
Under review as submission to TMLR

Sample-Efficient Self-Supervised Imitation Learning

Anonymous authors
Paper under double-blind review

Abstract

Imitation learning allows an agent to acquire skills or mimic behaviors by observing an
expert performing a given task. While imitation learning approaches successfully replicate
the observed behavior, they are limited to the trajectories generated by the expert both
regarding their quality and availability. In contrast, while reinforcement learning does not
need a supervised signal to learn the task, it requires a lot of computation, which can result
in sub-optimal policies when we are dealing with resource constraints. For addressing those
issues, we propose Reinforced Imitation Learning (RIL), a method that learns optimal poli-
cies using a very small sample of expert behavior to substantially speed up the process of
reinforcement learning. RIL leverages expert trajectories to learn how to mimic behavior
while also learning with its own experiences in a typical reinforcement learning fashion. A
thorough set of experiments show that our method outperforms both imitation and rein-
forcement learning methods, providing a good compromise between sample efficiency and
task performance.

1 Introduction

Humans have the ability to learn by observing other individuals performing certain activities. We can learn
actions from individuals even without having prior information of their behavior (Rizzolatti & Sinigaglia,
2010). For example, we can learn tasks such as cooking, drawing, playing an instrument, or playing games
just by watching videos. Our capabilities go beyond merely imitating; we can learn from a demonstration
of a given task, despite differences in the environment, body, or objects that constitute the demonstration.
Despite being studied in different areas, such as psychology (Vogt & Thomaschke, 2007; Király et al., 2013)
and robotics (Schaal, 1999; Ratliff et al., 2007; Raza et al., 2012), learning by imitation recently became
a prominent field in the area of artificial intelligence (AI) (Bandura & Walters, 1977; Hussein et al., 2017;
Fang et al., 2019).

Reinforcement learning (RL), in turn, is one of the approaches employed in AI for learning without supervised
signals, often in a trial-and-error strategy based on post-action rewards. The output of RL is a policy that
specifies how an agent should act at any given time. Value-based methods compute the optimal policy by
first estimating the expected value of each action using samples from the environment, and then choosing the
actions with the maximum estimated expected values. However, certain environments with sparse rewards
may result in a very large number of interactions of the agent to reach a reward that can be propagated to
other states, making RL a strategy considerably slower than supervised learning. The assumption that the
only information available to the learning agent are the immediate environmental rewards also makes the
learning problem very hard (Sutton & Barto, 2018, Ch.3).

By contrast, humans can learn much faster if they have an expert showing them what to do. Imitation
learning (IL) builds on this idea by mimicking the behavior of an agent (known as the expert) that successfully
completes the task of interest, even when its behavior is not necessarily what could be consider the optimal
behavior. However, having access to a large amount of samples provided by an expert is not the case of most
application domains, in which we are often only provided with very few observations.

For addressing the disadvantages of both IL and RL, we develop a novel approach called Reinforced Imitation
Learning (RIL), shown in Figure 1. Our method guides itself through the environment looking at both

1

Under review as submission to TMLR

IDM IDM Policy

Policy

Env.

i ii iii iv v vi

Figure 1: Reinforced Imitation Learning framework.

immediate rewards and a limited amount of observations from an expert. We show that RIL outperforms IL
state-of-the-art approaches based on behavior cloning, regarding both performance (P) and Average Episodic
Reward (AER) metrics. We also show that RIL is competitive with (and often better than) RL approaches,
though with the advantage of learning much more efficiently, being thus the strategy that presents the best
trade-off between effectiveness and efficiency for real-world applications.

2 Related Work

We briefly review recent approaches to both reinforcement and imitation learning, starting with the former.

Deep Q-Network (DQN) (Schaul et al., 2015) is an approach that learns from the agent’s experience using a
deep neural network with hierarchical layers to approximate the optimal Q-function. Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017) combines ideas from Asynchronous Advantage Actor Critic (Mnih
et al., 2016) and Trust Region Policy Optimization (Schulman et al., 2015). It uses multiple workers to avoid
replay buffer and employs trust region to guarantee monotonic improvement. Like PPO, Actor-Critic using
Kronecker-Factored Trust Region (ACKTR) (Wu et al., 2017) uses ideas from other methods to improve the
efficiency of the learning process.

The most straightforward form of imitation learning from observation is Behavioral Cloning (BC) (Pomer-
leau, 1988), which treats imitation learning as a supervised problem. It uses samples comprised of the state
at time t, the action and the resulting state (st, a, st+1) from an expert to learn how to approximate the
agent’s trajectory from the expert’s. However, such an approach becomes costly for more complex scenarios,
requiring more samples and information about the action effects over the environment. Generative Adversar-
ial Imitation Learning (GAIL) (Ho & Ermon, 2016) solves this issue by matching the state-action frequencies
from the agent to those seen in the demonstrations. GAIL uses adversarial training to discriminate state-
actions from either the agent or the expert while minimizing the difference between both. It requires less
expert data, though it needs substantial interactions within the environment.

Recent self-supervised approaches (Torabi et al., 2018; Gavenski et al., 2020) that learn from observations
make use of the expert’s transitions (st, st+1) and leverage from random transitions (st, a, st+1) in order to
learn the inverse dynamics of the environment, and afterwards employ this knowledge to generate pseudo-
labels for the expert’s trajectories. Imitating Latent Policies from Observation (ILPO) (Edwards et al.,
2019) differs from those previous studies by trying to estimate the probability of a latent action given a
state. Within a limited number of environment steps, it remaps the latent actions to the corresponding
actions.

2

Under review as submission to TMLR

There is a specific line of research in which RL uses demonstrations to assist the policy, and that could be
viewed as a middle-ground (or hybrid approach) between RL and IL. DAGGER (Ross et al., 2011) iteratively
produces new policies based on pulling the expert policy outside its original state space. Deep Q-learning
from Demonstration (DQfD) (Hester et al., 2018) uses human demonstrations in a DQN fashion to pre-train
its policy. Active Deep Q-learning with Demonstration (ARLD) (Chen et al., 2020) improves the approach
of using human demonstrations to guide the learning process by introducing an active learning mechanism.
Even though most of those hybrid approaches appear in the recent literature (Chen et al., 2021), note that
they require the expert policy or ground-truth labels to provide feedback to the agent.

In this paper, we assume scenarios in which we do not have access to ground-truth labels for performing
IL. All we have access to is the trajectory performed by an expert when acting in a given scenario, while
all the rest can be learned self-supervisedly. We want to make it clear that we not have access to the
actions performed by the expert. In contrast, by having access to ground-truth information, those hybrid
related methods require an additional setup that our method does not, e.g., training a policy to act as the
expert or annotating a large number of demonstrations with the corresponding actions. Furthermore, these
methods use IL as a form of divergence minimization, while our proposed approach uses IL as its primary
training source and RL as a trajectory correction between observed and actual data. With that being said,
in this paper we only compare our proposed method with baselines that do either reinforcement or imitation
learning, but not to hybrid approaches that have access to ground-truth labels.

3 Reinforced Imitation Learning

Reinforced Imitation Learning (RIL) interleaves imitation and reinforcement learning steps to converge into
an optimal policy in a very sample-efficient manner. RIL employs the idea of self-supervisedly learning
policies based on an inverse dynamics model (Torabi et al., 2018; Monteiro et al., 2020; Gavenski et al.,
2020) and then refining and improving such a policy with reward-based exploration typically performed in
q-learning (Watkins & Dayan, 1992; Mnih et al., 2013; Kaiser et al., 2019), with the final goal of creating
a new algorithm capable of using samples of an expert’s trajectory to guide in the design of a policy while
also using its own experiences to correct its trajectory by exploring states outside the expert’s trajectories.

In this work, we base our implementation of the RL component on the original unmodified DQN architecture,
since it shares interesting similarities with the self-supervised IL component (e.g., both are off-policy), and
we know that exploration versus exploitation trade-offs play a crucial role for achieving higher rewards.

3.1 Problem formulation

Our problem assumes an agent acting in a Markov Decision Process (MDP) represented by a five-tuple
M = {S, A, T, r, γ} (Sutton & Barto, 2018), in which: S is the state-space, A is the action space, T is the
transition model, r is the immediate reward function, and γ is the discount factor. Solving an MDP yields
a stochastic policy π(a | s) with a probability distribution over actions for an agent in state s to perform.

Imitation from observation (Torabi et al., 2018) aims to learn the inverse dynamics Mst,st+1
a = P (a | st, st+1)

of the agent, i.e., the probability distribution of each action a when the agent transitions from state st to
st+1. In this problem, the learning agents knows neither the reward function nor the actions performed by
the expert, so we want to find an imitation policy from a set of state-only demonstrations of the expert
D = {ζi}N

i=1, where ζ is a variable-length state-only trajectory.

3.2 Self-Supervised Imitation Learning

Self-supervised imitation learning is a framework that usually comprises a module to learn the inverse
dynamics of the environment (Inverse Dynamics Model, IDM) and a module to learn an imitation policy.
The IDM is responsible for learning the actions through a transition of states Mθ(a | st, st+1), while the
policy (πϕ) acts as a stationary model predicting the most likely action a given st. To learn these transitions,
we can use πϕ with random weights to create a pre-demonstration dataset (Ipre) comprised of (st, a, st+1)

3

Under review as submission to TMLR

samples. The IDM then uses Ipre to learn the inverse dynamics of the agent by finding parameters θ∗ that
best describe the state transitions.

Since there are no expert labels, we make use of pairs of states from expert demonstration (se
t , se

t+1) and
the IDM to predict the action responsible for all expert transitions. Subsequently, the policy model uses
these self-supervised labels to learn π(â | st); however, considering that Ipre contains random actions, the
pseudo-labels generated by the IDM can be far from the expert’s. To mitigate this issue, we can rely on an
iterative process, where the updated policy creates new samples Ipos and balances Is with all trajectories
that reach the environment goal. This process allows the model to maintain a weighted distribution between
the random and updated policy samples and avoid local minima since the probability of actions vanishing
in each iteration is minimal.

3.3 Exploration with Neural Networks and q-values

The second element of our proposed approach is an exploration mechanism via RL based on q-values and
neural networks. One such a method is DQN (Mnih et al., 2013), which employs a deep neural network with
hierarchical layers to approximate the optimal Q-function in Equation 1, where r is the reward received when
transitioning from state st to st+1, α is the learning rate, a is the action and Q is a deep neural network.

Q (St, At)← Q (St, At) + α
[
Rt+1 + γ max

a
Q (St+1, a)−Q (St, At)

]
(1)

DQN implements an experience replay mechanism that stores a set of observations from the environment to
update the Q-function with random samples. This process solves the correlation issue between sequences of
observations and smooth changes in the data distribution.

For each episode, the algorithm has a probability ϵ to select a random action or use the action-value func-
tion. The value of ϵ usually decreases as training progresses to trade the exploration of early states to the
exploitation of late states (near the goal). The agent executes the ϵ-greedy action in the environment, which
returns a reward and the next state.

3.4 Combining IL and RL

Algorithm 1 Reinforced Imitation Learning
1: Initialize model Mθ as a random approximator
2: Initialize policy πϕ with random weights
3: Generate state transitions T e from expert demonstra-

tion
4: Generate Ipre using policy πϕ

5: Set Is = Ipre

6: while πϕ improves from either method do
7: Update Mθ by train(Mθ, Is)
8: Generate pseudo-labels Â by Mθ(T e)
9: Update πϕ by BCLoss(T e, Â)

10: for e← 1 to |E| do
11: Use πϕ to solve environment e
12: Append samples Ipos ← (st, at, st+1)
13: Update πϕ by tdLoss(Ipos, A)
14: Is ← goalSampler(Ipos)

Reinforced Imitation Learning iteratively creates
new samples using the environment and combines
ideas from both IL and RL to understand how a pol-
icy can benefit from both approaches. Since the con-
struction of a new Ipos consists of using the updated
policy in the environment, where we have access to
states and rewards, we introduce a reinforcement
learning approach to learn by experience. Thus, the
entire learning pipeline of RIL is presented in Al-
gorithm 1, whose main steps are: (i) create dataset
Ipre by using πϕ as Is (lines 4-5); (ii) use Is to learn
the inverse dynamics of the environment (line 7);
(iii) label the expert action Â responsible for the
state transitions in the expert samples T e with the
IDM network (line 8); (iv) use T e and Â to train
the policy πϕ in an IL fashion (line 9); (v) use πϕ

in the environment to create new state transitions
Ipos and employ the temporal difference update to
further learn from its own experiences (lines 10-13);
and (vi) use a sampling mechanism to create a new dataset Is to feed the IDM network (line 14); (vii) repeat
steps ii-vi until no further improvement is noticed (either when no actions change between two consecutive
epochs or no significant reduction in loss is observed in consecutive epochs).

4

Under review as submission to TMLR

RIL uses ϵ-greedy exploration in its RL-based component for learning states outside its expert. Most often,
ϵ-greedy approaches decrease the exploration chance as time passes, however, RIL interchanges learning
from demonstration and experience. Shifting its learning approaches can result in acquiring information
that might not be ideal from both perspectives. Therefore, RIL adapts its exploration behavior according
to its certainty. RIL’s policy uses the softmax distribution from its output to predict the action. Thus, as
the policy learns to separate the different actions, it chooses actions other than the maximum a posteriori
label less often. In every iteration from RIL, we compute the exploration ratio from the policy during the
self-supervised learning component (Line 9) and use the same number for the epsilon (Lines 10-13). This
approach allows the model to explore at the beginning, like ϵ-greedy policies would, and as the model learns
to differentiate the actions, it allows for less exploration and more exploitation. This strategy does not need
to rely on a time-dependent decaying function for the exploration values (as commonly seen in RL), and
allows for increased exploration when the policy finds itself in local minima.

RL approaches are not commonly designed to learn an optimal policy under few episodes. Thus, we also
need to adapt the size of the experience replay: if its size is too big, there will be fewer updates during
each iteration, which can lead to less desirable actions; if too small, there will be fewer samples, resulting in
sub-optimal weight updates. Considering that RIL has access to the average size of each expert trajectory,
we use this information to decide the size of the replay memory according to each environment. RIL sets
the experience replay size to be 10× the average of the expert samples it has access to for each domain.

The drawback of RIL is that part of its learning approach depends on a reward signal (RL) and another part
is self-supervised (IL) in an iterative process that constantly shifts its data and labels. To overcome this issue,
we modify both components in three different ways: (i) we clip the gradients from both reinforcement and
imitation learning components, (ii) we add layer normalization into both IDM and policy models, and (iii) we
adapt the sampling mechanism of the self-supervised strategy to reduce the inherited covariate shift. The first
adaptation reduces the gradient from both learning methods. Since both parts of RIL learn with different
objectives, the clipping allows for lower variance during learning. The reason for the second modification
is due to the shift in data and labels from the self-supervised iterative nature that happens constantly.
During the training of typical IL methods, the expert dataset contains a vast number of samples, which
minimizes the consequences of the covariance shift impacting the training procedure. However, RIL contains
much fewer expert samples. Thus, when the pseudo-labels from IDM significantly change from one epoch to
another, a deterioration of the policy occurs. Adding layer normalization into RIL allowed for the model to
learn how to correctly normalize all neurons in each layer according to the samples and allowed the policy to
learn. Finally, we alter the sampling mechanism that forces the policy action distribution into the I given
the model capability of solving the environment. Sampling from the softmax distribution allows the IDM
model to rapidly learn a distribution outside Ipre, which is balanced for all actions. However, this approach
does not yield good results in cases with very few expert samples. The constant change from the IDM’s
predictions combined with the small number of examples deteriorates the policy.

To avoid this issue, we introduce an upper limit to the number of samples I from Ipos, which we compute
using Equation 2, where n is a hyperparameter used to define the number of epochs it takes for the upper limit
to be set to 100%, e is the current epoch, and k the slope of the curvature. Such an approach allows RIL to
have smoother changes between epochs, reducing the covariate shift.

lim sup Ipos = 1 − 1
1 + (n

e − 1)−k
, (2)

4 Experimental Methodology

Regarding the upper limit of samples, we set k = 2 for all main experiments in this work and give each
algorithm 150 epochs (e = 150) for training. These values will only vary in the ablation studies we conduct
in later sections. Gradient clipping values for the RL model are between [−0.5, 0.5] and for the IL models
between [−1, 1]. Details on the neural network topologies, e.g., number of layers, neurons, α, and more are
all described in Section 4.1 for each environment.

5

Under review as submission to TMLR

We evaluate RIL and the IL related work in terms of both Average Episodic Reward and Performance metrics.
AER is the average reward of 100 episodes for each environment. Since AER depends on an environment
reward function, its value differs from task to task. AER measures how well the algorithm performs the
task and indicates how difficult it is for the agent to imitate the expert’s behavior. Performance is the
average reward for each run scaled from 0 to 1, where 0 is the random policy reward, and 1 is the expert.
A model can achieve scores lower than zero if it performs worst than random actions and higher than one if
it performs better than the expert. We do not use accuracy as a metric since achieving high accuracy in Is

does not guarantee solving the problems. The accuracy of the policy highly correlates with the predictions
of the IDM, which does not carry information beyond the agent behavior.

For the RL approaches, we compare the sample efficiency of each method by counting how many samples each
algorithm receives before reaching a certain reward, instead of computing the usual timesteps, since RIL uses
expert samples as well as environment samples, allowing for a fair comparison.

We use two different DQN methods: the original version (Mnih et al., 2013) (DQN1), from which we borrow
several mechanisms for RIL; and its latest version (Schaul et al., 2015) (DQN2), which holds the state-of-the-
art for most environments experimented in this paper. We also use two other RL algorithms as baselines:
PPO and ACKTR. We select these particular algorithms because they present very different approaches that
end up resulting in optimal policies for the Acrobot and MountainCar environments. In this work, all IL
methods apart from RIL do not employ any RL mechanism.

4.1 Environments and Network Topologies

The model’s memory usage varies since the network topologies vary (⩽ 1GB). For the IL models, both IDM
and policy networks use Cross-Entropy Loss, while the Temporal Difference Loss is used by the RL model.
We employ the Adam optimizer (Kingma & Ba, 2014) with its default values in all models. Below we briefly
describe each environment and their respective neural network topologies and learning rates:

i) CartPole-v1 is an environment where an agent pulls a car sideways intending to sustain a pole vertically
upward as long as possible. The environment has a discrete action space composed of left or right actions,
while the state space has 4 dimensions: cart position, cart velocity, pole angle, and pole velocity at tip. Barto
et al. (1983) define solving CartPole as getting an average reward of 195 over 100 consecutive trials. The
learning rate for this domain is 5 × 10−4 for both models. The architecture for both IDM and policy models
here is an MLP with two layers of 8 neurons activated with LReLU, and a self-attention layer with layer
normalization.

iii) Acrobot-v1 includes an agent of two joints and two links, where the joint between the two links is
actuated. Initially, the links are hanging downwards and the goal is to swing the end of the lower link up to
a given height. The state space consists of: {cos θ1, sin θ1, cos θ2, sin θ2, θ1, θ2}, and the action space consists
of the 3 possible forces. Sutton (1996) first described Acrobot and later Geramifard et al. (2015) improved
it, which is the version we use. Acrobot-v1 is an unsolved environment, i.e., it does not have a specified
reward threshold at which it is considered solved. The learning rate for this domain is 5 × 10−5 for the IDM
and policy models, and 5 × 10−4 for the RL model. Both models share the same architecture, which is a two
layer model with 32 neurons activated with LReLU, self-attention and layer normalization.

ii) MountainCar-v0 environment consists of a car in a one-dimensional track positioned between two
“mountains”. The state-space has two dimensions, the respective car coordinates (x, y), and the action space
consists of 3 possible signals to move the car (−1, 0, or 1). To achieve the goal in this environment, the
car has to acquire the required momentum and reach a flag placed on the second mountain top. Moore
(1990) defines solving MountainCar as getting an average reward of −110 over 100 consecutive trials. Here
the learning rate is set to 5 × 10−3 for the IDM model, and 5 × 10−4 for the policy and RL models, while
the network topology is kept the same from the Acrobot-v1 environment.

iv) LunarLander-v2 is an environment where an agent needs to land on the moon. The agent has four
different actions (do nothing, move left, right and reduce the falling velocity), and the way the agent actuates
influences the reward. Any movement, except for “do nothing,” costs −0.3 reward. If it moves toward the
designated landing area (always at coordinates 0, 0), the environment returns a positive value. However,

6

Under review as submission to TMLR

moving away from these coordinates results in losing the previously earned reward. Finally, when reaching
the floor, the environment checks whether the agent has landed or crashed and awards 100 or −100 points,
respectively. To solve the LunarLander-v2 environment, the agent must receive a reward of 200 over 100
consecutive trials. The learning rate for this domain is 5 × 10−4 for the IDM model, 5 × 10−7 for the policy
model, and 5 × 10−6 for the RL model. Both models share the same architecture, which is a two layer model
with 128 neurons activated with LReLU, with self-attention layers and layer normalization.

5 Experimental Results

5.1 Policy Optimization Behavior

IL and RL methods work on the same premise that an agent needs to learn an approximation to a theoretical
optimal policy in the form of an MDP. Nevertheless, IL focuses on a more specific optimal policy, i.e., the
expert’s. At the same time, RL learns how to optimize its value function, thus achieving one of many possible
optimal functions for each environment. We hypothesize that RIL yields better policies than IL methods
since it learns with its own experiences, while also achieving results much more efficiently than RL methods.
To validate that hypothesis, we conduct an experiment where we compute the KL Divergence of a trajectory
with four different policies: (i) the optimal policy (π∗), (ii) an RL policy (Mnih et al., 2013), (iii) an IL
policy (Gavenski et al., 2020), and (iv) the RIL policy. Since π∗ may be one of many theoretical optimal
policies, we do not use these results as a form of quantifying any of the policies created. However, upon
carefully analyzing them, we can draw intuitions regarding the combination of RL and IL into a single policy.

We compute two different KL Divergence values. First, we compare all models with π∗ and compute the
difference with the probability of all possible actions. This result shows how similar a policy is to the optimal
one regarding its mapping of the likelihood of actions given a state. However, such difference is trivial when
an agent during evaluation uses only a greedy approach for choosing an action. Thus, we also compute the
KL Divergence using one-hot encodings for the specific action given a state (KL-Divergence∗).

Table 1 shows that RIL is the furthest policy from π∗ regarding the first metric (9.6476). This is likely to
occur for two reasons: the expert may not be acting optimally; and the reinforcement learning updates can
drastically alter the softmax probabilities. For the first hypothesis, we can look at Figure 2 which shows the
probability of the maximum a posteriori action for all discretized values. When comparing π∗ to the other
policies, we can see that in the middle of the valley π∗ has a degree of uncertainty (≈ 33% for each action),
which does not show for the other policies. When comparing RL and IL, we see that the RL policy shows
more similar behavior to π∗ than IL.

The IL policy carries more certainty than the other policies for all the discretized values (≈ 58%). This
behavior can explain the poor performance of this model. Since IL approaches only take expert samples
in a supervised fashion into consideration, the model’s certainty only takes into account the classification

0
5

10
15 0

5
10
15

-17.5
-15.0
-12.5
-10.0

-5.0
-7.5

(a)

0
5

10 15 0
5
10
15

-1.5
-1.0
-0.5

0.5
0.0

(b)

0
5

10 15 0
5
10
15

-1.5
-1.0
-0.5

0.5
0.0

1.0

(c)

0
5

10 15 0
5
10
15

-1.5
-1.0
-0.5

0.5
0.0

1.0

(d)

Figure 2: Visualization of the MountainCar-v0 environment. Each figure illustrates the maximum a posteriori
probabilities in a 3D mesh.

7

Under review as submission to TMLR

Table 1: KL Divergence from all three models, when compared to an optimal policy (π∗).

Metric π∗ RL (DQN) IL (IUPE) RIL
Reward -86 -87 -162 -84
KL Divergence - 2.0869 4.9863 9.6476
KL Divergence∗ - 1.7345 1.7345 0.8094

problem without considering the sparse reward that MountainCar presents. On the other hand, when we
compare RIL to the other methods, we observe that the valley could be a mash of the RL and IL approaches.
Although RIL still does not generate a result more in line with π∗, it balances its certainty to create a more
moderate mapping for discretized values. When comparing RIL with the greedy optimal policy, our method
achieves the highest similarity (0.8094). This result shows that both methods, despite their difference in
probabilities, are quite similar, i.e., both methods agree on the action for the same state.

Figure 3 illustrates how close RIL is from π∗ by discretizing the continuous state-space from MountainCar
into a 20×20 Q-table, plotting the maximum a posteriori action and coloring the states that are equal to π∗.
The figure shows that, in a discrete space, RIL is closer to the optimal policy than the remaining methods. We
do not consider the reward in this episode a detrimental factor for the result in KL-Divergence∗, since RL is
equally distant to the optimal policy than IL. Finally, upon analyzing the regular KL Divergence, RIL should
be closer to zero than RL if the reward is a significant factor for performing well in the MountainCar
environment.

St
at

e
(C

ar
 P

os
iti

on
)

Actions

State (Car Velocity)

Reward: -86.00
KL Divergence*: -

DQN
Reward: -87.00

KL Divergence*: 1.734
Similar Actions: 189

IUPE
Reward: -162.00

KL Divergence*: 1.734
Similar Actions: 190

RIL
Reward: -84.00

KL Divergence*: 0.809
Similar Actions: 222

10 2 3 4 5 6 7 8 9 10 111213141516171819

1
0

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

10 2 3 4 5 6 7 8 9 10111213141516171819 10 2 3 4 5 6 7 8 9 10 111213141516171819 10 2 3 4 5 6 7 8 9 10111213141516171819

D
ivergent

0: Push Left
1: N

o Push
2: Push R

ight

Figure 3: Comparison between policies trained in the MountainCar-v0 environment. We only color the tiles
that have the same action as π∗ for easier visualization.

5.2 Sample Efficiency

To understand how RIL benefits from both approaches, we conduct two different experiments to validate
the following research questions: (i) how each IL algorithm perform when only given one episode from its
expert, and (ii) how many samples each RL method uses before solving the environment (or in the cases
where the algorithm is not able to, when reaching the maximum reward).

5.2.1 Imitation Learning

Since RIL reaches P ⩾ 1 with only one episode from the expert, we give the same single trajectory for all
other IL methods during this experiment. The results in Table 2 show the average and standard deviation

8

Under review as submission to TMLR

Table 2: Performance (P) and Average Episode Reward (AER) for each IL methods with only one expert’s
trajectory as data.

Algorithms Metric CartPole Acrobot MountainCar LunarLander Average P

Random AER 18.7 −482.6 −200 −182.72 0± 0P 0 0 0 0

Expert AER 500 −85 −106 235.96 1± 0P 1 1 1 1

BC AER 490.96± 19.65 −122.75± 2.99 −129.92± 4.14 131.84± 53.25 0.84± 0.12P 0.98± 0.04 0.91± 0.01 0.75± 0.04 0.75± 0.13

GAIL AER 185.07± 168.25 −279.02± 104.91 −196± 10.99 59.03± 87.76 0.36± 0.23P 0.35± 0.34 0.51± 0.26 0.04± 0.12 0.58± 0.21

ILPO AER 456.87± 4.10 −125.92± 19.23 −200± 0 −451.81± 247.53 0.29± 0.75P 0.91± 0.01 0.90± 0.04 0± 0 −0.64± 0.59

IUPE AER 144.64± 11.65 −232.38± 50.92 −198.00± 6.00 −203.05± 35.51 0.19± 0.27P 0.26± 0.02 0.55± 0.16 0.02± 0.06 −0.05± 0.08

RIL AER 500± 0 −79.52± 4.49 −100.29± 1.59 261.73± 9.91 1.04± 0.03P 1± 0 1.01± 0.01 1.06± 0.02 1.06± 0.02

of 10 different runs for each learning algorithm. We also perform an ablation study and test each algorithm
with an increased number of trajectories in Section 6.3.

Considering that for the CartPole and Acrobot environments there is almost no variation in their initial
states, one trajectory should be enough to achieve their goal, even though not optimally. We hypothesize
that all methods have comparable results in these cases. Nevertheless, just ILPO and RIL results were
good enough to achieve the goal for the CartPole environment, i.e., r ⩾ 195. In contrast, GAIL and IUPE
achieved performance around 0.30, with GAIL being only 10 reward points from the goal, though far from
the expert. The Acrobot environment does not have a defined goal, but we can define that a reward close to
−80 can be considered ideal, as is the case for the expert. However, only RIL was able to reach such a result.
ILPO achieves a performance of 0.9, with IUPE being close with 0.8 performance points. Since a random
policy achieves an AER of −482.6, both methods converge to policies closer to the expert than GAIL, which
only achieves −279.02 reward points.

By contrast, MountainCar depends heavily on the agent starting position, while LunarLander alters its
objective during each iteration. Having only one trajectory to learn how to mimic the expert is a significant
disadvantage. This limitation is evident in the overall results for all IL methods that reach a performance
of ≈ 0.06 in MountainCar, and of ≈ −0.04 in LunarLander. These policies are further away from the expert
and the goal of the environment (−110 and 200).

Since the BC method uses the ground-truth labels, we hypothesize that this approach yield similar results
to RIL, even though the number of trajectories is limited. In the CartPole and Acrobot environments, the
BC method achieves results closer to the expert (P ≃ 0.9); however, performance and rewards decrease
significantly during the MountainCar and LunarLander environments. This experiment shows that RIL’s
capability of learning with its own experience is a substantial advantage, even with a small number of
examples.

5.2.2 Reinforcement Learning

By comparing RIL with the IL methods, we show that it reaches better results with fewer expert sam-
ples. However, RIL uses its own experiences in the form of q-value mapping to create the optimal policy,
which the other IL methods had no access to. Hence, we also compare it to RL methods to understand
whether RIL reaches the same results with fewer samples than them. Results in Table 3 show the number of

9

Under review as submission to TMLR

Table 3: Average timesteps needed to reach the maximum reward (Table 4) for each algorithm in each
environment.

Environment DQN1 DQN2 PPO ACKTR RIL
CartPole 211,000 64,500 15,000 169,500 14,800
Acrobot 427,500 498,000 98,000 482,000 16,365
MountainCar 224,500 155,500 680,000 507,500 29,745
LunarLander 357,000 239,000 154, 000† 646,000 281,204

timesteps needed for reaching each method’s maximum reward. Since RIL uses off and online learning, we
compute both the samples used during the RL training and the expert samples used during the IL training
in these results. Thus, if the expert trajectory has a size of 500 samples, for each RIL’s iteration we count
the number of timesteps from the RL component training plus 500.

As expected, DQN1 and DQN2 yield similar results reaching their maximum reward, though DQN2 solves
most environments while DQN1 does not. DQN2 achieves its maximum reward more efficiently than the
other RL methods, besides achieving higher or comparable rewards. DQN2 presents P = 0.92, while PPO
and ACKTR achieve P ≈ 0.85, with the difference between PPO and DQN2 being negligible for CartPole
and significant for MountainCar. The exception for DQN2 is the Acrobot environment where PPO’s use
of a smoother exploration mechanism can achieve better results with fewer samples (524, 500). We observe
the same behavior with RIL. Since the ϵ-greedy strategy used during the RL training initiates with a value
corresponding to the exploration rate from the policy in the previous epoch, the exploration becomes less
frequent. Thus, it allows for a more efficient path for reaching its maximum reward. While ACKTR achieves
the best result among the RL methods for the MountainCar, it also requires ≈ 500, 000 timesteps (477, 755
more than RIL). We note that for MountainCar, the number of timesteps PPO needs to reach its maximum
reward is lower than all the other algorithms. Since PPO does not reach the environmental goal, we do not
consider it a relevant result.

These experiments show that the trajectory of the expert can be used as a shortcut, allowing RIL to achieve
its maximum reward and the goal of all environments more efficiently than the RL approaches. Neverthe-
less, RIL inherits the problem from IL of using an expert’s trajectory as a guide, making it quite difficult to
learn how to behave in those environments in which the goal constantly shifts, e.g., LunarLander.

5.3 Quantitative Results

Table 4 presents all results for both paradigms. In this experiment, we compare the capability of each
method to learn a policy capable of reaching the highest reward, and we also show the average P when
compared to the expert performance. Considering that we previously hinder all IL methods with a single
expert trajectory, we use 100 different trajectories (≈ 100× more samples). For the RL approaches, we train
each algorithm for 2, 000, 000 timesteps.

As expected, DQN1 achieves lower rewards than every other RL algorithm, in agreement with our premise
that the RL component of RIL itself should not be enough to solve the environment. Except for the CartPole
environment, in which all methods reach the r ⩾ 195, the first DQN was closer to the random policy than
the expert reward. By comparison, DQN2 achieves the environmental goal, and the Acrobot ideal reward,
for almost all environments but MountainCar, something that no other RL approach was capable of. When
analyzing PPO’s results, we see that even though it achieves the best result over all other RL methods for
Acrobot, it performs worse than ACKTR and DQN2 for the other environments, while ACKTR achieves the
best result for MountainCar while being worse in the rest of the environments. We expect MountainCar to
be a complex task considering it has a sparse reward function and a goal that rewards less exploration from
the policy. On the other hand, for the LunarLander environment, even though most of the RL algorithms
did not achieve the goal, i.e., r ⩾ 200, we note that achieving a positive result can be quite difficult. Since its
goal and reward system do not have a strong correlation, such as in CartPole, and its goal is not fixed, unlike

10

Under review as submission to TMLR

500

480

460

440

420

CartPole Acrobot MountainCar LunarLander

-100

-200

-300

-400

-500

200

0

-200

-400

-40

-60

-80

-100

-120

-140

-160

-180

-200

Figure 4: Boxplot of the Average Episodic Reward for all methods and environments.

e.g., MountainCar and Acrobot, LunarLander has the lowest performance among all tested environments.
The average P for all RL approaches is approximately 0.8.

When comparing the IL methods (except for BC), it becomes clear that they can have significant difficulties
when dealing with the LunarLander environment as well. While the RL methods achieve a positive result,
the IL strategies deteriorate over time. We assume that such behavior originates from the policies learning
how to mimic the expert’s landing position, which does not correlate to the goal. Since these methods lack
the reward signal to correct themselves, the result is closer to the random policy than the expert.

We observe that the IL methods achieve, on average, a higher result in the Acrobot environment (≈ 81.69)
than the RL methods (≈ 86.87 – excluding DQN1). This is due to the fact that IL methods learn an optimal
trajectory without much exploring. However, the IL approaches tend to replicate the average of the actions in
a given state as the number of trajectories grows. This is a good thing in cases such as CartPole and Acrobot
because the expert’s states do not vary as much. The policies can predict the correct answers even when
a particular state was absent in the learned trajectories or rapidly correct itself. Given the self-supervised
nature from these methods, we observe in MountainCar a decrease in reward. This outcome happens because
those algorithms make use of pseudo-labels and only approximate the expert’s action. An incorrect action
might cause the car to lose momentum in this environment, resulting in fewer reward points. A solution
would be to use the ground-truth labels from the expert.

Table 4: Quantitative results for all RL and IL algorithms used in this work as baselines. We also display
the average performance of all environments. DQN1 is the unmodified DQN architecture Mnih et al. (2013),
while DQN2 is the version from Schaul et al. Schaul et al. (2015).

Environments
Reinforcement Learning Imitation Learning

DQN1 DQN2 PPO ACKTR BC GAIL ILPO IUPE RIL

CartPole 431.87 500.00 500.00 487.70 500.00 500.00 500.00 500.00 500.00
±5.31 ±0.00 ±0.00 ±64.76 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00

Acrobot -191.51 -87.83 -83.43 -89.36 -82.92 -83.12 -83.84 -78.10 -75.72
±64.29 ±27.96 ±23.29 ±24.89 ±2.63 ±20.95 ±2.50 ±10.56 ±4.49

MountainCar -145.00 -135.28 -142.16 -112.55 -99.69 -186.74 -177.56 -130.70 -100.37
±31.18 ±24.10 ±21.67 ±21.19 ±0.69 ±0.65 ±27.77 ±15.23 ±2.50

LunarLander -127.64 273.07 105.24 85.85 214.93 83.56 -421.62 -211.2 266.55
±70.58 ±37.92 ±51.90 ±64.72 ±5.56 ±65.26 ±180.41 ±40.77 ±19.34

Average P 0.53 0.92 0.83 0.88 1.01 0.70 0.42 0.67 1.04

11

Under review as submission to TMLR

BC has results similar to the best RL method (DQN2) and close to RIL with 1.01 performance points.
While the performance is similar to the expert, it has access to ground-truth labels, which can be hard to
acquire or ineffective if an agent has to learn the environment to produce a significant number of annotated
trajectories. Hence, RIL’s overall performance is a significant improvement over the current IL methods.
RIL performs equal or greater than the expert on all environments without any ground-truth labels from its
expert. It achieves higher rewards than the RL methods as well, with the single exception of DQN2 on the
LunarLander environment. For that, we analyze the standard deviation from both methods and the boxplot
graph presented in Figure 4. RIL achieves a reward of 266.55 with a standard deviation of 19.34, while
DQN2 achieves 273.07 reward points with a higher deviation (37.92). RIL stands within the interval from
DQN2 and achieves a reward far higher than needed for solving the LunarLander environment, i.e., r ⩾ 200.
We hypothesize that applying a harsher gradient clipping during the RL training within RIL is responsible
for that result. A solution would be to decrease the values from the IL training while increasing for the RL
component as the epochs progress.

We note that the standard deviation from RIL is smaller than every other method but BC. The average
deviation for all environments is ≈ 6.58, while DQN2, which has the best results among the RL methods, is
≈ 23. For BC, the average standard deviation was 2.22, only 4.36 lower than RIL, a difference that is not
really significant considering that BC uses ground-truth labels for the policy to learn. For that reason, we
plot the interval for all methods in all environments in Figure 4, allowing us to understand how RIL compares
to other methods in terms of variance (stability).

Apart from BC, we observe that RIL presents the lowest variance among all methods. In the case of
MountainCar, RIL does not achieve the highest possible value – ACKTR is the method that achieves it,
with a non-outlier maximum value of ≈ −60, though RIL’s behavior surpasses the median behavior of
ACKTR. Note that RIL presents a very low variance, which translates into stability, a desired property for
a policy to perform well when in production settings.

A similar thing happens in the LunarLander environment. Even though DQN2 has the highest average
of 273.07, and maximum value of ≈ 290, RIL’s behavior is within the interval of the RL method, with
a difference of 6.52. We recall that LunarLander is very difficult for the IL methods because the landing
position strongly correlates to the final reward. We are computing the average of the environment over
100 episodes, i.e., 100 different landing positions. No other environment we use in this work has the same
characteristic of a moving goal.

RIL’s behavior shows that employing a hybrid RL/IL approach results in policies with lower variance.
Moreover, by comparing its stability with the RL approaches, we observe that the adaptation capability of
the latter is not as on-point as RIL’s. We observe the same trend for the IL approaches, though their average
result is more in line with RIL’s in the Acrobot environment.

6 Discussion

6.1 Off-policy and Imitation Learning

When trying to learn an optimal policy, all learning methods need to find a good trade-off between instant
(greedy) locally-optimal behavior and sub-optimal (though perhaps better in the long term) behavior, giving
rise to the well-known exploration vs exploitation dichotomy. Off-policy methods make use of two different
policies to address this trade-off. The first one is the target/optimal policy, while the second is the behav-
ior/exploration policy. The behavior policy uses exploration mechanisms to generate state transitions, which
will be used by the target policy during learning. Off-policy methods have access to its behavior policy, its
states transitions, and output in the form of (st, st+1, π(At | st), r). Such methods can use this information
paired with an importance sampling mechanism to estimate expected values under a distribution.

On the other hand, imitation learning addresses the trade-off by leveraging an unknown expert policy.
The most simplistic approach, Behavioral Cloning, uses the state transitions and actions (st, st+1, at) in a
supervised manner to learn the expert’s optimal behavior without the need for exploration. However, this
becomes costly as the domain’s complexity rises due to the need for additional data. Other IL approaches

12

Under review as submission to TMLR

(a) k values (b) n values

35

30

25

20

15

10

5

0

(c) Action probability distribution

Figure 5: Figures 5a and 5b present different values for k and n and their effect in Equation 2, while Figure 5c
shows the action probability distribution representation of π∗ for each algorithm in a given trajectory within
the MountainCar-v0 environment.

often only have access to the state transitions (st, st+1) since state transitions are more accessible than
entire annotated datasets. In this case, the IL policies cannot use importance sampling to learn the optimal
solution for given a problem. The action performed by the expert is not accessible by the policy either.
Hence, an iterative process such as the one in RIL is vital to improve the policy. By using pseudo-labels
that constantly change due to weight updates from the IDM, the policy receives different â for the same
st. This behavior allows the weights from the policy to receive more updates, which helps at avoiding local
minima. We illustrate an example of this behavior in Figure 5c, where the changing of probabilities becomes
more abrupt for the policy. For that reason, the IL component in RIL cannot be considered as an off-policy
method, nor the RL component as an IL method. We borrow mechanisms from both IL and RL, which are
vital for the performance of RIL.

6.2 Iterative vs Sequential Learning

RIL combines RL and IL components following the insight that both offline and online learning can provide
benefits in terms of both efficiency and effectiveness. In this section, we compare two possibilities regarding
the use of the IL and RL components within our framework RIL.

In the regular setting, IL and RL are intertwined within the same iterative learning process, and thus the
reward signal helps correcting the policy path by visiting unexplored states and approximating the policy
from the expert’s trajectories. In an alternative setting, we execute the IL component first and afterwards
train the RL component to improve the policy with its own experiences. For that, we run the IL component
for 100 epochs and afterwards the RL for 2, 000, 000 timesteps. Results for this setting are presented in
Table 5 denoted as RIL*.

Table 5: AER and Performance (P) for all environments with sequenced (RIL∗) and iterative (RIL)
approaches.

Environment RIL∗ RIL
CartPole 382.95 ± 208.29 500.00 ± 0.00
Acrobot −493.63 ± 44.61 −75.72 ± 4.49
MountainCar −200.00 ± 0.00 −100.29 ± 1.59
LunarLander −114.09 ± 56.84 266.55 ± 19.34
Average P 0.22 1.04

13

Under review as submission to TMLR

During this investigation, we observe that two possible scenarios can occur when using the methods in
sequence: (i) if we keep a low number of expert’s trajectories, the IL policy can get stuck in bad local
minima, from which the RL policy cannot escape from; or (ii) the IL policy comes close to solving the
environment, but due to the ϵ-greedy exploration nature of the RL policy, all the learned behavior is lost
in the early exploration steps. The IL component stuck on bad local minima occurs in MountainCar,
where RIL* achieves r = −200.00 (the minimum environment reward). RL deteriorating the IL behavior
scenario occurs in CartPole and Acrobot, where RIL* achieves 382.95 and −493.63, respectively. We confirm
that consecutively swapping between both approaches indeed help the policy to adjust itself better. By
applying the IL component, the policy can correct the exploring mistakes with the expert’s trajectory,
whereas applying the RL component allows the policy to deviate from the expert whenever needed.

6.3 Impact of the amount of expert samples

In the previous experiments, we showed results with 1 and 100 expert trajectories. While the difference
seem to be minor, we want to understand how different numbers of trajectories impact RIL. Table 6 presents
results when using 1, 25, 50, 75, and 100 different expert’s trajectories.

Given the forgiving nature of the CartPole environment, we expected no differences when using more (or
fewer) trajectories. RIL achieves 500 with no standard deviation between runs in the environment. The
Acrobot environment presents low variance among the number of trajectories. Using 100 different trajecto-
ries, RIL achieves the best reward (−75.72). However, this improvement represents a performance of 1.02,
less than 1% from using a single trajectory. Considering the cost of producing 100 trajectories, we assume
that using a single trajectory for this environment is enough. For the MountainCar environment, we observe
that all results stay within the standard deviation from both Tables 2 and 4. We hypothesize that RIL can
correctly balance the experiences from its IL and RL components and access the proper action given a state.
This behavior is crucial given that IL methods perform worse than RL in this environment. The policy’s
own experiences can over-correct the trajectory to predict better actions and prevent the agent from slowing

Table 6: RIL performance when using a variable amount of trajectories from the expert.

Environment Trajectories Samples Amount Reward
1 500 500.00

25 12,500 500.00
CartPole 50 25,000 500.00

75 37,500 500.00
100 50,000 500.00

1 74 -79.52
25 1,946 -77.90

Acrobot 50 4,089 -77.06
75 6,163 -76.50

100 8,099 -75.72
1 106 -100.29

25 2,466 -100.20
MountainCar 50 4,974 -101.90

75 7,512 -99.78
100 10,046 -100.37

1 453 261.73
25 10,314 221.80

LunarLander 50 20,846 246.32
75 32,311 264.20

100 42,384 266.55

14

Under review as submission to TMLR

the car’s momentum. In the LunarLander environment, we note that as the expert samples increase, the
policy tends to deteriorate. We attribute such a behavior to the IL component, because as the number of
expert trajectories grows, more data is available to the policy during the behavioral cloning update. These
weight updates deteriorate the policy since the expert’s positions do not align with the goal in all episodes.
Thus, when reaching 100 trajectories, the policy has far more examples to generalize and perform well. As
is the case for all other environments, the RL component helps the policy to maintain a higher reward.

These results show that even though RIL benefits from a more diverse expert dataset, the overall gain
is usually not significant to justify the cost of acquiring more extensive datasets. When paired with fewer
samples, the IL component helps the policy mapping the actions and guiding the agent to an early trajectory.
In contrast, the RL component helps correcting the trajectory by maximizing the reward signal.

6.4 Upper limit from Ipos

In this section, we show how different values for k and n from Equation 2 affect the performance of RIL.
We first investigate hyperparameter k to understand how a more relaxed upper limit impacts RIL. Next, we
test different values for n, which controls the shift from Ipre and Ipos to Is, and how different values of this
hyperparameter can affect RIL.

6.4.1 Varying k

Hyperparameter k allows us to understand whether RIL benefits from a more strict upper limit or a more
relaxed one. A more rigid upper limit results in fewer shifts in the labeled data, reducing the covariance
shift between iterations. In contrast, a more relaxed upper limit allows Is to receive a larger number of Ipos,
becoming closer to the expert trajectories and constantly shifting data for the IDM. Figure 5a presents the
upper limit for Ipos by varying k from 1 to 4. When k = 1, the upper limit grows linearly with the epochs,
and as k increases, the growth becomes exponential in the initial epochs and logarithmic in the final epochs.
Table 7 shows the AER for a policy trained with different k values (we keep the other hyperparameters
the same: n = 150, |T e| = 1). For CartPole, the value of k makes no difference to RIL results. Since the
environment can be easily solved, we had not expected any differences for this hyperparameter. However,
as we analyze the other environments, it becomes clear that it is critical to guarantee smoother transitions
between transition samples for a proper policy. In Acrobot, as k increases, the policy degrades. We believe
that is because the random policy’s transitions are not enough for the IDM to create pseudo-labels for the
expert’s trajectory properly. Hence, as the values decrease, the policy achieves higher rewards, with the
optimal value being 2. As for MountainCar, we observe that just as in Table 6, the results do not show a
significant variation. Except for the values of 1 and 4, which yield rewards of ≈ −150, we observe a standard
deviation of 5.08, which is lower than all RL learning approaches in Table 4. In LunarLander, we see a rapid
deterioration of the reward as k deviates from 2. We observe the same behavior in MountainCar, where 1
provides the worst result and 4 the second worst result. We attribute such a behavior to RIL’s capability of
using its RL component to counteract the IL sub-optimal knowledge, thus acquiring higher rewards than the
RL methods by themselves and comparable results among different k values. These results show that using
k = 2 is the best strategy for RIL. It offers a good trade-off by maintaining Is mainly from Ipre earlier in

Table 7: Average Episode Reward (AER) for varying k values with n = 150 and |T e| = 1.

Environments
k

1 1.5 2 2.5 3 3.5 4
CartPole 500.00 500.00 500.00 500.00 500.00 500.00 500.00
Acrobot -81.84 -79.95 -79.52 -80.37 -81.05 -83.69 -85.43
MountainCar -150.3 -102.30 -100.29 -105.30 -109.20 -112.80 -149.90
LunarLander 132.00 145.36 266.55 247.50 209.40 174.6 171.00

15

Under review as submission to TMLR

the process, while later primarily from Ipos. This behavior allows the IDM to learn the action transitions
from Is without suffering from heavy shifts in terms of dataset.

6.4.2 Varying n

Hyperparameter n alters how early in the learning process the upper limit will reach its maximum value
of 1 (or 100%). Figure 5b presents the behavior of the upper limit for 150 epochs with n varying in
{37, 75, 112, 150}, which is equivalent to 25%, 50%, 75%, and 100% of the epochs. Table 8 shows the AER
for a policy trained with distinct n values, while all other hyperparameters stay the same, i.e., k = 2 and
|T e| = 1. The policy once again achieves the maximum reward for the CartPole environment independently of
its hyperparameters. On the other hand, as n decreases the policy deteriorates in the remaining environments.
We believe this is due to the high variance in samples for Is. As the upper limit curvature becomes steeper,
the faster Is becomes Ipos, i.e., fewer samples from Ipre are used to complement Is. This shift in data
can deteriorate the IDM capability of predicting the correct action given (st, st+1). However, the results
achieved by the policy are still solid enough to solve each environment. They corroborate our hypothesis
that the RL component in RIL can partially use the expert’s knowledge to achieve good results with its own
experiences. These results show that using n = 150 (total number of epochs) is the best strategy for RIL.

Table 8: Average Episode Reward (AER) for distinct n values.

Environments
n

150 115 75 37
CartPole 500.00 500.00 500.00 500.00
Acrobot -79.52 -80.90 -82.23 -85.31
MountainCar -100.29 -100.50 -106.70 -112.10
LunarLander 266.55 163.70 148.10 120.98

7 Usage of sub-optimal experts

As a premise for IL methods, the expert acts as an optimal policy in the environment. Thus, we experiment
on how RIL acts when given sub-optimal experts. We hypothesize that with the use of an increasingly
degrading expert, RIL’s performance should degrade accordingly. Nevertheless, considering its capability
of using its own experiences, the drop in performance should not be drastic, at least in theory. We do
not use the LunarLander environment in this experiment, considering its aforementioned complexity (high
correlation with landing position, which is variable). For the other environments, we generate experts by
continuously reducing their performance in solving the task. Table 9 shows the reward from the expert that
was employed for learning RIL’s policy and πϕ results for all environments.

The first value for each environment is the expert used in the main experiments. Each expert then becomes
gradually worse (decreasing values of reward). The CartPole policy achieves the maximum reward even with
an expert policy distant from its goal, e.g., r ⩾ 195. This behavior was verified in every other experiment,
and points to the simplicity of solving this particular environment. The same behavior does not occur for
Acrobot and MountainCar, which followed our hypothesis of gradual degradation. The degradation of the
expert’s policy results in worse πϕ, though note that such a degradation is sub-linear with the decrease in
reward. Even with severely sub-optimal experts, RIL is capable of achieving rewards equal or very close to
the environment’s goal. As the expert decayed 50 reward points for Acrobot, πϕ decayed only ≈ 0.80. The
same happens to MountainCar, where the expert decay is 44 reward points, while πϕ decreases only 10.91
points. The results from MountainCar provide evidence that the trajectory of the expert helps the policy in
learning how to act in an environment while the RL component helps adjusting that behavior towards the
maximum reward.

16

Under review as submission to TMLR

Table 9: Average Episodic Reward for the learned policy given sub-optimal trajectories from an expert.

Environment Expert Reward Policy Reward

CartPole

500 500.00
400 500.00
300 500.00
200 500.00
100 500.00

Acrobot

-85 -79.52
-100 -81.41
-150 -80.27
-200 -80.03
-250 -82.72

MountainCar
-106 -100.29
-140 -104.07
-150 -111.20

8 Conclusions and Future Work

In this work, we proposed Reinforced Imitation Learning (RIL), a framework that combines IL and RL
components into an intertwined iterative process. RIL uses unlabeled expert samples and its own experiences
to achieve state-of-the-art results in distinct benchmarking environments. The IL component of RIL uses
unlabeled expert trajectories to guide the policy into a theoretical optimal policy. The RL component, in
turn, can adjust the policy towards a more coherent path by exploring the q-value functions from its own
experiences.

RIL offers two main advantages: (i) it is capable of working even with very few expert’s trajectories due to its
self-supervised learning strategy; and (ii) it achieves state-of-the-art results without large amounts of data or
timesteps due to its capability of leveraging from the advantages of both IL and RL paradigms. Compared
to other IL methods, RIL achieves better results with fewer samples while also matching their performance
in scenarios with a high number of expert trajectories. Experiments also show that RIL achieves comparable
(and often better) results than RL baselines though in a much more efficient way (i.e., fewer timesteps).

As future work, we intend to adapt RIL to continuous environments, and also to scenarios in which the states
are represented by visual information. Since the mechanisms implemented in RIL require discretization of
continuous environments, we intend to perform modifications that will allow RIL to perform continuous
exploration seamlessly. Environments whose states are represented as images (visual domains) such as Atari
games are often harder to learn due to their larger state-spaces, so it will be interesting to verify whether
RIL can also achieve state-of-the-art results in those scenarios.

References
Albert Bandura and Richard H Walters. Social Learning Theory. Prentice-hall Englewood Cliffs, NJ, 1

edition, 1977.

Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE transactions on systems, man, and cybernetics, 1(5):834–846,
1983.

Si-An Chen, Voot Tangkaratt, Hsuan-Tien Lin, and Masashi Sugiyama. Active deep q-learning with demon-
stration. Machine Learning, 109(9):1699–1725, 2020.

Tao Chen, Jie Xu, and Pulkit Agrawal. A system for general in-hand object re-orientation. arXiv preprint
arXiv:2111.03043, 2021.

17

Under review as submission to TMLR

Ashley D Edwards, Himanshu Sahni, Yannick Schroecker, and Charles L Isbell. Imitating latent policies
from observation. In Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
pp. 1755–1763. Proceedings of the 36th International Conference on Machine Learning, 2019.

Bin Fang, Shidong Jia, Di Guo, Muhua Xu, Shuhuan Wen, and Fuchunt Sun. Survey of imitation learning
for robotic manipulation. International Journal of Intelligent Robotics and Applications, 3(4):362–369,
2019.

Nathan Gavenski, Juarez Monteiro, Roger Granada, Felipe Meneguzzi, and Rodrigo C Barros. Imitating
unknown policies via exploration. In Proceedings of the 2020 British Machine Vision Virtual Conference,
BMVC 2020, pp. 1–8. Proceedings of the 2020 British Machine Vision Virtual Conference, BMVA, 2020.

Alborz Geramifard, Christoph Dann, Robert H. Klein, William Dabney, and Jonathan P. How. Rlpy: A
value-function-based reinforcement learning framework for education and research. Journal of Machine
Learning Research, 16(46):1573–1578, 2015. URL http://jmlr.org/papers/v16/geramifard15a.html.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan, John
Quan, Andrew Sendonaris, Ian Osband, et al. Deep q-learning from demonstrations. In Thirty-second
AAAI conference on artificial intelligence, 2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in neural infor-
mation processing systems, pp. 4565–4573. Advances in neural information processing systems, 2016.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A survey
of learning methods. ACM Computing Surveys, 50(2):21:1–21:35, 2017.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad Czechowski,
Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based reinforcement learning
for atari. arXiv preprint arXiv:1903.00374, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 1:1–15, 2014.

Ildikó Király, Gergely Csibra, and György Gergely. Beyond rational imitation: Learning arbitrary means
actions from communicative demonstrations. Journal of Exp. Child Psych., 116(2):471–486, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 1:
1–9, 2013.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In Inter-
national conference on machine learning, pp. 1928–1937. PMLR, 2016.

Juarez Monteiro, Nathan Gavenski, Roger Granada, Felipe Meneguzzi, and Rodrigo Barros. Augmented
behavioral cloning from observation, 2020.

Andrew William Moore. Efficient memory-based learning for robot control. PhD thesis, University of Cam-
bridge, 1990.

Dean A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Proceedings of the 1st
Conference on Neural Information Processing Systems, NIPS 1988, pp. 305–313. Proceedings of the 1st
Conference on Neural Information Processing Systems, 1988.

Nathan Ratliff, J Andrew Bagnell, and Siddhartha S Srinivasa. Imitation learning for locomotion and
manipulation. In 2007 7th IEEE-RAS International Conference on Humanoid Robots, pp. 392–397. IEEE,
2007.

18

http://jmlr.org/papers/v16/geramifard15a.html

Under review as submission to TMLR

Saleha Raza, Sajjad Haider, and Mary-Anne Williams. Teaching coordinated strategies to soccer robots
via imitation. In Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics,
ROBIO 2012, pp. 1434–1439. Proceedings of the 2012 IEEE International Conference on Robotics and
Biomimetics, 2012.

Giacomo Rizzolatti and Corrado Sinigaglia. The functional role of the parieto-frontal mirror circuit: Inter-
pretations and misinterpretations. Nature Reviews Neuroscience, 11(4):264–274, 2010.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured pre-
diction to no-regret online learning. In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pp. 627–635. JMLR Workshop and Conference Proceedings, 2011.

Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive sciences, 3(6):
233–242, 1999.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv preprint
arXiv:1511.05952, 2015.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In Trust region policy optimization, pp. 1889–1897. International conference on machine
learning, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S Sutton. Generalization in reinforcement learning: Successful examples using sparse coarse coding.
In ANIPS, pp. 1038–1044. Advances in neural information processing systems, 1996.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. In Proceedings of
the 27th International Joint Conference on Artificial Intelligence, pp. 4950–4957. Proceedings of the 27th
International Joint Conference on Artificial Intelligence, 2018.

Stefan Vogt and Roland Thomaschke. From visuo-motor interactions to imitation learning: behavioural and
brain imaging studies. Journal of Sports Sciences, 25(5):497–517, 2007.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy Ba. Scalable trust-region method
for deep reinforcement learning using kronecker-factored approximation. Advances in neural information
processing systems, 30:5279–5288, 2017.

19

	Introduction
	Related Work
	Reinforced Imitation Learning
	Problem formulation
	Self-Supervised Imitation Learning
	Exploration with Neural Networks and q-values
	Combining IL and RL

	Experimental Methodology
	Environments and Network Topologies

	Experimental Results
	Policy Optimization Behavior
	Sample Efficiency
	Imitation Learning
	Reinforcement Learning

	Quantitative Results

	Discussion
	Off-policy and Imitation Learning
	Iterative vs Sequential Learning
	Impact of the amount of expert samples
	Upper limit from Ipos
	Varying k
	Varying n

	Usage of sub-optimal experts
	Conclusions and Future Work

