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Abstract

We investigate the adversarial robustness of LLMs in transfer learning scenarios.
Through comprehensive experiments on multiple datasets (MBIB Hate Speech,
MBIB Political Bias, MBIB Gender Bias) and various model architectures (BERT,
RoBERTa, GPT-2, Gemma, Phi), we reveal that transfer learning, while improving
standard performance metrics, often leads to increased vulnerability to adversarial
attacks. Our findings demonstrate that larger models exhibit greater resilience to
this phenomenon, suggesting a complex interplay between model size, architecture,
and adaptation methods. Our work highlights the crucial need for considering
adversarial robustness in transfer learning scenarios and provides insights into
maintaining model security without compromising performance. These findings
have significant implications for the development and deployment of LLMs in
real-world applications where both performance and robustness are paramount.

1 Introduction

Large Language Models (LLMs) have become pivotal in natural language processing (NLP), demon-
strating remarkable performance across various tasks. Transfer learning, a technique leveraging
pre-trained models for new tasks, has significantly contributed to this success [5]. However, the
intersection of transfer learning and adversarial robustness in LLMs remains understudied, presenting
a critical gap in understanding models’ security and reliability.

While transfer learning efficiently applies pre-trained models to new domains, it may inadvertently
introduce or amplify vulnerabilities to adversarial attacks. These attacks pose significant threats to
model deployment in real-world scenarios. Despite the widespread adoption of transfer learning,
there is a notable lack of comprehensive research on how these adapted models perform against
adversarial attacks.

Previous studies have primarily focused on the robustness of models in their initial training or fine-
tuning stages [12] [15] [1], often in controlled environments. This approach overlooks the potential
risks emerging from more complex training sequences, particularly those involving multiple pre-
training stages as in transfer learning scenarios. The impact of transfer learning on model robustness
is nuanced and multifaceted. While some research suggests that post-fine-tuning can lead to decreased
robustness [15], other findings indicate that incorporating additional data from the target dataset can
enhance robustness [14]. However, in transfer learning scenarios involving pretraining on related but
distinct domains, the impact on robustness becomes more complex and warrants careful investigation.

Our study aims to address the following key research questions:

RQ1: How does transfer learning affect LLMs’ performance and robustness overall?
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RQ2: How do specific model sizes, architectures, and training procedures influence the transfer
learning effect on robustness?

RQ3: What are the potential challenges in real-world scenarios based on these findings?

RQ4: Can adversarial training during transfer learning improve robustness for long sequences, and
how does initial dataset specialization influence the robustness-accuracy trade-off?

Our contributions are as follows:

1. We conducted comprehensive experiments to evaluate the robustness of LLMs against
adversarial attacks in transfer learning, revealing that transfer learning often increases
vulnerability to adversarial attacks, even when improving standard performance metrics.

2. We provide a detailed analysis of how model characteristics influence robustness in transfer
learning scenarios, demonstrating that larger models show significantly greater resilience to
increases in vulnerability. This finding is contextualized within a broader examination of
how different model architectures (e.g., GPT [11], BERT [2], RoBERTa [9]) and transfer
learning techniques (such as LoRA [7]) impact robustness, revealing a complex interplay
between model size, architecture, and adaptation methods in determining a model’s security
against adversarial attacks.

3. We provide insights into the trade-off between model robustness and accuracy by conducting
experiments with training on perturbed data. This helped us understand the balance between
maintaining robustness and preserving model performance.

2 Experimental Design

We focus on the classification task of detecting biased text. We selected the MBIB Hate Speech [13],
MBIB Political Bias, and MBIB Gender Bias datasets for their relevance to real-world applications
and the importance of robustness in these domains.

2.1 Datasets

We selected three distinct datasets that share a common theme of detecting bias in textual data but
address different subdomains within this broader context. This choice allows us to meaningfully
explore the impact of transfer learning, as it involves transferring knowledge across related yet distinct
types of biases. Each dataset has 2 classes: biased and non-biased, and is balanced. In general, the
ability to accurately detect and mitigate various forms of bias is crucial to develop fair and ethical
AI systems that can be safely deployed in diverse real-world applications [6]. Data sets are selected
from [13] and are as follows:

MBIB Hate Speech (HS) focuses on identifying hate speech in text.

MBIB Political Bias (PB) is used to detect political bias in textual data.

MBIB Gender Bias (GB) helps evaluate the model’s ability to recognize gender bias in text.

For each dataset, we create a large training set (12,000) for pre-training, a small training set (600) for
target task fine-tuning, a validation set (1,000) and a test set (1,000).

2.2 Evaluation Metrics

We use the following metrics to assess model performance and robustness:

Original Accuracy (OAcc): Main usual metric to evaluate the performance of the model in classifi-
cation.

Attack Success Rate (ASR): Percentage of True Positive and True Negative examples that were
hacked by the attack, this metric can serve as a basic evaluation of the robustness of the model.

Accuracy Under Attack (AUA): The accuracy of the model after attack. This metric can be consid-
ered a ‘safety’ metric for the model. For instance, if the model’s accuracy (Acc) significantly increases
while the Attack Success Rate (ASR) only mildly increases, the AUA may show improvement even
though the model has become less robust overall.
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2.3 Parameters Setting

For the pre-training phase, we trained the models for 1 epoch on the larger subset of the dataset.
During the fine-tuning phase on the target dataset, the models were trained for up to 6 epochs, with
the best model selected based on the accuracy of the validation set. We used the Adam optimizer,
adjusting the learning rate between 5 × 10−6 and 4 × 10−4 depending on the specific model, to
ensure optimal convergence during training.

2.4 Training Procedure

We measured the performance under two conditions:

Usual Fine-Tuning: Fine-tuning the model directly on the target dataset.

Transfer Learning: Fine-tuning the model on one large dataset followed by transfer learning to the
target task using the smaller dataset.

This setup allowed us to measure the influence of each training sequence on both accuracy and
adversarial robustness, providing insights into the trade-offs involved in using transfer learning for
LLMs in classification tasks aimed at detecting biased versus non-biased text. The overall experiment
setup is displayed in Figure 1.

2.5 Experimental Setup

Figure 1: Experiment setup, where we compare LLM’s properties in additional Transfer learning
setup and just target dataset fine-tuning.

In our experiments, we conducted two main types of experiments:

Standard Transfer Learning: Fine-tuning models on one dataset followed by transfer to another.

Adversarial Training with Transfer Learning: Incorporating adversarial examples (10% of training
data) during the transfer learning process.

2.6 Models

We evaluated a range of LLMs to assess the impact of model size and architecture on robustness:
BERT Base (110M), BERT Large (340M), RoBERTa Base (125M), RoBERTa Large (355M), GPT-2
(117M), GPT-2 Medium (345M), and GPT-2 Large (762M) and also large models like Gemma 2b
(2B), Phi-2 (2.7B), and GPT2-XL (1.5B).

2.7 Adversarial Attack Methods

We employ two attack methods in our experiments:

TextFooler [8]: A word-level adversarial attack method for text classification. It uses word deletion
impact for importance ranking, word embeddings for synonyms, and Universal Sentence Encoder for
semantic similarity constraints.

A2T [16]: A computationally efficient adversarial attack method. It uses gradient-based word
importance ranking, counter-fitted word embeddings for synonyms, and DistilBERT for semantic
similarity constraints.

3



3 Results and Analysis

Our experiments yielded several key insights into the impact of transfer learning on the robustness
and performance of LLMs. We’ll discuss our findings in relation to each research question.

Table 1: Performance and safety metrics comparison for models with and without transfer learning,
averaged across attack methods (Text Fooler and A2T) and individual sequences ending with the
target dataset. OAcc - Original Accuracy, ASR - Attack Sucess Rate, AUA - Accuracy Under Attack,
∆ (%) - relative change.

Model Target dataset Without Transfer Learning Transfer Learning Results
OAcc ASR AUA OAcc ASR AUA ∆ OAcc(%) ∆ ASR (%)

GPT-2
Gender bias 0.763 0.397 0.460 0.791 0.478 0.413 3.67 20.40
Political bias 0.650 0.457 0.357 0.659 0.514 0.321 1.38 12.47
Hate speech 0.798 0.463 0.428 0.796 0.472 0.420 -0.25 1.94

GPT-2-medium
Gender bias 0.743 0.452 0.408 0.806 0.491 0.410 8.48 8.63
Political bias 0.657 0.350 0.427 0.677 0.445 0.375 3.04 27.14
Hate speech 0.823 0.413 0.483 0.824 0.423 0.475 0.12 2.42

GPT-2-large
Gender bias 0.780 0.460 0.421 0.789 0.456 0.429 1.15 -0.87
Political bias 0.675 0.430 0.385 0.679 0.444 0.378 0.59 3.26
Hate speech 0.832 0.437 0.468 0.823 0.444 0.458 -1.08 1.60

BERT
Gender bias 0.768 0.436 0.433 0.778 0.558 0.344 1.30 28.00
Political bias 0.690 0.470 0.366 0.670 0.516 0.324 -2.90 9.79
Hate speech 0.775 0.490 0.395 0.787 0.515 0.382 1.55 5.10

BERT-large
Gender bias 0.743 0.485 0.383 0.787 0.513 0.383 5.9 5.7
Political bias 0.682 0.500 0.341 0.678 0.495 0.342 -0.59 -1.00
Hate speech 0.732 0.491 0.378 0.757 0.516 0.366 3.42 5.09

RoBERTa
Gender bias 0.807 0.465 0.432 0.791 0.557 0.350 -1.98 19.78
Political bias 0.680 0.348 0.443 0.677 0.445 0.376 -0.44 27.87
Hate speech 0.795 0.431 0.452 0.817 0.469 0.433 2.77 8.82

RoBERTa-large
Gender bias 0.807 0.503 0.401 0.817 0.463 0.438 1.2 -7.95
Political bias 0.708 0.355 0.457 0.717 0.474 0.377 1.27 33.5
Hate speech 0.825 0.360 0.528 0.827 0.403 0.494 0.24 11.9

Phi-2 (LoRA)
Gender bias 0.803 0.514 0.390 0.815 0.519 0.394 1.49 0.97
Political bias 0.745 0.591 0.308 0.721 0.513 0.350 -3.22 -13.2
Hate speech 0.833 0.396 0.503 0.845 0.432 0.479 1.44 9.09

Gemma 2B (LoRA)
Gender bias 0.788 0.575 0.335 0.796 0.611 0.310 1.02 6.26
Political bias 0.703 0.677 0.226 0.685 0.587 0.279 -2.56 -13.29
Hate speech 0.765 0.426 0.439 0.774 0.499 0.388 1.17 17.13

GPT-2-xl (LoRA)
Gender bias 0.825 0.509 0.406 0.820 0.551 0.369 -0.61 8.25
Political bias 0.683 0.527 0.323 0.689 0.547 0.313 0.88 3.80
Hate speech 0.833 0.448 0.461 0.831 0.465 0.444 -0.24 3.79

3.1 RQ1: Transfer learning robustness

We evaluated various LLMs using TextFooler (black-box) and A2T (white-box) adversarial attacks.
The results, presented in Table 1, reveal a concerning trend:

Increased Vulnerability: In most cases, especially for smaller models, the Attack Success Rate (ASR)
increased after transfer learning, regardless of changes in accuracy (OAcc). It suggests that even
when models demonstrated enhanced performance in terms of accuracy, their overall robustness
against adversarial attacks often decreased.

Performance-Robustness Trade-off: Even when models showed improved accuracy, their robustness
against adversarial attacks often decreased. For example, on the Hate Speech dataset, GPT-2
experiences a mean 20.4% increase in ASR alongside a 3.67% increase in accuracy. This finding
raises significant concerns about LLM security, as improvements in accuracy during training might
lead developers to overlook other critical parameters like robustness.

Table 2 presents the percentage of unaveraged sequences with increased ASR, confirming this
robustness decline trend. The complete raw data is available in Appendix B.

Table 2: Percentage of unaveraged individual training sequences where ASR increase is observed.

GPT-2 GPT-2 GPT-2 BERT BERT- RoBERTa RoBERTa- Phi-2 Gemma GPT-2
medium large large large 2B xl

(%) 83.3 91.7 50.0 91.7 75.0 100.0 66.7 41.7 58.3 75.0
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3.1.1 LoRA and Larger Models

For large models with billions of parameters, we used LoRA due to its efficiency in adapting these
models, as conventional fine-tuning often requires extensive computational resources that may not
be readily available in typical settings. When applying LoRA to these larger models, we observed
mixed results. Some sequences showed decreased robustness, while others demonstrated increased
robustness (e.g., political bias dataset for Phi-2 and Gemma 2b), result are presented in Table 1 and
Table 2.

The impact of LoRA on robustness is complex due to its unique approach: introducing and randomly
initializing a small set of additional parameters rather than fine-tuning existing ones. This may lead
to different robustness outcomes compared to standard fine-tuning. While transfer learning here can
still reduce robustness through issues like false memories [4] or shortcut learning [3], catastrophic
forgetting [10] may not contribute significantly to the results in this specific setting. This is because,
with the random initialization of LoRA adapter parameters and the freezing of other parameters,
there is no pre-existing information in the adapters that could be distorted or lost during the transfer
learning process, thus potentially altering the dynamics of how robustness changes during transfer
learning.

3.2 RQ2: Impact of Model Size, Architecture, and Training Procedures

We examined how different model sizes, architectures, and training procedures (including LoRA for
larger models) influenced the transfer learning effect on robustness.

3.2.1 Model Size and Architecture Influence

Figure 2: ∆ ASR by model size and archi-
tecture.

Figure 3: ASR by model size and architec-
ture.

Larger Models Show Better Resilience: As illustrated in Figure 2 , larger models within each family
(GPT-2, BERT, RoBERTa) exhibited smaller increases in ASR due to transfer learning.

Initial ASR Variations: The mean initial ASR (before transfer learning) didn’t follow a consistent
pattern across model families Figure 3:

1. Decreased with size in BERT and RoBERTa, but increased with size in GPT-2 models.

2. Overall ASR range remained similar (0.42 to 0.47) across autoregressive and encoder-
based models, indicating that both of them exhibit comparable levels of robustness against
adversarial attacks.

3.3 RQ3: Real-world implications

As we showed, often ASR increases in parallel to OAcc, which indicates a potential trade-off of using
Transfer learning between performance and safety. Often standard metrics like OAcc are prioritized,
while other safety metrics are overlooked, leading to vulnerable models being deployed. Based on
our findings, we highlight the necessity of applying additional techniques and adversarial testing to
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mitigate this issue, particularly when fine-tuning smaller models. For Larger Models with LoRA, use
transfer learning cautiously, as effects on robustness can vary.

3.4 RQ4: Trade-off Between Robustness and Accuracy

Experimental Setup This experiment explores the balance between robustness and accuracy in
LLMs under adversarial attacks during transfer learning. Two methods are compared:

• Iterative Transfer Learning with Adversarial Attacks: The model is sequentially trained
and evaluated on three datasets (Hate speech (HS), Political bias (PB) and Gender bias
(GB)), with a final evaluation across all datasets to track performance over time.

• Adversarial Training with Transfer Learning: Adversarial samples (10%) are included
during training to enhance robustness, with performance assessed across all datasets.

Results in Table3 show how attacks (A2T, TextFooler) impact Original Accuracy (OAcc), Accuracy
Under Attack (AUA), and Attack Success Rate (ASR). “FE” denotes Final Evaluation, and “PC”
represents Percent Change relative to earlier evaluations.

Table 3: Impact of A2T attack on Bert performance, where for convenience of notation: HS, PB and
GB are Hate speech, Political bias and Gender bias datasets.

Metrics HS PB GB FE HS FE PB FE GB ∆ PC HS(%) ∆ PC PB(%) ∆ PC GB(%)
Original Data

OAcc 78.07 69.48 70.92 69.94 62.42 70.6 -10.41 -10.16 -0.45
AUA 54.26 45.59 50.28 55.04 45.24 47.26 1.44 -0.77 -6.01
ASR 30.61 34.31 30.5 21.55 29.73 33.1 -29.60 -13.35 8.52

Including Adversarial Training
OAcc 75.8 69.23 68.75 69.78 68.18 68.59 -7.94 -1.52 -0.23
AUA 50.25 48.24 48.38 52.51 48.93 50.26 4.50 1.43 3.89
ASR 33.92 30.41 29.63 25.3 28.18 26.43 -25.41 -7.33 -10.80

The experiments reveal a trade-off between robustness and accuracy (full results are shown in Table
14 and Table 15 of Appendix C). Adversarial fine-tuning reduces OAcc but significantly boosts AUA
and lowers the ASR, especially on the first dataset. Early exposure to adversarial examples enables
the model to build strong defense mechanisms, improving its resistance to attacks despite a decline in
OAcc.

Introducing adversarial samples during training enhances overall performance, leading to a more
robust model. While accuracy on the first dataset decreases, the model’s ability to withstand attacks
improves, indicating a balanced adaptation between accuracy and robustness over time.

4 Conclusion

Our research contributes to the understanding of the adversarial robustness of LLMs in the context
of transfer learning. Our empirical analysis reveals nuanced dynamics in the relationship between
traditional performance metrics, such as accuracy, and the robustness of models against adversarial
attacks. Interestingly, we observed instances where improvements in conventional metrics were
accompanied by a decrease in adversarial robustness, suggesting a potential trade-off between
performance enhancement and vulnerability to adversarial manipulations. This counterintuitive
finding underscores the complexity of model behavior in transfer learning scenarios and raises
questions about the underlying causes, which may include phenomena such as catastrophic forgetting
or the acquisition of misleading “false memories” during pre-training. Notably, our results indicate
that larger models may exhibit a reduced susceptibility to this trend, hinting at an inherent robustness
associated with scale.
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A Social Impact Statement

Our research rigorously examines the balance between performance enhancements and security
vulnerabilities in large language models (LLMs) using transfer learning. This analysis has highlighted
the need for training methodologies that prioritize both model effectiveness and security.

As LLMs become more common in sectors like healthcare, finance, and public services, it is crucial
to protect these systems from sophisticated adversarial threats. Our findings show that while transfer
learning can improve model performance, it can also introduce and magnify vulnerabilities that
malicious actors could exploit, necessitating a reevaluation of current training practices.

We advocate for incorporating comprehensive adversarial training and robustness assessments during
the AI development. By adopting these practices, developers can better manage the trade-offs between
accuracy and security, ensuring that improvements in LLM capabilities do not compromise their
defense.

Our study reveals interesting nuances in the interaction between transfer learning, performance,
and security. We observed instances where transfer learning not only contributed to performance
improvements but also bolstered the models’ defenses against adversarial attacks under certain
conditions. These insights suggest that transfer learning, when applied thoughtfully, might offer
opportunities to simultaneously enhance both the effectiveness and the security of LLMs, meriting
deeper investigation into these phenomena.

B Transfer learning experiments raw data

While Table 1 presented averaged results, the raw data provides more granular insights into the
behavior of different model architectures and attack methods.

Table 4 through Table 13 demonstrate an inverse relationship between model size and vulnerability to
adversarial attacks post-transfer learning within the GPT-2 family. GPT-2 exhibits ASR increases up
to 80% for some sequences, whereas GPT-2 XL’s maximum ASR increase is approximately 22%.

Table 7 and Table 8 show that BERT models, despite their bidirectional architecture, display vulnera-
bility patterns similar to GPT-2, with BERT Large showing marginally improved robustness.

RoBERTa models (Table 9 and Table 10) exhibit an noteworthy characteristic: while generally more
robust than BERT, they still incur significant ASR increases, particularly against the a2t attack. This
suggests that RoBERTa’s enhanced pretraining does not necessarily confer improved adversarial
robustness in transfer learning scenarios.

The results for Phi-2 and Gemma 2B (Table 11 and Table 12) are particularly noteworthy. These
LoRA-tuned models show highly variable results, with some sequences demonstrating improved
robustness post-transfer. This variability indicates a complex interaction between LoRA’s adaptation
mechanism and adversarial vulnerability, warranting further investigation.

These raw results not only corroborate our main findings but also elucidate the nuanced impact
of model architecture, size, and fine-tuning method on adversarial robustness in transfer learning
contexts.
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Table 4: Performance metrics for a2t attack and text fooler attack on GPT-2.

(Dataset sequence) OAcc ASR AUA ∆ OAcc ∆ ASR ∆ AUA
a2t attack

None -> GB 0.763 0.164 0.638 (baseline) (baseline) (baseline)
PB -> GB 0.798 0.298 0.560 4.59% 81.66% -12.16%
HS -> GB 0.785 0.236 0.600 2.95% 43.76% -5.88%
GB -> PB 0.650 0.396 0.393 0.00% 13.19% -7.10%

None -> PB 0.650 0.350 0.423 (baseline) (baseline) (baseline)
HS -> PB 0.668 0.427 0.383 2.69% 21.99% -9.47%
GB -> HS 0.808 0.424 0.465 1.25% 10.00% -5.10%
PB -> HS 0.785 0.411 0.463 -1.57% 6.55% -5.61%

None -> HS 0.798 0.386 0.490 (baseline) (baseline) (baseline)
Average 1.653301946 29.52457272 -7.553591456
text fooler attack

None -> GB 0.763 0.630 0.283 (baseline) (baseline) (baseline)
PB -> GB 0.798 0.708 0.232 4.59% 12.30% -18.24%
HS -> GB 0.785 0.669 0.260 2.95% 6.20% -8.24%
GB -> PB 0.650 0.591 0.272 0.00% 4.75% -6.86%

None -> PB 0.650 0.565 0.292 (baseline) (baseline) (baseline)
HS -> PB 0.668 0.642 0.237 2.69% 13.75% -18.86%
GB -> HS 0.808 0.534 0.378 1.25% -1.09% 3.18%
PB -> HS 0.785 0.520 0.375 -1.57% -3.61% 2.27%

None -> HS 0.798 0.540 0.367 (baseline) (baseline) (baseline)
Average 1.653301946 5.382223872 -7.788388083

Table 5: Performance metrics for a2t attack and text fooler attack on GPT-2 medium.

(Dataset sequence) OAcc ASR AUA ∆ OAcc ∆ ASR ∆ AUA
a2t attack

None -> GB 0.743 0.242 0.563 (baseline) (baseline) (baseline)
PB -> GB 0.805 0.313 0.553 8.30% 29.10% -1.78%
HS -> GB 0.807 0.271 0.588 8.52% 11.77% 4.44%
GB -> PB 0.667 0.298 0.468 1.52% 26.04% -6.64%

None -> PB 0.657 0.236 0.502 (baseline) (baseline) (baseline)
HS -> PB 0.687 0.323 0.465 4.57% 36.76% -7.31%
GB -> HS 0.833 0.358 0.535 1.21% 5.90% -1.83%
PB -> HS 0.815 0.335 0.542 -1.01% -0.79% -0.61%

None -> HS 0.823 0.338 0.545 (baseline) (baseline) (baseline)
Average 3.851657201 18.13081029 -2.28954161
text fooler attack

None -> GB 0.743 0.661 0.252 (baseline) (baseline) (baseline)
PB -> GB 0.805 0.698 0.243 8.30% 5.49% -3.31%
HS -> GB 0.807 0.684 0.255 8.52% 3.39% 1.32%
GB -> PB 0.667 0.555 0.297 1.52% 19.49% -15.64%

None -> PB 0.657 0.464 0.352 (baseline) (baseline) (baseline)
HS -> PB 0.687 0.604 0.272 4.57% 30.12% -22.75%
GB -> HS 0.833 0.510 0.408 1.21% 4.54% -3.16%
PB -> HS 0.815 0.489 0.417 -1.01% 0.18% -1.19%

None -> HS 0.823 0.488 0.422 (baseline) (baseline) (baseline)
Average 3.851657201 10.53609032 -7.453867774
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Table 6: Performance metrics for a2t attack and text fooler attack on GPT-2 large.

(Dataset sequence) OAcc ASR AUA ∆ OAcc ∆ ASR ∆ AUA
a2t attack

None -> GB 0.780 0.254 0.582 (baseline) (baseline) (baseline)
PB -> GB 0.770 0.190 0.623 -1.28% -25.09% 7.16%
HS -> GB 0.808 0.330 0.542 3.63% 29.74% -6.88%
GB -> PB 0.685 0.326 0.462 1.48% 4.80% -0.72%

None -> PB 0.675 0.311 0.465 (baseline) (baseline) (baseline)
HS -> PB 0.673 0.285 0.482 -0.25% -8.50% 3.58%
GB -> HS 0.825 0.382 0.510 -0.80% -0.25% -0.65%
PB -> HS 0.820 0.384 0.505 -1.40% 0.36% -1.62%

None -> HS 0.832 0.383 0.513 (baseline) (baseline) (baseline)
Average 0.230097739 0.1760995019 0.1468648652

text fooler attack
None -> GB 0.780 0.667 0.260 (baseline) (baseline) (baseline)

PB -> GB 0.770 0.662 0.260 -1.28% -0.65% 0.00%
HS -> GB 0.808 0.641 0.290 3.63% -3.81% 11.54%
GB -> PB 0.685 0.567 0.297 1.48% 3.42% -2.73%

None -> PB 0.675 0.548 0.305 (baseline) (baseline) (baseline)
HS -> PB 0.673 0.597 0.272 -0.25% 8.83% -10.93%
GB -> HS 0.825 0.489 0.422 -0.80% -0.43% -0.39%
PB -> HS 0.820 0.520 0.393 -1.40% 5.98% -7.09%

None -> HS 0.832 0.491 0.423 (baseline) (baseline) (baseline)
Average 0.230097739 2.222775906 -1.599892317

Table 7: Performance metrics for a2t attack and text fooler attack on BERT.

(Dataset sequence) OAcc ASR AUA ∆ OAcc ∆ ASR ∆ AUA
a2t attack

None -> GB 0.768 0.254 0.573 (baseline) (baseline) (baseline)
PB -> GB 0.765 0.390 0.467 -0.43% 53.66% -18.60%
HS -> GB 0.792 0.354 0.512 3.04% 39.36% -10.76%
GB -> PB 0.697 0.390 0.425 0.97% 8.35% -3.77%

None -> PB 0.690 0.360 0.442 (baseline) (baseline) (baseline)
HS -> PB 0.643 0.394 0.390 -6.76% 9.41% -11.70%
GB -> HS 0.792 0.436 0.447 2.15% 3.39% -0.37%
PB -> HS 0.783 0.457 0.425 1.08% 8.53% -5.20%

None -> HS 0.775 0.422 0.448 (baseline) (baseline) (baseline)
Average 0.005290313116 20.44898997 -8.401395235

text fooler attack
None -> GB 0.768 0.618 0.293 (baseline) (baseline) (baseline)

PB -> GB 0.765 0.773 0.173 -0.43% 25.10% -40.91%
HS -> GB 0.792 0.716 0.225 3.04% 15.78% -23.30%
GB -> PB 0.697 0.641 0.250 0.97% 10.60% -13.79%

None -> PB 0.690 0.580 0.290 (baseline) (baseline) (baseline)
HS -> PB 0.643 0.640 0.232 -6.76% 10.38% -20.11%
GB -> HS 0.792 0.552 0.355 2.15% -1.35% 3.90%
PB -> HS 0.783 0.617 0.300 1.08% 10.35% -12.20%

None -> HS 0.775 0.559 0.342 (baseline) (baseline) (baseline)
Average 0.005290313116 11.81101791 -17.73421239
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Table 8: Performance metrics for a2t attack and text fooler attack on BERT-large.

(Dataset sequence) OAcc ASR ASR ∆ OAcc ∆ ASR ∆ AUA
a2t attack

None -> GB 0.743 0.336 0.493 (baseline) (baseline) (baseline)
PB -> GB 0.768 0.338 0.508 3.36% 0.62% 3.04%
HS -> GB 0.805 0.275 0.583 8.30% -18.13% 18.24%
GB -> PB 0.680 0.363 0.433 -0.24% -4.28% 2.36%

None -> PB 0.682 0.379 0.423 (baseline) (baseline) (baseline)
HS -> PB 0.675 0.398 0.407 -0.98% 4.90% -3.94%
GB -> HS 0.768 0.425 0.442 5.01% 4.19% 0.38%
PB -> HS 0.745 0.445 0.413 1.82% 9.10% -6.06%

None -> HS 0.732 0.408 0.440 (baseline) (baseline) (baseline)
Average 2.878090459 -0.6013601318 2.33814478

text fooler attack
None -> GB 0.743 0.635 0.272 (baseline) (baseline) (baseline)

PB -> GB 0.768 0.731 0.207 3.36% 15.21% -23.93%
HS -> GB 0.805 0.708 0.235 8.30% 11.59% -13.50%
GB -> PB 0.680 0.630 0.252 -0.24% 1.43% -2.58%

None -> PB 0.682 0.621 0.258 (baseline) (baseline) (baseline)
HS -> PB 0.675 0.590 0.277 -0.98% -4.98% 7.10%
GB -> HS 0.768 0.592 0.313 5.01% 3.17% -1.05%
PB -> HS 0.745 0.602 0.297 1.82% 4.84% -6.32%

None -> HS 0.732 0.574 0.317 (baseline) (baseline) (baseline)
Average 2.337356018 5.210224231 -6.712196793

Table 9: Performance metrics for a2t attack and text fooler attack on RoBERTa.

(Dataset sequence) OAcc ASR AUA ∆ OAcc ∆ ASR ∆ AUA
a2t attack

None -> GB 0.807 0.248 0.607 (baseline) (baseline) (baseline)
PB -> GB 0.783 0.374 0.490 -2.89% 51.04% -19.23%
HS -> GB 0.798 0.349 0.520 -1.03% 40.62% -14.29%
GB -> PB 0.683 0.288 0.487 0.49% 18.61% -5.50%

None -> PB 0.680 0.243 0.515 (baseline) (baseline) (baseline)
HS -> PB 0.670 0.353 0.433 -1.47% 45.58% -15.86%
GB -> HS 0.817 0.402 0.488 2.73% 9.58% -2.98%
PB -> HS 0.817 0.404 0.487 2.73% 10.14% -3.31%

None -> HS 0.795 0.367 0.503 (baseline) (baseline) (baseline)
Average 0.09078696017 29.26106735 -10.19451626

text fooler attack
None -> GB 0.807 0.682 0.257 (baseline) (baseline) (baseline)

PB -> GB 0.783 0.781 0.172 -2.89% 14.52% -33.12%
HS -> GB 0.798 0.724 0.220 -1.03% 6.25% -14.29%
GB -> PB 0.683 0.551 0.307 0.49% 21.57% -17.49%

None -> PB 0.680 0.453 0.372 (baseline) (baseline) (baseline)
HS -> PB 0.670 0.587 0.277 -1.47% 29.47% -25.56%
GB -> HS 0.817 0.529 0.385 2.73% 6.83% -4.15%
PB -> HS 0.817 0.543 0.373 2.73% 9.72% -7.05%

None -> HS 0.795 0.495 0.402 (baseline) (baseline) (baseline)
Average 0.09078696017 14.72790886 -16.94254071
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Table 10: Performance metrics for a2t attack and text fooler attack on RoBERTa-large.

(Dataset sequence) OAcc ASR AUA ∆ OAcc ∆ ASR ∆ AUA
a2t attack

None -> GB 0.807 0.269 0.590 (baseline) (baseline) (baseline)
PB -> GB 0.793 0.321 0.538 -1.65% 19.67% -8.76%
HS -> GB 0.840 0.234 0.643 4.13% -12.83% 9.04%
GB -> PB 0.718 0.360 0.460 1.41% 28.44% -9.80%

None -> PB 0.708 0.280 0.510 (baseline) (baseline) (baseline)
HS -> PB 0.715 0.394 0.433 0.94% 40.69% -15.03%
GB -> HS 0.835 0.355 0.538 1.21% 18.83% -6.92%
PB -> HS 0.818 0.356 0.527 -0.81% 19.21% -8.93%

None -> HS 0.825 0.299 0.578 (baseline) (baseline) (baseline)
Average 0.8725246895 19.00094123 -6.734163612

text fooler attack
None -> GB 0.807 0.738 0.212 (baseline) (baseline) (baseline)

PB -> GB 0.793 0.613 0.307 -1.65% -16.83% 44.88%
HS -> GB 0.840 0.685 0.265 4.13% -7.20% 25.19%
GB -> PB 0.718 0.573 0.307 1.41% 33.09% -23.97%

None -> PB 0.708 0.431 0.403 (baseline) (baseline) (baseline)
HS -> PB 0.715 0.571 0.307 0.94% 32.63% -23.97%
GB -> HS 0.835 0.419 0.485 1.21% -0.25% 1.39%
PB -> HS 0.818 0.481 0.425 -0.81% 14.39% -11.15%

None -> HS 0.825 0.420 0.478 (baseline) (baseline) (baseline)
Average 0.8725246895 9.306112301 2.065052558

Table 11: Performance metrics for a2t attack and text fooler attack on Phi-2.

(Dataset sequence) OAcc ASR ASR ∆ OAcc ∆ ASR ∆ AUA
a2t attack

None -> GB 0.803 0.299 0.563 (baseline) (baseline) (baseline)
PB -> GB 0.790 0.411 0.465 -1.56% 37.56% -17.33%
HS -> GB 0.840 0.285 0.603 4.67% -4.75% 7.11%
GB -> PB 0.735 0.403 0.438 -1.34% -6.44% 1.74%

None -> PB 0.745 0.430 0.430 (baseline) (baseline) (baseline)
HS -> PB 0.708 0.395 0.425 -5.03% -8.23% -1.16%
GB -> HS 0.863 0.371 0.543 3.60% 6.50% 0.00%
PB -> HS 0.828 0.380 0.510 -0.60% 9.07% -5.99%

None -> HS 0.833 0.348 0.543 (baseline) (baseline) (baseline)
Average -0.04292852094 5.617798554 -2.605268381

text fooler attack
None -> GB 0.803 0.729 0.218 (baseline) (baseline) (baseline)

PB -> GB 0.790 0.696 0.240 -1.56% -4.50% 10.34%
HS -> GB 0.840 0.682 0.268 4.67% -6.51% 22.99%
GB -> PB 0.735 0.653 0.255 -1.34% -13.12% 37.84%

None -> PB 0.745 0.752 0.185 (baseline) (baseline) (baseline)
HS -> PB 0.708 0.601 0.283 -5.03% -20.08% 52.70%
GB -> HS 0.863 0.464 0.463 3.60% 4.35% 0.00%
PB -> HS 0.828 0.514 0.403 -0.60% 15.56% -12.97%

None -> HS 0.833 0.444 0.463 (baseline) (baseline) (baseline)
Average -0.04292852094 -4.049048775 18.48348348
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Table 12: Performance metrics for a2t attack and text fooler attack on Gemma 2B.

(Dataset sequence) OAcc ASR AUA ∆ OAcc ∆ ASR ∆ AUA
a2t attack

None -> GB 0.788 0.362 0.503 (baseline) (baseline) (baseline)
PB -> GB 0.785 0.516 0.380 -0.32% 42.56% -24.45%
HS -> GB 0.808 0.399 0.485 2.54% 10.36% -3.58%
GB -> PB 0.715 0.563 0.312 1.78% 6.17% -5.45%

None -> PB 0.703 0.530 0.330 (baseline) (baseline) (baseline)
HS -> PB 0.655 0.355 0.423 -6.76% -33.06% 28.18%
GB -> HS 0.788 0.359 0.505 2.94% 10.88% -2.32%
PB -> HS 0.760 0.461 0.410 -0.65% 42.35% -20.70%

None -> HS 0.765 0.324 0.517 (baseline) (baseline) (baseline)
Average -0.07873374735 13.20792545 -4.72032409

text fooler attack
None -> GB 0.788 0.788 0.168 (baseline) (baseline) (baseline)

PB -> GB 0.785 0.811 0.148 -0.32% 2.91% -11.94%
HS -> GB 0.808 0.719 0.228 2.54% -8.74% 35.82%
GB -> PB 0.715 0.755 0.170 1.78% -8.47% 38.78%

None -> PB 0.703 0.824 0.123 (baseline) (baseline) (baseline)
HS -> PB 0.655 0.677 0.213 -6.76% -17.90% 73.47%
GB -> HS 0.788 0.524 0.373 2.94% -1.03% 3.47%
PB -> HS 0.760 0.655 0.265 -0.65% 23.67% -26.39%

None -> HS 0.765 0.529 0.360 (baseline) (baseline) (baseline)
Average -0.07873374735 -1.593146129 18.86813805
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Table 13: Performance metrics for a2t attack and text fooler attack on GPT-2-xl.

(Dataset sequence) OAcc ASR AUA ∆ OAcc ∆ ASR ∆ AUA
a2t attack

None -> GB 0.828 0.293 0.585 (baseline) (baseline) (baseline)
PB -> GB 0.805 0.357 0.518 -2.72% 21.87% -11.54%
HS -> GB 0.838 0.331 0.560 1.21% 13.07% -4.27%
GB -> PB 0.683 0.399 0.410 0.00% -0.91% 0.61%

None -> PB 0.683 0.403 0.408 (baseline) (baseline) (baseline)
HS -> PB 0.698 0.409 0.413 2.20% 1.41% 1.23%
GB -> HS 0.843 0.401 0.505 0.60% 4.84% -2.42%
PB -> HS 0.815 0.426 0.468 -2.69% 11.59% -9.66%

None -> HS 0.838 0.382 0.518 (baseline) (baseline) (baseline)
Average -0.2337206765 8.644694125 -4.341461617

text fooler attack
None -> GB 0.828 0.724 0.228 (baseline) (baseline) (baseline)

PB -> GB 0.805 0.826 0.140 -2.72% 13.99% -38.46%
HS -> GB 0.838 0.690 0.260 1.21% -4.79% 14.29%
GB -> PB 0.683 0.665 0.228 0.00% 2.06% -4.21%

None -> PB 0.683 0.652 0.238 (baseline) (baseline) (baseline)
HS -> PB 0.698 0.713 0.200 2.20% 9.39% -15.79%
GB -> HS 0.843 0.507 0.418 0.60% -1.20% 3.09%
PB -> HS 0.815 0.528 0.385 -2.69% 2.75% -4.94%

None -> HS 0.838 0.514 0.405 (baseline) (baseline) (baseline)
Average -0.2337206765 3.700422687 -7.671279338

C Trade offs

The tables in this section (referenced in 3.4) present the full result related to the impact of two
adversarial attack types: TextFooler [8], which manipulates tokens, and A2T [16], which manipulates
gradients. These experiments compare the models’ robustness and accuracy under attack, focusing
on key performance metrics.

The results show a clear difference in the effectiveness of TextFooler and A2T attacks across
transformer-based models like GPT, BERT, and RoBERTa. Gradient-based attacks (A2T) are
generally less effective, with higher Accuracy Under Attack (AUA) observed, indicating difficulty
in perturbing internal representations. In contrast, TextFooler consistently achieves higher Attack
Success Rates (ASR) and lower AUA.

Larger models (RoBERTa-large, GPT-2-large) benefit more from adversarial training, showing greater
robustness improvements under both attacks. They exhibit more pronounced decreases in ASR and
increases in AUA, indicating better adaptation to adversarial defenses. Smaller models like BERT
and GPT-2 experience similar trends but with less significant gains.

TextFooler is more successful at reducing model accuracy, particularly in smaller models, achieving
higher ASR and lower AUA. A2T, while less effective, demonstrates higher AUA, especially in larger
models, showing that token manipulation remains a stronger attack strategy.

Adversarial training consistently enhances model robustness by reducing ASR and increasing AUA,
albeit at the cost of lower Original Accuracy (OA). Early exposure to adversarial examples enables
stronger defenses, particularly in larger models, though this comes at the expense of handling clean
data with slightly reduced precision.

In conclusion, adversarial fine-tuning reveals a trade-off: while it reduces OA, it significantly boosts
robustness against attacks, especially in models exposed early to adversarial data. Larger models show
greater adaptation to adversarial defenses, highlighting the importance of model size and architecture
in balancing accuracy and robustness.
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Table 14: Impact of TextFooller Attack on Model Performance.

Model Metrics HS PB GB FE HS FE PB FE GB ∆ HS % ∆ PB % ∆ GB %
Original data

Bert
OA 78.34 69.75 71.19 70.21 62.69 70.87 -10.38 -10.12 -0.45

AUA 30.43 21.76 26.45 31.21 21.41 23.43 2.56 -1.61 -11.42
ASR 87.13 83.62 82.84 78.51 80.68 79.64 -9.89 -3.52 -3.86

Bert-large
OA 79.09 70.50 71.94 70.96 67.44 68.62 -10.28 -4.34 -4.61

AUA 32.50 23.83 25.52 33.28 24.48 26.50 2.40 2.73 3.84
ASR 82.64 79.13 78.35 74.02 76.19 75.15 -10.43 -3.72 -4.08

RoBERTa
OA 80.19 71.34 72.72 73.13 68.92 70.23 -8.66 -3.40 -3.43

AUA 33.12 24.56 26.38 34.68 25.78 27.19 4.71 4.97 3.07
ASR 80.35 78.19 76.72 71.12 74.67 73.12 -11.49 -4.51 -4.69

RoBERTa-large
OA 81.23 73.45 74.83 75.34 70.95 73.92 -7.25 -3.41 -1.22

AUA 35.67 26.50 28.12 36.84 27.23 29.05 3.28 2.76 3.31
ASR 78.45 76.32 75.67 69.89 73.10 71.65 -10.89 -4.22 -5.30

GPT-2
OA 71.20 66.46 66.05 67.67 63.19 66.26 -4.96 -4.92 0.32

AUA 6.48 5.76 4.94 8.23 4.48 4.12 27.01 -22.22 -16.60
ASR 91.01 91.24 92.33 88.40 92.93 93.83 -2.87 1.85 1.62

GPT-2-medium
OA 75.16 70.42 70.01 71.97 67.49 70.56 -4.24 -4.16 0.79

AUA 4.32 3.60 2.78 5.91 2.16 1.80 36.81 -40.00 -35.25
ASR 93.52 93.75 94.84 90.51 95.04 95.94 -3.22 1.38 1.16

GPT-2-large
OA 75.08 68.26 68.99 69.74 66.87 68.62 -7.11 -2.04 -0.54

AUA 5.74 4.10 3.54 9.94 6.31 4.25 73.17 53.90 20.06
ASR 93.65 94.32 95.04 88.46 90.10 91.56 -5.54 -4.47 -3.66

Including adversarial training

Bert
OA 75.99 69.42 68.94 69.97 68.37 68.78 -7.92 -1.51 -0.23

AUA 29.33 27.32 27.46 31.59 28.01 29.34 7.71 2.53 6.85
ASR 83.66 80.15 79.37 75.04 77.92 76.17 -10.30 -2.78 -4.03

Bert-large
OA 78.04 71.47 70.99 72.02 70.42 70.83 -7.71 -1.47 -0.23

AUA 34.03 33.02 32.16 36.29 35.71 34.04 6.64 8.15 5.85
ASR 77.75 74.24 73.46 69.13 72.01 70.26 -11.09 -3.00 -4.36

RoBERTa
OA 79.23 72.34 71.73 74.18 71.19 72.45 -6.34 -1.59 1.00

AUA 35.12 34.19 33.42 37.23 36.12 35.67 6.01 5.65 6.73
ASR 76.24 73.68 72.58 67.23 71.56 69.78 -11.82 -2.88 -3.85

RoBERTa-large
OA 80.50 73.78 73.00 76.12 72.68 74.29 -5.45 -1.49 1.77

AUA 37.50 35.23 34.67 39.12 37.45 36.23 4.32 6.30 4.50
ASR 75.45 72.34 71.78 68.10 70.34 69.23 -9.85 -4.27 -3.985

GPT-2
OA 72.80 65.98 66.71 66.65 63.78 65.53 -8.45 -3.33 -1.77

AUA 8.21 6.57 6.01 14.51 10.82 8.76 76.74 64.69 45.76
ASR 90.46 91.13 91.85 85.79 87.43 88.89 -5.16 -4.06 -3.22

GPT-2-medium
OA 74.03 67.21 67.94 68.72 65.85 67.60 -7.17 -2.02 -0.50

AUA 7.35 5.71 5.15 13.72 10.03 7.97 86.67 75.66 54.76
ASR 91.58 92.25 92.97 86.93 88.57 90.03 -5.08 -3.99 -3.16

GPT-2-large
OA 75.08 68.26 68.99 69.74 66.87 68.62 -7.11 -2.04 -0.54

AUA 5.74 4.10 3.54 9.94 6.31 4.25 73.17 53.90 20.06
ASR 93.65 94.32 95.04 88.46 90.10 91.56 -5.54 -4.47 -3.66
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Table 15: Impact of A2T Attack on Model Performance.

Model Metrics HS PB GB FE HS FE PB FE GB ∆ HS % ∆ PB % ∆ GB %
Original data

Bert
OA 78.07 69.48 70.92 69.94 62.42 70.6 -10.41 -10.16 -0.45

AUA 54.26 45.59 50.28 55.04 45.24 47.26 1.44 -0.77 -6.01
ASR 30.61 34.31 30.5 21.55 29.73 33.1 -29.60 -13.35 8.52

Bert-large
OA 77.82 69.23 70.67 71.17 63.65 71.83 -8.55 -8.06 1.64

AUA 61.60 52.93 57.62 62.38 52.58 54.60 1.27 -0.66 -5.24
ASR 23.69 27.39 23.58 15.87 22.67 21.95 -33.01 -17.23 -6.91

RoBERTa
OA 78.45 70.50 72.15 73.30 65.95 73.50 -6.56 -6.46 1.87

AUA 63.10 55.45 59.10 64.25 56.05 57.95 1.82 1.08 -1.95
ASR 22.10 26.30 24.50 14.75 21.20 19.35 -33.24 -19.39 -20.98

RoBERTa-large
OA 81.12 73.48 75.62 76.03 70.37 76.89 -6.10 -4.23 1.68

AUA 65.24 58.37 61.78 66.78 59.24 60.97 2.36 1.49 -1.31
ASR 20.45 24.68 22.57 12.67 19.78 18.34 -38.04 -19.85 -18.7

GPT-2
OA 73.88 63.05 67.36 68.35 65.7 68.61 -7.49 4.20 1.86

AUA 50.41 39.99 45.81 52.57 43.25 46.2 4.28 8.15 0.85
ASR 31.8 36.52 31.64 23.29 34.06 32.26 -26.76 -6.74 1.96

GPT-2-medium
OA 75.55 70.65 69.03 71.22 68.57 71.48 -5.73 -2.94 3.55

AUA 47.52 44.1 42.92 50.58 45.26 44.21 6.44 2.63 3.01
ASR 34.92 35.64 34.76 29.32 34.62 35.60 -16.04 -2.86 2.4

GPT-2-large
OA 76.33 71.28 69.81 72.03 69.34 72.25 -5.63 -2.72 3.50

AUA 45.18 41.76 40.58 48.37 43.05 42.21 7.06 3.09 4.02
ASR 37.33 38.05 37.17 31.69 36.99 37.97 -15.11 -2.79 2.15

Including adversarial training

Bert
OA 75.8 69.23 68.75 69.78 68.18 68.59 -7.94 -1.52 -0.23

AUA 50.25 48.24 48.38 52.51 48.93 50.26 4.50 1.43 3.89
ASR 33.92 30.41 29.63 25.3 28.18 26.43 -25.41 -7.33 -10.80

Bert-large
OA 74.99 68.42 67.94 70.53 68.93 69.34 -5.95 0.75 2.06

AUA 57.20 55.19 55.33 59.46 55.88 57.21 3.95 1.25 3.40
ASR 26.08 22.57 21.79 17.46 20.34 18.59 -33.05 -9.88 -14.69

RoBERTa
OA 76.50 69.20 69.15 72.00 69.75 71.20 -5.88 0.80 2.97

AUA 59.35 56.75 57.10 61.25 57.55 58.75 3.20 1.41 2.89
ASR 24.50 22.10 20.95 16.25 19.90 18.07 -33.67 -9.95 -13.74

RoBERTa-large
OA 79.63 72.18 71.92 74.79 71.78 73.34 -6.07 -0.55 1.98

AUA 62.72 59.18 58.67 64.89 60.32 61.45 3.46 1.93 4.73
ASR 22.73 21.36 20.79 14.89 18.12 17.03 -34.52 -14.98 -18.10

GPT-2
OA 73.41 62.59 65.94 67.58 62.86 68.05 -7.94 0.43 3.20

AUA 53.12 39.83 39.82 50.96 48.05 41.17 -4.07 20.64 3.39
ASR 27.18 36.57 39.43 24.39 23.48 39.46 -10.26 -35.79 0.08

GPT-2-medium
OA 74.95 64.13 67.48 69.36 64.64 69.83 -7.46 0.80 3.48

AUA 51.01 44.72 37.71 48.98 46.07 39.19 -3.98 3.02 3.92
ASR 29.87 39.26 42.12 27.12 34.21 42.19 -9.21 -12.86 0.17

GPT-2-large
OA 74.81 67.99 68.72 69.61 66.74 68.49 -6.95 -1.84 -0.33

AUA 4.71 3.07 2.51 11.74 8.05 5.99 149.26 162.21 138.65
ASR 94.36 95.03 95.75 88.96 90.60 92.06 -5.72 -4.66 -3.85
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