
Language Grounded Multi-agent Reinforcement
Learning with Human-interpretable Communication

Huao Li∗
University of Pittsburgh

hul52@pitt.edu

Hossein Nourkhiz Mahjoub
Honda Research Institute USA, Inc.

hossein_nourkhizmahjoub@honda-ri.com

Behdad Chalaki
Honda Research Institute USA, Inc.
behdad_chalaki@honda-ri.com

Vaishnav Tadiparthi
Honda Research Institute USA, Inc.

vaishnav_tadiparthi@honda-ri.com

Kwonjoon Lee
Honda Research Institute USA, Inc.
kwonjoon_lee@honda-ri.com

Ehsan Moradi-Pari
Honda Research Institute USA, Inc.
emoradipari@honda-ri.com

Michael Lewis
University of Pittsburgh
ml@sis.pitt.edu

Katia Sycara
Carnegie Mellon University
sycara@andrew.cmu.edu

Abstract

Multi-Agent Reinforcement Learning (MARL) methods have shown promise in
enabling agents to learn a shared communication protocol from scratch and accom-
plish challenging team tasks. However, the learned language is usually not inter-
pretable to humans or other agents not co-trained together, limiting its applicability
in ad-hoc teamwork scenarios. In this work, we propose a novel computational
pipeline that aligns the communication space between MARL agents with an em-
bedding space of human natural language by grounding agent communications
on synthetic data generated by embodied Large Language Models (LLMs) in in-
teractive teamwork scenarios. Our results demonstrate that introducing language
grounding not only maintains task performance but also accelerates the emergence
of communication. Furthermore, the learned communication protocols exhibit
zero-shot generalization capabilities in ad-hoc teamwork scenarios with unseen
teammates and novel task states. This work presents a significant step toward
enabling effective communication and collaboration between artificial agents and
humans in real-world teamwork settings.

1 Introduction

Effective communication is crucial for multiple agents to collaborate and solve team tasks. Especially
in ad-hoc teamwork scenarios where agents do not coordinate a priori, the ability to share information
via communication is the keystone for successful team coordination and good team performance [30].
Multi-Agent Reinforcement Learning (MARL) methods have shown promise in allowing agents to
learn a shared communication protocol by maximizing the task reward [38, 37]. However, merely

∗Work done while interning at Honda Research Institute USA. Code available at https://romanlee6.
github.io/langground_web/.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://romanlee6.github.io/langground_web/
https://romanlee6.github.io/langground_web/

maximizing the utility of communication in specific task goals might compromise task-agnostic
objectives such as optimizing language complexity and informativeness [40, 16], making the learned
communication protocols 1) hard to interpret for humans or other agents that are not co-trained
together [18, 20, 6] and 2) highly data-inefficient [9]. In addition, most previous works learn com-
munication protocols with atomic symbols or a combination of them leaving the relation between
symbols unexplored [50]. Only a few researches attempt to learn a semantic space for zero-shot com-
munication of unseen states [42, 17]. One of the popular directions for interpretable communication
is to regulate the learning process with external knowledge from human languages [41, 22, 28, 1].
However, this process is challenging due to the divergent characteristics between human and machine
languages by nature [5]. For example, most agent training methods (e.g., deep reinforcement learning)
require a huge amount of data that is impractical for human-in-the-loop training or even collecting
from humans [28].

The rise of Large Language Models (LLMs) provides new opportunities in grounding agent commu-
nication with human languages. Recent generative models fine-tuned with human instructions (e.g.,
GPT-4, Llama 3) show reasonable capabilities in completing team tasks and communicating in a
human-like fashion via embodied interaction [36, 25]. Essentially, LLMs encapsulate a highly trained
model of human language patterns in teamwork, allowing them to generate descriptions and responses
that are well-grounded in natural language. For the purpose of guiding multi-agent communication,
they represent the most generally available reference based on a vast corpus of human language data
that would be infeasible to collect through other means. However, LLMs are known to suffer from
a lack of grounding with the task environments (a.k.a. hallucinations), which prevents embodied
agents from generating actionable plans [29]. While attempts have been made to ground LLMs with
reinforcement learning or interactive data collected from environments [47, 4, 39], none of them
involve teamwork nor communication among multiple embodied agents.

In this paper, we propose LangGround, a novel computational pipeline for artificial agents to learn
human-interpretable communication for ad-hoc human-agent teamwork. Specifically, we use synthetic
data generated by LLM agents in interactive teamwork scenarios to align the communication space
between MARL agents with human natural language. Learning signals from both language grounding
and environment reinforcement regulate the emergence of a communication protocol to optimize
both team performance and alignment with human language. We have also evaluated the learned
communication protocol in ad-hoc teamwork scenarios with unseen teammates and novel task states.
The aligned communication space enables translation between high-dimensional embeddings and
natural language sentences, which facilitates ad-hoc teamwork. The proposed computational pipeline
does not depend on specific MARL architecture or LLMs and should be generally compatible. We
have sought to minimize the influence of prompt engineering to ensure the seamless applicability of
our approach in diverse environments. To the best of our knowledge, this work is among the very
first attempts at training MARL agents with human-interpretable natural language communication
and evaluating them in ad-hoc teamwork experiments.

2 Related Work

2.1 Multi-Agent Communication

Reinforcement learning has been used to coordinate the teamwork and communication among multiple
agents in partially observable environments. In earlier works such as DIAL [12], CommNet [38],
and IC3Net [37], agents learn differentiable communication in an end-to-end fashion under the
pressure of maximizing task reward. Other works use shared parameters [17] or a centralized
controller [33] to stabilize the non-stationary learning process of multi-agent communication. More
recently, representation learning methods such as autoencoder [26] and contrastive learning [27]
are used to ground an agent’s communication on individual observations. However, comm-MARL
methods usually suffer from overfitting to specific interlocutors trained together [19]. The learned
communication protocols can not be understood by unseen teammates in ad-hoc teams, let alone
another human.

Another relevant trend of research is Emergent Communication (EC), where researchers focus more
on simulating the development of natural (i.e., symbolic) language with artificial agents [19, 15].
The most common task scenarios used in the EC community are reference games or Lewis signaling
games [24], in which a speaker must describe an object to a listener, who must then recognize

2

it among a set of distractions [42]. However, previous research has shown that learning EC in
more complicated, scaled-up, and multi-round interactive task scenarios can be challenging or even
infeasible [9, 7]. Even in situations where agents can learn to communicate, the learned protocols are
usually either not human-interpretable [18] or semantically drifting from human language [23].

2.2 Human-Interpretable Communication

To address the above-mentioned challenges, several recent works propose human-interpretable
communication in RL settings. Lazaridou et al.[22] leverage pre-trained task-specific language models
to provide high-level guidance for natural language communication. A few other works align low-
level communication tokens with human language[21, 41], or learn discrete prototype communication
in a semantically meaningful space [42, 17]. But as pointed out in several studies [8, 49], the low
mutual intelligibility between human language and neural agent communication makes the alignment
process non-trivial. Our work is closest to [28], in which researchers alternate imitating human
data via supervised learning and self-play to maximize reward in a reference game. The differences
are that in [28] authors try to train neural agents for reference games in an end-to-end fashion with
backpropagation, while we train MARL agents in interactive team tasks. The exploration of this
research direction is still very limited, as no previous work has ever evaluated natural language
communication agents within interactive task environments and for ad-hoc human-agent teams.

2.3 Language-Grounded Reinforcement Learning

Reinforcement learning is known to struggle with long-horizon problems with sparse reward sig-
nals [31]. Natural language guidance has been used to provide auxiliary rewards to improve the data
efficiency and learning robustness [44]. Goyal et al.[13] use step-by-step natural language instructions
provided by human annotators to construct auxiliary reward-learning modules, encouraging agents to
learn from expert trajectories. Narasimhan et al.[32] research the impact of language grounding on
representation learning and transfer learning of RL agents in a 2D game environment. Additional
work has explored grounding RL with other formats of materials such as game manuals [14, 46] and
human commands [48]. However, none of those works has ever used the communication messages as
the language ground nor guided the information-sharing process in multi-agent teamwork.

The most relevant research to our proposed method is CICERO, which empirically evaluates the
proposed AI agent in the complex natural language strategy game Diplomacy with human players [11].
CICERO has an RL module for strategic reasoning and a language model for generating messages.
The two modules are trained separately on different datasets, namely self-play trajectories and
conversation data collected from human players. The two modules in CICERO function independently,
with the only connection being that the language model takes intention estimation from the planning
module as input. While in our work, both action and communication are generated by individual RL
agents that are trained end-to-end with a combination of RL loss and supervised learning loss.

3 Preliminaries

We formulate the problem as a decentralized partially observable Markov Decision Process [35],
which can be formally defined by the tuple (I,S,A, C, T ,Ω,O,R, γ), where I is the finite set of
n agents, s ∈ S is the global state space, A = ×i∈IAi is the set of actions, and C = ×i∈ICi is the
set of communication messages for each of n agents. T : S ×A → S is the transition function that
maps the current state st into next state st+1 given the joint agent action. In our partially observable
environments, each agent receives a local observation oi ∈ Ω according to observation function
O : S × C × I → Ω. Finally, R : S × A → R is the reward function, while γ ∈ [0, 1) is the
discount factor. At each time stamp t, each agent i takes an action ait and sends out a communication
message cit after receiving the partial observation of task state st along with all messages sent by other
agents from last time stamp ct−1. Each agent then receives the individual reward rit ∈ R(st, at). We
consider fully cooperative settings in which the reinforcement learning objective is to maximize the
total expected return of all agents:

max
πi:Ω→A×C

E

[∑
t∈T

∑
i∈I

γtR(sit, a
i
t)|ait ∼ πi, oit ∼ Ω

]
(1)

3

We borrow the definition of language learning from [28]. We define a target language L∗ ∈ L
that we want the agents to learn, assuming L is the set of natural language and L∗ is the optimal
communication language for achieving a good team performance in the specific task. Specifically,
we consider a language L ∈ L to be a set of communication messages C which are mapped from
agent observations to communication messages defined as L : Ω → C. In typical RL settings, this
can be thought of as the mapping between input observation vectors and English descriptions of the
observation. We consider a dataset D consisting of |D| (observation, action) pairs, which comes from
expert trajectories generated by LLM embodied agents using the target language L∗. The language
learning objective is to train agents to speak language L∗ in order to collaborate with experts in
ad-hoc teamwork. It is worth noting that we want the learned language to generalize to unseen
examples that are not contained in D.

To train agents that perform well on the team task and speak human-interpretable language, we need
to solve a multi-objective learning problem by combining the learning signals from both environment
reward and supervised dataset D. The process of training an optimal communication-action policy
can be defined as solving an optimization problem with two constraints 1) agents must learn to
communicate effectively to maximize team performance and 2) agents must learn to use similar
language as in the supervised dataset D.

4 Language Grounded Multi-agent Communication

Obs Encoder

LSTM

Gate

mean

LSTM

Comm
Net

Dataset
Comm
vectors

Translation
Module

Comm vectors

Observations

Human Interpretable
Communication

Language
Grounding

Observations

Action

During ad-hoc teamwork

During training

LLM agents self-play

MARL agent

Environment

Figure 1: Illustrations of our proposed computational pipeline , LangGround. The framework consists
of three modules: 1) collecting grounded communication from LLM agents, 2) aligning MARL
communication with language grounds, 2) translating aligned communication vectors into natural
language messages via cosine similarity matching.

In this section, we propose a computational pipeline for learning language-grounded multi-agent
communication (LangGround). The general framework of LangGround is illustrated in Figure 1
consisting of two parts: collecting grounded communication from LLM agents and aligning MARL
communication with language grounds.

4.1 Grounded communication from LLM agents

We use embodied LLM agents to collect samples of target language L∗. To allow LLM agents to
interact with the task environments, a text interface I is implemented following [25] to translate
between abstract representations and English descriptions. Essentially, each of the n LLM agents
is provided with general prompts about the team task and instructed to collaborate with others to
achieve the common goal. At each time stamp t, the LLM agent i receives English descriptions of
its own observation of the environment I(oit) which also includes communication messages from
teammates in the last time stamp Ct−1.The LLM agent is prompted to output its next action and
communication message which are then encoded into abstract Ai

t and Ci
t and used to update the task

environment.

Theoretically, we construct a text environment in parallel with the actual task environment to ensure
that embodied LLM agents are exposed to the equivalent information as RL agents, albeit in a different

4

format. The action and communication policy of LLM agents emerge from the backbone LLM, since
the provided prompts do not include any explicit instructions on team coordination or communication
strategy. In the results section we will confirm findings from previous literature that modern LLMs
(e.g., GPT-4) is able to perform reasonably well and communicate effectively in collaborative tasks.
The expert trajectories generated by LLMs are used to construct the supervised dataset D which
maps individual agent’s (observation, action) pairs to natural language communication messages.
D is used during the training of MARL to provide supervised learning signals to align the learned
communication protocols with human language. More implementation details of LLM agents and
data collection can be found in the Appendix.

4.2 Multi-agent Reinforcement Learning with aligned communication

The MARL with communication pipeline is similar to IC3Net [37] in which each agent has an
independent controller model to learn how and when to communicate. During each time-step, input
observation oit is encoded and passed into each agent’s individual LSTM. The hidden state of LSTM
hi
t is then passed to the probabilistic gating function to decide whether to pass a message to other

agents. A single-layer communication network transforms hi
t into communication vector cit. The

mean communication vector of all agents is finally used by each agent’s LSTM to produce the action
ait.

To shape the learned communication protocol toward human language, we introduce an additional
supervised learning loss during the training of MARL. Specifically, at each time step, we sample a
reference communication from the dataset based on each agent’s observation and action, D(oit, a

i
t),

representing how a human (LLM) would communicate in the same situation. We then calculate the
cosine similarity between the agent communication vector cit and the word embedding of the reference
communication ch. To align the communication space learned by MARL with the high-dimensional
embedding space of natural language, we construct the supervised loss function as follows:

Lsup =
∑
t∈T

∑
i∈I

[
1− cos(cit, D(oit, a

i
t))

]
(2)

D(oit, a
i
t) =

{
ch if (oit, a

i
t) ∈ D

0 otherwise
(3)

The construction of the communication message is shaped by two learning signals: 1) the reinforce-
ment learning objective which determines useful information to share with other agents based on
the policy loss gradient, and 2) the supervised learning objective which imitates the communication
messages used by LLM agents in dataset D. The total loss function is formulated as follows:

L = LRL + λLsup (4)

The hyperparameter λ is used to scale the supervised loss. Each agent’s policy is optimized with
backpropagation to minimize the joint loss.

5 Experiments

5.1 Environments

In this section, we evaluate our proposed method in two multi-agent collaborative tasks with varied
setups and different characteristics. The first environment, Predator Prey [37], is widely used in
comm-MARL research as a benchmark. We include this environment to represent team tasks that
require all agents to share their partial observations for the team to form a complete picture of the task
state. The second environment, Urban Search & Rescue (USAR) [25, 34], presents a more demanding
challenge due to the inclusion of heterogeneous team members and the temporal dependence between
their behaviors. Here, agents must communicate not only their observations but also their intentions
and requests to effectively coordinate. Illustrations of the two environments are shown in Figure 1,
and more details are provided in the Appendix.

5

Figure 2: Learning curves of LangGround in comparison with baseline methods. The y-axis is task
performance measured by the episode length until task completion, which is lower the better. The
x-axis is the number of training timestamps. Shaded areas are standard errors over three random
seeds.

5.2 Experiment setups

We compare our proposed pipeline LangGround against previous methods, including IC3Net [37],
autoencoded communication (aeComm) [26], Vector-Quantized Variational Information Bottleneck
(VQ-VIB) [40], prototype communication (protoComm) [42], and a control baseline of independent
agents without communication (noComm). aeComm represents the state-of-the-art multi-agent
communication methods that grounds communication by reconstructing encoded observations. It
has been shown to outperform end-to-end RL methods and inductive biased methods in independent,
decentralized settings. VQ-VIB and prototype-based method are representative solutions for human-
interpretable communication, which learn a semantic space for discrete communication tokens and
perform reasonably well in human-agent teams. Finally, IC3Net has a similar architecture to our
proposed pipeline representing an ablating baseline without language grounding.

All methods are implemented with the same centralized training decentralized execution (CTDE)
architecture for a fair comparison. Each agent has an observation encoder, an LSTM for action policy,
a single-layer fully-connected neural network for transferring hidden states into communication
messages, and a gate function for selectively sharing messages. The parameters of the action
policy and obs encoder are shared during training for a more stable learning process. We use
REINFORCE [45] to train both the gating function and policy network. The communication messages
are continuous vectors of dimension D = 256.

6 Results

As for the evaluation matrices, we first consider if LangGround allows MARL agents to complete
collaborative tasks successfully (i.e., task utility) and converge to a shared communication protocol
quickly (i.e., data-efficiency), in comparison with other state-of-the-art methods as the baselines.
Then we analyze the properties of aligned communication space such as human interpretability,
topographic similarity, and zero-shot generalizability, to show how close the learned language is to
the target human natural language. Finally, we evaluate the ad-hoc teamwork performance in which
MARL agents must communicate and collaborate with unseen LLM teammates via natural language.

6.1 Task performance

In Figure 2, we compare the task performance of multi-agent teams using different communication
methods by plotting out the average episode length during training over 3 random seeds with standard
errors.

In Predator Prey vision = 1 (i.e., ppv1), our method LangGround achieves a similar final perfor-
mance with IC3Net and aeComm, outperforming other baselines. However, the improvement is not
outstanding due to the simplicity of the task environment. In Predator Prey vision = 0 (i.e., ppv0),
the predator’s vision range is limited to their own location making effective information sharing
more important in solving this search task. As shown in the middle figure, LangGround has a

6

Figure 3: Learned communication embedding space. Communication vectors between agents in
ppv0 are visualized with t-SNE and clustered with DBSCAN. Two semantically meaningful clusters
are identified as examples, each corresponding to a specific agent observation. We also present
the most similar reference message from dataset D to illustrate the alignment between the agent
communication space and the human language embedding space.

comparable final performance with aeComm and outperforms other baselines. Finally, in the most
challenging USAR environment, LangGround outperforms all baselines in solving the task in fewer
steps with the same amount of training time-steps. In addition, language grounding also stabilizes the
communication learning process such that the variance of LangGround is much smaller than other
methods.

To test the performance of proposed method in scaled environments, we ran additional experiments in
Predator Prey with a larger map size (i.e., ppv1 (10 by 10)). The learning curves of LangGround and
baselines are presented in Fig 4. As shown in the figure, our method outperforms ablating baselines
without language grounding (i.e., IC3Net) or without communication (i.e., noComm). This result
demonstrates the benefit of introducing LangGround in stabilizing the learning process of emergent
communication of MARL agents in scaled environments.

In summary, LangGround enables multi-agent teams to achieve on-par performance in comparison
with SOTA multi-agent communication methods. Introducing language grounds as an auxiliary
learning objective does not compromise the task utility of learned communication protocols while
providing interpretability.

6.2 Aligned communication space

In addition to task utility, we are also interested in other properties of the learned communication
space, such as human interpretability, topographic similarity, and zero-shot generalizability.

6.2.1 Semantically meaningful space

To evaluate whether the learned communication space is semantically meaningful, we visualize
the learned communication embedding space by clustering message vectors sent by agents over
100 evaluation episodes in ppv0, following [26]. The high dimensional vectors are reduced to a
two dimension space via t-SNE [43], and clustered with DBSCAN [10]. As shown in Figure 3,
agent communication messages can be clustered into several classifications with explicit meanings
associated with agent observation from the environment. For example, the pink cluster on the right
side corresponds to the situation where the agent locates in coordinates (0, 3) without vision of prey.
We can look up from dataset D for the reference message that has the most similar word embedding
with agent communication vectors in the pink cluster. The reference message (i.e., "moving down
from (0, 3)") accurately refers to the agent observation, indicating the learned communication space
is semantically meaningful and highly aligned with natural language embedding space.

7

Env ∆ Cos sim ∆ Bleu score

ppv1 0.82±0.02 0.52±0.03
ppv0 0.81±0.03 0.45±0.12
USAR 0.79±0.12 0.42±0.04

Table 1: Similarity gain w/ LangGround

Grounding Cos sim Bleu score

100% 0.775 0.633
75% 0.667 0.498
50% 0.304 0.308
25% 0.188 0.224

Table 2: Zero-shot generalization evaluation
results on ppv1 (10 by 10).

6.2.2 Human interpretability

Given the goal of aligning agent communication with human language, it is intuitive to evaluate the
human interpretability of language-grounded agent communication. We use the offline dataset D as
the reference to calculate the similarity between communication messages shared by LangGround
agents and LLM agents in same situations. Given 100 evaluation episodes in ppv0, we calculate
1) the cosine similarity between word embedding and agent communication vectors, and 2) BLEU
score between natural language messages and reference messages in D with the most similar word
embedding as agent communication vectors. The results are shown in Table 1, demonstrating that
LangGround achieves significant gains in both metrics, cosine similarity and BLEU score, compared
to baselines without alignment. These measures for other baseline methods would be equivalent to
random chance because none of them are grounded with language during training, and hence we do
not compute their performance on these metrics.

6.3 Ad-hoc Teamwork

The ultimate goal of our proposed pipeline is to facilitate ad-hoc teamwork between unseen agents
without pre-coordination. Here, we propose two experiments to evaluate the zero-shot generalizability
and ad-hoc collaboration capability of our trained agents.

6.3.1 Zero-shot generalizability

One prerequisite of ad-hoc teamwork is the ability to communicate about unseen states to their team-
mates. We evaluate this capability by removing a subset of prey spawn locations from environment
initialization of ppv0 and training LangGround agents from scratch. In this condition, agents would
neither be exposed to nor receive any language grounding for those situations during training. During
the evaluation, we record the communication messages used by agents in those unseen situations
and compare them with ground truth communication from dataset D. Results show that agents are
still able to complete tasks when the prey spawns in those 4 unseen locations. As shown in Table 3,
the communication messages agents used to refer to those unseen locations are similar to natural
language sentences generated by LLMs.

Figure 4: Team performance of
LangGround and baselines on
Predator Prey with 10 by 10 map
and vision range of 1.

Figure 5: Team performance of
LangGround agent with differ-
ent levels of language grounding
on ppv1 (10 by 10).

Figure 6: Communication align-
ment of LangGround agent with
different levels of language
grounding on ppv1 (10 by 10).

8

Table 3: Zero-shot generalizability in ppv0

Prey Loc Cos sim Bleu score Example message

(1,1) 0.81 0.41 Moving up to converge on prey location at (1,0) for capture
(1,3) 0.81 0.27 Converging on prey location at (1,3)
(3,1) 0.82 0.51 Moving up toward prey location at (3,1)
(3,3) 0.78 0.72 Converging on prey location at (3,3)

Additionally, we train LangGround agents on Predator Prey (10 by 10) but only provide language
grounding in a subset of states (i.e., 25%, 50%, 75%, 100%). The learning curves of LangGround
agents with different levels of language grounding are presented in Fig. 5 and Fig. 6. As shown
in the figures, the more grounded states, the better the team performance, as well as the better the
communication alignment. Table 2 shows similar results of communication alignment in un-grounded
states during evaluation. The first column refers to percentage of grounding data used during training.
The other two columns are alignment measurements when agents encounter un-grounded states
during evaluation.

To summarize, these findings confirm the alignment between the agent communication space and
the human language word embedding space in zero-shot conditions. More importantly, we show
that LangGround is not merely a memorization of one-to-one mapping between observations and
communications but also shapes the continuous communication space in a semantically meaningful
way. We could ground the agent communication space with the word embedding space of human
language on a limited number of instances, and expect LangGround to output interpretable messages
in un-grounded states via topographic similarity (discussed more in the Appendix) of the aligned
space. In practice, this assumption depends on many factors such as the coverage of offline dataset,
number of grounded states, dimension of the communication space, scale of the problem, etc. The
above experiments illustrate the impact of language grounding percentage, and we leave further
investigation to future work.

6.3.2 Ad-hoc teamwork between MARL and LLM agents

Finally, we evaluate the performance of our agents to work with unseen teammates in ad-hoc teamwork
settings. Ad-hoc teamwork refers to situations where agents collaborate with unseen teammates
without pre-coordination. In this work, we use embodied LLM agents to emulate human behaviors
in human-agent ad-hoc teams. Teams with 2 MARL agents and 1 LLM agent were evaluated on 8
episodes over 3 random seeds, resulting in a total of 24 evaluation episodes per condition. Ad-hoc
teamwork performance is measured by the number of steps taken to complete the task; therefore,
lower is better. Means and standard deviations of each condition are reported in Table 4.

Table 4: Ad-hoc teamwork performance (lower is better)
Team composition ppv1 ppv0 USAR

LangGround 4.3 ± 1.20 10.9 ± 4.53 22.0 ± 4.24
LLM 6.8 ± 5.20 11.6 ± 5.30 15.9 ± 3.37
LangGround + LLM 8.5 ± 5.76 15.5 ± 4.80 23.2 ± 10.61
aeComm + LLM 10.3 ± 6.46 17.5 ± 4.60 20.3 ± 9.07
noComm + LLM 10.6 ± 5.73 20.0 ± 0.00 32.4 ± 13.47

We find that 1) homogeneous teams (i.e., LangGround and LLM) achieve better performance than
ad-hoc teams because of their common understanding of both action and communication. As those
agents are either co-trained together or duplicates of the same network, they form a stable strategy for
team coordination and information sharing. Since ad-hoc teams (e.g., LangGround + LLM) were not
trained together nor speak the same language, their decreased performance is expected. 2) The ad-hoc
team performance of LangGround agents is better than noComm and aeComm agents in at least two
out of three evaluation scenarios. Because aeComm is not aligned with human language, it serves as
a baseline with a coordinated action policy and a random communication policy. The advantage of
our method over aeComm and noComm merely comes from effective information sharing via the

9

aligned language with unseen teammates. The empirical evidence presented in this section confirms
the application of our method in ad-hoc teamwork.

7 Discussion

In this work, we developed a novel computational pipeline to enhance the capabilities of MARL
agents to interact with unseen teammates in ad-hoc teamwork scenarios. Our approach aligns the
communication space of MARL agents with an embedding space of human natural language by
grounding agent communications on synthetic data generated by embodied LLMs in interactive
teamwork scenarios.

Through extensive evaluations of the learned communication protocols, we observed a trade-off
between utility and informativeness. According to the Information Bottleneck principle [40], in-
formativeness corresponds to how well a language can be understood in task-agnostic situations,
while utility corresponds to the degree to which a language is optimized for solving a specific task.
By introducing the additional supervised learning signal, our method pushes the trade-off toward
informativeness compared to traditional comm-MARL methods that merely optimize for utility. This
partially explains the "inconsistent" patterns we observe in Figure 2 and Table 4 across different
task scenarios. In relatively easy tasks such as predator-prey, the learned communication is more
optimized for informativeness, aligning better with human language and generalizing better in ad-hoc
teamwork. In more challenging tasks such as USAR, the learned communication is more shaped
toward task utility, resulting in faster convergence but less interpretability to unseen teammates.

Additionally, we found that introducing language grounding does not compromise task performance
but even accelerates the emergence of communication, unlike the results reported in previous literature,
where jointly optimizing communication reconstruction loss and RL loss leads to a drop in task
performance [26, 27]. The main reason for this contradiction is that our dataset D consists of expert
trajectories from LLM embodied agents with a well-established grounding on the task. Therefore,
the language grounding loss not only shapes the communication but also guides the action policy
of MARL agents by rewarding behavior cloning and providing semantic representations of input
observations.

It worth noting that LangGround is an extremely flexible pipeline with most of the modules being
interchangeable, such as the word embedding model, base MARL-comm model, message dataset
source, and the translation module. This allows us to allocate appropriate tasks to LLMs and RL
respectively, considering LLMs are known to have good linguistic capabilities (e.g., describing) while
struggle with formal reasoning (e.g., planning). While we use embodied LLM agents to collect
grounding communication datasets for LangGround as explained in Section 4, These datasets can also
come from rule-based agents or human participants, as long as they show effective communication
in solving collaborative tasks. Because only communication messages are used, LLM agents’
hallucinations and does not impact MARL’s task performance directly. In more complicated scenarios
in which communication is beyond describing observation and action, we could still expect LLMs
to generate reasonable outputs. Compared to alternative methods in embodied agents where LLMs
must make correct action planning at every timestamp, it is more feasible to collect semantically
meaningful messages from either LLMs or any other sources.

We believe our work would benefit the broader society for the following reasons. This research
provides empirical evidence of linguistic principles during language evolution among neural agents,
which might provide insights for broader research communities, including computational linguistics,
cognitive science, and social psychology. The usage of embodied LLM agents as interactive simulacra
of human team behaviors has a broad impact since it has potential applications in social science and
may deepen our understanding of modern LLMs. Most importantly, our proposed pipeline takes
initial steps in enabling artificial agents to communicate and collaborate with humans via natural
language, shedding light on the broad research direction of Human-centered AI.

As for future directions, we plan to evaluate our proposed pipeline in more complicated task environ-
ments at scale and experiment with different selections of MARL algorithms, backbone LLMs, and
word embeddings. Particularly, we plan to replace the use of a static dataset D by querying LLMs
online during the training of MARL. This may allow us to capture complex information exchanged
among team members in addition to individual observations, such as beliefs, intents, and requests.

10

Acknowledgments and Disclosure of Funding

We would like to thank Mycal Tucker, Seth Karten and the original authors of IC3Net for providing
public access to their code base that were instrumental in this research. We also appreciate the helpful
discussions with Lu Wen, Yikang Gui, and Vasanth Reddy that contributed to the development of this
work.

References
[1] Akshat Agarwal, Swaminathan Gurumurthy, Vasu Sharma, Mike Lewis, and Katia Sycara.

Community regularization of visually-grounded dialog. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems, pages 1042–1050, 2019.

[2] Henry Brighton and Simon Kirby. Understanding linguistic evolution by visualizing the
emergence of topographic mappings. Artificial life, 12(2):229–242, 2006.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym, 2016.

[4] Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-
Yves Oudeyer. Grounding large language models in interactive environments with online
reinforcement learning. In International Conference on Machine Learning, pages 3676–3713.
PMLR, 2023.

[5] Rahma Chaabouni, Eugene Kharitonov, Emmanuel Dupoux, and Marco Baroni. Anti-efficient
encoding in emergent communication. Advances in Neural Information Processing Systems,
32, 2019.

[6] Rahma Chaabouni, Eugene Kharitonov, Emmanuel Dupoux, and Marco Baroni. Communicating
artificial neural networks develop efficient color-naming systems. Proceedings of the National
Academy of Sciences, 118(12):e2016569118, 2021.

[7] Rahma Chaabouni, Florian Strub, Florent Altché, Eugene Tarassov, Corentin Tallec, Elnaz
Davoodi, Kory Wallace Mathewson, Olivier Tieleman, Angeliki Lazaridou, and Bilal Piot.
Emergent communication at scale. In International conference on learning representations,
2021.

[8] Roberto Dessì, Eleonora Gualdoni, Francesca Franzon, Gemma Boleda, and Marco Baroni.
Communication breakdown: On the low mutual intelligibility between human and neural
captioning. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pages 7998–8007, 2022.

[9] Tom Eccles, Yoram Bachrach, Guy Lever, Angeliki Lazaridou, and Thore Graepel. Bi-
ases for emergent communication in multi-agent reinforcement learning. Advances in neural
information processing systems, 32, 2019.

[10] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for
discovering clusters in large spatial databases with noise. In kdd, volume 96, pages 226–231,
1996.

[11] Meta Fundamental AI Research Diplomacy Team (FAIR)†, Anton Bakhtin, Noam Brown, Emily
Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried, Andrew Goff, Jonathan Gray, Hengyuan
Hu, et al. Human-level play in the game of diplomacy by combining language models with
strategic reasoning. Science, 378(6624):1067–1074, 2022.

[12] Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon Whiteson. Learning
to communicate with deep multi-agent reinforcement learning. Advances in neural information
processing systems, 29, 2016.

[13] Prasoon Goyal, Scott Niekum, and Raymond J Mooney. Using natural language for reward
shaping in reinforcement learning. In Proceedings of the 28th International Joint Conference
on Artificial Intelligence, pages 2385–2391, 2019.

11

[14] Austin W Hanjie, Victor Y Zhong, and Karthik Narasimhan. Grounding language to entities and
dynamics for generalization in reinforcement learning. In International Conference on Machine
Learning, pages 4051–4062. PMLR, 2021.

[15] Seth Karten, Siva Kailas, Huao Li, and Katia Sycara. On the role of emergent communication
for social learning in multi-agent reinforcement learning. arXiv preprint arXiv:2302.14276,
2023.

[16] Seth Karten and Katia Sycara. Intent-grounded compositional communication through mutual
information in multi-agent teams. In Workshop on Decision Making in Multi-Agent Systems
at International Conference on Intelligent Robots and Systems (IROS), 2022.

[17] Seth Karten, Mycal Tucker, Huao Li, Siva Kailas, Michael Lewis, and Katia Sycara. In-
terpretable learned emergent communication for human-agent teams. IEEE Transactions on
Cognitive and Developmental Systems, 2023.

[18] Satwik Kottur, José Moura, Stefan Lee, and Dhruv Batra. Natural language does not emerge
‘naturally’in multi-agent dialog. In Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 2962–2967, 2017.

[19] Angeliki Lazaridou and Marco Baroni. Emergent multi-agent communication in the deep
learning era. arXiv preprint arXiv:2006.02419, 2020.

[20] Angeliki Lazaridou, Karl Moritz Hermann, Karl Tuyls, and Stephen Clark. Emergence of
linguistic communication from referential games with symbolic and pixel input. In International
Conference on Learning Representations, 2018.

[21] Angeliki Lazaridou, Alexander Peysakhovich, and Marco Baroni. Multi-agent cooperation and
the emergence of (natural) language. arXiv preprint arXiv:1612.07182, 2016.

[22] Angeliki Lazaridou, Anna Potapenko, and Olivier Tieleman. Multi-agent communication
meets natural language: Synergies between functional and structural language learning. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 7663–7674, 2020.

[23] Jason Lee, Kyunghyun Cho, and Douwe Kiela. Countering language drift via visual grounding.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 4385–4395, 2019.

[24] David Lewis. Convention: A philosophical study. John Wiley & Sons, 2008.

[25] Huao Li, Yu Chong, Simon Stepputtis, Joseph P Campbell, Dana Hughes, Charles Lewis, and
Katia Sycara. Theory of mind for multi-agent collaboration via large language models. In
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
pages 180–192, 2023.

[26] Toru Lin, Jacob Huh, Christopher Stauffer, Ser Nam Lim, and Phillip Isola. Learning to ground
multi-agent communication with autoencoders. Advances in Neural Information Processing
Systems, 34:15230–15242, 2021.

[27] Yat Long Lo, Biswa Sengupta, Jakob Nicolaus Foerster, and Michael Noukhovitch. Learning
multi-agent communication with contrastive learning. In The Twelfth International Conference
on Learning Representations, 2023.

[28] Ryan Lowe, Abhinav Gupta, Jakob Foerster, Douwe Kiela, and Joelle Pineau. On the interaction
between supervision and self-play in emergent communication. In International Conference on
Learning Representations, 2019.

[29] Kyle Mahowald, Anna A Ivanova, Idan A Blank, Nancy Kanwisher, Joshua B Tenenbaum, and
Evelina Fedorenko. Dissociating language and thought in large language models: a cognitive
perspective. arXiv preprint arXiv:2301.06627, 2023.

12

[30] Reuth Mirsky, William Macke, Andy Wang, Harel Yedidsion, and Peter Stone. A penny for
your thoughts: The value of communication in ad hoc teamwork. International Joint Conference
on Artificial Intelligence, 2020.

[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[32] Karthik Narasimhan, Regina Barzilay, and Tommi Jaakkola. Grounding language for transfer in
deep reinforcement learning. Journal of Artificial Intelligence Research, 63:849–874, 2018.

[33] Yaru Niu, Rohan R Paleja, and Matthew C Gombolay. Multi-agent graph-attention communica-
tion and teaming. In AAMAS, volume 21, page 20th, 2021.

[34] Ini Oguntola, Dana Hughes, and Katia Sycara. Deep interpretable models of theory of mind.
In 2021 30th IEEE international conference on robot & human interactive communication
(RO-MAN), pages 657–664. IEEE, 2021.

[35] Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized POMDPs,
volume 1. Springer, 2016.

[36] Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang,
and Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In
Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology,
pages 1–22, 2023.

[37] Amanpreet Singh, Tushar Jain, and Sainbayar Sukhbaatar. Learning when to communicate at
scale in multiagent cooperative and competitive tasks. In International Conference on Learning
Representations, 2018.

[38] Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with backpropa-
gation. Advances in neural information processing systems, 29, 2016.

[39] Weihao Tan, Wentao Zhang, Shanqi Liu, Longtao Zheng, Xinrun Wang, and Bo An. True
knowledge comes from practice: Aligning llms with embodied environments via reinforcement
learning. arXiv preprint arXiv:2401.14151, 2024.

[40] Mycal Tucker, Roger Levy, Julie A Shah, and Noga Zaslavsky. Trading off utility, informative-
ness, and complexity in emergent communication. Advances in neural information processing
systems, 35:22214–22228, 2022.

[41] Mycal Tucker, Roger P Levy, Julie Shah, and Noga Zaslavsky. Generalization and translatability
in emergent communication via informational constraints. In NeurIPS 2022 Workshop on
Information-Theoretic Principles in Cognitive Systems, 2022.

[42] Mycal Tucker, Huao Li, Siddharth Agrawal, Dana Hughes, Katia Sycara, Michael Lewis, and
Julie A Shah. Emergent discrete communication in semantic spaces. Advances in Neural
Information Processing Systems, 34:10574–10586, 2021.

[43] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[44] Nicholas Waytowich, Sean L Barton, Vernon Lawhern, Ethan Stump, and Garrett Warnell.
Grounding natural language commands to starcraft ii game states for narration-guided rein-
forcement learning. In Artificial intelligence and machine learning for multi-domain operations
applications, volume 11006, pages 267–276. SPIE, 2019.

[45] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3):229–256, 1992.

[46] Yue Wu, Yewen Fan, Paul Pu Liang, Amos Azaria, Yuanzhi Li, and Tom M Mitchell. Read
and reap the rewards: Learning to play atari with the help of instruction manuals. Advances in
Neural Information Processing Systems, 36, 2024.

13

[47] Jiannan Xiang, Tianhua Tao, Yi Gu, Tianmin Shu, Zirui Wang, Zichao Yang, and Zhiting
Hu. Language models meet world models: Embodied experiences enhance language models.
Advances in neural information processing systems, 36, 2024.

[48] Shusheng Xu, Huaijie Wang, and Yi Wu. Grounded reinforcement learning: Learning to
win the game under human commands. Advances in Neural Information Processing Systems,
35:7504–7519, 2022.

[49] Shunyu Yao, Mo Yu, Yang Zhang, Karthik R Narasimhan, Joshua B Tenenbaum, and
Chuang Gan. Linking emergent and natural languages via corpus transfer. arXiv preprint
arXiv:2203.13344, 2022.

[50] Changxi Zhu, Mehdi Dastani, and Shihan Wang. A survey of multi-agent deep reinforcement
learning with communication. Autonomous Agents and Multi-Agent Systems, 38(1):4, 2024.

14

A Implementation details

A.1 Embodied LLM agents

Large language models are prompted to interact with the task environments in team tasks. We
implement embodied LLM agents based on the pipeline proposed in [25], where agents are augmented
with explicit belief state and communication for better team collaboration capability. Each agent
keeps a memory of his own observations from the environment and communication messages from
other team members. Exact prompts can be found in the code within the supplementary materials.
The design principles are that we only provide general rules about the task environments without
explicitly instructing them on any coordination or communication strategy. We attempt to minimize
the influence of prompt engineering to ensure the seamless applicability of our approach in diverse
environments. In our language grounding data collection and ad-hoc teamwork experiments, we use
OpenAI’s API to call gpt-4-0125-preview as the backbone pre-trained model and set the temperature
parameter to 0 to ensure consistent outputs.

Example prompts for LLM agents in the USAR environment are provided below:

Welcome to our interactive text game! In this game, you’ll assume the role of a
specialist on a search and rescue team. Alongside two other players, you’ll navigate
a five-room environment with a mission to defuse five hidden bombs.
The Map: Imagine a network of rooms represented by a connected graph where
each node corresponds to a room, and the edges between nodes depict hallways.
The rooms are numbered 0, 3, 6, 5, and 8. Room 0 is connected to all other rooms.
Room 5 shares a hallway with room 6. Room 3 is linked to room 8. And room 8 is
also connected with room 6. You can only travel to adjacent, directly connected
rooms at each turn.
The Challenge: Scattered among these rooms are five bombs, each coded with
different phases represented by colors. To defuse them, you’ll need to use the
correct wire-cutting tools in the correct sequence. There are one-phase, two-phase,
and three-phase bombs, needing 1, 2, or 3 color-coded tool applications in sequence
to disarm. For instance, a bomb with a red-green phase sequence requires the red
tool first, then the green one. Points are awarded based on the number of tools used
for defusing a bomb, with each tool use worth 10 points. Your task is to maximize
the team score as soon as possible. The challenge is that the bomb locations and
sequences are unknown to players at the start.
Tools: Each player is equipped with two color-coded wire cutters. As player Alpha,
you have red and green tools, player Bravo wields green and blue, and player
Charlie possesses blue and red.
Actions: Each round, you can opt to do one of the following: 1) Move to an
adjacent room, 2) Inspect a bomb’s phase sequence in your current room, or 3)
Apply your wire cutters to a bomb in the current room.
Communications: In addition to selecting an action to take from the above list,
you can also send communication message texts to both of your teammates in each
round. The message text you sent will be shared with both of your teammates in
their observation in the next round.
Observation: While you can only see what’s in your current room and read text
messages from teammates. You’ll also be informed of the current round number,
team score and the current location of your teammates. Your teammates have
the same observability as you. They will not be able to know your action and its
consequences unless you explicitly communicate.
To facilitate our interaction, reply your action selection and communication mes-
sages in this fixed format: Action selection: Your action. Message to Team: “Your
Message”. To move to an adjacent room, say: ’Move to Room X’. To inspect the
sequence of a bomb in your current room, say: ’Inspect Bomb’. To apply a wire
cutter tool, say: ’Apply X Tool’. Remember, your replies must adhere strictly to
these rules. Feel free to ask clarifying questions if needed. I’ll supply the necessary
information as we progress. Are you ready to take on this explosive challenge?

15

Example interactions between LLM agents and environments are provided below:

Env: You are now in Room 3 with Bomb 5. What is your next action?
Alpha: Action selection: Move to Room 5. Message to Team: "I am moving to
Room 5 t help Charlie with Bomb 3.
Env: You can not directly move to Room 5 because it is not adjacent to your
current location; Room 3. Consider taking a detour to another room first and then
move to your destination.

Example communication among LLM agents in USAR:

Alpha: I am inspecting Bomb 1 in Room 0. Bravo; please move to Room 3.
Charlie; please move to Room 5.
Bravo: I am moving to Room 3 as instructed. Alpha; please defuse Bomb 1 in
Room 0 using the red tool.
Charlie: I am moving to Room 5 to search for more bombs.

A.2 LangGround and baseline MARL agents

The implementation of LangGround and baseline MARL methods is based on open-sourced codebase
provided by the original paper authors [40, 16, 42, 37, 34, 26]. Agents were trained with the same
setup and hyperparameters after empirical searching. The batch size is 500, and the number of update
iterations in an epoch is 10. Training on ppv0 and USAR takes 2000 epochs and 1e7 timestamps,
which takes about 4 hours to complete. Training on ppv1 takes 500 epochs and 2.5e6 timestamps,
which takes about 1.5 hours to complete. We use a learning rate of 0.0001 for USAR and 0.001
for pp. MARL agent’s action policy is an LSTM with a hidden layer of size 256. Communication
vectors are exchanged one round at each timestamp. The supervised learning weight λ is 1 in pp
and 10 in USAR. VQ-VIB and prototype communication agents were allowed to use 58 different
discrete tokens to share information during teamwork. All experiments were conducted on a machine
with a 14-core Intel(R) Core(TM) i9-12900H CPU and 64GB memory.

B Environment details

Figure 7: Illustrations of the evaluation environments. Predator Prey is a gridworld environment
conceptualizing a team of predators with partial observation trying to search for a static prey. The
task goal is for all predators to reach the prey location within the time limit. USAR simulates a team
of specialists searching for and defusing bombs in an unknown environment. Because each specialist
has the unique capability of defusing bombs in different colors, the team must coordinate to complete
the task efficiently.

B.1 Predator Prey

In this task, n predators with a limited range of vision v need to search for stationary prey on an x by
x grid-world environment. Each predator receives a positive reward upon reaching the prey location.

16

Each episode ends when all predators reach the prey or exceed the maximum number of steps T . The
initial locations of predators and the prey might spawn anywhere on the map. At each timestamp, the
predator agent receives a partial observation of v by v grids around its own location and may select a
movement action to navigate through the map. Since this is a collaborative task, predators must learn
to communicate their partial observations to allow for optimal navigation of the team. We consider
Predator Prey to be a more challenging task since it has a higher-dimensional observation space and
a more complex action space [26]. Through this environment, we aim to demonstrate that aligning
agents’ communication with human language is a straightforward yet effective method of grounding
their communication with task observations.

B.2 USAR

The USAR task environment is designed to simulate the collaborative and problem-solving dynamics
of a search and rescue mission. Three agents (i.e., Alpha, Bravo, and Charlie) need to collaborate
in locating and defusing color-coded bombs hidden in an unexplored environment. Each bomb
has unique phase sequences in m colors, which are not revealed until inspected by agents. Agents
start with different colored cutters and must use them in the correct sequence to defuse bombs.
The environment is represented as a graph, where each of the n rooms is a node, and the hallways
connecting them are edges. At each timestamp, every agent can choose from three different types
of actions: moving to one of the n rooms, inspecting a bomb’s sequence in the current room, or
utilizing one of the m wire-cutters. The size of the action space depends on the problem scale (i.e.,
n+m+ 1). Agents’ observations are limited to their current room’s contents and agent status. The
team is rewarded 10*x points when an x-phase bomb is successfully defused. An episode ends
when the team has defused all bombs or exceeded the time limit. This task is designed to force
team coordination since each team member has unique observations and capabilities. For example,
each agent only has a subset of wire cutters and must coordinate with other teammates to defuse
bombs with multiple phases. Therefore, an effective communication protocol is required for efficient
information sharing and team synchronization.

B.3 Environment configurations

For the predator and prey environment, we use a map size of 5 by 5 with 3 predators and 1 prey.
The predator’s range of vision is manipulated to be either 0 or 1 to create two variants of the task
environment. In the situation of vision = 0, predators cannot observe the prey until they jump onto
the same location. We set the maximum episode length to 20 based on previous research [17]. The
USAR environment comprises five rooms (n = 5) and five bombs, including two single-phase,
two double-phase, and one triple-phase bombs. The bomb phase might have three different colors
(m = 3). Each of the 3 agents spawns with 2 different wire cutters, forcing the team to collaborate in
defusing bombs with multiple phases. Each successfully defused bomb awards the team 10 points per
processed phase, resulting in 90 as the maximum score per mission. We set the maximum episode
length to 100 based on previous research [25].

B.4 Text game interface

The initial task environments of Predator Prey and USAR are implemented for MARL agents based
on Gym API [3]. To facilitate interaction between LLM-based agents with the environment, we
implement a rule-based text interface for each task. At each timestamp, LLM agents sequentially
interact with the environment, receiving observations and performing actions via natural language
interaction. Additionally, they are allowed to broadcast communication messages in natural language
which are appended with the observation text and sent to all team members in the next round. It is
worth noting that LLM agents receive equivalent information as MARL agents, limited to individual
agent’s partial observation.

The text interface facilitates communication between the game engine and the language model
agents by converting game state observations into natural language descriptions and mapping agent
responses back to valid game actions. To generate observations, the interface extracts relevant
state features from the game engine, such as the current round number, cumulative team score,
action feedback, visible objects, and communication messages from other agents. It then populates
predefined sentence templates with these extracted features to produce a structured natural language

17

description of the current game state. Action encoding relies on keyword matching, as the language
models are instructed to format their responses using specific keywords and structures. The interface
scans the agent’s response for these predefined keywords and maps them to corresponding game
actions. In cases where an agent’s response is invalid or ambiguous, such as attempting to perform
an action in an incorrect location, the interface generates an informative error message based on
predefined rules and templates. For instance, if an agent attempts to inspect a non-existent bomb, the
interface might respond with the following error message: "There is no bomb in the current location,
Room X, for you to inspect." This targeted feedback helps the agents refine their actions to comply
with the game’s rules and constraints.

C Data collection details

C.1 LangGround dataset

In order to construct dataset D, we collected expert trajectories from embodied LLM agents powered
by GPT-4 in interactive task scenarios. As shown in Table 4, teams consisting of pure LLM agents
perform reasonably well in comparison to MARL methods. Therefore, we believe their action and
communication policy can be used in guiding MARL agents. In USAR, we collected 50 episodes
resulting in 2550 pairs of (observation, action) and communication messages of individual agents.
The number of data pairs is 1893 for ppv0 and 2493 for ppv1, respectively. To facilitate the alignment
of agent communication space and natural language, we use OpenAI’s word embedding api (i.e.,
text-embedding-3-large) to translate each natural language message into a high-dimensional vector
with the same dimension (i.e., D = 256) as agent communication vectors.

C.2 Ad-hoc teamwork

Due to the restrictions of resources and time, we use embodied LLM agents to emulate human
behaviors in human-agent teams. We match 2 MARL agents with 1 unseen LLM agent in a team
and ask them to complete the collaborative task in predator-prey and USAR environments. The
LLM agent is powered by GPT-4-turbo and prompted to output action selection and communication
messages given observation inputs, similar to the data collection process introduced in Section4. The
Gym environment is wrapped with a text interface to decode observations into English descriptions
and encode LLM agent’s output into concrete action selection. Both MARL agents and LLM agents
interact with the same task environment in sequence. Natural language communication messages
from LLMs are embedded using OpenAI’s word embedding API and sent to MARL agents. The
communication vectors from MARL agents are translated to English sentences via cosine similarity
matching in dataset D.

D Additional Experiment Details

D.1 Topographic similarity

The topographic similarity is defined by the correlation between object distances in the observation
space and their associated signal distances in the communication space [2]. This property is usually
associated with language compositionality and ease of generalization. The intuition behind this
measure is that agents should emit similar communication messages given semantically similar
observations. We calculate this measure following [20], based on agent trajectories collected from
100 evaluation episodes in ppv0. We first calculate 1) the cosine similarity between all pairs of
communication vectors, and 2) the Euclidean distance between all pairs of agent locations. Then,
we calculate the negative Spearman correlation ρ as the measure of topographic similarity. Table 5
indicates that our method (i.e., LangGround) results in the highest topographic similarity ρ = 0.67
among all other baselines, exhibiting a relatively more similar property as human language.

D.2 Additional ablation study

Here we run additional ablation study to attribute reinforcement learning signal and supervised
learning signal to the agent’s action and communication output in the multi-objective optimization
problem.

18

Methods Topo Sim ρ

LangGround 0.67±0.07
IC3Net 0.54±0.14
aeComm 0.37±0.05
protoComm 0.35±0.35

Table 5: Topographic similarity in ppv0

Because the LangGround agent is trained end-to-end with a combination of RL and SL loss and uses
the intermediate hidden state of its policy as the communication vector, it is very hard to separate the
reasoning processes of action and communication. However, we could provide indirect evidence to
prove that RL and SL jointly contribute to both the agent’s action and communication.

The MARL-comm agent uses a gating function to learn whether to communicate at specific times-
tamps. We could ablate this function to see its impact on team performance. As shown in the Fig. 8,
removing the gating function harms the performance of LangGround more than IC3Net. This means
both RL and SL signals influence the content and timing of LangGround communication.

In addition, we could manipulate the weight of supervised learning loss, i.e. λ in function 4, to
illustrate the contribution of RL and SL signals. As shown in Fig. 9 and 10 in the PDF, λ matters
for both task performance and supervised loss. If the SL loss is weighted too high, the LangGround
agent cannot optimize its policy in completing the task. While if the RL loss is weighted too high,
the LangGround agent cannot align its communication with human language. This result aligns with
our claim that RL optimizes the communication for task utility and SL optimizes the communication
for alignment.

Figure 8: Ablation study of
gating function and language
grounding.

Figure 9: Impact of supervised
learning loss weight λ on team
performance.

Figure 10: Impact of SL loss
weight λ on communication
alignment.

19

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We make reasonable claims based on the empirical results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our work in the discussion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

20

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe our proposed pipeline clearly in Section 4.In the Appendix, we
provide implementation details of MARL agents and reproducibility details (e.g. model
API, prompts, parameters) for LLM agents.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

21

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We submit our code in the supplementary materials for the review purpose.
We will make the code public available upon paper acceptance, following the NeurIPS code
and data submission guidelines.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide those details in both the main text and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide error bars over evaluation episodes and random seeds in the main
text for all tables and figures.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We reveal the computational resource used for experiments in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: No Code of Ethics are violated.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the potential societal impact of our work in the discussion section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

23

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not release any data or models that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original papers that produced the open-source code for baseline
methods.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

24

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide detailed instructions and documentations with the code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

25

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26

	Introduction
	Related Work
	Multi-Agent Communication
	Human-Interpretable Communication
	Language-Grounded Reinforcement Learning

	Preliminaries
	Language Grounded Multi-agent Communication
	Grounded communication from LLM agents
	Multi-agent Reinforcement Learning with aligned communication

	Experiments
	Environments
	Experiment setups

	Results
	Task performance
	Aligned communication space
	Semantically meaningful space
	Human interpretability

	Ad-hoc Teamwork
	Zero-shot generalizability
	Ad-hoc teamwork between MARL and LLM agents

	Discussion
	Implementation details
	Embodied LLM agents
	LangGround and baseline MARL agents

	Environment details
	Predator Prey
	USAR
	Environment configurations
	Text game interface

	Data collection details
	LangGround dataset
	Ad-hoc teamwork

	Additional Experiment Details
	Topographic similarity
	Additional ablation study

