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Abstract
This paper introduces a novel backup strat-
egy for Monte-Carlo Tree Search (MCTS) tai-
lored for highly stochastic and partially observ-
able Markov decision processes. We adopt a
probabilistic approach, modeling both value and
action-value nodes as Gaussian distributions, to
introduce a novel backup operator that com-
putes value nodes as the Wasserstein barycenter
of their action-value children nodes; thus, prop-
agating the uncertainty of the estimate across
the tree to the root node. We study our novel
backup operator when using a novel combination
of L1-Wasserstein barycenter with α-divergence,
by drawing a crucial connection to the gener-
alized mean backup operator. We complement
our probabilistic backup operator with two sam-
pling strategies, based on optimistic selection and
Thompson sampling, obtaining our Wasserstein
MCTS algorithm. We provide theoretical guar-
antees of asymptotic convergence of O(n−1/2),
with n as the number of visited trajectories, to
the optimal policy and an empirical evaluation on
several stochastic and partially observable envi-
ronments, where our approach outperforms well-
known related baselines.

1. Introduction
Monte-Carlo Tree Search (MCTS) has become a crucial al-
gorithmic paradigm for tackling challenging planning and
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Reinforcement Learning (RL) problems, particularly after
its widespread success in deterministic games like Go and
Chess (Silver et al., 2016a; 2017b). However, moving be-
yond these deterministic settings toward highly stochastic
or partially observable Markov Decision Processes (MDP-
s/POMDPs) reveals major difficulties. In these cases, two
key obstacles arise: Uncertainty in Value Estimates: In
problems with substantial randomness or limited observ-
ability, naive value backups may lead to erroneous or un-
stable estimates, which propagate through the tree and de-
grade overall performance. Exploration-Exploitation Bal-
ancing: Traditional UCT-based exploration bonuses (Koc-
sis et al., 2006) can falter under high variance transitions,
often causing either over- or under-exploration. Recent
works (Tesauro et al., 2012; Bai et al., 2013; 2014) have
suggested Bayesian or distributional methods for MCTS
to better quantify uncertainty. Meanwhile, Metelli et al.
(2019) leveraged L2-Wasserstein barycenters to propagate
distributional information in temporal-difference learn-
ing. Yet, several open questions remain on how to unify
distribution-based backups and flexible exploration strate-
gies within a single MCTS framework that provably han-
dles high stochasticity and partial observability.
Our Approach. In this paper, we propose a new MCTS al-
gorithm, Wasserstein MCTS, that models each node’s value
as a Gaussian distribution and propagates both mean and
variance estimates throughout the tree. Crucially, we intro-
duce a novel backup operator that computes value nodes as
L1-Wasserstein barycenters of their action-value children,
using an α-divergence as the distance measure. This yields:

• Distributional Value Backups: By tracking distributions
(rather than point estimates), our method captures the in-
herent uncertainty of each node’s value, especially valu-
able in stochastic or partially observable domains.

• Generalized Mean Operator: The α-divergence ties natu-
rally to the power-mean backup (Dam et al., 2019; 2024a),
letting us interpolate between average-like and max-like
updates to mitigate the overestimation often seen in RL
(Hasselt, 2010).

We complement these distributional backups with two ex-
ploration mechanisms—an optimistic UCT bonus, and a
Thompson sampling approach that selects actions by sam-
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pling from the node’s Gaussian posterior.
Our Key Contributions. 1. Uncertainty Propagation
via L1-Wasserstein Barycenters. We provide a principled
way to back up distributions in an MCTS, unifying L1-
Wasserstein geometry and α-divergences to handle high
variance and partial observability. 2. Connection to Gener-
alized Mean Backup. Our backup operator yields a power-
mean update for node values, enabling a controllable con-
tinuum between overly optimistic (max-like) and risk-
averse (average-like) estimates. 3. Polynomial Convergence
Analysis. We prove that Wasserstein MCTS with Thomp-
son sampling converges to the optimal policy at a rate
O(n−1/2), matching known lower bounds. This is in con-
trast to prior distributional MCTS methods that lacked ex-
plicit convergence guarantees. 4. Extensive Empirical Val-
idation. On a suite of highly stochastic MDPs (e.g. River-
Swim, Taxi) and partially observable tasks (Pocman, Rock-
sample), our approach outperforms established baselines,
including UCT, Power-UCT, and Bayesian MCTS vari-
ants.

Overall, Wasserstein MCTS offers a flexible and theo-
retically grounded framework for handling uncertainty
within MCTS. By combining Gaussian node models, L1-
Wasserstein barycenters, and α-divergences, it effectively
balances exploration and exploitation in domains where
noise or partial observability make traditional MCTS meth-
ods brittle.

2. Related Work
Metelli et al. (2019) use L2-Wasserstein barycenters to
propagate uncertainty in temporal-difference learning. In
MCTS, Bayesian methods handle uncertainty by treating
values as Gaussian distributions (Tesauro et al., 2012)
or Dirichlet-NormalGamma posteriors (Bai et al., 2013;
2014). Unlike these, we propagate uncertainty throughout
the tree via L1-Wasserstein barycenters and α-divergences,
linking to generalized-mean backups (Dam et al., 2019)
and maintaining both mean and variance estimates. This
distributional perspective is effective in highly stochas-
tic or partially observable tasks. In multi-armed bandits,
optimism (Auer et al., 2002a) and Thompson sampling
(Thompson, 1933) are standard; we combine these with our
uncertainty propagation scheme to guide action selection in
MCTS.

3. Background
3.1. Markov Decision Process

We consider an agent in an infinite-horizon discounted
Markov decision process (MDP) M = ⟨S,A,R,P, γ⟩,
where S is the state space, A is the finite action
space, R : S × A × S → R is the reward function,

P : S × A → S is the transition kernel, and γ ∈ [0, 1)
is the discount factor. A policy π ∈ Π : S → A
defines the action selection probabilities based on
states. The action-value function Qπ is given by
Qπ(s, a) ≜ E

[∑∞
k=0 γ

kri+k+1 | si = s, ai = a, π
]
,

representing the expected cumulative discounted
reward for executing action a in state s and fol-
lowing policy π. The objective is to find the op-
timal policy that maximizes Qπ , satisfying the
Bellman equation (Bellman, 1954): Q∗(s, a) ≜∫
S P(s

′|s, a) [R(s, a, s′) + γmaxa′ Q∗(s′, a′)] ds′, ∀s ∈
S, a ∈ A. From the optimal action-value func-
tion, we derive the optimal value function as
V ∗(s) ≜ maxa∈A Q∗(s, a), ∀s ∈ S.

3.2. Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) combines Monte-Carlo
sampling, tree search, and exploration strategies from
multi-armed bandits (Auer et al., 2002b) to solve MDPs.
It builds a search tree where states are nodes and actions
are edges. MCTS involves four key steps: Selection: Nav-
igate from the root to a leaf node using a tree-policy.
Expansion: Expand the reached node based on the tree
policy. Simulation: Perform a rollout (Monte-Carlo simu-
lation) from the child node to estimate its value, or use a
pretrained neural network (Silver et al., 2016a) for this es-
timation. Backup: Update the action-values Q(·) along the
visited trajectory using the collected rewards.

4. Formalization
Problem Setup Monte Carlo Tree Search (MCTS) is an
algorithm for exploring and evaluating trajectories in an
MDP. Starting from an initial state s0, MCTS incremen-
tally builds a planning tree by simulating trajectories. Each
trajectory either reaches a leaf node or terminates when a
predetermined maximum depth H is reached. At the end of
each trajectory, a playout policy (which may be determin-
istic or stochastic) is executed from the final node reached,
allowing the algorithm to evaluate the associated state. Af-
ter running for t trajectories, the MCTS algorithm provides
the following outputs:

• at: estimate of the optimal action to take in state s0,
• V t(s0): estimate of the optimal value function at s0.

Evaluating MCTS Performance The performance of the
MCTS algorithm is assessed based on its convergence
rate, r(t), which quantifies how quickly the algorithm ap-
proaches the optimal policy. Specifically, the following
bounds hold:

E [V ⋆(s0)−Q⋆(s0, at)] ⩽ r(t),∣∣E [V ⋆(s0)− V t(s0)
]∣∣ ⩽ r(t),
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where V ⋆(s0) and Q⋆(s0, a) are the true optimal value and
action-value functions at state s0, respectively.
Recursive Value Estimation To analyze the MCTS algo-
rithm, we consider a planning horizon H and a playout pol-
icy π0 with an associated value function V0. For each node
sh at depth h (i.e., the state reached after h steps from s0),
we recursively define the value function Ṽ (sh) as follows.
At the leaf nodes (h = H), the value function is simply the
playout policy’s value:

Ṽ (sH) = V0(sH).

For all other depths h ⩽ H − 1, we compute the action-
value function Q̃(sh, a) and value function Ṽ (sh) as:

Q̃(sh, a) = r(sh, a) + γ
∑

sh+1∈As

P(sh+1 | sh, a)Ṽ (sh+1),

Ṽ (sh) = max
a

Q̃(sh, a),

where r(sh, a) is the mean immediate reward obtained by
taking action a in state sh, P(sh+1 | sh, a) is the probabil-
ity of transitioning to state sh+1 from sh given action a and
γ is the discount factor.
Bounding the Error The recursive structure of the value
estimates gives rise to a bound on the error between the true
optimal action-value function Q⋆(s0, a) and the MCTS es-
timate Q̃(s0, a). Specifically, we have:∣∣∣Q⋆(s0, a)− Q̃(s0, a)

∣∣∣ ⩽ γH∥V ⋆ − V0∥∞,

where the supremum norm ∥V ⋆ − V0∥∞ can be restricted
to states reachable within H steps from s0.

Goal of MCTS The ultimate aim of the MCTS algorithm
is to minimize the convergence rate r(t) by constructing
accurate estimates of Q̃(s0, a) and Ṽ (s0), which in turn
approach the true optimal functions Q⋆(s0, a) and V ⋆(s0),
and then identify the best action at the root node:

a⋆ = argmax
a

Q⋆(s0, a).

5. Wasserstein Barycenter With α-Divergence
We introduce the key notions behind our distribution-based
backups: the Wasserstein barycenter and the α-divergence.
Unlike prior works that use L2-based Wasserstein dis-
tances (Metelli et al., 2019), we adopt an L1-Wasserstein
distance combined with α-divergences. This combination
yields more robust value backups in stochastic and partially
observable settings.

5.1. Wasserstein Barycenter

Let (X , d) be a Polish (complete, separable metric) space.
For q ≥ 1, define Pq(X ) as the set of probability measures

on X whose q-th moment is finite. For two distributions
µ, ν ∈ Pq(X ), the Lq-Wasserstein distance is

Wq(µ, ν) =
(

inf
ρ∈Γ(µ,ν)

E(X,Y )∼ρ

[
d(X,Y )q

])1/q
,

where Γ(µ, ν) is the set of joint couplings whose marginals
match µ and ν. Given n distributions {νi}ni=1 and weights
{wi} summing to 1, the Lq-Wasserstein barycenter is

ν̄ = argmin
ν

n∑
i=1

wi Wq(ν, νi)
q.

Our work focuses on q = 1.

5.2. α-divergence and the L1 Wasserstein Barycenter

In many distribution-based backup schemes, the Wasser-
stein distance is a natural choice to quantify how “far apart”
two distributions are. A commonly used approach (Metelli
et al., 2019) is to employ the L2-Wasserstein metric. In con-
trast, we consider an L1-Wasserstein formulation coupled
with an α-divergence for two main reasons:

• Robustness & Aggregation Control. An L1-based metric
can be more robust to outliers and large deviations than L2.
Furthermore, combining it with the α-divergence allows a
continuous interpolation between averaging and max-like
backups (through the α parameter).

• Connection to Power-Mean Updates. Modeling nodes as
Gaussians (or particle distributions) and relying on L1-
Wasserstein with an α-divergence yields closed-form up-
dates that coincide with the power-mean operator. This uni-
fies average and maximum backups in a single formula and
lets us propagate both means and variances (uncertainty)
through the tree.

f -divergences and the α-divergence. An f -divergence
(Csiszár, 1964) between two points X and Y over a Mani-
foldM defined as

Dfα(X∥Y ) =
∑
i

ξ
(i)
Y fα

(
ξ
(i)
X

ξ
(i)
Y

)
, fα(x) =

xα−1−α(x−1)
α(α−1) ,

where varying α controls how aggressively or conserva-
tively we measure the “distance” between X and Y .
Constructing the L1-Wasserstein Barycenter. In our ap-
proach, the L1-Wasserstein distance between ν and νi is
defined via

W1(ν, νi) = inf
ρ∈Γ(ν,νi)

E(X,Y )∼ρ

[
Dfα(X,Y )

]
. (1)

The L1-Wasserstein barycenter then solves

ν̄ = arg inf
ν

{ n∑
i=1

wi W1

(
ν, νi

)}
,
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i.e., we seek the single distribution ν̄ that jointly minimizes
its L1-Wasserstein distance (defined via the α-divergence)
to all the νi.

Why L1 instead of L2. Using the L1 distance in equation 1
naturally leads to a backup rule resembling the power mean
operator Proposition 1. This power-mean update is more
robust to high-variance samples and connects smoothly to
both the average backup (when α → 0 or p = 1) and
the max backup (as α → ∞ or p → ∞). Hence, L1-
Wasserstein with α-divergences offers a principled way to
blend distributions in highly stochastic environments while
controlling the balance between underestimation and over-
estimation in the final backup.

Why Use an α-Divergence Instead of L2? Although α-
divergences are not strict metrics (they can be asymmet-
ric and need not satisfy the triangle inequality), their use
within an L1-Wasserstein framework provides distinct ben-
efits for MCTS under stochastic or partially observable
conditions:

• Greater Flexibility via Generalized Means. When com-
bined with the L1-Wasserstein distance, an α-divergence
naturally yields a power-mean style backup operator
(Dam et al., 2019). By adjusting the parameter α, one
smoothly interpolates between average-like and max-like
backups, allowing precise control over how conservative
or aggressive the updates should be. This stands in con-
trast to L2-based distances, which only yield fixed (e.g.
purely quadratic) aggregation behavior.

• Robustness to Stochastic Variations. Because α-
divergences can emphasize or de-emphasize portions of
the distribution differently depending on α, they help
mitigate overestimation or underestimation in highly
stochastic settings. Empirical studies in distributional
RL (Metelli et al., 2019) suggest that more adaptive
divergence measures can significantly improve stability
and performance when the underlying dynamics involve
heavy noise.

• No Need for Symmetry in Backups. MCTS requires a cost
functional to aggregate posterior distributions across chil-
dren nodes, rather than a strict metric. Hence, the lack
of symmetry or the triangle inequality does not under-
mine its validity here. An f -divergence—including α-
divergences—is sufficient to drive consistent updates of
belief distributions in the tree.

• Unified Framework for Various Divergences. The α-
divergence family subsumes and generalizes many stan-
dard divergences (e.g. KL, reverse KL). This single-
parameter approach enables users to easily switch or fine-
tune the update behavior for different problem character-
istics, rather than designing separate algorithms for each

divergence.

• Direct Theoretical Connections. Under mild assumptions,
L1-Wasserstein geometry paired with α-divergences ad-
mits closed-form or near-closed-form power-mean formu-
las (Dam et al., 2019). This not only streamlines theoret-
ical analysis but also simplifies implementation by allow-
ing straightforward computation of mean and variance up-
dates at each node.

In practice, these properties make α-divergences well-
suited for uncertainty propagation within MCTS: despite
not being a metric, their adaptability and connection to gen-
eralized means allow them to effectively handle complex,
high-variance environments.

5.3. V-posterior

It is natural to define a value node as the V-posterior
computed with L1-Wasserstein barycenters of the chil-
dren nodes Q-posteriors, following a procedure inspired
by Metelli et al. 2019 (Metelli et al., 2019) and tailored
to MCTS.
Definition 1 (V-posterior). Given a policy π̄ and a state
s ∈ S, we define the V-posterior V(s) induced by Q-
posteriors Q(s, a) with a ∈ A as the L1-Wassertein
barycenter of the Q(s, a):

V(s) ∈ arg inf
V

{
Ea∼π̄(.|s)

[
W1(V,Q(s, a))

]}
.

In this work, we model each node in the tree as a Gaussian
distribution. We define p = 1−α and derive the following.
Proposition 1. Consider the V-posterior value function
V(s) as a Gaussian:N (m(s), σ2(s)). Define eachQ(s, a)
as the action-value function child node of V(s). Each
Q(s, a) is assumed as a Gaussian distributions Q(s, a) :
N (m(s, a), σ(s, a)2). If the value function V(s) is defined
as the Wasserstein barycenter of the action-value function
Q(s, a), given the policy π̄, we have

m(s) = (Ea∼π̄[m(s, a)p])
1
p

δ(s) = (Ea∼π̄[δ(s, a)
p])

1
p .

Proposition 1 shows the closed form solutions of the mean
and standard deviation of the Gaussian value function
V(s) considering it as the L1-Wasserstein barycenter Q-
posteriors. In detail, the mean of V(s) are the power mean
of all mean values of all the Q(s, a) function, considering
the finite set of actions. When p = 1, we derive the ex-
pected form solutions.

We point out that our approach is not restricted to the Gaus-
sian distribution model. We get the following result by con-
sidering each tree node as a particle model.
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Proposition 2. Consider the V-posterior value function
V(s) as an equally weighted Particle model: xi(s) : i ∈
[1,M ]. M is an integer and M ⩾ 1. Assume each
action-value functionQ(s, a) has M particles xi(s, a), i ∈
[1,M ]. If the value function V(s) is defined as the Wasser-
stein barycenter of the action-value functionQ(s, a), given
the policy π̄, each particle xi(s), i ∈ [1,M ] can be esti-
mated as

xi(s) = (Ea∼π̄[xi(s, a)
p])1/p,

Proposition 2 shows that each particle of the V-posterior
value function V(s) can be derived as the power mean of
the respective particles of all theQ(s, a) function. If p = 1,
we again get the closed-form solutions as the expectation
of the respective particles of all the Q(s, a) functions. The
results in Proposition 1, and Proposition 2 can be consid-
ered as the generalized result of Proposition A.3 in Metelli
et al. (2019). In the next section, we present our Wasser-
stein Monte-Carlo tree search (W-MCTS ) algorithm, as-
suming each tree node is a Gaussian distribution.

6. Wasserstein Monte-Carlo Tree Search
We introduce our Wasserstein Monte-Carlo Tree Search
(W-MCTS), where V-posteriors are modeled as Wasserstein
barycenters of action-value distributions. With Gaussian
distributions at each node, we define backup operators for
mean and variance. Additionally, we propose two action se-
lection strategies: optimistic selection and Thompson sam-
pling.

6.1. Backup Operator

We model each V -node and Q-node as a Gaussian with
mean and standard deviation:

Vm(s), Vstd(s) and Qm(s, a), Qstd(s, a).

We denote V m(s,N(s)) as the empirical mean estimate
of the V -node at state s after N(s) total visits, and
Qm(s, a, n(s, a)) as the empirical mean estimate of the Q-
node at (s, a) after n(s, a) visits. Likewise, V std(s,N(s))
and Qstd(s, a, n(s, a)) are their corresponding empirical
standard deviation estimates.

V -nodes. From Proposition 1, the mean and the standard
deviation of a V -node is a power-mean aggregation of its
Q-children:

V m(s,N(s)) ←
(∑

a

n(s,a)
N(s)

[
Qm(s, a, n(s, a))

]p)1/p
,

V std(s,N(s)) ←
(∑

a

n(s,a)
N(s)

[
Qstd(s, a, n(s, a))

]p)1/p
,

where n(s, a) is the visit count of action a at state s, and
N(s) =

∑
a n(s, a). For p = 1, this reduces to the standard

average, whereas p > 1 induces a more “max-like” backup
(Dam et al., 2019).

Q-nodes. Under the Bellman-style backup for each Q-
node,

Qm(s, a) = E[r(s, a)]+γ E[Vm(s
′)], Qstd(s, a) = γ Vstd(s

′),

we replace expectations by empirical sums and visitation
counts:

Qm(s, a, n(s, a)) ←
∑

r(s,a)+ γ
∑

s′ N(s′)V m(s′,N(s′))

n(s,a) ,

Qstd(s, a, n(s, a)) ←
γ
∑

s′ N(s′)V std(s
′)

n(s,a) .

Here, the sums range over transitions and children states
s′, weighted by their visit counts N(s′). As n(s, a) grows
large, both the variance and mean estimators stabilize,
eventually converging to deterministic values.

6.2. Action Selection

Monte Carlo Tree Search can adopt a variety of exploration
strategies based on the original UCT framework (Kocsis
et al., 2006). In practice, multiple refinements exist, such
as the variants used in AlphaGo (Silver et al., 2016b),
AlphaZero (Silver et al., 2017c;a), MuZero (Schrittwieser
et al., 2020), Stochastic MuZero (Antonoglou et al., 2021),
and Stochastic-Power-UCT (Dam et al., 2024b). Although
different choices of the exploration constant or bonus lead
to different performance characteristics, we retain the stan-
dard, state-of-the-art designs described below. In our theo-
retical analysis, however, we focus specifically on Thomp-
son sampling, since the UCT-like optimistic selection can
be viewed as a special case of the well-studied Power-UCT
algorithm (Dam et al., 2019; 2024b).

Optimistic Selection. A classic UCT-style selection
picks actions using upper confidence bounds on Q-values,

a = argmax
ai

[
m(s, ai) + C

√
logN(s)
n(s,ai)

]
,

where m(s, ai) is the empirical mean, n(s, ai) is the visit
count of action ai, and N(s) is the total visit count at state
s. Replacing the 1√

n(s,ai)
term by the empirical standard

deviation σ(s, ai) yields an optimistic variant of Wasser-
stein MCTS (W-MCTS-OS):

a = argmax
ai

[
m(s, ai) + C σ(s, ai)

√
logN(s)

]
.

The factor σ(s, ai) ≈ 1/
√

n(s, ai) follows from a CLT-
based argument.
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Thompson Sampling. In contrast, Thompson sampling
stochastically samples an action from the Q-posterior:

a = argmax
ai

{
θi ∼ N

(
m(s, ai), σ

2(s, ai)
)}

.

We refer to this Thompson variant as Wasserstein MCTS-
TS (W-MCTS-TS). In Section 7, we analyze its conver-
gence properties under non-stationary multi-armed bandits
and then leverage these results to establish convergence in
the planning tree.

7. Theoretical Analysis
7.1. Analysis Setup

We define the setting for our theoretical analysis using a
class of non-stationary Multi-Armed Bandit (MAB) prob-
lems at each state s in the MCTS tree. Consider K arms
(actions), each with a mean reward µk, for k ∈ [K]. At
time step t, pulling arm k yields a random reward Xk,t,
bounded within [0, R]. The average reward for arm k after
n trials is:

Xk,n =
1

n

n∑
t=1

Xk,t, with µk,n = E[Xk,n]

Let ⋆ represent quantities related to the optimal arm, and
denote Tk(n) as the number of times arm k has been played
by step n. We assume the following concentration condi-
tion holds:
Assumption 1. We assume that the reward sequence,
{Xk,t : t ⩾ 1}, is a non-stationary process satisfying the
assumption: for all 1 > ε > 0, ∃c > 0 that

Pr
(
|Xk,n − µk| > ε

)
⩽ cn−1ε−2, k ∈ [K]. (2)

7.2. Main Results

We show the polynomial convergence of the expected esti-
mated mean value function at the root node in Theorem 1.

7.2.1. CONVERGENCE OF W-MCTS

We start with an important result as shown below
Proposition 3. Applying W-MCTS to an MCTS tree of
depth (H), at any depth h of the tree, we have

(i) At any depth h, ∃ constant C0 > 0 that for any 0 <
ε < 0, n ⩾ 1, we can derive

Pr

( ∣∣∣V m(sh, ak, n)− Ṽ (sh, ak)
∣∣∣ ⩾ ε

)
⩽ C0n

−1ε−2.

(ii) At any depth h, ∃ constant C0 > 0 that for any 0 <
ε < 0, n ⩾ 1, we can derive

Pr

( ∣∣∣Qm(sh, ak, n)− Q̃(sh, ak)
∣∣∣ ⩾ ε

)
⩽ C0n

−1ε−2.

Proof Sketch
MCTS as a Hierarchical Bandit Structure. The Monte
Carlo Tree Search (MCTS) algorithm can be viewed as
a hierarchy of multi-armed bandits (MABs), where each
node in the search tree represents an independent bandit
problem. In this framework, the reward for each node, or
current bandit, is influenced by the performance of the
bandit algorithms applied to its child nodes. Since the
W-MCTS policy adapts dynamically to balance exploitation
and exploration, the rewards at each node are inherently
non-stationary. The proof of Theorem 1 unfolds through
three essential steps:

1. Analyzing Non-stationary Bandits The initial step
focuses on the analysis of a non-stationary multi-armed
bandit, which reflects the behavior of MABs at each
MCTS node. We establish that if the rewards of these non-
stationary bandits meet specific concentration properties,
the regret induced by the W-MCTS algorithm will exhibit
corresponding concentration guarantees. This outcome is
formally stated in Theorem 2.

2. Induction Argument Next, we utilize an inductive ar-
gument to transfer the convergence and concentration prop-
erties from the lower tree levels to the root node. As the
rewards from one level inform those of the next, the find-
ings from Step 1 can be recursively applied. We begin at
depth H − 1 and move upward, demonstrating inductively
that the bandit rewards at each level H of the MCTS satisfy
the criteria required by Theorem 2. This process propagates
the desired properties up to the root node, completing the
induction.

3. Error Analysis from the Oracle The final step exam-
ines the error introduced by the leaf node estimator, rep-
resented by the value function oracle V0. With this oracle,
the depth-H MCTS can be interpreted as performing H
steps of value iteration, starting from V0 at the leaf nodes
(as mentioned in (Dam et al., 2024b)). Importantly, the or-
acle’s error decreases geometrically at a rate of γ due to the
contraction mapping property of value iteration, leading to
diminishing error as we ascend from the leaf nodes to the
root. The complete proof for Proposition 3 can be found in
the supplemental material. Finally, we get the main result.

Theorem 1. We have at the root node s0,∣∣E[V m(s0, n)]− Ṽ (s0)
∣∣ ⩽ O(n−1/2).

Our proposed method, W-MCTS, achieves a polynomial
convergence rate of O(n−1/2), matching the results of
Dam et al. (2024b). In contrast, Xiao et al. (2019) intro-
duced MENTS, followed by RENTS and TENTS from Dam
et al. (2021), which leverage exponential convergence to a
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regularized value function through maximum entropy reg-
ularization. However, these methods face bias due to errors
in the regularized value function, potentially leading to in-
correct action selection. Conversely, Painter et al. (2024)
employ a similar action selection strategy with a maximum
backup operator for value estimation, resulting in exponen-
tial reductions in simple regret. However, their method’s
effectiveness heavily relies on the temperature parameter
in Boltzmann exploration, limiting its practical use.

7.2.2. WASSERSTEIN NON-STATIONARY
MULTI-ARMED BANDIT

A crucial part of the proof for Theorem 1 is to derive the
following result for the W-MCTS in bandit setting. Under
the Assumption 1, we consider applying Thompson Sam-
pling strategy as the action selection method for the non-
stationary multi-armed bandit (MAB) problems describes
above. At each time step n, an action is selected as

a = argmax
ai,i∈{1...K}

{θi ∼ N (Xk,n, Vk/Tk(n))}. (3)

Let’s define Xn(p) =
(∑K

a=1

(
Ta(n)

n

)
X

p

a,Ta(n)

)1/p
as

the power mean value backup at the root node, Ta(n) =∑n−1
t=1 1(at = a) is the number of selections of a prior

to round n. We show theoretical results of our method as
follows. Under the Assumption 1, we establish the con-
centration properties of the power mean backup operator
Xn(p) towards the mean value of the optimal arm µ∗ =
maxa{µa}, a ∈ [K], as shown in Theorem 2.

Theorem 2. Consider a non-stationary bandit problem de-
scribed as in 7.1 with action selection as Equation (3).
Then,

Pr(
∣∣Xn(p)− µ⋆

∣∣ ⩾ ε) ⩽ Cn−1ε−2.

Theorem 2 states the concentration properties of the
power mean estimation by W-MCTS for a non-stationary
continuous-armed bandit problem, and play an important
role for the induction proof of Proposition 3 leading to the
main result presented at Theorem 1.

8. Experiments
8.1. Fully Observable, Highly Stochastic Tasks

We compare W-MCTS to UCT (Kocsis et al., 2006),
Power-UCT (Dam et al., 2019), and DNG (Bai et al., 2013)
in five benchmark environments: FrozenLake, NChain,
RiverSwim, SixArms, and Taxi. These tasks all feature
significant stochasticity or long-horizon exploration chal-
lenges.
FrozenLake. A 4 × 4 grid with slippery transitions, im-
plemented in OpenAI Gym (Brockman et al., 2016). The

agent aims to reach a goal in the bottom-right corner. Due
to frequent slips, each move has high uncertainty. Fig-
ure 1 shows that W-MCTS-TS (Thompson sampling) out-
performs DNG, UCT, Power-UCT, and W-MCTS (opti-
mistic selection), with W-MCTS at p = 1 performing com-
parably to W-MCTS-TS.
NChain. An agent can move forward or backward along
a chain of length 5. Actions may reverse with 20% proba-
bility, making consistent forward progress difficult. In Fig-
ure 1, both W-MCTS-TS and W-MCTS-OS exceed UCT
and Power-UCT in convergence speed and final returns.
RiverSwim. Similar to NChain but more complex tran-
sitions: sometimes the agent remains in the same state
or only partially moves. This rewards long-term planning
to reach high-value states. As in Figure 1, W-MCTS-OS
converges fastest and attains the best performance, while
Power-UCT eventually reaches similar returns more
slowly.
SixArms. A 7-state chain with 6 possible arms (actions)
leading to different rewards that scale inversely with their
success probabilities. This environment demands high ex-
ploration. Figure 1 shows that W-MCTS is the only method
consistently securing strong returns.
Taxi. A 7 × 6 grid where the agent must pick up three
passengers, then reach a goal region. Slips occur 10% of
the time, adding further uncertainty. Only W-MCTS-TS
manages to collect all passengers reliably, outperforming
Power-UCT and W-MCTS with optimistic selection.

8.2. Partially Observable, Highly Stochastic Tasks

We also test W-MCTS against POMCP(UCT), D2NG, and
DESPOT in classic POMDP benchmarks: rocksample, poc-
man, Tag, and LaserTag. Code for POMCP(UCT) (Silver
& Veness, 2010b), D2NG (Bai et al., 2014), and DESPOT
(Somani et al., 2013) is used as released by the original au-
thors.
Rocksample. A robot on an n×n grid can sample or ignore
k rocks, then exit. We test three variants: (11,11), (15,15),
and (15,35). Figure 2 shows that W-MCTS-TS consistently
outperforms both UCT and D2NG.
Pocman. A partially observed maze (Silver & Veness,
2010a) where the agent must collect pellets while avoiding
ghosts. Table 1 indicates that W-MCTS-TS with p = 100
outperforms UCT and D2NG across most rollout-budget set-
tings, and W-MCTS-OS also matches or surpasses these
baselines in some configurations.
Comparison with DESPOT. We additionally compare
W-MCTS to DESPOT across Tag, LaserTag, rocksample
(15 × 15), and Pocman. Table 2 shows that W-MCTS-OS
and W-MCTS-TS achieve higher returns than AB-DESPOT
and AR-DESPOT in rocksample. Similarly, W-MCTS-TS
surpasses DESPOT in Pocman, Tag, and LaserTag, while
W-MCTS-OS outperforms AB-DESPOT in Pocman. Role
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Figure 1: Performance of W-MCTS vs. DNG, Power-UCT, and UCT on five MDPs. Each curve shows the mean discounted
return (averaged over 50 runs), with shaded regions indicating standard error.
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Figure 2: Performance of W-MCTS vs. D2NG in rocksample, averaged over 1000 runs (except UCT, 100 runs). Shaded areas
denote standard error.

Table 1: Discounted total reward in pocman. Mean ± stan-
dard error are computed from 1000 random seeds.

1024 4096 32768 65536
W-MCTS-OS , p = 1 50.9± 0.6 51.0± 0.62 52.2± 0.79 54.6± 1.08
W-MCTS-TS , p = 100 67.38± 0.53 75.64± 0.51 77.68± 0.77 77.70± 1.22
D2NG 71.55± 0.57 75.39± 1.47 76.90± 6.40 72.2± 0.0
UCT 23.4± 0.99 23.6± 1.09 24.90± 3.40 28.5± 3.8

Table 2: Average total discounted reward. The results for
POMCP, and DESPOT are taken from (Somani et al., 2013).

Tag LaserTag RS(15, 15) Pocman
W-MCTS-OS −6.05± 0.56 −18.17± 0.46 19.76± 0.28 297.98× 2.83
W-MCTS-TS −5.90± 0.66 −8.75± 0.5 20.29± 0.22 315.45± 2.15
POMCP −7.14± 0.28 −19.58± 0.06 12.23± 0.32 294.16± 4.06
AB-DESPOT −6.57± 0.26 −11.13± 0.30 18.18± 0.30 290.34± 4.12
AR-DESPOT −6.26± 0.28 −9.34± 0.26 18.57± 0.30 307.96± 4.22

of α-Divergence. We explored several values of α to vary
how aggressively our backups shift between average-like
and max-like behavior. When α approaches 0 or ∞, the
update becomes nearly a pure average (p = 1) or nearly
a max backup, respectively. In practice, we found that
moderate α values often provide a suitable balance be-
tween these extremes, and we report results with the best-
performing choices. Although a more extensive sensitivity
analysis could be conducted, the core takeaway is that com-
bining power-mean backups with variance propagation sig-
nificantly enhances performance in highly stochastic tasks.

8.3. Key Performance Factors

The superior performance of our method stems from two
complementary components that address fundamental lim-
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itations in existing MCTS approaches for stochastic and
partially observable environments:

Explicit Variance Propagation. Unlike previous methods
that only propagate point estimates or use fixed variance
models, our approach dynamically updates both means
and variances at each node through the L1-Wasserstein
barycenter formulation. This capability is particularly cru-
cial in highly stochastic and partially observable environ-
ments where uncertainty quantification directly impacts de-
cision quality. Our experimental results demonstrate con-
sistent improvements over Bayesian MCTS methods: we
achieve up to 80% improvement over DNG in Frozen-
Lake, and significant gains over POMCP across all POMDP
environments, with particularly notable improvements of
55.31% in LaserTag and 65.90% in rocksample(15,15).
Additionally, we observe improvements of up to 21.38%
over AB-DESPOT in LaserTag, highlighting the effective-
ness of our distributional approach.

Flexibility in Balancing Exploration-Exploitation. Our
approach’s ability to interpolate between average-like and
max-like backups through the α-divergence parameter al-
lows adaptive behavior across varying levels of stochastic-
ity. In highly stochastic environments such as FrozenLake
and NChain, we found that moderate α values (leading to
more average-like updates with p closer to 1) performed
optimally by preventing overestimation bias. Conversely, in
environments with more deterministic regions of the state
space, larger α values (yielding more max-like behavior)
proved beneficial for faster convergence to optimal poli-
cies. This flexibility, combined with our Thompson sam-
pling strategy, enables our algorithm to automatically adapt
its exploration-exploitation balance based on the empirical
variance observed at each node.

The synergy between these two components—principled
uncertainty propagation and adaptive backup operators—
explains why W-MCTS consistently outperforms both clas-
sical MCTS variants and existing Bayesian approaches
across our diverse set of benchmark environments.

9. Conclusion
We proposed Wasserstein MCTS, an algorithm that mod-
els node values as Gaussian distributions and employs
L1-Wasserstein barycenters with α-divergences to unify
average- and max-like backups. Coupled with Thomp-
son sampling or optimistic selection, our method achieves
strong empirical performance while offering O(n−1/2)
convergence guarantees. Experiments in both stochastic
MDPs and POMDPs show significant improvements over
classic baselines and Bayesian MCTS variants. Future
work includes extending these Wasserstein-based ideas to
open-loop planning (Leurent & Maillard, 2020; Bubeck &

Munos, 2010) for even broader applicability.

Impact Statement
Our proposed Wasserstein MCTS algorithm offers a princi-
pled way to tackle complex, stochastic tasks in both fully
and partially observable domains. Potential applications in-
clude robotics, autonomous systems, and large-scale re-
source management, all of which require adaptive plan-
ning strategies to handle real-world variability. While we
do not anticipate immediate negative societal implications,
responsible deployment remains essential. As with any AI-
driven technology, understanding ethical, economic, and
security ramifications—such as autonomy in safety-critical
systems—should guide practical use.
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Outline

• Notations will be described in Section A.

• Hyperparameters are provided in Section B.

• Derivation of Wasserstein barycenter with Gaussian and particle filter distributions will be described in Section C.

• Supporting Lemmas will be provided in Section D.

• Full proof for the convergence of Wasserstein Non-stationary multi-armed bandit will be provided in Section E.

• Full proof for the convergence of Wasserstein Monte-Carlo tree search will be provided in Section F.

A. Notations

Table 3: List of all notations of Wasserstein barycenter with Gaussian and particle filter distributions.

Notation Type Description

N (m, δ2) R Gaussian distribution with mean m, standard deviation δ

(X , d) complete separable metric (Polish) space

Wq(µ, ν) Lq-Wasserstein distance between µ, ν

W1(µ, ν) L1-Wasserstein distance between µ, ν

F−1
p(x)(t) quantile function of a distribution p(x)

Γ(µ, ν) X × Y set of measures on X × Y with marginals µ, ν

d(X,Y ) R distance between X and Y

Dfα(X||Y ) R α-divergence distance between X and Y

erf−1(t) the inverse of the function 2√
π

∫ t

0
exp{−x2}dx

B. Experimental setup and Parameters selection
All the experiments were done on an Intel(R) Core(TM) i9-14900K 3.20 GHz 24 cores/CPU.
To compare the performance of W-MCTS to other state-of-the-art planning algorithms, we run several experiments on stan-
dard MDP as well as POMDP environments. For comparison, we consider UCT (Kocsis et al., 2006), Power-UCT (Dam
et al., 2019), DNG (Bai et al., 2013) and D2NG (Bai et al., 2014). The hyperparameters are tuned using grid-search. Except
for the case of Pocman environment, we scale the rewards into the range [0, 1]. We use the discount factor γ = 0.95. For
DNG, D2NG, we set hyperparameters as recommended in the paper and from the author’s source code (Bai et al., 2013;
2014). We set exploration constant for UCT, Power-UCT to

√
2. We set initial standard deviation value to std = 30. In all

Rocksample and Pocman environments, we set the heuristic for rollouts as treeknowledge = 0, rolloutknowledge = 1.
For all environments, we increase the value of p and choose the best power mean p value for Power-UCT, and W-MCTS .
Details can be found in Table 6. For POMDP environments such as Rocksample, Pocman we get the source code released
from the author of DNG (Bai et al., 2013) and D2NG (Bai et al., 2014)1.

1https://github.com/aijunbai/thompson-sampling
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Table 4: List of all notations of Wasserstein Non-stationary multi-armed bandits.

Notation Type Description

K N number of arms/actions

µk R mean value of arm k

µ∗ R optimal mean value

△k R △k = µ∗ − µk

△ R △ = maxk∈[K]{△k}

X
∗
s R average reward of the optimal arm after s visitations

F ∗
s R CDF of Gaussian with mean X

∗
s

Tk(n) N number of visitations of arm k at timesteps n

Xn(p) R power mean backup operator with power p

Xk,Tk(n) R average rewards of arm k after Tk(n) visits

C. Derivation of Wasserstein barycenter with Gaussian and particle filter distributions
We revisit the definition of Wasserstein distance: The Lq-Wasserstein distance (with q > 0) between two distributions µ, ν
with the cost function d(x, y) : X × Y → R is defined as

Wq(µ, ν) =

(
inf

ρ∈Γ(µ,ν)
E

X,Y∼ρ
[d(X,Y )q]

)1/q

, (4)

here Γ(µ, ν) is the set of measures on X × Y with marginals µ, ν.
Define F−1

p(x)(t) as the quantile function of a distribution

p(x) : F−1
p(x)(t) = inf{x ∈ R, t ⩽ Fp(x)}. (5)

With d(X,Y ) = |X − Y | as the Euclidean distance, we can derive

W q
q (µ, ν) =

(∫ 1

0

|F−1
µ (t)− F−1

ν (t)|qdt
)
. (6)

With d(X,Y ) = Dfα(X||Y ), as the α-divergence distance (defined in section 4.1), we can derive

W q
q (µ, ν) =

(∫ 1

0

Dfα(F
−1
µ (t)||F−1

ν (t))qdt

)
. (7)

C.1. L1-Wasserstein barycenter with α-divergence distance

We have

W1(µ, ν) = inf
ρ∈Γ(µ,ν)

E
X,Y∼ρ

[d(X,Y )] = inf
ρ∈Γ(µ,ν)

E
X,Y∼ρ

[Dfα(X,Y )]. (8)
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Table 5: List of all notations of Wasserstein Monte-Carlo Tree Search.

Notation Type Description

KL KL divergence

Vm(sh) R optimal mean of V value at root state sh, at depth (h)

Qm(sh, ak) R mean of Q value function at state sh, action ak, at depth (h)

V m(sh, n) R empirical estimated mean of V value at state sh after n visitations at depth (h)

Qm(sh, ak, n) R empirical estimated mean of Q value at root at state sh, action ak after n visitations at depth (h)

Vm(sh) R optimal mean of V value at depth (h) at state sh

Qm(sh, ak) R mean of Q value function at depth (h) at state sh, action ak

V m(sh, n) R empirical estimated mean of V value at depth (h) at state sh after n visitations

Qm(sh, ak, n) R empirical estimated mean of Q value at depth (h) at state sh, action ak after n visitations

Tsh,ak
(n) N number of plays of action ak at state sh at timestep n

T s′

s,ak
(n) N number of plays of action ak at state s to state s′ at timestep n

Table 6: List of all hyperparameters.

Environments p Value Search Best p Value

FrozenLake p = 1, 2, 4, 10, 100 W-MCTS-OS (p=100),W-MCTS-TS (p=100),Power-UCT(p=100)
NChain p = 1, 2, 4, 8, 15, 100 W-MCTS-OS (p=4),W-MCTS-TS (p=100),Power-UCT(p=8)

RiverSwim p = 1, 2, 4, 8, 15, 100 W-MCTS-OS (p=100),W-MCTS-TS (p=15),Power-UCT(p=15)
SixArms p = 1, 2, 4, 8, 15, 100 W-MCTS-OS (p=100),W-MCTS-TS (p=100),Power-UCT(p=8)

Taxi p = 1, 2, 4, 8, 15, 100 W-MCTS-OS (p=15),W-MCTS-TS (p=15),Power-UCT(p=15)
Rocksample(11x11) p = 10, 50, 80, 100, 150 W-MCTS-OS (p=150),W-MCTS-TS (p=100)
Rocksample(15x15) p = 10, 50, 80, 100, 150 W-MCTS-OS (p=100),W-MCTS-TS (p=100)
Rocksample(15x35) p = 10, 80, 100 W-MCTS-OS (p=150),W-MCTS-TS (p=10)

Pocman p = 1, 2, 4, 8, 10, 100 W-MCTS-OS (p=1),W-MCTS-TS (p=100)

We find the lower bound of W1(µ, ν) with α-divergence as a measure cost function.
Let denote N (m, δ2) as a Gaussian distribution with mean m and standard deviation δ. With µ = N (m1, δ

2
1), ν =

N (m2, δ
2
2) We first want to show that by applying Data Processing Inequalities (Lemma 2.1 (Gerchinovitz et al., 2020)),

14
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with h(X) = X −m1, and g(X) = X −m2, we can derive

W1(µ, ν) = inf
ρ∈Γ(µ,ν)

E
X,Y∼ρ

[Dfα(X,Y )]] ⩾ inf
ρ∈Γ(µ,ν)

E
X,Y∼ρ

[Dfα(X −m1, Y −m1)]

= W1(N (0, δ21),N (m2 −m1, δ
2
2)), (9)

and
W1(µ, ν) = inf

ρ∈Γ(µ,ν)
E

X,Y∼ρ
[Dfα(X,Y )]] ⩾ inf

ρ∈Γ(µ,ν)
E

X,Y∼ρ
[Dfα(X −m2, Y −m2)]

⩾ inf
ρ∈Γ(µ,ν)

E
X,Y∼ρ

[Dfα(m2 −X,m2 − Y )]( with the transform function f(X) = −X)

= W1(N (m2 −m1, δ
2
1),N (0, δ22)). (10)

Now according to (7), the L1-Wasserstein distance with α-divergence distance is defined as

W1(µ, ν) =

(∫ 1

0

Dfα(F
−1
µ (t)||F−1

ν (t))dt

)
. (11)

We show that the quantile function of a Gaussian distribution (Soch, 2020) F = N (µ, δ2) is

F−1(t) =
√
2δerf−1(2t− 1) + µ, (12)

where erf−1(t) is the inverse of the function 2√
π

∫ t

0
exp{−x2}dx.

Therefore, the L1-Wasserstein distance with α-divergence distance as the cost function between two Gaussian distributions
µ = N (m1, δ

2
1), ν = N (m2, δ

2
2) can be measured as

W1(µ, ν) =

(∫ 1

0

Dfα(
√
2δ1erf−1(2t− 1) +m1||

√
2δ2erf−1(2t− 1) +m2)dt

)
.

Applying the convexity properties of α-divergence (Cichocki & Amari, 2010), and from (9),(10) we have

W1(µ, ν) ⩾
1

2

(∫ 1

0

Dfα(
√
2δ1erf−1(2t− 1)||

√
2δ2erf−1(2t− 1) +m2 −m1)dt

+

∫ 1

0

Dfα(
√
2δ1erf−1(2t− 1) +m2 −m1||

√
2δ2erf−1(2t− 1))dt

)
⩾

(∫ 1

0

Dfα(
√
2δ1erf−1(2t− 1) +

m2 −m1

2
||
√
2δ2erf−1(2t− 1) +

m2 −m1

2
)

)
= W1(N (

m2 −m1

2
, δ21),N (

m2 −m1

2
, δ22)).

Applying Data Processing Inequalities (Lemma 2.1 (Gerchinovitz et al., 2020)), with h(X) = X − m2−m1

2 , we can derive

W1(µ, ν) ⩾ W1(N (0, δ21),N (0, δ22)) =

(∫ 1

0

Dfα(
√
2δ1erf−1(2t− 1)||

√
2δ2erf−1(2t− 1))dt

)
.

Let us consider the sequences 0 = t0 ⩽ t1 ⩽ ... ⩽ tN = 1, there exists ξi ∈ [ti, ti+1] that

W1(µ, ν) ⩾
i=N∑
i=0

(ti+1 − ti)Dfα(
√
2δ1erf−1(2ξi − 1)||

√
2δ2erf−1(2ξi − 1))

=

i=N∑
i=0

∆iDfα(
√
2δ1erf−1(2ξi − 1)||

√
2δ2erf−1(2ξi − 1)),

with ∆i = (ti+1 − ti). Since Dfα(cP ||cQ) = Dfα(P ||Q) where c is a constant. We can derive

W1(µ, ν) ⩾
i=N∑
i=0

∆iDfα(δ1||δ2) = Dfα(δ1||δ2). (13)

We start with the first Proposition about the closed solutions of mean and variance of a Gaussian value function V(s) as
V-posterior L1-Wasserstein barycenter of all action value function distributions Q(s, a).
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Proposition 1. Consider the V-posterior value function V(s) as a Gaussian:N (m(s), δ
2
(s)). Let’s define eachQ(s, a) as

the Q function child node of V(s). Each Q(s, a) is assumed as a Gaussian distributions Q(s, a) : N (m(s, a), δ(s, a)2). If
the value function V(s) is defined as the Wasserstein barycenter of the Q functionQ(s, a) given the policy π̄, we will have:

m(s) = (Ea∼π̄[m(s, a)p])
1
p (14)

δ(s) = (Ea∼π̄[δ(s, a)
p])

1
p , (15)

with p = 1− α.

Proof. By the definition of the V-posterior value function, we have:

(µ(s), δ(s)) = argmin
µ,δ

{
Eπ̄[W1(V(s)||Q(s, a))]

}
. (16)

We first compute the standard deviation δ(s).
From (13), and (16), we want to find δ(s) that is the minimizer of

δ(s) = argmin
δ(s)

{
Eπ̄[Dfα(δ(s)||δ(s, a))]

}
.

we derive δ(s) is the solution of

∇Ea∼π̄[Dfα(δ(s)||δ(s, a))]
∇δ(s)

= 0. (17)

Since
∇fα(x)
∇x

=
α(xα−1 − 1)

α(α− 1)
=

xα−1 − 1

α− 1
. (18)

With Dfα(x||y) =
∑

y yfα(
x
y ), we can have

∇Dfα(x||y)
∇x

=
∑
y

(xy )
α−1 − 1

α− 1
. (19)

We can derive

Ea∼π̄

[
( δ(s)
δ(s,a) )

α−1 − 1

(α− 1)

]
= 0 =⇒ Ea∼π̄

[
(
δ(s)

δ(s, a)
)α−1 − 1

]
= 0. (20)

Now we can define p = 1− α that leads to

δ(s) = (Ea∼π̄[δ(s, a)
p])

1
p . (21)

To compute µ̄(s). Let’s revisit here again the definition of L1−Wasserstein distance between two Gaussian distributions
µ(m1, δ

2
1), ν(m2, δ

2
2).

W1(µ, ν) = inf{E[Dfα(µ||ν)]}. (22)

According to Jensen’s inequality(Perlman, 1974) we can derive

E[Dfα(µ||ν)] ⩾ Dfα(E[µ]||E[ν]) = Dfα(m1||m2). (23)

Therefore, according to the definition of Wasserstein barycenter, the mean of a Gaussian V-posterior value function V(s)
can be derived as

m(s) = argmin
m(s)

Ea∼π̄[Dfα(m(s)||m(s, a))]. (24)

Following the same steps as to compute δ(s), we can get

m(s) = (Ea∼π̄[m(s, a)p])
1
p , (25)

with p = 1− α that concludes the proof.
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Next, we consider each node as an equally weighted Particle model and derive the following proposition.

Proposition 2. Let’s assume the V-posterior value function V(s) as a equally weighted Particle model: xi(s) : i ∈
[1,M ]. M is an integer and M ⩾ 1. Let’s assume each Q function Q(s, a) has M particles xi(s, a), i ∈ [1,M ]. If the
value function V(s) is defined as the Wasserstein barycenter of the Q function Q(s, a) given the policy π̄, each particle
(xi(s), i ∈ [1,M ]) can be estimated as

xi(s) = (Ea∼π̄[xi(s, a)
p])1/p, (26)

with p = 1− α.

Proof. We can compute the quantile function of µ and ν as

F−1
µ (t) =

M∑
i=1

xi1Ii(t), F
−1
ν (t) =

M∑
i=1

yi1Ii(t). (27)

Therefore from (11) we can get

W1(µ, ν) =

(∫ 1

0

Dfα(F
−1
µ (t)||F−1

ν (t))dt

)
(28)

=

M∑
i=1

(∫
Ii

Dfα(F
−1
µ (t)||F−1

ν (t))dt

)
(29)

=

M∑
i=1

(∫
Ii

Dfα(xi||yi)dt
)

(30)

=

M∑
i=1

Dfα(xi||yi)
(∫

Ii

dt

)
(31)

=

M∑
i=1

wiDfα(xi||yi). (32)

We can see that for each particle (xi(s), i ∈ [1,M ]), we can derive

xi(s) = argmin
xi(s)

Ea∼π̄[Dfα(xi(s)||xi(s, a))] (33)

=⇒ xi(s) = (Ea∼π̄[xi(s, a)
p])1/p, (34)

with p = 1− α.

D. Supporting Lemmas
We will make use of the following basic results.

Lemma 1. (Minkowski’s inequality) Given p ⩾ 1, {xi, yi} ∈ R, i = 1, 2, ..., n, then we have the following inequality(∑
i

(|xi + yi|)p
) 1

p

⩽

(∑
i

(|xi|)p
) 1

p

+

(∑
i

(|yi|)p
) 1

p

. (35)

Proof. This is a basic result.

Lemma 2. (Markov’s inequality) If X is a nonnegative random variable and a > 0, then the probability that X is at least
a is at most the expectation of X divided by a:

Pr(X > a) ⩽
E[X]

a
. (36)
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E. Convergence of Wasserstein Non-stationary multi-armed bandits
We note that in an MCTS tree, each node is considered a non-stationary multi-armed bandit where the average mean drifts
due to the given action selection strategy. Therefore, we first study the convergence of Wasserstein non-stationary multi-
armed bandits where the action selection is Thompson sampling, with the power mean backup operator at the root node.
Detailed descriptions of the Wasserstein Non-stationary multi-armed bandits settings can be found in the main article in
the Theoretical Analysis section.

We briefly summarize the theoretical results below. Lemma 6 is about the upper bound on the expectation of the number of
suboptimal arms playing, following the corresponding Theorem 4.2 in (Jin et al., 2022). Lemma 7 is about the bias of the
expected value of the power mean backup operator, which follows the result as Theorem 1 in Stochastic-Power-UCT (Dam
et al., 2024b). Theorem 2 deals with the polynomial concentration of the power mean backup operator around the optimal
mean at the root node of the non-stationary Wasserstein problem for multi-armed bandits. This theorem plays an important
role in deriving the polynomial convergence of the choice of the optimal action at the root node in the Wasserstein MCTS
tree, described in the next section.

Now, we will find an upper bound for the expectation of numbers of pulling a suboptimal arm. Let us define the event
Ek,ε(t) = {θk(t) ⩽ µ∗ − ε} for all k ∈ [K], ε > 0, θk(t) is sampled fromN (Xk, V/Tk(n)) at timestep t. Let us consider
the decomposition

E[Tk(n)] = 1 + E
[ n∑
t=K+1

1{At = ak, Ek,ε(t)}+
n∑

t=K+1

1{At = ak, E
c
k,ε(t)}

]
(37)

= 1 + E
[ n∑
t=K+1

1{At = ak, Ek,ε(t)}
]

︸ ︷︷ ︸
A

+E
[ n∑
t=K+1

1{At = ak, E
c
k,ε(t)}

]
︸ ︷︷ ︸

B

. (38)

Here Ec is the complement of an event E, ε > 8
√
V/n is an arbitrary constant.

Bounding Term A: Let’s define

αs = sup
x∈[0,µ∗−ε)

{
KL(µ∗ − ε− x, µ∗) ⩽ 4 log(

n

s
)/s
}
. (39)

Lemma 3. (Lemma A.1 (Jin et al., 2022)) Let M = ⌈16V log(nε2/V )/ε2⌉, and αs be the same as defined in (39) then

E
[ n∑
t=K+1

1{At = ak, Ek,ε(t)}
]
⩽

M∑
s=1

E
[( 1

1− F ∗
s (µ

∗ − ε)
− 1
)
.1{X∗

s ∈ (µ∗ − ε− αs, 1]}
]
+⊖

(V
ε2

)
, (40)

where F ∗
s is the CDF of Gaussian with mean X

∗
s , X

∗
s is the average reward of the optimal arm after s visitations.

Lemma 4. (Lemma A.2 (Jin et al., 2022)) Let M = ⌈16V log(nε2/V )/ε2⌉. Then

M∑
s=1

EX
∗
s

[( 1

1− F ∗
s (µ

∗ − ε)

)
.1{X∗

s ∈ (µ∗ − ε− αs, 1]}
]
= Θ

(V log(nε2/V )

ε2
)
. (41)

Bounding Term B:
Lemma 5. (Lemma C.1 (Jin et al., 2022)) Let N = min{ 1

1− KL(µk+ρk,µ∗−ε)

log(nε2/V )

, 2}. For any ρk, ε > 0 that satisfies ε+ρk < ∆i,

then

E
[ n∑
t=K+1

1{At = k,Ec
k,ε(t)}

]
⩽ 1 +

2V

ρ2k
+

V

ε2
+

N log(nε2/V )

KL(µk + ρk, µ∗ − ε)
. (42)
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From Assumption 1, we derive the upper bound for the expectation of the number of plays of a suboptimal arm.
Lemma 6. Consider Thompson Sampling strategy (using power mean estimator) applied to a non-stationary problem
where the pay-off sequence satisfies Assumption 1. Fix ε ⩾ 0. Let Tk(n) denote the number of plays of arm k. Then if k is
the index of a suboptimal arm, then each sub-optimal arm k is played in expectation at most

E[Tk(n)] ⩽ Θ

(
1 +

V log(n∆2
k/V )

∆2
k

)
. (43)

Proof. The proof of Lemma 6 closely follows Theorem 4.2((Jin et al., 2022)) by observing results from Lemma 3, 4, 5.
From equation 38, putting all Lemma 3, 4, 5, we have

E[Tk(n)] = Θ
(
1 +

V log(nε2/V )

(∆k − ε− ρk)2
+

V

ρ2k
+

V log(nε2/V )

ε2

)
. (44)

Set ε = ρk = ∆k/4, we derive

E[Tk(n)] ⩽ Θ
(
1 +

V log(n∆2
k/V )

∆2
k

)
. (45)

Lemma 7. Consider a non-stationary problem where the pay-off sequence satisfies Assumption 1. We consider a bandit
algorithm that selects each arm as

a = argmax
ai,i∈{1...K}

{θi ∼ N (Xk,n, V/Tk(n))}.

Let us define the power mean estimator Xn(p) as Xn(p) =
(∑K

a=1
Ta(n)

n X
p

a,Ta(n)

) 1
p

, and δ⋆,n = µ⋆ − µ⋆,n For any
p ⩾ 1, ε0 > 0, we have

∣∣E[Xn(p)]− µ⋆

∣∣ ⩽ |δ⋆,n|+ R

n

K∑
a=1,a̸=a∗

Θ
(
1 +

V log(n∆2
k/V )

∆2
k

)
(46)

Proof. We observe that∣∣Xn(p)− µ⋆

∣∣ ⩽ ∣∣Xn(p)− µ⋆,n

∣∣+ |µ⋆ − µ⋆,n| =
∣∣Xn(p)− µ⋆,n

∣∣+ |δ⋆,n| (47)

Furthermore,

Xa,Ta(n) ⩽ µa,n +
∣∣Xa,Ta(n) − µa,n

∣∣ . (48)

Since µ⋆,n = maxa∈[K]{µa,n}, we have

Xn(p)− µ⋆,n = Xn(p)−
K∑

a=1

Ta(n)µ⋆,n ⩽

(
K∑

a=1

Ta(n)

n

(
Xa,Ta(n)

)p) 1
p

−

(
K∑

a=1

Ta(n)

n
(µa,n)

p

) 1
p

(49)

=

(∑K
a=1 Ta(n)

(
Xa,Ta(n)

)p) 1
p −

(∑K
a=1 Ta(n) (µa,n)

p
) 1

p

n
1
p

(50)

Applying Minkowski’s inequality from Lemma 1, and the result of equation 48, we have

Xn(p)− µ⋆,n ⩽

(∑K
a=1 Ta(n)

(
µa +

∣∣Xa,Ta(n) − µa,n

∣∣)p) 1
p −

(∑K
a=1 Ta(n) (µa,n)

p
) 1

p

n
1
p

(51)

⩽

(∑K
a=1 Ta(n)

(∣∣Xa,Ta(n) − µa,n

∣∣)p) 1
p

n
1
p

(52)
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On the other hand,

µ⋆,n −Xn(p) =
nµ⋆,n − nXn(p)

n
=

nµ⋆,n − (
∑K

a=1 Ta(n)µa,n) +
∑K

a=1 Ta(n)µa,n − nXn(p)

n
(53)

=

∑K
a=1,a̸=a∗

Ta(n) |µ⋆,n − µa,n|+
∑K

a=1 Ta(n)µa,n − nXn(p)

n
(54)

⩽ R

K∑
a=1,a ̸=a∗

Ta(n)

n
+

K∑
a=1

Ta(n)

n
µa,n −Xn(p) (55)

Because power mean is an increasing function of p, so that

K∑
a=1

Ta(n)

n
µa,n ⩽

(
K∑

a=1

Ta(n)

n
(µa,n)

p

)1/p

.

Furthermore, we observe that
µa,n ⩽ Xa,Ta(n) +

∣∣Xa,Ta(n) − µa,n

∣∣ .
So that, from equation 55 we have

µ⋆,n −Xn(p) ⩽ R

K∑
a=1,a̸=a∗

Ta(n)

n
+

(
K∑

a=1

Ta(n)

n
(µa,n)

p

)1/p

−Xn(p) (56)

⩽ R

K∑
a=1,a̸=a∗

Ta(n)

n
(57)

+

(∑K
a=1 Ta(n)

(
Xa,Ta(n) +

∣∣Xa,Ta(n) − µa,n

∣∣)p) 1
p −

(∑K
a=1 Ta(n)

(
Xa,Ta(n)

)p) 1
p

n
1
p

(58)

(Minkovski’s inequality)
⩽ R

K∑
a=1,a̸=a∗

Ta(n)

n
+

(∑K
a=1 Ta(n)

(∣∣Xa,Ta(n) − µa,n

∣∣)p) 1
p

n
1
p

(59)

(Properties of Lp norm)

⩽ R

K∑
a=1,a ̸=a∗

Ta(n)

n
+

(∑K
a=1 Ta(n)

(∣∣Xa,Ta(n) − µa,n

∣∣))
n

1
p

(60)

= R

K∑
a=1,a̸=a∗

Ta(n)

n
+

∑K
a=1

(∣∣∣∑Ta(n)
t Xa,t − Ta(n)µa,n

∣∣∣)
n

1
p

(61)

Therefore

∣∣E[Xn(p)− µ⋆,n]
∣∣ ⩽ R

K∑
a=1,a ̸=a∗

E[Ta(n)]

n
+

E
[(∣∣∣∑K

a=1

∑Ta(n)
t Xa,t − Ta(n)µa,n

∣∣∣)]
n

1
p

(62)

= R

K∑
a=1,a ̸=a∗

E[Ta(n)]

n
(63)

Please note that because we study non-stationary bandits, E[
∑n

t Xa,t] = nµa,n, therefore,

E
[(∣∣∣∑K

a=1

∑Ta(n)
t Xa,t − Ta(n)µa,n

∣∣∣)]
n

1
p

= 0
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According to Lemma 7, we have

∣∣E[Xn(p)− µ⋆,n]
∣∣ ⩽ |δ⋆,n|+R

K∑
a=1,a ̸=a∗

E[Ta(n)]

n
⩽ |δ⋆,n|+

R

n

K∑
a=1,a̸=a∗

Θ
(
1 +

V log(n∆2
k/V )

∆2
k

)
, (64)

which concludes the proof.

Theorem 2. For a ∈ [K], let (Xa,n)n⩾1 be a sequence of estimator satisfying Assumption 1 and let µ⋆ = max
a
{µa}.

Assume that all the estimators are bounded in [0, R]. We consider a bandit algorithm that selects each arm as

a = argmax
ai,i∈{1...K}

{θi ∼ N (Xk,n, V/Tk(n))}.

Then, for all p ∈ [1,∞), the sequence of estimators

Xn(p) =

(
K∑

a=1

Ta(n)

n
X

p

a,Ta(n)

) 1
p

,

where Ta(n) =
∑n−1

t=1 1(at = a) is the number of selections of a prior to round n satisfies

Pr(
∣∣Xn(p)− µ⋆

∣∣ ⩾ ε) ⩽ Cn−1ε−2.

Proof. We first prove that lim
n→∞

E[Xn(p)] = µ∗. According to the result of Lemma 7, we have

∣∣E[Xn(p)]− µ⋆

∣∣ ⩽ |δ⋆,n|+R

K∑
a=1,a̸=a∗

E[Ta(n)]

n
(65)

⩽ |δ⋆,n|+
R

n

K∑
a=1,a̸=a∗

{
(1 + ε0) log n

K(N)(Fa, µ⋆)
+ o(log n) +O(1)

}
(66)

with δ⋆,n = µ⋆ − µ⋆,n, and because lim
n→∞

µ∗,n = µ⋆, we can concludes that

lim
n→∞

E[Xn(p)] = µ∗.

Second, we prove that
∀n ⩾ 1,∀ε > 0,∃c > 0 that P

(
|Xn(p)− µ⋆| > ε

)
⩽ cn−1ε−2.

We observe that ∣∣Xn(p)− µ⋆

∣∣ ⩽ ∣∣Xn(p)− µ⋆,n

∣∣+ |µ⋆ − µ⋆,n| =
∣∣Xn(p)− µ⋆,n

∣∣+ |δ⋆,n| (67)

=⇒P(
∣∣Xn(p)− µ⋆

∣∣ ⩾ ε) ⩽ P(
∣∣Xn(p)− µ⋆,n

∣∣ ⩾ ε/2) + P(|δ⋆,n| ⩾ ε/2). (68)

Because lim
n→n
|δ⋆,n| = 0, therefore, ∃N0 > 0 such that ∀n ⩾ N0, we have |δ⋆,n| < ε/2 that means

∀n > N0,P(|δ⋆,n| ⩾ ε/2) = 0.

Next, according to Lemma 6,

∣∣E[Xn(p)]− µ⋆,n

∣∣ ⩽ R

n

K∑
a=1,a ̸=a∗

{
(1 + ε0) log n

K(N)(Fa, µ⋆)
+ o(log n) +O(1)

}
= O(n−1), (69)
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that leads to

P(
∣∣Xn(p)− µ⋆,n

∣∣ ⩾ ε/2) ⩽
|E[Xn(p)]− µ⋆,n|

ε/2
=

O(n−1)

ε/2
. (70)

Therefore, ∃c > 0,∀0 < ε < 1 such that

P(
∣∣Xn(p)− µ⋆,n

∣∣ ⩾ ε/2) ⩽ cn−1ε−2, (71)

which means
∀n ⩾ N0,∀0 < ε < 1,∃c > 0 that P

(
|Xn(p)− µ⋆| > ε

)
⩽ cn−1ε−2.

Now we see that |Xn(p)− µ⋆| ⩽ R. With ε > max{1, R}, we have |Xn(p)− µ⋆| > ε ⇔ |Xn(p)− µ⋆| > R, therefore
the inequality holds as

P
(
|Xn(p)− µ⋆| > ε

)
= 0 ⩽ cn−1ε−2.

with 0 < ε < max{1, R}, 1 ⩽ n < N0 ⇒ nε < max{1, R}N0 ⇒ n−1ε−1 > 1/max{1, R}N0. Therefore

∀C > 1/max{1, R}N0 ⇒ P
(
|Xn(p)− µ⋆| > ε

)
⩽ 1 < Cn−1ε−1 < Cn−1ε−2,

which means
∀n ⩾ 1,∀0 < ε < 1,∃C > 0 that P

(
|Xn(p)− µ⋆| > ε

)
⩽ Cn−1ε−2.

That concludes the proof.

F. Convergence of Wasserstein Monte-Carlo tree search
We start with Lemma 8, which shows the concentration of empirical Q value at any internal node in the tree. This plays an
important role in the analysis of our MCTS algorithm.

From the results of Lemma 8 and Theorem 2, we derive Propostion 3 which shows the concentration of any internal V-node
and Q-node in the tree. Finally, we get the expected simple bias with convergence rate of O(n−1/2) in Theorem 1.

Let us start with Lemma 8.

Lemma 8. (Lemma 1(Dam et al., 2024b)) For m ∈ [M ], let (V̂ (m,n))n⩾1 be a sequence of estimator satisfying

Pr
(∣∣∣V̂ (m,n)− V (m)

∣∣∣ > ε
)
⩽ Cn−1ε−2

Assume that there exists a constant L > 0 such that L = supremum{V̂ (m,n)}n⩾1. Let Ri be an iid sequence with mean
µ and Si be an iid sequence from a distribution p = (p1, . . . , pM ) supported on {1, . . . ,M}. Introducing the random
variables Nn

m = #|{i ⩽ n : Si = sm}|, we define the sequence of estimator

Q(n) =
1

n

n∑
i=1

Ri + γ

M∑
m=1

Nn
m

n
V̂ (m,Nn

m).

Then there exists some constant c′ (which depends on pi (i=1,2,...,M), γ, µ) such that

Pr

(∣∣∣∣∣Q(n)− µ−
M∑

m=1

pmV (m)

∣∣∣∣∣ ⩾ ε

)
⩽ Cn−1ε−2.

Based on the results of the described nonstationary multi-armed bandit problem, we derive theoretical results for W-MCTS .

We derive Proposition 3, which shows the polynomial concentration of the estimated mean of the Q-value function at
the root node. In Proposition 3, we also show that the estimated mean of the V-value function at the root node converges
polynomially to the optimal mean. Based on Proposition 3, we derive the result in Theorem 1, which shows the bias of the
expected payoff of the power mean backup at the root node.
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At any node of state s at depth h in the tree, the mean of the Q value function, and the mean value of the optimal value
function are defined as

Q̃(sh, a) = R(sh, a) + γṼ (sh+1), (72)

Ṽ (sh) = argmax
a

Q̃(sh, a), (73)

with h = [H − 1, ..., 1, 0], Ṽ (sh) is the value return from rollouts at state sh, R(sh, a) is the mean reward received at state
sh after taking action a. Let us denote ak∗ as the optimal action at the root node.

Proposition 3. When we apply the W-MCTS algorithm to an MCTS tree of depth (H), at any depth h of the tree, we have

(i) At any depth h, ∃ constant C0 > 0 that for any 0 < ε < 1, n ⩾ 1, we can derive

Pr

( ∣∣∣V m(sh, ak, n)− Ṽ (sh, ak)
∣∣∣ ⩾ ε

)
⩽ C0n

−1ε−2. (74)

(ii) At any depth h, ∃ constant C0 > 0 that for any 0 < ε < 1, n ⩾ 1, we can derive

Pr

( ∣∣∣Qm(sh, ak, n)− Q̃(sh, ak)
∣∣∣ ⩾ ε

)
⩽ C0n

−1ε−2. (75)

Proof. We will prove this by induction on the depth D of the tree.

Base case (depth H = 1):
At depth 1, the tree consists of only the root node. The state at the root is denoted by s0. At time step t, suppose the agent
takes action ak at s0, resulting in an intermediate reward rt(s0, ak), and transitions to the next state s1.

We assume that the reward R(s0, ak) represents the mean reward received at state s0 after taking action ak.

We recall the definition of Q̃(s0, ak), defined as

Q̃(s, a) = R(s, a) + γṼ (s). (76)

where Vm(s1) is the value of the rollout policy at state s1, As0 is the set of feasible actions at state s0, |As0 | = M ,
P(s1|s0, ak) is the probability transition of taking action ak at state s0 to state s1. We have

Qm(s0, ak, n) =
1

n

n∑
t=1

rt(s0, ak) + γ
∑

s1∼τ(s0,ak)

T s1
s0,ak

(n)

n
V m(s1, T

s1
s0,ak

(n))

Equation (74) is a direct result of Lemma 8, where Xt represents the intermediate reward rt(s0, ak) at time step t. The
probability distribution p = (p1, p2, . . . , pM ) ∼ P(·|s0, ak), where P(·|s0, ak) is the transition probability dynamic for
taking action ak in state s0.

For each m ∈ [M ], the sequence (V m,t)t⩾1 at time step t corresponds to the deterministic initial value function Ṽm(s1),
where:

Pr
(∣∣∣V m(sm, n)− Ṽ (s1)

∣∣∣ > ε
)
⩽ Cn−1ε−2,

with m = 1, 2, 3, . . . ,M , and sm ∼ τ(·|s0, ak). Here, τ(·|s0, ak) denotes the transition kernel from state s0 to sm,
given action ak.

Equation (75) is the direct results from Theorem 2. In detail, we have from equation (74),

Pr
(∣∣∣Qm(s0, ak, n)− Q̃(s0, ak)

∣∣∣ > ε
)
⩽ Cn−1ε−2, with ak ∈ As0
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Because by definition:

Ṽ (s0) = max
ak∈As0

Q̃(s0, ak) (77)

V m(s0, n) =

 ∑
a∈As0

Ts0,a(n)

n

(
Qm(s0, a, Ts0,a(n))

)p 1
p

with p ∈ [1,+∞) (78)

Then we have
Pr
(∣∣∣V m(s0, n)− Ṽ (s0)

∣∣∣ > ε
)
⩽ Cn−1ε−2

that concludes for Equation (75)

Let us assume that for a tree of depth H − 1, the theorem holds for all its children.

Now, consider a tree with depth H . When an action is taken at the root node, where the state is s0, the tree transitions into
a subtree of depth H . By the induction hypothesis, the results hold for any internal node of the tree after taking the first
action.

We have s1 ∼ τ(s0, ak), where τ(s0, ak) denotes the transition dynamics. By definition, the value function at the leaf
nodes is Ṽ (sH) = V0(sH), and for all h ⩽ H − 1, the following holds:

Q̃(sh, a) = R(sh, a) + γ
∑

sh+1∈As

P(sh+1 | sh, a)Ṽ (sh+1),

Ṽ (sh) = max
a

Q̃(sh, a),

where R(sh, a) represents the immediate reward at state sh after taking action a, γ is the discount factor, and P(sh+1 |
sh, a) is the probability of transitioning to state sh+1 from sh by taking action a.

By the assumption of the induction the root node of a subtree with depth (H − 1) at state s1 we have

Pr
(∣∣∣V m(s1, n)− Ṽ (s1)

∣∣∣ > ε
)
⩽ Cn−1ε−2

(75) Let’s apply Lemma 8 with {Xt} is the intermediate reward {rt(s0, ak)}, p = (p1, p2, ...pM ) ∼ P(·|s0, ak). For
m ∈ [M ], each (V m,t)t⩾1 at time step t is the empirical Value function V t(s1). We will have

Pr
(∣∣∣Qm(s0, ak, n)− Q̃(s0, ak)

∣∣∣ > ε
)
⩽ Cn−1ε−2, with ak ∈ As0

(74) follows the results of Theorem 2 as at the root node s0 of depth H , with

Ṽ (s0) = max
ak∈As0

Q̃(0)(s0, ak) (79)

V m(s0, n) =

(∑
a∈As

Ts0,a(n)

n

(
Qm(s0, a, Ts0,a(n))

)p) 1
p

for some p ∈ [1,+∞) (80)

And because
Pr
(∣∣∣Qm(s0, ak, n)− Q̃(s0, ak)

∣∣∣ > ε
)
⩽ Cn−1ε−2, with ak ∈ As0

Then, we have
Pr
(∣∣V m(s0, n)− V (s0)

∣∣ > ε
)
⩽ Cn−1ε−2.

that concludes for (74)

The results of Proposition 3 hold for any node in the tree with the tree of depth (H). By induction, we can conclude the
proof.
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Theorem 1. We have at the root node s0,∣∣E[V m(s0, n)]− V (s0)
∣∣ ⩽ O(n−1/2).

Proof. Using the convexity of f(x) = |x| and applying Jensen’s inequality we have∣∣E[V m(s0, n)]− V (s0)
∣∣ ⩽ E[

∣∣V m(s0, n)]− V (s0)
∣∣]

=

∫ +∞

0

P
(∣∣V m(s0, n)− V (s0)

∣∣ ⩾ s
)
ds

⩽
∫ n− 1

2

0

1ds+

∫ +∞

n− 1
2

C0n
−1s−2ds

⩽ n− 1
2 + C0n

−1

(
s−2+1

−2 + 1

) ∣∣∣+∞

n− 1
2

= (
C0

2− 1
+ 1)n− 1

2 .

Then, ∣∣E[V m(s0, n)]− V (s0)
∣∣ ⩽ O(n−1/2).

That concludes the proof.
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