matrix (FIM), which is the expectation of the PEF matrix equa-
tion 1 across the data set, has been used in machine learning for purposes including optimization (Osawa
et al., 2023; Amari, 1998; Pascanu & Bengio, 2013; Osawa et al., 2020; Grosse & Martens, 2016; Martens &
Grosse, 2015; Zhong et al., 2022; Tang et al., 2021), continual learning (Thompson et al., 2019; Kirkpatrick
et al., 2017), compression (Chekalina et al., 2025; Pletenev et al., 2023; Theis et al., 2018; Hsu et al., 2022;
Kwon et al., 2022; Liu et al., 2021b), merging (Matena & Raffel, 2022; Tam et al., 2023; Nathan et al., 2024;
Lee et al., 2025), federated learning (Jhunjhunwala et al., 2024), task embeddings (Ma et al., 2023; Achille
et al., 2019), and analysis (Hannun et al., 2021; Farokhi & Sandberg, 2017; Arnold et al., 2023; Achille et al.,
2017). Frequently only its diagonal is used for the sake of tractability (Soen & Sun, 2024; Kirkpatrick et al.,
2017) although other approximations have been used (Koroko et al., 2022; Martens & Grosse, 2015; Martens,
2020; Grosse & Martens, 2016; Chekalina et al., 2025). The empirical FIM, which uses only the gradient of
the ground truth label instead of computing the expectation over the model’s predictive distribution, is often
used in place of the actual FIM; however, the empirical FIM suffers from several limitations (Wu et al., 2024;
Martens, 2020; Kunstner et al., 2019; Thomas et al., 2020). Our use of the per-example FIM to character-
ize the model’s per-example processing is novel though we note that Fisher kernels use the score function
Vlogpg(x) of a generative model to produce per-example representations with similarity being computed
via a kernel with the inverse of the FIM (Jaakkola & Haussler, 1998; Perronnin et al., 2010; Sénchez et al.,
2013; Saunders et al., 2002; Holub et al., 2005; Van Der Maaten, 2011).

Tensor Decompositions The NPEFF decomposition problem equation 3 can be phrased as a tensor
decomposition problem (Kolda & Bader, 2009). Namely, we wish to represent the third-order tensor of
stacked PEFs as a sum of rank-1 tensors, which is a variant of INDSCAL decomposition (Husson & Pages,
2006; Carroll & Chang, 1970; Stegeman et al., 2006; Dosse et al., 2011). While INDSCAL is usually solved
using a more general CP decomposition algorithm (Carroll & Chang, 1970; Harshman et al., 1970; Faber

11

Under review as submission to TMLR

et al., 2003; Tomasi & Bro, 2006), our algorithm is more similar to a multiplicative update algorithm for
non-negative matrix factorization (Lee & Seung, 1999; Burred, 2014; Boureima et al., 2024), where positive
semi-definiteness takes that place of non-negativity for one of the factors and gradient descent is used to
update it.

Interpretability Various interpretability methods have used gradients to determine which input features
most influence the predictions for a single example (Simonyan et al., 2013; Smilkov et al., 2017; Sundararajan
et al., 2017). Unlike our use of gradients with respect to model parameters, these methods use gradients
with respect to input features to solve the feature attribution problem.

Sparse autoencoders (SAEs) are used to learn an overcomplete representation of activations with a sparsity-
inducing prior or function on the latents (Bricken et al., 2023a; Cunningham et al., 2023; Gao et al., 2024;
Rajamanoharan et al., 2024b:a). SAE latents have been found to be more monosemantic and human inter-
pretable than other features such as individual neurons (Lieberum et al., 2024; Lawson et al., 2024; Braun
et al., 2024; Kissane et al., 2024; Templeton et al., 2024b; Paulo et al., 2024; Balcells et al., 2024; Lan et al.,
2024; Brinkmann et al., 2025). Transcoders learn the input-output mapping of MLP layers with a sparsity-
inducing prior on a larger hidden dimension (Dunefsky et al., 2024; Templeton et al., 2024a). Jacobian SAEs
learn a pair of SAEs for the inputs and outputs of an MLP with a sparsity inducing prior on their Jacobians
(Farnik et al., 2025).

Research in transformers circuits aims to find a computational circuit responsible for a particular behavior
(Elhage et al., 2021). These behaviors are typically simple linguistic behaviors that include indirect object
identification, greater-than comparisons, and docstring completion (Wang et al., 2022; Hanna et al., 2023;
O’Neill & Bui, 2024; Hsu et al., 2024). While typically specified ahead of time, Marks et al. (2024) uses
gradient clustering to unsupervisedly find behaviors. Some other works aim to explain the model’s global
behavior that was trained on a synthetic task (He et al., 2024; Nanda et al., 2023). The transformer is then
represented as a computational graph where the granularity of nodes varies based on the work and includes
MLPs (Hanna et al., 2023), attention heads (Olsson et al., 2022; Wang et al., 2022), SAE features (Marks
et al., 2024; O'Neill & Bui, 2024; He et al., 2024), and transcoder features (Dunefsky et al., 2024). The
graph is then pruned to remove nodes and edges that are unimportant to the behavior using methods that
include greedy patching (Conmy et al., 2023), first-order estimates of importance (Syed et al., 2023; Hanna
et al., 2024), and a learned mask (Bhaskar et al., 2024).

Influence functions can be used to explain a model’s behavior on particular example in terms of influential
training examples by approximating the effect of adding or removing training samples on the parameters
(Hampel, 1974; Grosse et al., 2023). This is accomplished via inverse Hessian vector products (Koh & Liang,
2017) or inverse Gauss-Newton Hessian vector products (Bae et al., 2022). Although the Guass-Newton Hes-
sian matrix coincides with the Fisher information matrix for transformer language models (Martens, 2020),
NPEFF differs from influence functions by decomposing per-example Fisher matrices and by explaining
behaviors directly in terms of directions in parameter space.

6 Conclusion

NPEFF represents a novel method that is well-suited to uncovering factors of polygenic model behaviors.
We introduced PEFs as a novel object to characterize a model’s processing of an example along with tools
to make working with them tractable. Examining properties of NPEFF components, we saw that they
corresponded to interpretable factors of behavior. Furthermore, we demonstrated NPEFF uncovered more
factors of polygenic behavior compared to the baselines of gradient clustering and activations SAEs. NPEFF’s
decomposition can be applied to gradients with the cheaper G-NPEFF method, which that produces similar
results when the number of classes is small. However when the number of classes is large, G-NPEFF focuses
on dominant factors and recovers fewer polygenic factors. Using compressed sensing to construct parameter
perturbations from projected component representations, we selectively disrupted their associated behaviors.
In addition to conducting extensive ablation studies, we used NPEFF to analyze ICL. In future work, we
aim to explore more refined evaluation metrics to aid in the comparison of methods along with better
approximations for PEFs over a large number of classes.

12

Under review as submission to TMLR

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical learning periods in deep neural networks.
arXiv preprint arXiv:1711.08856, 2017.

Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Charless C
Fowlkes, Stefano Soatto, and Pietro Perona. Task2vec: Task embedding for meta-learning. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 6430-6439, 2019.

Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal
of computer and System Sciences, 66(4):671-687, 2003.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martin Bldzquez, Lewis Tunstall, Agustin Piqueres,
Andres Marafioti, Cyril Zakka, Leandro von Werra, and Thomas Wolf. Smollm2 - with great data, comes
great performance, 2024.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251-276, 1998.
Shun-ichi Amari. Information geometry and its applications, volume 194. Springer, 2016.

Julian Arnold, Niels Lorch, Flemming Holtorf, and Frank Schéfer. Machine learning phase transitions:
Connections to the fisher information. arXiv preprint arXiv:2811.10710, 2023.

Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger B Grosse. If influence functions are the
answer, then what is the question? Advances in Neural Information Processing Systems, 35:17953-17967,
2022.

Daniel Balcells, Benjamin Lerner, Michael Oesterle, Ediz Ucar, and Stefan Heimersheim. Evolution of sae
features across layers in llms. arXiv preprint arXiv:2410.08869, 2024.

Adithya Bhaskar, Alexander Wettig, Dan Friedman, and Danqgi Chen. Finding transformer circuits with
edge pruning. Advances in Neural Information Processing Systems, 37:18506-18534, 2024.

Ella Bingham and Heikki Mannila. Random projection in dimensionality reduction: applications to image and
text data. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 245-250, 2001.

Ismael Boureima, Manish Bhattarai, Maksim Eren, Erik Skau, Philip Romero, Stephan Eidenbenz, and Boian
Alexandrov. Distributed out-of-memory nmf on cpu/gpu architectures. The Journal of Supercomputing,
80(3):3970-3999, 2024.

Dan Braun, Jordan Taylor, Nicholas Goldowsky-Dill, and Lee Sharkey. Identifying functionally important
features with end-to-end sparse dictionary learning. Advances in Neural Information Processing Systems,
37:107286-107325, 2024.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick Turner,
Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec, Nicholas Schiefer,
Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina Nguyen, Brayden McLean,
Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and Christopher Olah. Towards monose-
manticity: Decomposing language models with dictionary learning. Transformer Circuits Thread, 2023a.
https://transformer-circuits.pub/2023 /monosemantic-features/index.html.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick Turner,
Cem Anil, Carson Denison, Amanda Askell, et al. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits Thread, 2, 2023b.

13

Under review as submission to TMLR

Jannik Brinkmann, Chris Wendler, Christian Bartelt, and Aaron Mueller. Large language models share
representations of latent grammatical concepts across typologically diverse languages. arXiv preprint
arXiv:2501.06346, 2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877-1901, 2020.

Juan José Burred. Detailed derivation of multiplicative update rules for nmf. Paris, France, 2014.

Emmanuel J Candes and Terence Tao. Near-optimal signal recovery from random projections: Universal
encoding strategies? IEEFE transactions on information theory, 52(12):5406-5425, 2006.

J Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in multidimensional scaling via an
n-way generalization of “eckart-young” decomposition. Psychometrika, 35(3):283-319, 1970.

Viktoriia Chekalina, Daniil Moskovskiy, Daria Cherniuk, Maxim Kurkin, Andrey Kuznetsov, and Evgeny
Frolov. Generalized fisher-weighted svd: Scalable kronecker-factored fisher approximation for compressing
large language models. arXiv preprint arXiv:2505.17974, 2025.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adria Garriga-Alonso.
Towards automated circuit discovery for mechanistic interpretability. Advances in Neural Information
Processing Systems, 36:16318-16352, 2023.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoencoders find
highly interpretable features in language models. arXiv preprint arXiv:2309.08600, 2023.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

David L Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):1289-1306, 2006.

Mohammed Bennani Dosse, Jos MF Ten Berge, and Jorge N Tendeiro. Some new results on orthogonally
constrained candecomp. Journal of classification, 28:144-155, 2011.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv e-prints,
pp. arXiv—2407, 2024.

Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable llm feature circuits.
arXiv preprint arXiv:2406.11944, 2024.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario
Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. A mathemat-
ical framework for transformer circuits. Transformer Circuits Thread, 2021. https://transformer-
circuits.pub/2021/framework/index.html.

Nicolaas Klaas M Faber, Rasmus Bro, and Philip K Hopke. Recent developments in candecomp/parafac
algorithms: a critical review. Chemometrics and Intelligent Laboratory Systems, 65(1):119-137, 2003.

Lucy Farnik, Tim Lawson, Conor Houghton, and Laurence Aitchison. Jacobian sparse autoencoders: Sparsify
computations, not just activations. arXiv preprint arXiv:2502.18147, 2025.

Farhad Farokhi and Henrik Sandberg. Fisher information as a measure of privacy: Preserving privacy of
households with smart meters using batteries. IEEE Transactions on Smart Grid, 9(5):4726-4734, 2017.

Ronald A Fisher. On the mathematical foundations of theoretical statistics. Philosophical transactions of
the Royal Society of London. Series A, containing papers of a mathematical or physical character, 222
(594-604):309-368, 1922.

14

Under review as submission to TMLR

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever, Jan
Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. arXiv preprint arXiv:2406.04093,
2024.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution layers.
In International Conference on Machine Learning, pp. 573-582. PMLR, 2016.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit Steiner,
Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization with influence
functions. arXiv preprint arXiv:2308.03296, 2023.

Elaine T Hale, Wotao Yin, and Yin Zhang. A fixed-point continuation method for 11-regularized minimization
with applications to compressed sensing. CAAM TRO07-07, Rice University, 43(44):2, 2007.

Frank R Hampel. The influence curve and its role in robust estimation. Journal of the american statistical

association, 69(346):383-393, 1974.

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?: Interpret-
ing mathematical abilities in a pre-trained language model. Advances in Neural Information Processing
Systems, 36:76033—-76060, 2023.

Michael Hanna, Sandro Pezzelle, and Yonatan Belinkov. Have faith in faithfulness: Going beyond circuit
overlap when finding model mechanisms. arXiv preprint arXiv:2408.17806, 2024.

Awni Hannun, Chuan Guo, and Laurens van der Maaten. Measuring data leakage in machine-learning models
with fisher information. In Uncertainty in Artificial Intelligence, pp. 760-770. PMLR, 2021.

Richard A Harshman et al. Foundations of the parafac procedure: Models and conditions for an “explanatory”
multi-modal factor analysis. UCLA working papers in phonetics, 16(1):84, 1970.

Zhengfu He, Xuyang Ge, Qiong Tang, Tianxiang Sun, Qinyuan Cheng, and Xipeng Qiu. Dictionary learning
improves patch-free circuit discovery in mechanistic interpretability: A case study on othello-gpt. arXiv
preprint arXiv:2402.12201, 2024.

Alex D Holub, Max Welling, and Pietro Perona. Combining generative models and fisher kernels for object
recognition. In Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, volume 1,
pp. 136-143. IEEE, 2005.

Aliyah R Hsu, Georgia Zhou, Yeshwanth Cherapanamjeri, Yaxuan Huang, Anobel Y Odisho, Peter R Carroll,
and Bin Yu. Efficient automated circuit discovery in transformers using contextual decomposition. arXiv
preprint arXiv:2407.00886, 2024.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. arXiw preprint arXiv:2207.00112, 2022.

Francois Husson and Jérome Pages. Indscal model: geometrical interpretation and methodology. Computa-
tional statistics €& data analysis, 50(2):358-378, 2006.

Tommi Jaakkola and David Haussler. Exploiting generative models in discriminative classifiers. Advances
in neural information processing systems, 11, 1998.

Divyansh Jhunjhunwala, Shigiang Wang, and Gauri Joshi. Fedfisher: Leveraging fisher information for one-
shot federated learning. In International Conference on Artificial Intelligence and Statistics, pp. 1612—-1620.
PMLR, 2024.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. triviaqa: A Large Scale Distantly Super-
vised Challenge Dataset for Reading Comprehension. arXiv e-prints, art. arXiv:1705.03551, 2017.

15

Under review as submission to TMLR

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521-3526, 2017.

Connor Kissane, Robert Krzyzanowski, Joseph Isaac Bloom, Arthur Conmy, and Neel Nanda. Interpreting
attention layer outputs with sparse autoencoders. arXiv preprint arXiv:2406.17759, 2024.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In International
conference on machine learning, pp. 1885-1894. PMLR, 2017.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):455-500,
2009.

Abdoulaye Koroko, Ani Anciaux-Sedrakian, Ibtihel Ben Gharbia, Valérie Gares, Mounir Haddou, and
Quang Huy Tran. Efficient approximations of the fisher matrix in neural networks using kronecker product
singular value decomposition. arXiv preprint arXiv:2201.10285, 2022.

Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical fisher approximation for
natural gradient descent. Advances in neural information processing systems, 32, 2019.

Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir Gholami. A fast
post-training pruning framework for transformers. Advances in Neural Information Processing Systems,
35:24101-24116, 2022.

Michael Lan, Philip Torr, Austin Meek, Ashkan Khakzar, David Krueger, and Fazl Barez. Sparse autoen-
coders reveal universal feature spaces across large language models. arXiv preprint arXiv:2410.06981,
2024.

Stefan Larson, Anish Mahendran, Joseph J Peper, Christopher Clarke, Andrew Lee, Parker Hill, Jonathan K
Kummerfeld, Kevin Leach, Michael A Laurenzano, Lingjia Tang, et al. An evaluation dataset for intent
classification and out-of-scope prediction. arXiv preprint arXiv:1909.02027, 2019.

Tim Lawson, Lucy Farnik, Conor Houghton, and Laurence Aitchison. Residual stream analysis with multi-
layer saes. arXiv preprint arXiv:2409.04185, 2024.

Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative matrix factorization.
nature, 401(6755):788-791, 1999.

Sanwoo Lee, Jiahao Liu, Qifan Wang, Jingang Wang, Xunliang Cai, and Yunfang Wu. Dynamic fisher-
weighted model merging via bayesian optimization. arXiv preprint arXiv:2504.18992, 2025.

Ping Li, Trevor J Hastie, and Kenneth W Church. Very sparse random projections. In Proceedings of the
12th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 287-296, 2006.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant Varma,
Janos Kramar, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse autoencoders
everywhere all at once on gemma 2. arXiv preprint arXiv:2408.05147, 2024.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What makes
good in-context examples for gpt-37 arXiv preprint arXiv:2101.06804, 2021a.

Liyang Liu, Shilong Zhang, Zhanghui Kuang, Aojun Zhou, Jing-Hao Xue, Xinjiang Wang, Yimin Chen,
Wenming Yang, Qingmin Liao, and Wayne Zhang. Group fisher pruning for practical network compression.
In International Conference on Machine Learning, pp. 7021-7032. PMLR, 2021b.

Xinyu Ma, Xuebo Liu, and Min Zhang. Clustering pseudo language family in multilingual translation models
with fisher information matrix. arXiv preprint arXiv:2312.02820, 2023.

Alireza Makhzani and Brendan Frey. K-sparse autoencoders. arXiv preprint arXiv:1812.5663, 2013.

16

Under review as submission to TMLR

Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller. Sparse
feature circuits: Discovering and editing interpretable causal graphs in language models. arXiv preprint
arXiv:2403.19647, 2024.

James Martens. New insights and perspectives on the natural gradient method. Journal of Machine Learning
Research, 21(146):1-76, 2020.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate curva-
ture. In International conference on machine learning, pp. 2408-2417. PMLR, 2015.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances in Neural
Information Processing Systems, 35:17703-17716, 2022.

Eric Michaud, Ziming Liu, Uzay Girit, and Max Tegmark. The quantization model of neural scaling.
Advances in Neural Information Processing Systems, 36:28699-28722, 2023.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. Rethinking the role of demonstrations: What makes in-context learning work?, 2022. URL
https://arxiv.org/abs/2202.12837.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures for
grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

Ganesh Nathan et al. Fisher mask nodes for language model merging. arXiv preprint arXiv:2403.09891,
2024.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario
Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. In-context learning and
induction heads. Transformer Circuits Thread, 2022. https://transformer-circuits.pub/2022/in-context-
learning-and-induction-heads/index.html.

Charles O’Neill and Thang Bui. Sparse autoencoders enable scalable and reliable circuit identification in
language models. arXiv preprint arXiv:2405.12522, 2024.

Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Chuan-Sheng Foo, and Rio Yokota. Scalable
and practical natural gradient for large-scale deep learning. IEEFE Transactions on Pattern Analysis and
Machine Intelligence, 44(1):404-415, 2020.

Kazuki Osawa, Shigang Li, and Torsten Hoefler. Pipefisher: Efficient training of large language models using
pipelining and fisher information matrices. Proceedings of Machine Learning and Systems, 5:708-727, 2023.

Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. arXiv preprint
arXiv:1801.3584, 2013.

Goncalo Paulo, Alex Mallen, Caden Juang, and Nora Belrose. Automatically interpreting millions of features
in large language models. arXiv preprint arXiv:2410.13928, 2024.

Florent Perronnin, Jorge Sanchez, and Thomas Mensink. Improving the fisher kernel for large-scale im-
age classification. In Computer Vision-ECCV 2010: 11th Furopean Conference on Computer Vision,
Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part IV 11, pp. 143-156. Springer, 2010.

Sergey Pletenev, Viktoriia Chekalina, Daniil Moskovskiy, Mikhail Seleznev, Sergey Zagoruyko, and Alexan-
der Panchenko. A computational study of matrix decomposition methods for compression of pre-trained
transformers. In Proceedings of the 37th Pacific Asia Conference on Language, Information and Compu-
tation, pp. 723-742, 2023.

17

https://arxiv.org/abs/2202.12837

Under review as submission to TMLR

Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, Janos Kramar,
Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoencoders. arXiw
preprint arXiv:2404.16014, 2024a.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, Janos
Kramar, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse au-
toencoders. arXiv preprint arXiv:2407.14435, 2024b.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. Impact of pretraining term
frequencies on few-shot reasoning. arXiv preprint arXiv:2202.07206, 2022.

Jorge Sanchez, Florent Perronnin, Thomas Mensink, and Jakob Verbeek. Image classification with the fisher
vector: Theory and practice. International journal of computer vision, 105:222-245, 2013.

Craig Saunders, Alexei Vinokourov, and John Shawe-Taylor. String kernels, fisher kernels and finite state
automata. Advances in Neural Information Processing Systems, 15, 2002.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visualising
image classification models and saliency maps. arXiv preprint arXiv:1312.603/4, 2013.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smoothgrad: removing
noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp.
1631-1642, Seattle, Washington, USA, October 2013. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/D13-1170.

Alexander Soen and Ke Sun. On the variance of the fisher information for deep learning. Advances in Neural
Information Processing Systems, 34:5708-5719, 2021.

Alexander Soen and Ke Sun. Trade-offs of diagonal fisher information matrix estimators. arXiv preprint
arXiv:2402.05379, 2024.

Alwin Stegeman, Jos MF Ten Berge, and Lieven De Lathauwer. Sufficient conditions for uniqueness in
candecomp/parafac and indscal with random component matrices. Psychometrika, 71(2):219-229, 2006.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In International
conference on machine learning, pp. 3319-3328. PMLR, 2017.

Aaquib Syed, Can Rager, and Arthur Conmy. Attribution patching outperforms automated circuit discovery.
arXi preprint arXiv:2310.10348, 2023.

Derek Tam, Mohit Bansal, and Colin Raffel. Merging by matching models in task parameter subspaces.
arXiv preprint arXiv:2312.04339, 2023.

Zedong Tang, Fenlong Jiang, Maoguo Gong, Hao Li, Yue Wu, Fan Yu, Zidong Wang, and Min Wang. Skfac:
Training neural networks with faster kronecker-factored approximate curvature. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13479-13487, 2021.

Adly Templeton, Joshua Batson, Adam Jermyn, and Chris Olah. Predicting future activations, Jan 2024a.
URL https://transformer-circuits.pub/2024/jan-update/index.html#predict-future.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen, Adam
Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L Turner, Cal-
lum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers, Edward Rees, Joshua
Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan. Scaling monosemanticity: Ex-
tracting interpretable features from claude 3 sonnet. Transformer Circuits Thread, 2024b. URL
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html.

18

https://www.aclweb.org/anthology/D13-1170
https://transformer-circuits.pub/2024/jan-update/index.html#predict-future
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html

Under review as submission to TMLR

Lucas Theis, Iryna Korshunova, Alykhan Tejani, and Ferenc Huszar. Faster gaze prediction with dense
networks and fisher pruning. arXiv preprint arXiv:1801.05787, 2018.

Valentin Thomas, Fabian Pedregosa, Bart Merriénboer, Pierre-Antoine Manzagol, Yoshua Bengio, and Nico-
las Le Roux. On the interplay between noise and curvature and its effect on optimization and generalization.
In International Conference on Artificial Intelligence and Statistics, pp. 3503-3513. PMLR, 2020.

Brian Thompson, Jeremy Gwinnup, Huda Khayrallah, Kevin Duh, and Philipp Koehn. Overcoming catas-
trophic forgetting during domain adaptation of neural machine translation. In 2019 Annual Conference of
the North American Chapter of the Association for Computational Linguistics, pp. 2062—2068. Association
for Computational Linguistics, 2019.

Giorgio Tomasi and Rasmus Bro. A comparison of algorithms for fitting the parafac model. Computational
Statistics & Data Analysis, 50(7):1700-1734, 2006.

Joel A Tropp. Just relax: Convex programming methods for identifying sparse signals in noise. IEEFE
transactions on information theory, 52(3):1030-1051, 2006.

Laurens Van Der Maaten. Learning discriminative fisher kernels. In ICML, volume 11, pp. 217-224, 2011.
Santosh S Vempala. The random projection method, volume 65. American Mathematical Soc., 2005.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Interpretability
in the wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint arXiv:2211.00593,
2022.

Xiaodong Wu, Wenyi Yu, Chao Zhang, and Philip Woodland. An improved empirical fisher approximation
for natural gradient descent. arXiv preprint arXiv:2406.06420, 2024.

Haozhe Xie, Jie Li, and Hanqging Xue. A survey of dimensionality reduction techniques based on random
projection. arXiv preprint arXiv:1706.04371, 2017.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in neural information
processing systems, 32, 2019.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classification.
Advances in neural information processing systems, 28, 2015.

Yiming Zhang, Shi Feng, and Chenhao Tan. Active example selection for in-context learning. arXiv preprint
arXiv:2211.04486, 2022.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving few-
shot performance of language models. In International conference on machine learning, pp. 12697-12706.
PMLR, 2021.

Qihuang Zhong, Liang Ding, Li Shen, Peng Mi, Juhua Liu, Bo Du, and Dacheng Tao. Improving sharpness-
aware minimization with fisher mask for better generalization on language models. arXiv preprint
arXiw:2210.05497, 2022.

A Random Projections

Random projection matrix form To project from R™ to R", let A € R™ " be a random projection
matrix. For computational purposes, we want most entries of A to be zero. To do this, let a € R™ denote a
column of A. We pick a region size s € N and divide the entries of a into chunks of size s. In each of these
chunks, we pick an entry at random and set it with equal probability to either 1 or -1. All other entries are
0. Following Marks et al. (2024), we pick a level of sparsity such that each entry of the original vector will,
on average, contribute to 32 entries in its projection. This corresponds to selecting a sparse region size of
s=1r/32.

19

Under review as submission to TMLR

Efficient projections using a CUDA kernel Note that explicitly materializing even a sparse repre-
sentation of the projection matrix would take 32n values, i.e. 32 times the number of model parameters.
However, we can construct entries of the matrix on the fly using a pseudo-random number generator. Hence
the seed of the pseudo-random number generator essentially parameterizes the projection matrix.

This is a good fit to implement the projection via a CUDA kernel. In our current implementation, each
thread in the kernel corresponds to one of the r entries in the projection. The global seed specifying the
projection matrix is used to produce a different seed for each thread. This pseudo-random number generator
is then used to select the entry from each sparse region and its value.

B Expectation Approximation Proof

Let us start by restating the expressions from Section 2.1.1. Let q(x;6) € R" be defined element-wise with
its i-th entry equal to stop_grad(y/pe(y:|x)) logpg(y;|x), where stop_grad treats a quantity as a constant
while backpropagating. Note that Voq(x;0) = G(x) € R"*" is the LRM-PEF.

Let A € R™ " be a random projection matrix (i.e. ATA ~ I). Let G'(x) = VyAq(x;0) € R”*" be our
approximation to the LRM-PEF. We have G'(x) = VA q(x;0) = AVpq(x;60) = AG(x). When construct the
full PEF, when have F'(x) = G'(x)TG'(x) = G(x)ATAG(x) ~ G(x)IG(x)T = G(x)G(x)T = F(x). Hence
our use of this random projection to approximate the expectation results in a similar PEF to representing
the full expectation.

C Decomposition Algorithm

We start by reviewing the optimization problem from Section 2.2. Given a set Gy, ..., G, of LRM-PEFs over
a set of m examples and a number C of components to learn, NPEFF can be expressed as the non-convex
optimization problem

o c
minimize Y., [|GT G; — > =1 Wish;hT |3,
subject to W;; > 0.

(4)

We stack the PEFs into a single rank-3 tensor G € R™*"*"™. We can express the quantities to be learned
via the matrices W € R™*¢ and H € R*™, where rows of H correspond to the h;. Our optimization
of equation 4 proceeds in alternating steps of updating the coefficients W and pseudo-Fishers H. Our W-
update step is essentially a the W-update step from the multiplicative update NMF (Lee & Seung, 1999).
algorithm. For the H-update step, we perform a gradient descent step with a fixed learning rate.

C.1 W-Update Step

Recall that the multiplicative update step in NMF involves computing non-negative numerator and denomi-
nator matrices N, D € R™*C The matrix W is then updated via the element-wise rule W;; — W;;N;;/D;;.

Computing the numerator starts with computing the rank-3 tensor B € R™*"*¢ where r is the rank used

to represent the LRM-PEFSs, with elements given by B, = ZZZI GijeHye. The numerator is then given
element-wise by N, = Z;Zl B?jk. The denominator is then given by D = W((HHT) ® (HHT)), where ®
denotes the Hadamard product.

C.2 H-Update Step

The gradient of the loss with respect to H consists of two terms Ty, T, € R€*™ that are added together. The
first term is given by 71 = 4(WTW) © (HHT))H. Computation of the second term starts by computing
the rank-3 tensor B € R™*"*C a5 was done for the W-update step. The second term is then obtained
element-wise as [Tz = —4 Z;”:l Sy WiiBjkiG ke

20

Under review as submission to TMLR

C.3 Multi-GPU Implementation Details

To speed up decompositions and support larger decompositions, we implement a multi-GPU strategy for our
algorithm. We partition the input PEFs and the coefficients W along the batch dimension across separate
GPUs. We replicate the pseudo-Fisher matrix H on each GPU. The W-update step can proceed on each
GPU without the need for inter-GPU communication. Since the gradient of the loss with respect to H can
be expressed as a sum of per-example gradients, we compute its gradient for the samples residing on each
GPU. Then a single all-reduce step is needed to aggregate the gradients for all of the examples. Then each
GPU applies the gradient descent step to their own local copies of H.

C.4 Other Considerations

We initialized W using the uniform distribution on [0, 1]. We initialized H using a normal distribution with
zero mean and standard deviation of v/2/v/Cn. Since the PEFs were normalized to unit Frobenius norms,
we chose this scaling so that the initial reconstructions would also have roughly unit Frobenius norms as
well.

After initialization, we found it crucial to freeze W and only train H for a bit before commencing joint
training. This is because if the H is a poor fit for the W, the W update step will end up setting W to zero.
Since the W update is multiplicative, it remains zero throughout the remainder of training if this happens.
We suspect that this behavior can be explained due to the nature of the multiplicative update step. It can
be shown that the multiplicative update step is equivalent to gradient descent with a variable element-wise
learning rate (Burred, 2014). Unlike traditional gradient descent that uses a small gradient step, the variable
learning can become large. This makes it possible for the W to jump directly to zero or some similarly small
value. If the loss is greater than the Frobenius norm of the PEFs, then setting W to zero will result in a
lower loss. Hence, jumping to zero can decrease the loss in such cases.

C.5 Convergence

While we do not provide a proof of convergence of our NPEFF decomposition algorithm, we can make a
heuristic argument for its convergence. Following the proof of convergence for regular multiplicative-update
NMF (Lee & Seung, 1999), we can show that the loss will be non-increasing following the W-update step.
For a sufficiently small step size, we can expect the gradient descent step from the H-update to not increase
the loss as well. Since the loss is bounded from below by 0, it follows that the loss should eventually converge.
When actually running NPEFF, we found the loss to be non-increasing with the rate of decrease decelerating
as the number of steps increased.

C.6 Decomposition on Randomly Projected PEFs

Let us see consider the difference between an update step in the original and non-projected set-ups. Let
A € R"*P denote the random projection matrix used. While random projections only approximately preserve
inner products, i.e. AAT ~ I, we will make that assumption that they preserve inner products exactly, i.e.
AAT = I, to show that our algorithm commutes with random projections under that assumption. Let
G, = G;A and H' = HA denote the projected PEFs and pseudo-Fisher matrices, respectively. Note that
the random projection will not directly affect the coefficients W.

Let’s first look at the W-update step. Computing the rank-3 tensor B is equivalent to computing G;H” for
i=1,...,m. We have GIH'" = G;AATHT = G,H", so B is left unchanged when using the projections.
The numerator N is purely a function of B, so it is unchanged as well. The denominator D depends on
projected quantities solely through HH7T. Since H' H'" = HAATHT = HH”, the denominator is unaffected
by the use of the projection. Since both N, D are unaffected by the projection, the W-update step is the
same regardless of whether we using random projections.

Now let’s look at the H-update step. Since we have shown that H'H'T = HH” | it follows that T} = T} A.
Similarly since the random projection does not affect B, we can show that Tj = To A. Let n > 0 denote the
learning rate used in the H-update step. Originally, the H-update step proceeds as H — H — n(T} + Tb).

21

Under review as submission to TMLR

With the random projection, the updated H' is provided by H' —n(T} +13) = (H —n(T1+13))A. Essentially,
we have shown that the H-update step commutes with random projections; performing an H-update in the
original space followed by a random projection is equivalent to performing the projections first followed by
the update step on the projections.

We have just shown that both the W-update and H-update leave the relationship between original and
projected quantities unchanged: W’ = W and H' = HA. Thus by induction, these relationships hold after
an arbitrary number of update steps. Hence operating on projected PEFs will produce the same coefficients as
operating on original PEFs. Furthermore, the final pseudo-Fisher vectors from the projected decomposition
will be equal to the projections of the final pseudo-Fisher vectors from the original decomposition.

One major caveat of this analysis, however, is that it assumes that the random projections preserve inner
products exactly. In reality, inner products are only approximately preserved by the projections. Hence this
analysis should only be expected to hold approximately in practice.

D Task Formulations

D.1 SST2

SST2 consists of sentiment analysis of a sentence. Given a sentence, we construct a prompt via the template
Review: {sentence}\nSentiment:. The 2 labels used for this task are Negative and Positive. To
get a distribution pj(y|x) over two labels, we start with the full model distribution pg(y|x) over the entire
vocabulary given the context. We look at the first token in the tokenization of each label labels' and
obtain their corresponding probabilities from pg(y|x). These two probabilities are then normalized to get
a distribution pj(y|x) over the labels. As a practical note, we can obtain the logits of pj(y|x) by simply
selecting the logits corresponding to label tokens from pg(y|x) due to properties of the softmax function.

D.2 YAT

We phrased YAT as determining the topic corresponding to a question. Given a question, we con-
struct a prompt via the template Question: {question}\nWhat broad topic is this question
about? Choose from:\nSociety & Culture\nScience & Mathematics\nHealth\nEducation

& Reference\nComputers & Internet\nSports\nBusiness & Finance\nEntertainment &
Music\nFamily & Relationships\nPolitics & Government.\nTopic:. The 10 labels used for this
task are Society & Culture, Science & Mathematics, Health, Education & Reference, Computers
& Internet, Sports, Business & Finance, Entertainment & Music, Family & Relationships, and
Politics & Government. We construct a distribution pj(y|x) over these 10 labels from the full model
distribution pp(y|x) using the same process we used for SST2.

D.3 CLINC150

CLINC150 consists of inferring the intent from one of 151 options given a query. Given a
query, we construct a prompt via the template Query: {query}\nIntent:. The 151 labels are
oos, freeze account, routing, pin change, bill due, pay bill, account blocked, interest rate,
min payment, bill balance, transfer, order checks, balance, spending history, transactions,
report fraud, replacement card duration, expiration date, damaged card, improve credit score,
report lost card, card declined, credit limit change, apr, redeem rewards, credit limit,
rewards balance, application status, credit score, new card, international fees, food last,
confirm reservation, how busy, ingredients list, calories, nutrition info, recipe, restaurant
reviews, restaurant reservation, meal suggestion, restaurant suggestion, cancel reservation,
ingredient substitution, cook time, accept reservations, what song, play music, todo list
update, reminder, reminder update, calendar update, order status, update playlist, shopping
list, calendar, next song, order, todo list, shopping list update, smart home, current location,

1The SmolLM2 tokenizer prepends the space to the start of tokens, so our labels technically have a space at the start for all
of the tasks.

22

Under review as submission to TMLR

0il change when, oil change how, uber, traffic, tire pressure, schedule maintenance, gas, mpg,
distance, directions, last maintenance, gas type, tire change, jump start, plug type, travel
notification, translate, flight status, international visa, timezone, exchange rate, travel
suggestion, travel alert, vaccines, lost luggage, book flight, book hotel, carry on, car rental,
weather, alarm, date, find phone, share location, timer, make call, calculator, definition,
measurement conversion, flip coin, spelling, time, roll dice, text, pto request status, next
holiday, insurance change, insurance, meeting schedule, payday, taxes, income, rollover 401k,
pto balance, pto request, w2, schedule meeting, direct deposit, pto used, who made you, meaning
of life, who do you work for, do you have pets, what are your hobbies, fun fact, what is your
name, where are you from, goodbye, thank you, greeting, tell joke, are you a bot, how old are
you, what can i ask you, change speed, user name, whisper mode, yes, change volume, no, change
language, repeat, change accent, cancel, sync device, change user name, change ai name, reset
settings, and maybe.

To get a distribution pj(y|x) over these 151 labels, we start by computing the probability of each label as a
suffix to the query. These probabilities are then normalized to get a distribution pj(y|x) over the labels. As
a practical note, we can obtain the logits of pj(y|x) by simply taking the log probability of each suffix due
to properties of the softmax function.

D.4 TriviaQA

TriviaQA is an open-form question answering task where the model generates an answer given a question.
Given the question, we construct a prompt via the template Question: {question}\nAnswer:. We take
po(y|x) to be the model’s next-token predictive distribution given this context.

E Perturbation Experimental Details

Compressed sensing aims to solve the constrained optimization problem
min {[lx] : Ax = b} (5)

where x € R" is the reconstruction which we wish to find, b € R? is the projected vector, and A € RP*" is
the random projection matrix. However, we use the unconstrained relaxation

. 1
min] + 5 A —] (6)

where p > 0 is a hyperparameter controlling sparsity of the solution.

We used the fixed point continuation (FPC) solver from Hale et al. (2007) to solve equation 6 since it only
requires matrix-vector products with the random projection matrix and its transpose. This is a good fit for
our custom CUDA kernels implementing the random projections. We use the default hyperparameter values
of v = 0.99, 8 = 4, and equation (73) from Hale et al. (2007) to set 7. We used a value of 4e-5 for the
hyperparameter p. We also use a single inner iteration since we found that to produce the best results in
our perturbation experiments. We found this algorithm to produce reconstructions quickly, typically taking
at most a few seconds.

F Number of Components Ablation Full Breakdown

A breakdown of fraction of matching components for NPEFF decompositions with preserved tunings with
varying number of components is provided in Table 5 for SST2.

G SAE Training Details

As is common practice, we constrain rows of the encoder and columns of the decoder to have unit L2 norm,
which causes these parameters to lie on a manifold. Like Bricken et al. (2023b), we project gradients onto the

23

Under review as submission to TMLR

Table 5: Percentage of matching components from NPEFF decomposition 2 with the same tuning as their
match from NPEFF decomposition 1 for SST2.

NPEFF Comps 1 NPEFF CompPs 2 PERCENT OF TUNED MATCHES

32 64 81.3
32 128 89.0
32 256 85.6
32 512 83.1
64 128 91.2
64 256 88.0
64 512 84.0
128 256 86.9
128 512 83.1
256 512 87.1

tangent space of this manifold before passing them to Adam. Following Gao et al. (2024), we initialize the
decoder to the transpose of the encoder. We did not do anything else to mitigate the issue of “dead” latents
during training since this was not a major issue for us. We normalized per-token activations to unit L2 norm
before passing them to the SAE. We also did this when computing top examples for each SAE component.
In all of our experiments, we used a learning rate of le-3. We used a batch size of 4096 activations and
trained for 51,200 batches.

H Component Top Examples

Top examples of random components are presented in Figure 4 for SST2, in Figure 5 for YAT, in Figure 6
for CLINC150, and Figure 7 for TriviaQA.

24

Under review as submission to TMLR

Component 1
devastation

death
suffered

be killed
fatal ailments

Component 2
very funny romantic comedy

delightful romantic comedy
enjoyable comedy
heartfelt comedy
delightful comedy

Component 3
a fascinating glimpse of urban life and the class warfare that
embroils two young men

that presents a fascinating glimpse of urban life and the class
warfare that embroils two young men

presents a fascinating glimpse of urban life and the class warfare
that embroils two young men

a lively and engaging examination of how similar obsessions can
dominate a family .

a lively and engaging examination of how similar obsessions can
dominate a family

Component 4
its 112-minute length

notice the 129-minute running time

seems twice as long as its 83 minutes

its three-hour running time plays closer to two .
runs 163 minutes

Component 5
quite possibly the sturdiest example yet

smarter and more diabolical
far more entertaining than i had expected
makes oliver far more interesting

would seem to be surefire casting

Component 6

is the case of a pregnant premise being wasted by a script that
takes few chances and manages to insult the intelligence of
everyone in the audience

to it — as if the director is trying to dupe the viewer into taking it
all as very important simply because the movie is ugly to look at
and not a hollywood product

be a movie that ends up slapping its target audience in the face
by shooting itself in the foot

to dupe the viewer into taking it all as very important simply
because the movie is ugly to look at and not a hollywood product

to make you feel guilty about ignoring what the filmmakers
clearly believe

Component 7
leaves you wanting more

appetizer that leaves you wanting more

filled with raw emotions

really does feel like a short stretched out to feature length .
makes two hours feel like four .

Component 8
a tiresome cliché

to many clichés

the clumsy cliché

fails to keep it up and settles into clichés
a cliché

Component 9
which half of dragonfly is worse : the part where nothing ’s
happening , or the part where something ’s happening

in a doctor ’s office , emergency room , hospital bed or insurance
company office

do n’t know why steven seagal is considered a star , nor why he
keeps being cast in action films when none of them are ever any
good or make any money

does n’t understand that the idea of exploiting molestation for
laughs is funny , not actually exploiting it yourself

how inept is serving sara ?
Component 10
promising

inspires

exciting

exciting

powerful

Figure 4: Top examples of random components from NPEFF decompositions for SST2 in Section 3.1.

25

Under review as submission to TMLR

Component 1
Which sport is better baseball or basketball, and tell me which
player is best at that sport.?

What is the most popular sport in the world as a whole: Soccer
or American Football?

‘Which sport is better, baseball or basketball, and tell me which
player is best at that sport.?

Which sport is better, baseball or basketball, and tell me which
player is best at that sport.?

Basketball trivia. Which coach leads the NBA in assists in a
game?

Component 2

‘What movies should I rent this weekend?

‘What is the single funniest scene in a movie you’ve ever seen?
‘What’s the far best movie u seen of all time?

‘What is the funniest song you’ve ever heard?

What is the funniest movie dialogue you have ever liked?

Component 3
how to write a recommendation letter?

Where can I find good examples of cover letters (free)?
What are résumés supposed to look like?

How do you write a bibliography??

how do write a good resignation letter?

Component 4
how do u make a good paper airplane?

if someone killed your dog wat would u do!?

whats the trick to david blaines levitation?

if your **** doesnt grow how do you make it grow?
How do you stopyour mom from watching soap operas?

Component 5
What is better and can help to penis enlargement, brief or boxer
shorts?

I'm looking for adult fleece loungewear.?

what is a good paintball gun for a begginner?

i am looking for a used 3 three wheel bicycle?

Where can I purchase liquid chalk? I live in Vista,CA.?

Component 6
I want to know who sing a christian song that has in its lyrics
"when you’ve lost your faith Borrow mine.

DOES ANYONE KNOW WHERE I CAN FIND INFO ON
PREP OR PRIVATE SCHOOLS IN THE BRONX THAT
AREN'T CATHOLIC SCHOOLS?

Valentines poems for moms?

Looking for a good Ballet School for my toddler in San Diego,
CA?

what does st. patrick’s day mean?

Component 7

what’s the best / worst thing that happened to you this year?
what is the worst part about America?

is it bad to care about one of my jobs and not the other one?
what drives you crazy?

what kind of disabilities are there?

Component 8

I have marked e-mail spam by mistake. How do I retrieve the
addresses so they are not considered spam?

When I click on a mailto: link, Outlook opens Word as my e-mail
editor. How do I change my default editor?

The mail I send to Yahoo from my office email gets treated as
spam in Yahoo. How do I correct this?

My sister and I use to email. She has since passed away. Is there
a way to retrieve deleted emails?

When using Yahoo Messenger 7.0, how do you delete custom
Status Messages (aka Away Messages)?

Component 9

What is black hole?

What is black hole?

What exactly is a black hole?
what is black hole?

what is black hole?
Component 10

what’s it 7

what do i do ?

whats on your mind?

what should I do?

what do you think about this?

Figure 5: Top examples of random components from NPEFF decompositions for YAT in Section 3.1.

26

Under review as submission to TMLR

Component 6
Component 1 does longhorn steakhouse have good reviews

i need to know how many vacation days i have does olive garden have good customer reviews
i need to know the number of days off i have taken at this point jges outback steakhouse have good reviews
i need to know how many of my days off i have used at this point jges olive garden have good reviews

i need to know how many days off i have used so far does pizza hut have good reviews

i need to know how many days i toof off Component 7

Component 2 how much money do i pay in taxes
i can’t locate my mastercard and i want to report it as lost, how much do i pay in my taxes
please

how much will i pay in state taxes
can i get some more checkbooks sent to me, please . .
how much do i pay in taxes every year

where can i get the form i need to do my taxes, please . .
b K v £ 4 ol how much do i pay in taxes
ow can i apply for a mastercard, please Component 8

restore your original settings, please i really need to get a volkswagen car rental for march 5th to
Component 3 march 8th in phoenix

'm thankful for your help i want to rent a bmw suv for dallas from march 2 to 6th

i thank you i need to let my bank know i will be in america from april to may
thank you for your help i need to rent an suv in charlestown for the first week in june who
i would like to thank you ai do you suggest

thank you very much for the assistance i want a bmw suv for march 2 to 6th in dallas

Component 4 Component 9

where should i look for my w-2 i need a recipe for chili

where can i find my w-2 find a recipe for baked ziti

where do i go to get my w-2 find me a recipe for chili

where can i get my w-2 i need a recipe for chicken cordon bleu

can you locate my w-2 find a recipe for hamburgers

Component 5 Component 10

can you not talk so fast can you tell me if i will have any transactions fees for using my

you talk too slow discover card in turkey

can you please talk slower how much is 1 share of aapl

can you please not talk so fast how much is the exchange between usd and euros

can you please talk faster whats the current exchange rate between usd and eur

i suspect fraudulent transaction

Figure 6: Top examples of random components from NPEFF decompositions for CLINC150 in Section 3.1.

27

Under review as submission to TMLR

Component 1

In Judaism, what is a ‘Kever’?

In heraldry, what is a wyvern?

What is a Stiffkey (or Stewkey) Blue?

In CB jargon what is a bone box?

What is a ‘tercel’ (‘tiercel’ in the USA)?

Component 2

For her performance in which film did Meryl Streep win the Best
Actress 'Oscar’ earlier this year?

For her performance in which film did Meryl Streep win the Best
Actress 'Oscar’ earlier this year?

For his role in which film did Al Pacino win the Oscar for best
actor in 19927

For her role in which film did Jane Darwell win the ’Oscar’ for
Best Supporting Actress in 1940 when aged 617

For his role in which film did Al Pacino win the Oscar for best
actor in 19927

Component 3

"The names of how many US states begin with ""New""?"

"The names of how many US states begin with ""M""?"

"The names of how many US states begin with the letter ""I""?"
"The names of how many US states begin with ""New""?"

"The names of how many US states begin with ""M""?"

Component 4
Which famous actor was born in Beirut in 19647

Which theatre critic devised and produced the erotic revue ‘Oh!
Calcuttal’ in 19697

Which poet died of septicaemia in the Aegean Sea in 19157

Which theatre critic devised and produced the erotic revue ‘Oh!
Calcutta!” in 19697

‘Which famous author spent 5 years in the 1920’s as a police
officer in Burma?

Component 5
A rat can survive longer without water than a camel?

A rat can survive longer without water than a camel?
A Wayzgoose is an annual outing or party in which industry?

A system known as SCOOT (Split Cycle Offset Optimisation
Technique) is used to control our travel movements in what way?

A Sugar anniversary celebrates how many years of marriage?

Component 6
Which film tells of the exploits of singer Deco Duffe?

Which film tells of the exploits of singer Deco Duffe?

Which sitcom with Vickie Lawrence was a spin-off from the Carol
Burnett Show?

Which sitcom with Vickie Lawrence was a spin-off from the Carol
Burnett Show?

Which show was based on the autobiography of Gypsy Rose Lee?

Component 6
Who was Henry VIID’s third wife?

Who was Henry VIID’s third wife?

British monarch Henry VIII married which of his wives in 15407
British monarch Henry VIII married which of his wives in 15407
Which of Henry VIII’s wives was the mother of Mary I?

Component 7
"Which product was advertised on TV with the slogan ""Good to
the last drop""?"

"Which product was advertised with the slogan ""Good to the
last drop""?"

"Which product was advertised with the slogan, ""Forces grey
out, forces white in""?"

"Which famous product was advertised on TV with the words
""Cleans and polishes in one go""?"

"Which famous product was advertised on TV with the words ""it
won’t let you down""?"

Component 8
How many apprentice boys shut the gates of Derry in December
1688 leading to the siege of the city?

How many theses did Martin Luther post on the door of the
Castle Church of Wittenberg in October 15177

How many Victoria Crosses were won at Rorke’s Drift in 18797

How many theses were nailed to a church door by Martin Luther
in 1517 (generally accepted to be the Castle Church in
Wittenberg, Germany, on All Saints Eve, 31 October)?

How many prisoners were locked in the Bastille in Paris when it
was stormed by the people in 17897

Component 9

Which Shakespeare play is mainly set in a forest outside Athens?
Which Shakespeare play is set in Illyria?

Which Shakespeare play is mainly set in a forest outside Athens?
Which Shakespeare play has the siege of Troy as its setting?
Which Shakespeare play has the siege of Troy as its setting?

Component 10
Which gas forms 80% of Earth’s atmosphere?

Which gas forms 80% of Earth’s atmosphere?

Which gas forms approximately 1% of the atmosphere?
Which gas forms approximately 1% of the atmosphere?
Which gas forms about 78% of the Earth’s atmosphere?

Figure 7: Top examples of random components from NPEFF decompositions for TriviaQA in Section 3.1.

28

	Introduction
	Non-Negative Per-Example Fisher Factorization (NPEFF)
	Collection of PEFs
	Approximating the Expectation
	Rank Reduction

	Decomposition
	Random Projections

	G-NPEFF

	Experiments
	Characterizing Component Tunings
	Perturbations
	Application – Analyzing ICL

	Ablations
	Related Work
	Conclusion
	Random Projections
	Expectation Approximation Proof
	Decomposition Algorithm
	W-Update Step
	H-Update Step
	Multi-GPU Implementation Details
	Other Considerations
	Convergence
	Decomposition on Randomly Projected PEFs

	Task Formulations
	SST2
	YAT
	CLINC150
	TriviaQA

	Perturbation Experimental Details
	Number of Components Ablation Full Breakdown
	SAE Training Details
	Component Top Examples

