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Abstract

Many studies have proposed methods for the automated detection of malware. The
benchmarks used for evaluating these methods often vary, hindering a trustworthy
comparative analysis of models. We analyzed the evaluation criteria of over 100
malware detection methods from 2018-2022 in order to understand the current state
of malware detection. From our study, we devised several criteria for evaluating
future malware detection methods. Our findings indicate that a finer-grained class
balance in datasets is necessary to ensure the robustness of models. In addition, a
metric robust to distribution shifts, e.g. PR-AUC, should be used in future studies to
prevent the inflation of results in unrealistic distribution regimes. The composition
of datasets should also be disclosed in order to ensure a fair comparison of models.
To our knowledge, this study is the first to assess the trustworthiness of evaluations
from multi-domain malware detection methods.

1 Introduction

In the last decade, the volume of malware distributed online has significantly increased. There are
more than one billion malicious programs being distributed online, and more than half a million new
programs detected every day [15]. Common types of malware, such as adware, spyware, and worms,
increased by 200% in the past year. Newer attacks have also emerged, including malware that mines
cryptocurrency on victims’ devices or targets IoT devices [25].

Malware detection methods generally rely on file signatures and heuristics to identify malicious
software. Repositories such as VirusTotal, Mapedia, and MalShare store file signatures from verified
malware samples and match files based on existing signatures, while heuristic methods extract
features from file contents and metadata and match based on rules that indicate whether a file is
suspicious or not [3].

Though signatures can be a highly accurate signal of a malicious file, it is trivial for attackers to
evade detection by inserting perturbations into their code. For heuristic analysis, the most common
methods are static and dynamic analysis. Static analysis, which uses static data such as PE headers,
compression ratio, or opcodes, is similarly easy to evade through binary obfuscation [26]. While
dynamic analysis offers more direct insights into the execution of a program, it is also more time
intensive and requires analysts to run files in an emulator or virtual environment to observe dynamic
effects. Furthermore, dynamic analysis techniques can also be evaded through sandbox detection [2].
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As the volume of distributed malware grows, comparing millions of files for similarities becomes
an ever-increasing scalability challenge. More granular matching techniques have emerged from
security research [10] in an effort to reduce the time required for analysts to classify malware. Thus,
an opportunity has emerged for machine learning systems to assist in the defense against malicious
cyberattacks. The dynamics of machine learning models are ideal for large-scale classification and
recent work in the use of models for malware detection have demonstrated great promise.

Many papers on malware detection methods boast >95% accuracy in detection [1]. However, the
benchmarks used for deriving this evaluation differ widely. While some authors used standardized
platform-specific datasets to evaluate their malware detection methods, e.g. Drebin, others evaluated
their methods on custom platform-agnostic datasets gathered from the wild, e.g. VirusTotal. These
datasets are often closed-source, which further limits the reproducibility of their work. The metrics
used to compare accuracy also vary across studies, from overall accuracy to Area Under the ROC
Curve (AUC or AUC-ROC).

In other fields of applied machine learning, such as image recognition, benchmarks exist for comparing
the results of studies, such as CartPole for reinforcement learning or ImageNet for image recognition.
Malware detection lacks such a benchmark, due in part to the moving window effect of attackers
routinely altering and introducing new forms of malware into the environment, posing a challenge for
researchers to maintain a trustworthy standardized dataset. Nevertheless, as the volume of malware
distribution continues to increase, large-scale models entrusted with protecting critical systems from
cyberattacks will rely more on trustworthy evaluations, and the impact of maintaining a standard of
evaluation across the field will become increasingly profound.

2 Related works

Several papers in the last few years have conducted comparative studies across various machine
learning methods to detect different forms of malware. Challenges cited often include dataset
class imbalance [3], a lack of open and public benchmarks [22], concept drift [14], and adversarial
examples [7, 1].

A study by Ge et al. [11] analyzes the effects that imbalanced datasets can have on machine learning
performance in malware detection. Their study specifically focused on Android malware and found
that the performance of the models in other studies varied heavily depending on the datasets used for
training and evaluation. In particular, by varying dataset composition by real-world and experimental
settings, including quality, timeliness, and class imbalance between malware and benign files, they
found that models tend to perform better on more balanced and recent datasets.

Liu et al. [23] also considered the lack of a common data source for Android malware detection.
While datasets such as Drebin are among the largest and most cited [31], there are still numerous
problems with data quality and timeliness, which can easily make malware detection models trained
on these datasets obselete to newer attacks [4]. For instance, Drebin only contains samples from
August 2010 to October 2012, MalGenome only contains samples from August 2010 to October
2011, and data from VirusShare and Contagio lack metadata such as descriptions, user ratings, and
download numbers [18]. There is the further problem of sample duplication in the case where multiple
datasets are used in order to obtain a larger corpus for training. Zhao et al. [33] investigated the
effects of overlapping data between Genome, Drebin, AMD, and RmvDroid. Their study found that
duplication rates between datasets ranged from <1% to 97.5%, and that performance achieved via
training datasets with duplicate samples was always higher than that of datasets without duplicate
samples.

Several more recent projects have also launched to address the dataset problem in malware detection.
The Canadian Institute for Cybersecurity (CIC) released several datasets in the last few years,
e.g. CICMalDroid 2020, in order to promote the use of fair and balanced training data for malware
detection [9]. While our study doesn’t introduce a new dataset, we investigated whether the evaluation
criteria for state-of-the-art malware detection methods is trustworthy or if finer-grained criteria need
to be established by the community. In the current literature, there is only one other study related to
the trustworthiness of malware detectors [19]. In contrast to Kumar et al., we chose to evaluate not
only hardware-based methods, but also multi-domain methods in order to conduct a comprehensive
study across various platforms of malware to investigate the trustworthiness of malware detection
model evaluation.
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Table 1: Comparison of malware datasets

Dataset Platform # of studies Date range # of samples

VirusTotal Various 22 2004 - Present 2,400,000,000
Drebin Android 22 Aug 2010 - Oct 2012 5,560
VirusShare Various 18 2012 - Present 51,646,084
AndroZoo Android 10 2011 - 2016 20,998,632
MalGenome Android 9 Aug 2010 - Oct 2011 1,260
CIC datasets Various 9 2009 - 2022 1,900-400,000
AMD Android 8 2010 - 2016 24,000
Contagio Various 7 2008 - 2020 28,760
VXHeaven Various 4 1995 - 2017 271,092
theZoo Various 4 2014 - Present 351
Malicia Project Windows 3 Mar 2012 - Feb 2013 11,688
Koodous Android 3 2014 - Present N/A
Ember Windows 3 2016 - 2018 1,100,000
ClaMP Windows 2 2011 - 2015 5,210
Sophos SOREL-20M Windows 3 Jan 2017 - Apr 2019 20,000,000

3 Meta-evaluation of malware detectors

Our methodology considers the evaluation criteria for malware detection methods published from
2018-2022. Our dataset includes methodologies for detecting malware on Android, Windows, Linux,
Mac OS, and various IoT operating systems.

The questions investigated in our study were:

• How trustworthy are the current state of evaluations of malware detection across all platforms
and data types?

• How should models be evaluated in order to best measure the trustworthiness of their model’s
performance in real-world scenarios?

3.1 Datasets

We analyzed the evaluation criteria used across 150 studies proposing machine learning methods
for malware detection. The papers were sourced from top-tier security conferences (USENIX, CCS,
S&P), as well as search engines for scholarly literature (Google Scholar, Springer). Our search was
limited to papers published in the last five years and only included those which proposed methods for
malware detection using machine learning methods, excluding review and adversarial studies.

After surveying the studies, we extracted the highest-frequency datasets used by various malware
detection methods and classified the datasets based on platform, data quality, timeliness (Table 1).

A significant number of studies used a custom-derived dataset. In most cases, this was because the
study was using a non-standard data representation for malware detection, e.g. ciphertexts [30],
memory images [24], steganography [29], microarchitectural side channels (bus cycles, cache misses,
branch instructions) [20], or dynamic analysis traces (system logs, etc.) [6].

3.2 Metrics

Among the surveyed studies, the most common metric used for comparing model performance was
accuracy, defined with true positive (TP ), true negative (TN ), false positive (FP ), and false negative
(FN ) as

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

This was followed by the F1 score, which relates the harmonic mean of the precision and recall,
which assists in mitigating biases caused by large outliers in either score:
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F1 = 2 ∗ Precision ∗Recall

Precision+Recall

= 2 ∗
TP

TP+FP ∗ TP
TP+FN

TP
TP+FP + TP

TP+FN

(2)

The next most commonly used metrics were precision, recall, and AUC-ROC, which computes the
area under the receiver operating characteristic curve in order to assess the performance of a binary
classifier to discriminate across different thresholds.

In a survey study by Kouliaridis et al. [17], it was shown that due to differences in datasets and
evaluation metrics, it was challenging to compare state-of-the-art methods in Android malware
detection. Metrics from surveyed works included true positive rate (TPR), precision, recall, F1 score,
accuracy, and AUC-ROC. This inconsistency resulted in inflated results, such as the case where
accuracy is used on an imbalanced dataset where a high volume of true negatives contributes to higher
scores. Of these metrics, AUC-ROC was argued to be the most robust measurement of effectiveness,
as it remained conclusive even when datasets were imbalanced and was less sensitive to changes in
class balance. This is because AUC-ROC scales with the total number of detected true values rather
than the total number of correctly detected values [8]. Li et al. [21] proposed that the existence of
undetected zero-days in benign datasets may pollute classification and render less robust metrics less
meaningful in comparison.

Other metrics that are even more robust to class imbalance are PR-AUC and F1 score, which scale
with the total number of correctly detected true values and are better representative of the performance
requirements for anomaly detection to maximize true positives over minimizing false positives. If
the size of the estimated positive sample set is much smaller than the size of the overall sample set,
the differences across models compared with PR-AUC are much greater than with AUC-ROC. In
particular, where AUC-ROC considers all samples in its scoring, PR-AUC disregards the performance
of the classifier over true negatives.

4 Analysis

Risk Given the capabilities of machine learning systems to assist in large-scale cyberattacks and
the relative lack of defense measures to counter such attacks, Hendrycks et al. [13] recommends
research to be steered towards defense measures for machine learning systems. Our study follows
in this direction, as we seek to improve the trustworthiness of large-scale machine learning models
aimed at malware detection by critically evaluating the criteria used to measure their efficacy.

Even so, there are still risks associated with improving defense systems. The unification of datasets
for accessing malware, even for the purpose of training more robust models, will ultimately allow
attackers to access the same malware. Furthermore, open source methods will also make it easier
for attackers to developer adversarial examples that evade detection from state-of-the-art methods.
Nonetheless, data provenance is necessary for model interpretability, and evidence has shown that
attackers will continue to exploit systems regardless of whether they are open-source or reverse-
engineered.

Trustworthiness In the literature of machine learning, trustworthiness entails reliability on repeat
decisions, fairness, robustness against input changes, explainability, and privacy preservation of
sensitive data [32]. Our survey considers the trustworthiness of model evaluation in the context of
malware detection methods. Data from the survey shows that the most commonly cited datasets are not
necessary the most well-balanced across time and class distributions. Though well-calibrated models
can resist differences in uncertainty over class distribution shifts, evidence shows that models trained
on imbalanced datasets tend to have a detection bias towards the majority class[28]. Therefore, to
ensure the reliability of models on independent and identically distributed (i.i.d.) data and robustness
towards out-of-distribution (OOD) data, models should be trained on more balanced datasets.

The explainability of evaluations also varied, with many studies using metrics such as overall accuracy.
Accuracy tends to obscure the ability of a model to detect malware in real-world scenarios, where the
data may comprise a small percentage of the total online data. Furthermore, when various metrics are
used for the evaluation of models, it can be more difficult to empirically compare their performance.

4



A common, interpretable benchmark that compares model performance in real-world scenarios
addresses this challenge.

Regarding privacy, while evaluations of models do not tend to regard data privacy as a quantitative
measure, privacy concerns do arise in the data acquisition of benign files, which is not always present
in standardized malware datasets. Applications scraped from various marketplaces and search engines
may contain sensitive or confidential data, so efforts to circumvent the use of private information
should be taken to ensure the trustworthiness of models.

5 Conclusion

We analyzed the criteria used for evaluating multi-domain malware detection methods and provided a
risk assessment for datasets and metrics used in evaluation. In addition, we devised guidelines for
future practitioners to ensure the trustworthiness of models evaluation results. By unifying results
found across platforms and domains, we hope to steer future malware detection studies towards
greater trustworthiness.
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A Appendix

A.1 Evaluating trustworthiness

Within the machine learning literature, trustworthiness of a model is understood to be measured by
the quality of the model’s predictive uncertainty. When measuring the uncertainty of a classification
model, the following equation may be used [16]:

P (y | x∗,D) =

∫
P (y | x∗,Θ)P (Θ,D)dΘ (1)

where y is the classification label, x∗ is the test data, D is the training dataset, and Θ is the model
parameters for the distribution over which a Bayesian model learns (the posterior).

Our investigation was concerned with the impact of different dataset compositions on the trustworthi-
ness of model evaluation. We were less concerned with the impact of dataset distribution shifts on
the empirical performance of individual models, although a study by Ovadia et al. [28] found that for
all models, regardless of method, performance was consistently worse with increasing distribution
shift (though deep ensembles were the least affected).

A.2 Robustness through model calibration

In practice, especially for online models which observe unpredictable shifts in data distribution,
robustness under out-of-distribution (OOD) inputs is important for safe deployment. Calibration on a
hold-out set is a common practice to enable accurate assessment of risk, as it allows practitioners to
evaluate how accuracy degrades over time and allows a model to abstain from making decisions with
low confidence.

Probability scoring can be computed with the Brier Score [5]:

BS = |Y |−1
∑
yϵY

(p(y|xn, θ)− δ(y − yn))
2 (3)

where p(y|xn, θ) is the predicted probability vector and yn is the one-hot encoded true response, or
with the Expected Calibration Error (ECE) [27]:

ECE =

S∑
s=1

|Bs|
n

|acc(Bs)− conf(Bs)| (4)

which measures the correspondence between predicted probabilities and empirical probabilities.

Findings by Ovadia et al. showed that calibration on an independent and identically distributed (i.i.d.)
dataset, e.g. on a test set, did not result in better calibration under dataset shift.

A.3 Comparison of malware datasets

In our evaluation, we compared characteristics of commonly used datasets for malware detection. To
expand upon the differences between these datasets, several distinguishing factors are discussed.

Platform There are numerous platforms for which malware can be targeted. Some of the datasets in
our study, including Drebin, AndroZoo, and AMD, specifically contain files formatted to one class of
platforms, namely Android operating systems. Others, such as VirusTotal, contain a larger selection
of file formats, including Microsoft Advanced Streaming/Systems Format (ASF) files, Java .class
bytecode files, compressed files, ISO image files, and Apple MachO files.
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Date range Malware is most often deployed for currently supported platforms. Although system
architectural vulnerabilities may persist through updates and users may continue to use older versions
of platforms, training on older malware datasets poses the risk of data drift. Some datasets that not
actively maintained, such as the Malicia Project, are explicitly deprecated for this reason.

Metadata Along with file contents, file metadata is often used in static analysis. The method of
data aggregation for datasets affects the availability of this metadata. For instance, Android files on
VirusTotal may contain API data, but are missing app descriptions, user ratings, and install statistics
that are available for files downloaded from Google Play.

Dataset size Obtaining a large corpus of balanced data is important for training accurate detection
models. Commercial malware detection models can be trained on tens to hundreds of millions of
samples [12]. From the datasets we surveyed, the largest corpus was VirusTotal with 2.4 billion
samples, and the smallest was theZoo with 351 samples. A full table of dataset sizes is available here.

Reliability For crowd-sourced datasets, such as Koodous, tag reliability is a potential risk. The
platform ranks files based on user-generated descriptions and votes, with no safety measures for data
pollution from malicious actors.

A.4 Takeaways and recommendations

From our study, the following best practices are recommended for future practitioners to ensure the
trustworthiness of evaluation results:

• Disclose the origins of datasets or to make available custom derived datasets whenever
possible, i.e. when privacy measures are taken to protect sensitive data used for training.

• Disclose the constraints of the data being detected by a model (e.g. Windows file binaries
or Android APKs) rather than broadly classifying generally malicious files. Even if the
detection method is aimed at detecting malicious files agnostic of platform, composition
should still be detailed in the methodology to aid in the evaluation of class balance.

• Disclose how benign files were obtained, especially in the case of custom datasets extracted
from the wild, in order to reduce the risk of accessing sensitive or confidential data.

• Balance datasets used for training and testing over time and classes (e.g. benign/malicious
or adware/banking/SMS malware/riskware/benign for a more fine-grained classification) to
minimize the effects of distribution shift.

• Compare the performance of models using ranking metrics such as F1 score or PR-AUC,
especially if datasets are imbalanced.

A.5 Artifacts

The dataset of papers surveyed in this study is available at this link.
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