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ABSTRACT

Contrastive learning has emerged as a powerful framework for learning general-
izable representations, yet its theoretical understanding remains limited, particu-
larly under imbalanced data distributions that are prevalent in real-world applica-
tions. Such an imbalance can degrade representation quality and induce biased
model behavior, yet a rigorous characterization of these effects is lacking. In
this work, we develop a theoretical framework to analyze the training dynamics of
contrastive learning with Transformer-based encoders under imbalanced data. Our
results reveal that neuron weights evolve through three distinct stages of training,
with different dynamics for majority features, minority features, and noise. We
further show that minority features reduce representational capacity, increase the
need for more complex architectures, and hinder the separation of ground-truth
features from noise. Inspired by these neuron-level behaviors, we show that prun-
ing restores performance degraded by imbalance and enhances feature separation,
offering both conceptual insights and practical guidance. Major theoretical find-
ings are validated through numerical experiments.

1 INTRODUCTION

Contrastive learning has emerged as a powerful paradigm in representation learning, effectively
leveraging unlabeled data without relying on labels. Within this framework, samples with similar
semantic meaning are treated as positive pairs, while those with different semantics are considered
negative pairs. By pulling positive pairs closer together and pushing negative pairs farther apart
in the representation space, contrastive learning enables models to capture rich and discriminative
features. Compared with supervised learning, the resulting representations are often more robust
and less sensitive to noise (Xue et al., 2022; Ghosh & Lan, 2021; Zhong et al., 2022a; Jiang et al.,
2020; Yang & Xu, 2020; Kang et al., 2020). This approach has demonstrated remarkable success
across a wide range of applications (Zhong et al., 2022b; Zhang et al., 2022; Jiang et al., 2023; Luo
et al., 2023) and has been particularly influential in multi-modal learning (Nakada et al., 2023; Khan
et al., 2025), driving major advances in the early development of vision-language models (Radford
et al., 2021; Li et al., 2022; 2023).

Despite its strengths, contrastive learning struggles with class imbalance in real-world datasets Jiang
et al. (2021), where majority classes dominate pair formation and minority classes are underrepre-
sented. This imbalance hinders the capture of discriminative features for minority classes and de-
grades representation quality. Conventional approaches to class imbalance in supervised learning
typically rely on re-weighting and resampling, and these ideas have inspired analogous methods in
contrastive learning. Re-weighting strategies adjust the contribution of pairs or instances to reduce
the dominance of majority classes (Cui et al., 2019; Huang et al., 2016), while resampling meth-
ods construct more balanced training batches by oversampling minority samples or undersampling
majority ones (Drummond & Holte, 2003; He & Garcia, 2009; Peng et al., 2020). Although these ap-
proaches have shown effectiveness in certain cases, their application in contrastive settings remains
challenging, as they often rely on accurate class labels that are unavailable in self-supervised learn-
ing. To address this limitation, an alternative line of research has proposed pruning-based methods,
which have been empirically validated to enhance the representation of underrepresented classes
(Jiang et al., 2021; Qian et al., 2022).
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Despite the progress made by these approaches, most efforts have been largely empirical, relying on
heuristic methods to alleviate the imbalance problem. While these techniques often provide perfor-
mance gains in practice, they do not explain why or how imbalance undermines the quality of learned
representations. Recent work has begun to develop theoretical understandings of contrastive learn-
ing, primarily addressing questions such as its superiority over traditional generative approaches like
GANs (Ji et al., 2023), the necessity of data augmentation for effective representation learning (Wen
& Li, 2021), and its ability to produce representations that reduce the sample complexity of down-
stream tasks (Garg & Liang, 2020). Nonetheless, these studies have not considered the implications
of imbalanced data distributions.

In this work, we provide a theoretical analysis of how neurons learn feature representations through
contrastive training. We study a simplified but representative setting: a Transformer-MLP frame-
work with a single-head attention mechanism followed by an MLP with bilateral ReLU activations.
To make the analysis clear, we use a structured data model where each input includes majority and
minority features with different frequencies. This setup highlights the key role of feature frequencies
and helps us describe their impact on training dynamics and how neurons learn features. In turn,
the model allows us to formalize how contrastive learning enhances majority features and drives
neurons to learn purer feature representations. Overall, our paper makes three main contributions:

First, we develop a theoretical framework to characterize the training dynamics of contrastive
learning under Transformer-based encoders with an imbalanced data distribution. We show
that learning proceeds in three stages: first, neuron weights grow in feature directions while non-
feature components are suppressed; Second, Lucky neurons then specialize in single features, and
ordinary neurons learn a mix of features; Finally, each neuron converges in a way that guarantees a
small training loss, becoming strongly aligned with one or more features, weakly aligned with other
features, and remaining small in non-feature directions.

Second, we quantitatively characterize how the presence of minority features influences neu-
rons’ learning capacity and, consequently, representation learning. Our analysis reveals that
imbalance degrades representation performance in multiple ways: it slows the learning of minority
features, decreases the number of neurons that specialize in a single feature, and produces a chain
effect that necessitates a more complex model to adequately capture all features.

Third, magnitude-based pruning can enhance the learning of minority features. Our results re-
veal that magnitude-based pruning enhances updates along minority feature directions, encouraging
more neurons to specialize in pure minority features and thereby yielding more robust and balanced
representations. Intuitively, neurons with small magnitudes are more sensitive to samples containing
minority features, which implicitly allows pruning to amplify their contribution.

1.1 RELATED WORK

Data Imbalance in Self-Supervised Learning: Data imbalance or long-tail data has been a long-
standing challenge since the early development of supervised learning (Chu et al., 2020; Liu et al.,
2020; Yang et al., 2022; Chawla et al., 2002). At a high level, tackling data imbalance follows a
simple principle: balancing the influence of different groups of data during weight updates, typi-
cally through re-sampling (Buda et al., 2018; Choi et al., 2018), which alters the data distribution,
or re-weighting (Mahajan et al., 2018), which adjusts loss contributions across classes. However,
without label information, as in self-supervised learning (SSL), these strategies are far more difficult
to apply, and only a few works have addressed the imbalance. Beyond re-weighting and re-sampling
(Lin et al., 2017; Shrivastava et al., 2016; Shang et al., 2024; Shen et al., 2016), other alternative ap-
proaches have been proposed: optimization-based regularization for rare samples (Liu et al., 2021),
mixup for implicit rebalancing (Li & Jia, 2025), and pruning as an implicit means of detecting
long-tail data (Jiang et al., 2021; Qian et al., 2022).

Convergence and Generalization Analysis of Contrastive Learning: Despite its empirical suc-
cess, contrastive learning lacks a mature theoretical understanding, largely due to the complexity of
its loss function. Early research investigates why augmentation is essential for the success of con-
trastive learning, showing that such an alignment between augmented positive pairs facilitates learn-
ing useful representations (Saunshi et al., 2022; Tian et al., 2020; Saunshi et al., 2019; Wen & Li,
2021). Tian et al. (2021); Wang et al. (2023) establishes a connection between the gradients of con-
trastive learning and graph neural networks, highlighting interpretability through a graph-theoretic
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perspective. HaoChen et al. (2021) also explores the connections between contrastive learning and
graph theory, proposing a new loss function linked to graph spectral clustering to help explain its
success. Wen & Li (2021) emphasizes the necessity of data augmentation for breaking dependencies
on spurious noise. None of these works has explored how imbalanced data influences the training
dynamics of contrastive learning.

Feature Learning Paradigm: The mathematical framework in this paper is closely related to the
feature learning paradigm. Specifically, we assume the data follow a sparse coding model, which
is a mixture of latent features, and study the training dynamics of model weights to examine how
they align with these features. Most prior works focus on supervised learning (Allen-Zhu & Li,
2022; Zhang et al., 2023; Li et al., 2025; Cao et al., 2022), where features are tied to ground-truth
labels; however, such settings cannot be directly extended to contrastive learning. Because of the
complexity of analyzing fine-grained training dynamics, existing studies are typically limited to
simple one-hidden-layer neural networks, with some recent efforts exploring Transformers but still
restricted to a single layer (Huang et al., 2024; Oymak et al., 2023; Li et al., 2024), even under super-
vised settings. The most relevant work is (Wen & Li, 2021), which analyzes the training dynamics
of contrastive learning with one-hidden-layer feedforward networks. In contrast, our paper studies
Transformer architectures under a different data model, and further incorporates data imbalance,
providing a comprehensive analysis of how it influences the model’s ability to decouple features,
rather than being only a direct extension through feature magnitude changes.

2 PROBLEM FORMULATION AND ALGORITHM

Contrastive Learning Framework. Let X = [x(1), . . . ,x(L)] ∈ Rd1×L or Y ∈ Rd1×L be
an input sequence with L tokens. The goal of contrastive learning is to learn a mapping f(·) :
Rd1×L → Rm that outputs a meaningful embedding from the input sequence.

Let (Xn,Yn) denote a positive pair (e.g., derived from the same objective or sharing semantic
meaning), and let N denote a set of corresponding negative samples (e.g., random samples). The
InfoNCE loss with temperature parameter τ > 0 is defined as:

ℓ(fθ,Xn,Yn,N) := − log

(
esimfθ

(Xn,Yn)/τ∑
X∈{Yn}∪N e

simfθ
(Xn,X)/τ

)
, (1)

where the similarity function is given by

simfθ
(Xn,Yn) :=

〈
fθ(Xn), StopGrad

(
fθ(Yn)

)〉
, (2)

and StopGrad(·) acts as the identity in forward pass while blocking gradients in backpropagation.

Then, the learning objective is to minimize an empirical risk with l2-regularizer, i.e.,

L̂aug(fθ) = L̂(fθ) +
λ

2
∥θ∥2F =

1

K

K∑
k=1

ℓ
(
fθ,Xk,Yk,Nk

)
+
λ

2
∥θ∥2F , (3)

where θ is the neural network parameters.

Model Architecture: Transformer-MLP. We employ a simplified single-head self-attention mech-
anism on top of an MLP layer. Each input sequence is passed through the attention layer, where
every token serves as a query. Then, it is followed by a bilateral ReLU (BReLU) activation in the
MLP layer, where BReLUb(s) = ReLU(s − b) − ReLU(−s − b). Specifically, the embedding
function f is expressed as

fθ(Xn) =
(
h1(Xn), . . . , hm(Xn)

)⊤ ∈ Rm,

with hi(Xn) =

L∑
r=1

BReLU
b
(t)
i

(
⟨w(t)

i ,Attention(WQx(r)
n ,WKXn,WV Xn)⟩

)
.

(4)

Pruning Algorithm. To address the issue of data imbalance, we revisit (Jiang et al., 2021; Qian
et al., 2022) and propose a pruning algorithm that dynamically removes small-magnitude neuron

3
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weights during the forward pass, while retaining all parameters as trainable in the backward pass
1. Specifically, we initialize the MLP layer weights with Gaussian distributions and the attention
weights as identity matrices. The binary mask is initially set to all ones, meaning no neurons are
pruned at the start. At each epoch, a fraction α of the neurons with the smallest magnitudes are
pruned, and the corresponding binary mask is updated. During the forward pass, the masked param-
eters θ(t)mk are used to encode the inputs. In the backward pass, gradients are computed with respect
to the pruned model but applied to the full parameter set, namely, the gradient is calculated as

g(θ
(t)
t ,M (t)) :=

1

K

K∑
k=1

[
(ℓ′

p,θ
(t)
mk

− 1)hi(Yk)∇θhi(Xk) +
∑

Xn,s∈Nk

ℓ′
s,θ

(t)
mk

hi(Xn,s)∇θhi(Xk)
]
, (5)

where ℓ′p,· :=
exp
(
Simf· (Xk,Yk)/τ

)
∑

X∈{Yk}∪Nk
exp
(
Simf· (Xk,X)/τ

) is the positive logit and ℓ′s,· :=

exp
(
Simf· (Xk,Xn,s)/τ

)
∑

X∈{Yk}∪Nk
exp
(
Simf· (Xk,X)/τ

) is negative logit with respect to the native sample Xn,s.

Algorithm 1 Forward Magnitude Pruning with Backward Unmasked Update
Require: Training dataset {(Xk,Yk,Nk)}Kk=1 (positive pairs (Xk,Yk) and negative set Nk)
Require: Pruning ratio α
Require: Training epochs T , weight decay parameter λ, temperature τ

1: Initialize network parameters w(0)
i ∼ N (0, σ2

0Id1), W
(0)
K = W

(0)
Q = I .

2: Set the initial pruning mask M (0) ← 1 with the same shape as θ(0).
3: for t = 0 to T − 1 do
4: Magnitude based pruning: At each iteration t, prune α of the smallest magnitude parame-

ters in θ(t) by creating the corresponding binary mask M (t).
5: Forward (masked): Apply the mask to obtain θ

(t)
mk ← θ(t) ⊙M (t), then encode Xk, Yk,

and negatives Nk using f
θ
(t)
mk

.

6: Compute loss: L̂aug(fθ
(t)
mk

) = 1
K

∑K
k=1 ℓ

(
f
θ
(t)
mk

,Xk,Yk,Nk; τ
)
+ λ

2 ∥θ
(t)
mk∥2F .

7: Backward and update: Release the mask M (t) on the masked parameters and update the
full parameters by

θ(t+1) ← (1− ηλ)θ(t) − η · g(θ(t)t ,M (t))

8: end for
9: return θ(T )

Note that this procedure does not permanently eliminate any neurons for efficiency purposes, even
though a reduction in computation cost can be observed. The pruning mask acts as a temporary filter
by automatically removing small-magnitude neurons. As shown in Theorem 3.1, these neurons are
associated with minority features. Consequently, samples containing such features incur a higher
loss, which in turn encourages the model to allocate greater attention to them during training.

3 THEORETICAL ANALYSIS

3.1 KEY INSIGHTS OF THE FINDINGS

We first give a summary of the key insights from our analysis before turning to the data model and
the formal theoretical results. Our findings show how neurons gradually learn feature representations
across different stages of training. In particular, we have

(K1). Training dynamics of contrastive learning based on the Transformer-MLP framework.
The theory divides the learning process into three stages. In Stage 1 (Lemma 3.1), neuron weights
grow in feature directions at rates determined by the feature frequencies ϵj , while their components
in non-feature directions are suppressed. In Stage 2 (Lemma 3.2), lucky neurons inM⋆

j strengthen

1We do not introduce a new algorithm; instead, we adapt established approaches to our theoretical setting.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

their alignment with the feature direction Mj , and ordinary neurons inMj remain bounded by these
lucky neurons, so that the learned features become purer and non-feature components remain sup-
pressed. In the final stage, each neuron aligns with a specific set of features Ni, becoming strongly
aligned with some features, weakly with others, and remaining small in non-feature directions.

(K2). Feature frequency ratio controls neuron specialization. At convergence, each neuron is
dominated by features in Ni, with negligible contribution from other directions. First, the neuron
magnitude in Ni, denoted α, scales as εj

εmax
, so rarer features are learned more weakly. Second, the

size ofNi scales as d1−(εmin/εmax)
2

: smaller ratios enlargeNi and cause feature mixing, while larger
ratios shrink it and yield purer alignment. Third, the number of neurons specializing in purified
features scales as d−(εmax/εmin)

2

, which decreases as the gap between εmax and εmin grows. Since
contrastive learning works best when neurons specialize in purified features, imbalance introduces
three interrelated obstacles: minority features are learned with smaller magnitude, neurons mix
multiple features instead of staying pure, and the overall number of specialized neurons decreases.
Together, these effects weaken representation quality and require larger models to learn all features.

(K3). Pruning enhances minority feature learning. With pruning, neurons aligned with minority
features gain stronger updates of order α

d , while those aligned with non-minority features grow only
weakly, with updates of order α

d2 . At convergence, the coefficient of neurons learning a minority
feature can reach the same order as that of majority features, so the performance downgrade from
imbalance is alleviated. Intuitively, minority neurons are pruned more often because their magni-
tudes are smaller, which in turn amplifies the contribution of samples containing the minority feature
in gradient updates. As a result, pruning strengthens the minority feature, makes it clearly distin-
guished from other contributions, and drives more neurons to specialize in it, leading to more robust
representation learning.

Table 1: Summary of main notations

η Learning rate λ Regularization parameter
τ Temperature coefficient K Batch size
N Set of negative samples B The set of Yn and negative samples
ϵmin frequency of minority feature ϵmax frequency of majority feature
ϵj Feature frequency for feature j Ni Set of dominate features for neuron i
Mj Set of ordinary neurons for feature j M⋆

j Set of lucky neurons for feature j

3.2 ASSUMPTIONS

Data Model. Our data assumption is adopted from the widely used sparse coding model, which
constitutes a common foundation for theoretical analyses of deep learning (Allen-Zhu & Li, 2022;
Wen & Li, 2021). Moreover, sparse coding provides a conceptual framework for modeling real-
world data across diverse domains, including CV (Protter & Elad, 2008; Yang et al., 2009; Mairal
et al., 2014), NLP (Arora et al., 2018), compressed sensing (Candes & Recht, 2012; Candès & Tao,
2010), and neuroscience (Vinje & Gallant, 2000; Olshausen & Field, 1997; 2004; Foldiak, 2003).

Assumption 3.1 states that each token within a sample can be expressed as a weighted sum of a
subset of features from the dictionary matrix M , corrupted by additive noise ξ. Here, M denotes the
dictionary matrix, z represents the latent signal, and ξ corresponds to spurious noise. Importantly, in
the presence of noise, particularly when the noise level is comparable to or even exceeds the signal
magnitude, no linear mapping can recover the latent signal directly from the input. This makes the
model simple in form yet intrinsically challenging, thereby providing a favorable abstraction for
theoretical analyses of nonlinear neural networks.
Assumption 3.1 (Sparse Coding Model). For a paired data (Xn,Yn), the data structure is:

Xn =
[
Mz(1)

n + ξ(1)n , Mz(2)
n + ξ(2)n , . . . , Mz(L)

n + ξ(L)
n

]
Yn =

[
Mz+(1)

n + ξ+(1)
n , Mz+(2)

n + ξ+(2)
n , . . . , Mz+(L)

n + ξ+(L)
n

] (6)

Here, each z
(i)
n ∈ Rd represents the latent signal at the ℓ-th token, and ξ

(i)
n denotes the additive

noise. M = [M1, . . . ,Md] ∈ Rd1×d is the dictionary matrix, which is a column-orthonormal
matrix and satisfies ∥Mj∥∞ ≤ Õ

(
1√
d1

)
, ∀j ∈ [d]. We also assume d1 = poly(d).

5
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Assumption 3.2 requires that the latent signal be both bounded and sparse. Sparsity is a standard as-
sumption, introduced primarily to facilitate the theoretical analysis, yet it also agrees with empirical
observations that real-world data typically activate only a small subset of latent factors rather than
spreading energy across all coordinates. Moreover, the assumption enforces sign consistency across
tokens within the same sample, meaning that whenever a particular coordinate is active, its sign
remains identical across all tokens. This ensures that different parts of the same sample contribute
coherently to the underlying latent feature instead of producing conflicting activations.

Assumption 3.2 (Latent Signal). We have assumptions on the latent signal {z(i)}Li=1 with z(i) =

(z
(i)
1 , . . . , z

(i)
j , . . . , z

(i)
d )⊤: (i) all z(i)j are bounded and symmetric around zero over all samples.

Moreover, we have Pr(|z(i)n,j | ≠ 0) = Θ
(

log log d
d

)
; (ii) z(i)j share the same sign across all i ∈ [L].

Assumption 3.3 states that noise follows Gaussian distributions. This is a mild condition, as no
strong restriction is imposed on its variance. In particular, the noise magnitude can exceed that of
the sparse signal when d1 ≫ d. The assumption is adopted for analytical purposes and demonstrates
that contrastive learning can recover meaningful latent representations even in regimes where the
signal is dominated by noise.

Assumption 3.3 (Noise). Here each noise term ξ
(ℓ)
n and ξ

+(ℓ)
n for ℓ ∈ [L] is independently drawn

from the same distribution ξ
(ℓ)
n ∼ N (0, σ2

ξId1
), with variance σ2

ξ = Θ
(√

log d
d

)
.

Assumption 3.4 states that a pair of positive samples shares the same set of features when aggregated
over all tokens within the sample. Intuitively, this means that the two samples encode the same
semantic structure, even though their individual token-level representations may differ. In contrast,
a negative pair is formed by two random samples whose latent signals are completely independent.

Assumption 3.4 (Positive and Negative Pairs). A pair of samples Xn and Yn form a positive pair
if and only if supp

(∑L
ℓ=1 z

(ℓ)
n

)
= supp

(∑L
ℓ=1 z

+(ℓ)
n

)
, sign

(∑L
ℓ=1 z

(ℓ)
n

)
= sign

(∑L
ℓ=1 z

+(ℓ)
n

)
.

By contrast, negative pairs are defined such that the corresponding latent signals are independent.

Definition 3.1 states that each feature is controlled by ϵj . Intuitively, ϵj characterizes how often
feature j appears across the data. When ϵj is small, feature j is regarded as a minority feature.

Definition 3.1 (Majority and minority features). For each feature index j ∈ [d], and for all i ∈
[L] and all samples, the activation probability of the sparse signal satisfies: Pr

(∣∣z(i)
j

∣∣ ̸= 0
)

=

Θ
(
ϵj

log log d
d

)
. We define the majority features as those associated with ϵmax = maxj∈[d] ϵj , and

the minority features as those associated with ϵmin = minj∈[d] ϵj .

3.3 FORMAL THEORETICAL RESULTS

Theorem 3.1 analyzes the vanilla contrastive learning algorithm without pruning, showing how data
imbalance affects performance. Lemmas 3.1 and 3.2 provide intermediate steps toward its proof
and reveal how training dynamics evolve, despite the algorithm appearing to follow a consistent
gradient-based procedure. Theorem 3.2 then gives the results with pruning, showing how pruning
improves performance under imbalance.

3.3.1 VANILLA CONTRASTIVE LEARNING

Lemma 3.1 shows two main effects of contrastive learning in the first training stage: (a) neuron
weights grow in feature directions but are suppressed in non-feature directions, and (b) the growth
rate in a feature direction Mj depends on its frequency ϵj , with larger ϵj leading to faster growth
and smaller ϵj making the feature harder to capture early in training.

Lemma 3.1 (Stage 1). During the first training stage, the update of neuron weights w
(t)
i can be

bounded for all t ∈ [0, T1] as follows.

|⟨w(t+1)
i ,Mj⟩| ≥ |⟨w(t)

i ,Mj⟩|(1− ηλ+ ϵj
ηCz log log d

d
)− Õ

(η∥w(t)
i ∥2

poly(d1)

)
, (7)
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and |⟨w(t+1)
i ,M⊥

j ⟩| ≤ (1− ηλ)|⟨w(t)
i ,M⊥

j ⟩|+ Õ
(η∥w(t)

i ∥2
poly(d1)

)
. (8)

Before presenting the theoretical results in Stage 2, we first categorize neurons into two groups.
The ordinary neurons Mj strongly align with a certain direction, while the lucky neurons M⋆

j
form a special subset that aligns with only one feature direction (see Appendix B for the formal
definition). In Stage 2: (a) lucky neurons inM⋆

j grow significantly in alignment with Mj , controlled
by ϵj , though their number remains small; (b) ordinary neurons inMj are bounded by the feature
components of lucky neurons up to a constant factor.

Lemma 3.2 (Stage 2). During the second training stage, the update of neuron weights w(t)
i can be

bounded for all t ∈ [T1, T2] as follows.

(a) For each j ∈ [d], if i ∈M⋆
j , then:

|⟨w(T2)
i ,Mj⟩|2 ≥ 2 · εj

εmax
· ∥w(T1)

i ∥22, with |M⋆
j | ≥ m · d

−( εmax
εmin

)2
. (9)

(b) For each j ∈ [d], if i′ ∈Mj and i ∈M⋆
j , then:

|⟨w(T2)
i′ ,Mj⟩| ≤ O(|⟨w(T2)

i ,Mj⟩|). (10)

Theorem 3.1 establishes the convergence of the algorithm. In particular, (11) shows that the al-
gorithm converges with bounded training error. Moreover, (12) characterizes the structure of the
learned neuron weights: upon convergence, they become strongly aligned with a subset of features
within Nj , weakly aligned with the remaining features, and remain small in the non-feature direc-
tions. The size of Nj is bounded as in (14), and only a limited number of neurons specialize in
learning a single feature.
Theorem 3.1 (Stage 3: Convergence). Let m = dCm be the number of neurons and τ =
polylog(d). Suppose we train the neural net fθ via contrastive learning, and consider iterations
T ∈ [T3, T4] with T3 = d1.01

η and T4 = d1.99

η . Then the following guarantees hold:

1

T

∑
t∈[T ]

Laug(fθ(t)) ≤ o(1) (11)

Moreover, for each neuron i ∈ [m] and t ∈ [T3, T4], the weight will learn the following set of
features:

w
(t)
i =

∑
j∈Ni

αi,jMj +
∑
j /∈Ni

α′
i,jMj +

∑
j∈[d1]\[d]

βi,jM
⊥
j , (12)

where

αi,j ∈
[

ϵj
ϵmax

τ
Ξ2
,

ϵj
ϵmax

τ
]
, α′

i,j ≤ o
(

ϵj
ϵmax

1√
d

)
∥w(t)

i ∥2, |βi,j | ≤ o
(

1√
d1

)
∥w(t)

i ∥2. (13)

Furthermore, the size of Ni is bounded as

|Ni| = O
(
d1−(

ϵmin
ϵmax

)
2)
. (14)

Finally, for each Mj , there are at least Ω(m · d−( εmax
εmin

)2
) neurons i ∈ [m] such that Ni = {j}.

Remark 1: For a neuron wi, its convergent weights are aligned with a subset of features Ni. In
contrast, all other feature directions are smaller by an order of 1√

d
. Hence, we can say that neuron

wi is dominated by the features in Ni. Moreover, the neurons associated with learning feature j
are influenced by the frequency of that feature, which intuitively explains how imbalance shapes the
distribution of neuron weights.

Remark 2: We emphasize that the success of contrastive learning relies on neurons that specialize
in a single feature, referred to as lucky neurons, i.e., ∪jM⋆

j . In contrast, neurons that learn mixtures
of features are useful only for a limited subset of downstream tasks. The number of lucky neurons

7
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for each feature is lower bounded by m · d−( εmax
εmin

)2 , as derived from (9). Consequently, beyond
the reduced neuron magnitude in minority feature directions, imbalance also decreases the number
of neurons that learn purified features. This, in turn, requires a more complex model with a larger
number of neurons to capture all features, leading to higher computational cost. Moreover, the upper
bound of |Ni| increases as the ratio εmin

εmax
decreases, which is undesirable because it indicates that

more neurons learn mixtures of features rather than pure ones.

3.3.2 CONTRASTIVE LEARNING WITH PRUNING

Theorem 3.2 describes the training dynamics in the pruning setting, serving as the counterpart to the
earlier result obtained without pruning. To highlight the effect more clearly, we focus on stage 3.
In particular, pruning amplifies the learning of minority features: (a) for lucky neurons aligned with
minority directions, the neuron weights increase in that direction at the order of α

d , where α is the
pruning ratio. (b) In contrast, neurons associated with non-minority features exhibit much smaller
growth, with updates in those directions on the order of α

d2 per iteration. (c) Most importantly, when
training converges, the coefficients αi,j⋆ , projecting neuron weights onto the minority feature Mj⋆ ,
become dominant and independent of the ratio εmin

εmax
.

Theorem 3.2 (Pruning: Reinforcing Minority Feature Learning). With pruning ratio α, the
following statements hold:

(a) When i∗ ∈M∗
j∗ , we have

⟨w(t+1)
i⋆ ,Mj∗⟩ ≥

(
1− ηλ+Ω

(
ηϵ2j∗α

Cz log log d

d

))
⟨w(t)

i⋆ ,Mj∗⟩. (15)

(b) When ∀i and j ̸= j∗, we have

⟨w(t+1)
i ,Mj⟩ ≤

(
1 +O

(
ηϵ3j∗α

Cz log log d

d2

))
⟨w(t)

i ,Mj⟩. (16)

(c) For neuron i ∈M⋆
j⋆ and t = T5, contrastive learning learns the following decomposition:

w
(t)
i = αi,j∗Mj∗ +

∑
j /∈Ni

α′
i,jMj +

∑
j∈[d1]\[d]

βi,jM
⊥
j , (17)

where

αi,j∗ ∈
[
τ

Ξ2
, τ

]
, α′

i,j ≤ o
((

1 +
1

d

)
· 1√

d

)
∥w(t)

i ∥2, |βi,j | ≤ o
(

1√
d1

)
∥w(t)

i ∥2. (18)

Finally, for feature Mj⋆ , there are at least Ω(m · d−1) neurons i ∈ [m] such that Ni = {j⋆}.

Remark 1: We would like to clarify two implicit assumptions underlying the results. First, the
pruning ratio is implicitly upper bounded by |Mj⋆ |, so that under magnitude-based pruning, we
can guarantee that all pruned neurons are those aligned with the minority feature Mj⋆ . In practice,
however, the pruning ratio can be extended to include any neurons that have learned minority fea-
tures, i.e., any i with j ∈ Ni. Second, we assume that the magnitude of all non-minority features
is comparable. Intuitively, in the general case, neurons associated with the minority feature grow
until their magnitude reaches the level of the second-smallest feature. At that point, both the original
minority feature and the second-smallest feature effectively become the new minority features, and
the process continues inductively across features. A detailed analysis of this extension is omitted for
simplicity, so that we can prove and present the pruning benefits in a clear manner.

Remark 2: The difference between neurons learning minority features and those learning majority
features arises from their sensitivity to pruning. As shown in Theorem 3.1, the magnitude of a
neuron is determined by its dominant feature and the frequency of that feature. For neurons inMj⋆

that specialize in purified minority features, their magnitudes are significantly smaller than those of
other neurons and are therefore more likely to be pruned. This pruning effect results in relatively
smaller positive logits and larger negative logits on samples containing the minority feature (see
(5)), thereby increasing the influence of these samples on the gradient updates. Since features are

8
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assumed to be independent across the data, such samples have a low probability of simultaneously
containing other features, resulting in a difference on the order of 1/d in the growth dynamics of
these neurons.

Remark 3: Unlike in the vanilla learning paradigm, the magnitude of αi,j⋆ no longer depends
on the ratio εmin

εmax
, which suggests that the representation of the minority feature is not suppressed

by data imbalance. Although the coefficients α′
i,j for other features may grow slightly due to the

extended number of iterations required for convergence, their increase remains only on the order of
1/d. Consequently, αi,j⋆ ≫ α′

i,j , which suggests that the minority feature is strongly amplified and
clearly distinguished from other contributions. This, in turn, drives more neurons to specialize in
the purified minority feature, leading to more robust and effective representation learning.

4 NUMERICAL EXPERIMENTS

Experiments on CIFAR10-LT, CIFAR100-LT, and ImageNet-LT. Table 4 reports the results of
linear probe evaluation on CIFAR10-LT, CIFAR100-LT, and ImageNet-LT under long-tailed set-
tings, comparing vanilla contrastive learning (w/o pruning) against our proposed approach (w/ prun-
ing). Following the setup in (Jiang et al., 2021; Kang et al., 2020; Chen et al., 2020), models are
first pretrained and then evaluated using a linear probe, where a linear classifier is trained on frozen
representations. The imbalance ratio, ρ, is defined as the ratio between the number of samples in the
majority and minority classes, with larger values indicating more severe imbalance. Two evaluation
metrics are considered: overall classification accuracy (%) and the accuracy gap (∆20) between the
top 20% head classes and the bottom 20% tail classes. The results show that pruning consistently
improves accuracy across all datasets, with improvements becoming more substantial as ρ increases.
Furthermore, pruning generally reduces ∆20, indicating better balance between head and tail classes.
These results indicate that pruning not only enhances overall downstream task performance but also
reduces the performance gap between head and tail classes. We also provide additional synthetic
data experiments to support our theoretical insights; due to space limitations, these results are de-
ferred to Appendix A.2.

Table 2: Linear probe accuracy (%) on CIFAR10-LT, CIFAR100-LT, and ImageNet-LT. ∆20 denotes
the accuracy gap between the top 20% head classes and bottom 20% tail classes.

Dataset ρ
Accuracy ∆20

w/o pruning w/ pruning w/o pruning w/ pruning
CIFAR10-LT 10 79.25± 1.03 84.92± 0.67 3.42± 1.02 2.99± 0.92

50 75.58± 0.84 83.60± 1.02 3.92± 1.21 3.35± 0.76
100 74.24± 0.82 81.31± 0.94 5.69± 1.35 5.62± 0.99

CIFAR100-LT 10 51.21± 1.21 56.33± 1.51 2.45± 0.57 1.37± 0.46
50 49.32± 0.45 56.12± 0.32 4.95± 1.02 2.57± 0.92

100 47.12± 0.51 54.93± 0.50 7.11± 0.45 4.38± 0.22

ImageNet-LT 256 63.21 65.12 8.47 7.21

5 CONCLUSION

This work provides a theoretical analysis of the training dynamics of a Transformer-MLP model in
learning feature representations through contrastive learning under imbalanced data settings. Specif-
ically, we quantitatively characterize how the presence of minority features reduces the number of
neurons that capture those features, as well as the number of “lucky neurons” that specialize in a
single feature. This reduction, in turn, harms the overall representation learning ability of the model.
Motivated by this theoretical characterization, we revisit the magnitude-based pruning approach to
address data imbalance. In particular, we theoretically demonstrate that pruning can enhance gra-
dient updates along the minority feature direction. This encourages more neurons to specialize in
pure minority features, thereby yielding more robust and balanced representations. Looking ahead,
promising directions include exploring alternative strategies beyond pruning that could further pro-
mote minority-feature learning.
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LLM USAGE DISCLOSURE

We used large-language models (ChatGPT) to aid in polishing the writing of this paper. For numer-
ical experiments, we employed AI-assisted coding tools (GitHub Copilot and ChatGPT) to support
code development.
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A OVERVIEW OF THE APPENDIX AND PROOF SKETCH

The appendices are organized systematically to provide supporting materials for the main text. Ap-
pendix B introduces key notations and definitions, along with basic lemmas describing properties
at initialization. Appendices C, D, and E present the proofs of the training dynamics of vanilla
contrastive learning (without pruning) under the imbalanced data setting. Specifically, Appendix C
contains the proof of Stage 1, corresponding to Lemma 3.1 in the main text; Appendix D contains
the proof of Stage 2, corresponding to Lemma 3.2; and Appendix E contains the proof of Stage
3, corresponding to Theorem 3.1, which concludes the analysis with the final convergence results.
Appendix F then provides the proof of our proposed algorithm (with pruning), corresponding to
Theorem 3.2 in the main text. We recommend that readers first consult the proof sketch before
examining the detailed lemmas and proofs in the appendices.

In addition, Appendices G-K collect the proofs of the lemmas referenced throughout the earlier
appendices. To maintain readability, some of these lemma proofs are included only in the supple-
mentary material. While these details are not essential for following the main arguments, we provide
them in full for completeness.

A.1 PROOF SKETCH

In Stage 1, we analyze how neurons learn the features. Each neuron gradually learns the relevant
feature directions while hardly learning the non-feature directions. Concretely, the projection of a
neuron weights onto the feature subspace, though small at the beginning, grows rapidly during train-
ing and becomes significant, reaching the order of Ω(∥w(T1)

i ∥22) (see Appendix D, Theorem C.1),
while the projection onto the non-feature subspace stays nearly unchanged. The reason why the
neuron weights grow toward the feature subspace is that the latent variable z(i)n,j and z+(i)

n,j are depen-
dent. This dependence produces an incremental term of order: ϵj ηCz log log d

d , which accumulates
during training and drives the neuron weights further into the feature space. In contrast, because the
feature are orthogonal to the non-feature directions, and the latent variable z(i)n,j is independent of
the noise, the weights in the non-feature subspace remain essentially unchanged. The only variation
that appears there is a negligible increment of size about 1

poly(d1)
. (see Appendix C, Lemma C.1).

In Stage 2, the lucky neurons with large projection on a feature direction become activated and
align clearly with that feature. If a neuron does not belong to Mj , its projection on feature j re-
mains small, so it cannot be activated and has only weak alignment. The projection on non-feature
directions stays very small, so neurons do not learn the non-feature components (Appendix D,
Lemma D.1). As a result, if neuron i is lucky for feature j, the projection of w(T2)

i onto Mj is on
the order of the Ω(1)∥w(T2)

i ∥2, meaning the neuron has already focused on Mj (see Appendix D,
Theorem D.1).

In Stage 3, neurons inM∗
j continue to strengthen their projection on the corresponding feature j,

and this projection remains the dominant part of their weight. Neurons not in Mj keep only a
small projection on feature j, so they cannot be activated. The projections on non-feature directions
stay negligible throughout. Overall, the growth of neurons continues along the same directions
established earlier, and the network starts to converge around T3. At this point, each neuron weight
vector wi eventually aligns with a set of features Ni, which corresponds to the features that already
had some degree of alignment with wi at initialization.

In pruning stage, we rigorously show that pruning the neurons which have learned minority fea-
tures enhances the learning of those features. After pruning, the gradients in backpropagation for
neurons aligned with minority features become significantly stronger, which forces these neurons to
further learn the minority features. To some extent, this reinforcement compensates for their lower
frequency ϵj∗ compared to majority features. In contrast, for neurons associated with majority fea-
tures, pruning does not change their gradients, so they continue to update in the same speed and
direction as before. As a result, the decomposition of neurons aligned with minority features be-
comes concentrated on those features, while contributions from other features and from non-feature
directions remain suppressed and negligible.
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A.2 SYNTHETIC EXPERIMENTAL SETTINGS

In this subsection, we provide the detailed settings of our synthetic experiments. We follow the
standard sparse coding model to generate synthetic data, consistent with our main paper. Each
generated data sample is passed into a Transformer to obtain a token embeddings, which is then
processed by an MLP trained with a contrastive objective. After training, we evaluate the alignment
of the learned neurons to the minority feature. Specifically, we report: (i) the number of neurons
with alignment above a threshold (Figure 1); (ii) the maximum alignment value (Figure 2); (iii) the
mean cosine similarity between positive pairs on the test set (Figure 3); and (iv) the regression test
mean squared error (MSE) (Figure 4).

Experiment 1–2 (Alignment with the minority feature). We evaluate how well the learned neu-
rons align with the minority feature. Specifically, for each wi, we compute its normalized pro-
jection onto the minority feature. Figure 1 reports the number of neurons with projection larger
than 0.3, while Figure 2 shows the maximum projection value across neurons. We vary εmin from
0.1 to 1.0, and consider different noise-to-signal ratio (NSR) levels, where NSR = σ2d1 with
σ2 ∈ {(1/100)2, (3/100)2, (5/100)2} and d1 = 500. Each experiment is independently repeated
100 times, and we report the mean results. The results demonstrate that as εmin increases, both the
number of aligned neurons and the maximum alignment consistently grow, providing direct empir-
ical support for our theoretical results. The detailed hyperparameter settings can be found in the
code.

Experiment 3 (Average cosine similarity on the test set). We evaluate performance on the test
set using the average cosine similarity between positive pairs. At test time, we keep the feature
space identical. For each configuration, we generate 5000 test pairs with a fixed test seed and report
the mean cosine similarity. We vary εmin from 0.05 to 0.5 in increments of 0.05, and use σ2 ∈
(5/100)2, (7.5/100)2, (10/100)2 to compute the corresponding NSR levels. Each configuration
is independently repeated 100 times, and the averaged results are reported. The results in Figure
3 show that the average test cosine similarity consistently increases as εmin grows, indicating a
stronger ability to learn the minority feature. Consequently, the quality of the learned features on the
test set is enhanced, the model generalizes better, and the test performance becomes stronger, which
provides further empirical support for our theoretical results. Detailed hyperparameter settings can
be found in the code.

Experiment 4 (Test MSE on the downstream regression task). We evaluate the performance
of the downstream regression task on the test set, measured by Test MSE. Both the downstream
training stage and the test stage use a unified feature space. A linear regression head is trained on
the representations obtained from upstream learning, using 1000 training pairs, and then evaluated
on 5000 test pairs with a fixed test seed. In the setup, we vary εmin from 0.05 to 0.5 with a step
size of 0.05, and use σ2 ∈ {(3/100)2, (5/100)2, (7.5/100)2} to compute the corresponding NSR
levels. Each configuration is independently repeated 100 times, and the averaged results are reported
(Figure 4). The results show that as εmin increases, the test MSE consistently decreases, indicating
a stronger ability to learn the minority feature. Consequently, the model achieves better overall
learning and stronger generalization in downstream tasks, which is consistent with our theoretical
analysis. Detailed hyperparameter settings can be found in the code.

Figure 1: Number of neurons with |⟨wi,Mj⟩|
∥wi∥∥Mj∥ ≥

0.3 vs εmin for different NSR values.
Figure 2: Maximum |⟨wi,Mj⟩|

∥wi∥∥Mj∥ vs εmin for dif-
ferent NSR values.
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Figure 3: 1
N

∑N
n=1

⟨f(Xn),f(Yn)⟩
∥f(Xn)∥∥f(Yn)∥ vs εmin for

different NSR values.
Figure 4: Downstream regression task: Test
MSE vs εmin for different NSR values.

B NOTATIONS AND LEMMAS

To streamline the presentations, we begin by introducing the key notations and outlining key funda-
mental derivations that will serve as the basis for the subsequent analysis.

Notations. First, we introduce the notations that will appear in the appendix.

Let z(r)
X denote the representation of the r-th token of data sample Xn after passing through the

transformer. Similarly, z(s)
Y denotes the s-th token of data sample Yn after the transformer.

Empirical Gradient. To facilitate the calculation of the gradient of the loss function
ℓ
(
fθ,Xk,Bk

)
with respect to the weights {w(t)

i }i∈[m], we introduce the following notation. We
denote the positive logit by ℓ′p,t(Xn,B) and the negative logits by ℓ′s,t(Xn,B).

ℓ′p,t(Xn,B) :=
exp

(
Simft(Xn,Yn)/τ

)∑
X∈B exp

(
Simft(Xn,X)/τ

) , (19)

ℓ′s,t(Xn,B) :=
exp

(
Simft(Xn,Xn,s)/τ

)∑
X∈B exp

(
Simft(Xn,X)/τ

) . (20)

For convenience, we simplify the positive logit ℓ′
p,θ(t)(Xn,Yn,Nn) as ℓ′p,t, and the negative logit

ℓ′
s,θ(t)(Xn,Yn,Xn,s,Nn) as ℓ′s,t. For clarity of exposition, we suppress the dependence on (Xn,B)

when it can be inferred from the context.

Then, the gradient of the empirical risk function L̂(ft) with respect to the weight w(t)
i at iteration t

is given by:

∇wi
L̂(ft) =

1

K

K∑
n=1

[
(ℓ′p,t − 1)hi(Yn)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

z
(r)
X

+
∑

Xn,s∈N

ℓ′s,thi(Xn,s)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

z
(r)
X

]
.

(21)

Population Gradient. Similar to the empirical gradient, the gradient of the population risk func-
tion L(ft) with respect to the weight w(t)

i at iteration t is given by:

∇wiL(ft) = E[(ℓ′p,t − 1)hi(Yn)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

z
(r)
X

+
∑

Xn,s∈N

ℓ′s,thi(Xn,s)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

z
(r)
X ],

(22)
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where L is the population risk function as

L(ft) = E
[
ℓ(fθ,Xn,Yn,N)

]
. (23)

Stop Gradient. Note that the similarity measure explicitly uses the StopGrad operation to block
gradient flow through the second input. The similarity is computed as

Simft(X1,X2) = ⟨ft(X1),StopGrad(ft(X2))⟩. (24)

Concentration Bound. The following lemma shows that, given a sufficiently large number of
samples, the approximation error between the empirical gradient and the population gradient re-
mains bounded with high probability. Building on this principle, we will first analyze the training
dynamics under the population gradient, and subsequently account for the deviation arising from the
empirical gradient. The proof of Lemma B.1 follows standard techniques based on sub-Gaussian tail
bounds and is therefore omitted.
Lemma B.1 (Approximation of empirical gradients by population gradients). Suppose that
∥W (t)∥2F ≤ poly(d). Then there exists some K = poly(d1) such that, with high probability,
the difference between the empirical gradients and the population gradients is bounded for every
iteration t: ∥∥∥∇wi

L̂aug(ft)−∇wi
Laug(ft)

∥∥∥
2
≤ ∥w

(t)
i ∥2

poly(d1)
, ∀i ∈ [m]. (25)

This Definition B.1 divides neurons into two categories, ordinary neurons and lucky neurons, based
on their initial alignment with feature vectors Mj . These sets will serve as the foundation for our
later analysis.
Definition B.1 (Characterization of Neurons). We define the following sets of neurons, which will
be useful for analyzing the stochastic gradient descent trajectory in later sections:

(a) For each j ∈ [d], we define the set of ordinary neuronsMj ⊆ [m] as:

Mj :=

{
i ∈ [m] : ⟨w(0)

i ,Mj⟩2 ≥
c2 log d

d

∥∥MM⊤w
(0)
i

∥∥2
2

}
, ∀j ∈ [d] (26)

(b) For each j ∈ [d], we define the set of lucky neuronsM⋆
j ⊆ [m] as:

M⋆
j :=


i ∈ [m] : ⟨w(0)

i ,Mj⟩2 ≥
c1 log d

d

∥∥MM⊤w
(0)
i

∥∥2
2
,

⟨w(0)
i ,Mj′⟩2 ≤

c2 log d

d

∥∥MM⊤w
(0)
i

∥∥2
2
, ∀j′ ∈ [d], j′ ̸= j

 , (27)

where

c1 =

(
ϵmax

ϵmin

)2

· 2(1 + γ), c2 =

(
ϵmin

ϵmax

)2

· 2(1− γ), γ is a small constant. (28)

Properties at initialization: At initialization (t = 0), we note key facts about the neurons for later
analysis of the SGD trajectory.

Before presenting Lemma B.2, we outline its essential idea: (a) Each w
(0)
i has magnitude in the

order of σ2
0d1; (b) Each w

(0)
i has a projection onto the feature subspace in the order of σ2

0d; (c) For
each feature, the numbers of lucky and ordinary neurons are influenced by the frequencies of the
majority and minority features; (d) For each neuron, the number of aligned features forms only a
limited subset, typically of size smaller than d. We defer the proof of Lemma B.2 to Appendix G for
the clarification of presentation.
Lemma B.2. At initialization (t = 0), the following properties hold:

(a) With high probability, for every i ∈ [m],

∥w(0)
i ∥

2
2 ∈

[
σ2
0d1

(
1− Õ

(
1√
d1

))
, σ2

0d1

(
1 + Õ

(
1√
d1

))]
. (29)
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(b) With high probability, for every i ∈ [m],

∥MM⊤w
(0)
i ∥

2
2 ∈

[
σ2
0d
(
1− Õ

(
1√
d

))
, σ2

0d
(
1 + Õ

(
1√
d

))]
. (30)

(c) Let m = dCm be the number of neurons. With probability at least 1− o
(

1
d4

)
, for each j ∈ [d],

|M⋆
j | ≥ Ω(dω1) =: Ξ1, |Mj | ≤ O(dω2) =: Ξ2. (31)

where

ω1 = Cm −
(

ϵmax

ϵmin

)2
(1 + γ), ω2 = Cm −

(
ϵmin

ϵmax

)2
(1− γ). (32)

(d) For each i ∈ [m], there are at most O
(
d1−(

ϵmin
ϵmax

)
2·(1−γ)

)
indices j ∈ [d] such that i ∈Mj .

C THEOREM C.1

In this section we analyze the training process at the initial stage. Here we define the stage transition
time

T1 = Θ

(
d1 log d

η log log d

)
(33)

to be the iteration when

∥MM⊤w
(t)
i ∥

2
2 ≥ 1

2∥w
(t)
i ∥

2
2, (34)

where the neuron weights are more concentrated in the feature space.

C.1 THEOREM C.1

Before stating Theorem C.1, we give a short description of its parts: (a) For all neurons, most of
the weights lie in the feature subspace; (b) Lucky neurons are strongly aligned with their associated
feature directions; (c) Neurons not in the setMj have only weak alignment with feature j; (d) Each
neuron can have strong alignment with only a limited number of features; and (e) All neuron weights
have only small components in non-feature directions.

Theorem C.1 (Initial feature decoupling). At iteration t = T1, we have the following results:

(a) For all i ∈ [m],
∥MM⊤w

(T1)
i ∥22 ≥ 1

2∥w
(T1)
i ∥22. (35)

(b) For each j ∈ [d], and each i ∈M⋆
j ,

|⟨w(T1)
i ,Mj⟩| ≥

√
1 + γ

√
2 log d√
d
∥w(T1)

i ∥2. (36)

(c) For each j ∈ [d], and each i /∈Mj ,

|⟨w(T1)
i ,Mj⟩| ≤

√
1− γ

√
2 log d√
d
∥w(T1)

i ∥2. (37)

(d) For each i ∈ [m],

|⟨w(T1)
i ,Mj⟩| ≥

log1/4 d√
d
∥w(T1)

i ∥2, for at most O
(

d
2
√
log d

)
indices j ∈ [d]. (38)

(e) For each i ∈ [m] and j ∈ [d1] \ [d],

|⟨w(T1)
i ,M⊥

j ⟩| ≤ O
(√

log d
d1

)
∥w(T1)

i ∥2. (39)
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C.2 USEFUL LEMMAS

In Lemma C.1, we show that for each neuron i ∈ [m], the weight vector wi largely disregards the
non-feature components M⊥ and instead focuses on the relevant features M .

We first describe Lemma C.1: (a) The projection of w(t)
i onto the feature subspace, though initially

small, grows rapidly during training and reaches the order of d1 relative to its initialization. (b)
The component of w(t)

i in the non-feature subspace remains essentially unchanged, up to negligible
variation.

Lemma C.1. For all t ≤ T1, the following properties hold:

(a)∥∥∥MM⊤w
(t)
i

∥∥∥2
2
≤
∥∥∥MM⊤w

(0)
i

∥∥∥2
2

(
1 + ϵmax

ηCz log log d
d

)2t
+O

(
1
d

) ∥∥∥MM⊤w
(0)
i

∥∥∥2
2
,

moreover,
∥∥∥MM⊤w

(t)
i

∥∥∥2
2
≤ O

(∥∥∥w(0)
i

∥∥∥2
2

)
.

(40)

(b) ∥∥∥MM⊤w
(t)
i

∥∥∥2
2
≥
∥∥∥MM⊤w

(0)
i

∥∥∥2
2

(
1− ηλ+ ϵmin

ηCz log log d
d

)2t −O
(
1
d

) ∥∥∥MM⊤w
(0)
i

∥∥∥2
2
. (41)

(c) ∥∥∥M⊥(M⊥)⊤w
(t)
i

∥∥∥2
2
≤
(
1 +O

(
1

poly(d)

))∥∥∥M⊥(M⊥)⊤w
(0)
i

∥∥∥2
2
. (42)

Lemma C.2. For each i ∈ [m], there are at most O(2−
√
log dd) indices j ∈ [d] such that

|⟨w(0)
i ,Mj⟩| ≥ Ω(σ0 log

1/4 d). (43)

C.3 PROOF OF THEOREM C.1

Proof of Theorem C.1(a): The result (a) can be derived from Lemma C.1 (c). We have,

∥MM⊤w
(T1)
i ∥22 =∥w(T1)

i ∥22 − ∥M⊥(M⊥)⊤w
(T1)
i ∥22

≥∥w(T1)
i ∥22 −

(
1 +

1

poly(d)

)
∥M⊥(M⊥)⊤w

(0)
i ∥22

≥∥w(T1)
i ∥22 − ∥w(0)

i ∥22

≥∥w(T1)
i ∥22 −

∥w(T1)
i ∥22

(1 + ϵminCz log d)

≥1

2
∥w(T1)

i ∥22.

(44)

Proof of Theorem C.1(b): Note that from similar gradient calculations to those in the proof of
Lemma C.1 (b), we have, for j ∈ [d] and i ∈M∗

j :

|⟨w(T1)
i ,Mj⟩|

=|⟨w(T1−1)
i ,Mj⟩ − η⟨∇wi

Laug(fT1−1),Mj⟩ ±
∥w((T1−1)

i ∥2
poly(d1)

|

≥|⟨w(T1−1)
i ,Mj⟩|

(
1− ηλ+ ϵj

ηCz log log d

d

)
− Õ

(
η∥w((T1−1)

i ∥2
poly(d1)

)

≥|⟨w(0)
i ,Mj⟩|

(
1− ηλ+ ϵj

ηCz log log d

d

)T1

− Õ

(
ηT1∥w(T1)

i ∥2
poly(d1)

)
.

(45)
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These gradient descent steps above can be derived from the last few inequalities in the proof of
Lemma C.1(b).

|⟨w(T1)
i ,Mj⟩|

1⃝
≥
√
c1 log d√

d
∥MM⊤w

(0)
i ∥2

(
1− ηλ+ ϵj

ηCz log log d

d

)T1

− Õ

(
ηT1∥w(T1)

i ∥2
poly(d1)

)
2⃝
≥
√
c1 log d√

d
∥MM⊤w

(0)
i ∥2

(
1− ηλ+ ϵj

ηCz log log d

d

)T1

− Õ

(
∥w(T1)

i ∥2
poly(d)

)

3⃝
≥
√
c1 log d√

d
∥MM⊤w

(0)
i ∥2

(
1− ηλ+ ϵj

ηCz log log d

d

)T1

− Õ


∥∥∥w(0)

i

∥∥∥
2

poly(d)


4⃝
≥
√
c1 log d√

d
∥MM⊤w

(0)
i ∥2

(
1− ηλ+ ϵj

ηCz log log d

d

)T1

− Õ


√

d1
d
∥MM⊤w

(0)
i ∥2

poly(d)


≥
√
c1 log d√

d
∥MM⊤w

(0)
i ∥2

(
1− ηλ+ ϵj

ηCz log log d

d

)T1

− ∥MM⊤w
(0)
i ∥2

poly(d)

5⃝
≥
√

1 + γ

√
log d√
d

∥w(T1)
i ∥2.

(46)

1⃝ is because Definition B.1 (b). 2⃝ is because ηT1

poly(d1)
≤ 1

poly(d) . 3⃝ is because
∥∥∥w(t)

i

∥∥∥2
2
≤

O(1)
∥∥∥w(0)

i

∥∥∥2
2

(equation 258). 4⃝ is because Lemma B.2 (a) (b). 5⃝ holds because the following
equation is valid:

|⟨w(T1)
i ,Mj⟩|

≥
√
c1 log d√
d
∥MM⊤w

(0)
i ∥2

(
1− ηλ+ ϵj

ηCz log log d

d

)T1

− ∥MM⊤w
(0)
i ∥2

poly(d)

=

√
c1 log d√
d
∥MM⊤w

(0)
i ∥2

(
1− ηλ+ ϵj

d1
d
Cz log d

)
− ∥MM⊤w

(0)
i ∥2

poly(d)

≥( ϵj
ϵmax

)

√
c1 log d√
d
∥MM⊤w

(0)
i ∥2

(
1− ηλ+ ϵmax

d1
d
Cz log d

)
− ∥MM⊤w

(0)
i ∥2

poly(d)

≥( ϵj
ϵmax

)

√
c1 log d√
d
∥MM⊤w

(T1)
i ∥2

6⃝
≥ 1√

2
(
ϵj
ϵmax

)

√
c1 log d√
d
∥w(T1)

i ∥2

≥ 1√
2
(
ϵmin

ϵmax
)

√
c1 log d√
d
∥w(T1)

i ∥2

≥
√
1 + γ

√
log d√
d
∥w(T1)

i ∥2.

(47)

6⃝ holds because of the conclusion of Theorem C.1(a).

Proof of Theorem C.1(c): Theorem C.1(c) can be verified using Definition B.1 (b), Lemma B.2 (a)
(b) together with the proof of Lemma C.1(a).

|⟨w(T1)
i ,Mj⟩|

≤|⟨w(0)
i ,Mj⟩|

(
1 + ϵj

ηCz log log d

d
+ Õ

( η
d2

))T1

+ Õ

(
ηT1∥w(T1)

i ∥2
poly(d1)

)
.

(48)
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The above equation can be obtained from the first inequality in the proof of Lemma C.1(a).

|⟨w(T1)
i ,Mj⟩|

≤|⟨w(0)
i ,Mj⟩|

(
1 + ϵj

ηCz log log d

d
+ Õ

( η
d2

))T1

+
∥M(M)⊤w

(0)
i ∥2

poly(d)

≤
√
c2 log d

d

∥∥∥MM⊤w
(0)
i

∥∥∥
2

(
1 + ϵj

ηCz log log d

d
+ Õ

( η
d2

))T1

+
∥M(M)⊤w

(0)
i ∥22

poly(d)

≤ ϵj
ϵmin

√
c2 log d

d

∥∥∥MM⊤w
(T1)
i

∥∥∥
2
+O

(
∥M(M)⊤w

(0)
i ∥22

poly(d)

)

≤ ϵj
ϵmin

√
c2 log d

d
∥w(T1)

i ∥2 +O

(
∥w(T1)

i ∥2
poly(d)

)

≤ϵmax

ϵmin

√
c2 log d

d
∥w(T1)

i ∥2 +O

(
∥w(T1)

i ∥2
poly(d)

)

≤
√

1− γ
√
2 log d√
d
∥w(T1)

i ∥2.

(49)

Proof of Theorem C.1(d): First, by Lemma C.2 we obtain that for each i ∈ [m], there are at most
O(2−

√
log dd) indices j ∈ [d] such that:

|⟨w(0)
i ,Mj⟩| ≥ Ω(σ0 log

1/4 d). (50)

Next, we proceed to the formal calculation:

|⟨w(T1)
i ,Mj⟩| ≥|⟨w(0)

i ,Mj⟩|
(
1− ηλ+ ϵj

ηCz log log d

d

)T1

≥Ω(σ0 log1/4 d)
(
1− ηλ+ ϵj

ηCz log log d

d

)T1

≥Ω(∥w
(0)
i ∥2√
d1

log1/4 d)Θ(
d1
d
)

≥ log1/4 d√
d
∥w(T1)

i ∥2.

(51)

Proof of Theorem C.1(e). At initialization we have

w
(0)
i ∼ N (0, σ2

0Id1
). (52)

Hence for any unit vector M⊥
j , the projection satisfies

⟨w(0)
i ,M⊥

j ⟩ ∼ N (0, σ2
0). (53)

By the standard Gaussian tail bound (sub-Gaussian with parameter σ0),

P
(∣∣⟨w(0)

i ,M⊥
j ⟩
∣∣ > σ0

√
2 log d

)
≤ 2 exp

(
− t2

2σ2
0

)
=

2

d
. (54)

Therefore, with high probability,∣∣⟨w(0)
i ,M⊥

j ⟩
∣∣ ≤ σ0 ·O(

√
log d). (55)
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Moreover, since ∥w(0)
i ∥2 = Θ(σ0

√
d1) with high probability, the above bound is equivalently∣∣⟨w(0)

i ,M⊥
j ⟩
∣∣ ≤ O(√ log d

d1

)
· ∥w(0)

i ∥2. (56)

We have
⟨w(T1)

i ,M⊥
j ⟩

=(1− ηλ)⟨w(T1−1)
i ,M⊥

j ⟩ ± Õ

η
∑

i∈[m]

∥∥∥w(t)
i

∥∥∥2
2

τd
·
∥∥∥w(t)

i

∥∥∥
2


≤(1− ηλ)⟨w(T1−1)

i ,M⊥
j ⟩+ Õ

(
η∥w(t)

i ∥2
poly(d1)

)

≤|⟨w(0)
i ,M⊥

j ⟩|+O(T1η) ·max
t≤T1

Õ

(
∥w(t)

i ∥2
poly(d1)

)

≤O

(√
log d

d1

)
· ∥w(0)

i ∥2 +O(T1η) ·max
t≤T1

Õ

(
∥w(t)

i ∥2
poly(d1)

)

≤O

(√
log d

d1

)
· ∥w(T1)

i ∥2 +O(T1η) ·max
t≤T1

Õ

(
∥w(t)

i ∥2
poly(d1)

)
7⃝
≤O

(√
log d

d1

)
∥w(T1)

i ∥2.

(57)

7⃝ is because T1η
poly(d1)

≪
√

log d
d1

Lemma 3.1 can be viewed as an informal version of Theorem C.1. In particular, part (a) of
Lemma 3.1 corresponds to the first inequality in the proof of Theorem C.1(b), while part (b) of
Lemma 3.1 corresponds to the first inequality in the proof of Theorem C.1(e). Hence, Lemma 3.1 is
essentially a simplified restatement of the more general Theorem C.1.

C.4 PROOF OF LEMMA 3.1

Proof of Lemma 3.1. For j ∈ [d] and i ∈ [m], the following bounds hold for all t ∈ [0, T1]:

(a) Lower bound:

|⟨w(t+1)
i ,Mj⟩| ≥ |⟨w(t)

i ,Mj⟩|(1− ηλ+ ϵj
ηCz log log d

d
)− Õ

(η∥w(t)
i ∥2

poly(d1)

)
. (58)

(b) Orthogonal component:

|⟨w(t+1)
i ,M⊥

j ⟩| ≤ (1− ηλ)|⟨w(t)
i ,M⊥

j ⟩|+ Õ
(η∥w(t)

i ∥2
poly(d1)

)
. (59)

D THEOREM D.1

The second stage is defined as the iterations t ≥ T1 but t ≤ T2, where

T2 = T1 +Θ

(
d log d

ϵmaxη log log d

)
(60)

is defined as the iteration when one of the neuron i ∈ [m] satisfies∥∥∥w(T2)
i

∥∥∥2
2
≥ d

∥∥∥w(T1)
i

∥∥∥2
2
. (61)
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D.1 THEOREM D.1

We first provide an explanation of Theorem D.1: (a) If a neuron i is a lucky neuron for feature j,
then the projection of w(T2)

i onto Mj is very large, on the order of the full neuron weight ∥w(T2)
i ∥2.

In other words, such neurons have already “focused” on Mj . (b) The bias term b
(T2)
i grows propor-

tionally with the neuron weight ∥w(T2)
i ∥2, and at iteration T2 it reaches at least polylog(d)√

d
∥w(T2)

i ∥2.
In other words, the continuously increasing bias effectively controls the activation of the neuron
w

(T2)
i . (c) Among the lucky neurons inM∗

j , there exists one neuron w
(T2)
i whose projection onto

Mj is the largest, and this neuron has a larger projection than all the other neurons inMj .
Theorem D.1 (Emergence of singletons). For each neuron i ∈ [m], the following conditions hold
at iteration t = T2:

(a) For each j ∈ [d], if i ∈M⋆
j , then∣∣⟨w(T2)

i ,Mj⟩
∣∣ ≥ Ω(

εmin

εmax
) ∥w(T2)

i ∥2. (62)

(b)

b
(T2)
i ≥ polylog(d)√

d
∥w(T2)

i ∥2. (63)

(c) Let
α⋆
j = max

i∈M⋆
j

∣∣⟨w(T2)
i ,Mj⟩

∣∣, (64)

then there exists a constant Cj = Θ(1) such that∣∣⟨w(t)
i ,Mj⟩

∣∣ ≤ Cjα
⋆
j , ∀i ∈Mj . (65)

D.2 USEFUL LEMMAS

Next, we discuss Lemma D.1. For example, the first item illustrates how each feature Mj can be
captured by certain subsets of neurons, a process influenced by the stochastic nature of initialization.
We elaborate on the full content of Lemma D.1 below.

(a) Lucky neurons have large projection on their feature direction, which means they can be activated
and are clearly aligned with that feature. (b) If a neuron does not belong toMj , then its projection
on feature j stays small, which means it cannot be activated and has only weak alignment. (c) A
neuron can only be well aligned with a small number of features, not with many at the same time. (d)
The projection of a neuron weight on non-feature directions is very small, which means the neuron
does not learn the non-feature directions. (e) The size of each neuron weight is controlled by its
bias, so the weight does not grow without limit.
Lemma D.1. For all iterations t ∈ (T1, T2], the neurons i ∈ [m] satisfy the following properties:

(a) For j ∈ [d], if i ∈M⋆
j , then ∣∣∣⟨w(t)

i ,Mj⟩
∣∣∣ ≥√1 + γ b

(t)
i . (66)

(b) For j ∈ [d], if i /∈Mj , then ∣∣∣⟨w(t)
i ,Mj⟩

∣∣∣ ≤√1− γ b(t)i , (67)

and furthermore, ∣∣∣⟨w(t)
i ,Mj⟩

∣∣∣ ≤ Õ(∥w(t)
i ∥2√
d

)
. (68)

(c) For each i ∈ [m], there are at most O(2−
√
log dd) many j ∈ [d] such that

⟨w(t)
i ,Mj⟩2 ≥

(b
(t)
i )2√
log d

. (69)
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(d) For each i ∈ [m], and for all j ∈ [d1] \ [d],∣∣∣⟨w(t)
i ,M⊥

j ⟩
∣∣∣ ≤ Õ(∥w(t)

i ∥2√
d1

)
. (70)

(e) For all i ∈ [m],

∥w(t)
i ∥

2
2 ≤

d(b
(t)
i )2

log d
. (71)

Lemma D.2. For each i ∈ [m], define

Λi :=
{
j ∈ [d] : |⟨w(0)

i ,Mj⟩| ≤ σ0

d

}
⊆ [d]. (72)

Then
|Λi| = O

(
d

polylog(d)

)
. (73)

D.3 PROOF OF THEOREM D.1

Proof of Theorem D.1: We follow similar analysis as in the proof of Lemma D.1. In order to prove
(a)-(c), we have to discuss the two substages of the learning process below.

When all ∥w(t)
i ∥2 ≤ (1 + εmin

εmax
)∥w(T1)

i ∥2: From similar analysis in the proof of Lemma D.1, the

iteration complexity for a neuron i ∈ [m] to reach ∥w(t)
i ∥2 ≥ (1 + εmin

εmax
)∥w(T1)

i ∥2 is no smaller
than

T ′
i,1 := max

{
T1 +Ω

(
d log d

ϵmaxη log log d

)
, T2

}
. (74)

When some ∥w(t)
i ∥2 ≥ (1 +

εj
εmax

)∥w(T1)
i ∥2.

We first prove Theorem D.1(a). In the first stage, for j /∈ Ni, we have∑
j∈[d],j /∈Ni

⟨w(T ′
i,1)

i ,Mj⟩2 ≤
∑

j∈[d],j /∈Ni

⟨w(T1)
i ,Mj⟩2

(
1 + ϵj

O(η)

d polylog(d)

)T2

+ Õ

(
∥w(T1)

i ∥22
d3/2

)

≤ (1 + o(1)(
ϵj
ϵmax

) + o(1)(
ϵj
ϵmax

)2)
∥∥∥MM⊤w

(T1)
i

∥∥∥2
2
,

(75)
where we used the fact that ∥w(T1)

i ∥2 ≲ ∥MM⊤w
(T1)
i ∥2.

For j ∈ [d1] \ [d] we have∑
j∈[d1]\[d]

⟨w(T ′
i,1)

i ,M⊥
j ⟩2

≤
∑

j∈[d1]\[d]

⟨w(T1)
i ,M⊥

j ⟩2 +O

(
η(T ′

i,1 − T1)
d

)
e−Ω(log1/4 d) max

t′∈[T1,T ′
i,1]
∥w(t′)

i ∥
2
2

≤
(
1 + o

( ϵj
ϵmax

)) ∥∥∥M⊥(M⊥)⊤w
(T1)
i

∥∥∥2
2
.

(76)

Typically, if i ∈ M∗
j , there exists t ≤ T2 such that ∥w(t)

i ∥2 ≥ (1 +
εj

εmax
)∥w(T2)

i ∥2, as we have
argued in the proof of Lemma D.1. Thus, we have

|⟨w(T ′
i,1)

i ,Mj⟩|2 ≥ ∥w
(T ′

i,1)

i ∥22 −
∑

j∈[d],j /∈Ni

⟨w(T ′
i,1)

i ,Mj⟩2 −
∑

j∈[d1]\[d]

⟨w(T ′
i,1)

i ,M⊥
j ⟩2

≥ (1 +
εj
εmax

)2∥w(T1)
i ∥22 − (1 + o(1)(

ϵj
ϵmax

) + o(1)(
ϵj
ϵmax

)2)∥w(T1)
i ∥22

≥ εj
εmax

· (2− o(1))∥w(T1)
i ∥22,

(77)
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which proves the claim.

In the second stage, if i ∈ M∗
j , then from similar calculations as above, we can prove by induction

that starting from t = T ′
i,1, it holds:

|⟨w(t+1)
i ,Mj⟩| ≥ |⟨w(t)

i ,Mj⟩|
(
1 + Ω

(
ϵj
η log log d

d

))
≥ ∥w(t)

i ∥2
(
1 + Ω

(
ϵj
η log log d

d

))
∑

j′∈[d],j′ ̸=j

⟨w(t+1)
i ,Mj′⟩2 ≤

∑
j′∈[d],j′ ̸=j

⟨w(t)
i ,Mj′⟩2

(
1 + ϵj

O(η)

d polylog(d)

)2

∑
j∈[d1]\[d]

⟨w(t+1)
i ,M⊥

j ⟩2 ≤
∑

j∈[d1]\[d]

⟨w(t)
i ,M⊥

j ⟩2
(
1 +

O(η)

d polylog(d)

)2

,

(78)

which implies

|⟨w(t+1)
i ,Mj⟩| ≥ |⟨w(t)

i ,Mj⟩| ·
∥w(t+1)

i ∥2
∥w(t)

i ∥2
≥ (1− o(1))∥w(t+1)

i ∥2. (79)

Next, we prove Theorem D.1(b). In the first stage, the bias growth is large, i.e.,

b
(T ′

i,1)

i ≥ b
(T1)
i (1 +

η

d
)T

′
i,1−T1 ≥ b

(T1)
i · polylog(d)

≥ polylog(d)√
d

∥w(T1)
i ∥2 ≥

polylog(d)√
d

∥w(T ′
i,1)

i ∥2.
(80)

In the second stage, the bias is large consistently, i.e.,

b
(t+1)
i ≥ b

(t)
i ·
∥w(t+1)

i ∥2
∥w(t)

i ∥2
≥ polylog(d)√

d
∥w(t+1)

i ∥2 ≥
1

4
∥w(T ′

i,1)

i ∥2. (81)

Finally, we prove Theorem D.1(c): Assuming ⟨w(t)
i ,Mj⟩ > 0 (the opposite case is similar), from

t = T1, for i ∈M∗
j , we have

⟨w(t+1)
i ,Mj⟩ =

(
⟨w(t)

i ,Mj⟩ − b
(t)
i

)(
1 + ϵj

ηCz log log d

d

)
±O

(
η|⟨w(t)

i ,Mj⟩|
d polylog(d)

)

≥ Ω(1)⟨w(t)
i ,Mj⟩

(
1 + ϵj

ηCz log log d

d

(
1− 1

polylog(d)

))
≥ Ω(1)⟨w(T1)

i ,Mj⟩
(
1 + ϵj

ηCz log log d

d

(
1− 1

polylog(d)

))t+1−T1

.

(82)

which implies that after certain iteration t = T1 + T ′, where T ′ = Θ
(

d
η

)
, we shall have

|⟨w(T1+T ′)
i ,Mj⟩| ≥ log log d · |⟨w(T1)

i ,Mj⟩| ≥ b
(T1)
i · log log d. (83)

However, at iteration t = T1 + Θ
(

d
η

)
, we can see from previous analysis that ∥w(t)

i ∥2 ≤ (1 +

o(1))∥w(T1)
i ∥2, so the bias growth can be bounded as

b
(t)
i ≤ b

(T1)
i

(
1 +

η

d

)Θ( d
η )

·max

{
∥w(t)

i ∥2
∥w(T1)

i ∥2
, 1

}

≤ b
(T1)
i

(
1 +

η

d
·Θ(

d

η
)

)
·max {(1 + o(1)), 1}

≤ O(b
(T1)
i ).

(84)
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Now from our initialization properties in Lemma D.2, we have that⟨w(0)
i′ ,Mj⟩2 ≤ O(σ2

0 log d) for
all i ∈ [m]. Thus via similar arguments, we also have

|⟨w(t)
i′ ,Mj⟩| ≤ |⟨w(0)

i′ ,Mj⟩|
(
1 + ϵj

ηCz log log d

d

(
1± 1

polylog(d)

))t

. (85)

holds for all i′ ∈ [m]. Now it is easy to see that for t ≤ T2 = T1 +Θ
(

d log d
η log log d

)
, we have

|⟨w(t)
i ,Mj⟩|

|⟨w(t)
i′ ,Mj⟩|

≥ Ω(1) ·
|⟨w(T1)

i ,Mj⟩|
(
1 + ϵj

ηCz log log d
d

(
1− η

polylog(d)

))t−T1

|⟨w(T1)
i′ ,Mj⟩|

(
1 + ϵj

ηCz log log d
d + η

d polylog(d)

)t−T1

≥
(
1−O

(
ϵj

η log log d

dpolylog(d))

))t−T1

≥ Ω(1).

(86)

Thus, the last claim is proved.

D.4 PROOF OF LEMMA 3.2

Lemma 3.2 can be viewed as an informal version of Theorem D.1. In particular, part (a) of
Lemma 3.2 corresponds to (77) and Lemma B.2 (c), while part (b) of Lemma 3.2 corresponds
to another formulation of Theorem D.1 (c).

E THEOREM E.1

E.1 THEOREM E.1

At the final stage, we show that sparse activation of neurons naturally leads to convergence toward
sparse solutions, thereby guaranteeing sparse representations. For all t ≥ T2:
Theorem E.1. For all iterations t, the neurons i ∈ [m] satisfy the following properties:

(a) For j ∈ [d], if i ∈M⋆
j , then ∣∣⟨w(t)

i ,Mj⟩
∣∣ ≥ Ω(1) ∥w(t)

i ∥2. (87)

(b) For i ∈ [m], we have
∥w(t)

i ∥2 ≤ O(1). (88)

(c) For each j ∈ [d],

F
(t)
j :=

∑
i∈Mj

⟨w(t)
i ,Mj⟩2 = Θ((

ϵj
ϵmax

)2τ log3 d). (89)

(d) Let j ∈ [d] and i ∈M⋆
j , then there exists C = Θ(1) such that∣∣⟨w(t)

i ,Mj⟩
∣∣ ≥ C max

i′∈Mj

∣∣⟨w(t)
i′ ,Mj⟩

∣∣. (90)

(e) For i /∈Mj , it holds ∣∣⟨w(t)
i ,Mj⟩

∣∣ ≤ O

(
ϵj
ϵmax

1√
dΞ5

2

)
∥w(t)

i ∥2. (91)

(f) For any i ∈ [m] and any j ∈ [d1] \ [d], it holds∣∣⟨w(t)
i ,M⊥

j ⟩
∣∣ ≤ O

(
1√

d1 Ξ5
2

)
∥w(t)

i ∥2. (92)

(g) For all i ∈ [m], the bias satisfies

b
(t)
i ≥ polylog(d)√

d
∥w(t)

i ∥2. (93)
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E.2 USEFUL LEMMAS

When all the conditions in Theorem E.1 hold for some iteration t ≥ T2, we have the following fact,
which is a simple corollary of Lemma E.9.
Lemma E.1. For any i ∈ [m], we denoteNi = {j ∈ [d] : i ∈Mj}. Suppose Theorem E.1 holds at
iteration t ≥ T2, then with high probability over x ∈ Dx:

max
x∈{Xn,Yn}

1hi,t(x) ̸=0 ≤
∑
j∈Ni

1|ẑp,j |≠0, (94)

which implies that

max
x∈{Xn,Yn}∪N

Pr
(
hi,t(x) ̸= 0

)
≤ O

(
log log d

d

)
. (95)

Now for the simplicity of calculations, we define the following notations which are used through out
this section
Definition E.1 (Expansion of gradient). For each i ∈ [m], j ∈ [d], we expand ⟨∇wi

L(ft),Mj⟩ as

⟨∇wi
L(ft),Mj⟩

=E

(ℓ′p,t − 1)hi,t(Yn) +
∑

Xn,s∈N

ℓ′s,thi,t(Xn,s)

 L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

⟨z(r)
X ,Mj⟩

 , (96)

and
⟨∇wiL(ft),Mj⟩ = Ψ

(t)
i,j +Φ

(t)
i,j + E

(t)
i,j , (97)

where the Ψ(t), Φ(t), E(t) are defined as follows. For each

zX =
1

L

∑
j

Mj z̃n,j + ξ̃n

 ∼ DzX
, zY =

1

L

∑
j

Mj z̃
+
n,j + ξ̃+n

 ∼ DzY
, (98)

we write

ψ
(t)
i,j (Yn) =

L∑
s=1

[( 1

L
⟨w(t)

i ,Mj⟩z̃+(s)
n,j − b

(t)
i

)
1⟨w(t)

i ,z
(s)
Y ⟩>b

(t)
i

−
(
1

L
⟨w(t)

i ,Mj⟩z̃+(s)
n,j + b

(t)
i

)
1⟨w(t)

i ,z
(s)
Y ⟩<−b

(t)
i

]
,

(99)

ϕ
(t)
i,j (Yn) =

L∑
s=1

⟨w(t)
i , z

(s)\j
Y ⟩1⟨w(t)

i ,z
(s)
Y ⟩>b

(t)
i
− ⟨w(t)

i , z
(s)\j
Y ⟩1⟨w(t)

i ,z
(s)
Y ⟩<−b

(t)
i
. (100)

Now we define

Ψ
(t)
i,j := E

(ℓ′p,t − 1) · ψ(t)
i,j (Yn) +

∑
Xn,s∈N

ℓ′s,t · ψ
(t)
i,j (Xn,s)

 L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

z̃
(r)
n,j

 , (101)

Φ
(t)
i,j := E

(ℓ′p,t − 1) · ϕ(t)i,j (Yn) +
∑

Xn,s∈N

ℓ′s,t · ϕ
(t)
i,j (Xn,s)

 L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

z̃
(r)
n,j

 , (102)

E(t)i,j := E

(ℓ′p,t − 1) · hi,t(Yn) +
∑

Xn,s∈N

ℓ′s,t · hi,t(Xn,s)

 L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

⟨Mj , ξ̃
(r)
n ⟩

 .
(103)
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Moreover, for j ∈ [d1] \ [d], we can similarly define

Ψ
(t)
i,j , Φ

(t)
i,j ≡ 0, (104)

E(t)i,j := E

(ℓ′p,t − 1) · hi,t(Yn) +
∑

Xn,s∈N

ℓ′s,t · hi,t(Xn,s)

 L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

⟨M⊥
j , ξ̃

(r)
n ⟩

 .
(105)

Equipped with the above definition, we are ready to characterize the training process at the final
stage.

Lemma E.2 (Lower bound for Ψ(t)
1 ). Suppose Theorem E.1 holds at iteration t. For j ∈ [d] and

i ∈M⋆
j , there exists G1 = Θ(1) such that if

F
(t)
j :=

∑
i′∈Mj

⟨w(t)
i′ ,Mj⟩2

(
L∑

r=1

z̃
(r)
n,j

)2

≤
(

ϵj
ϵmax

)2

G1τ log d, (106)

then we have

Ψ
(t)
i,j · sign

(
L∑

s=1

⟨w(t)
i ,Mj⟩z̃+(s)

n,j

)

≥
E
[∑L

r=1

∣∣z̃(r)
n,j

∣∣]
polylog(d)

(
1−O

(
1

Ξ3
2

))( L∑
s=1

∣∣⟨w(t)
i ,Mj⟩z̃+(s)

n,j − b
(t)
i

∣∣) .
(107)

Lemma E.3 (Upper bound for Ψ(t)
i,j ). Let j ∈ [d] and i ∈ M⋆

j . Suppose Theorem E.1 holds at
iteration t, then there exists a constant G2 = Θ(1) such that if

F
(t)
j :=

∑
j: i∈Mj

⟨w(t)
i ,Mj⟩2

(
L∑

s=1

z̃
+(s)
n,j

)2

≥
(

ϵj
ϵmax

)2

G2τ log d, (108)

we have

Ψ
(t)
i,j ≤

1

poly(d)

L∑
s=1

∣∣∣⟨w(t)
i ,Mj⟩z̃+(s)

n,j

∣∣∣ . (109)

Similarly, for i ∈Mj , we have

Ψ
(t)
i,j ≤

1

poly(d)

L∑
s=1

∣∣∣⟨w(t)
i ,Mj⟩z̃+(s)

n,j

∣∣∣+O

(
1

d2

)
b
(t)
i . (110)

Lemma E.4. At iteration t ≥ T2, let j ∈ [d] and i ∈ [m]. Suppose Theorem E.1 holds at t. Then
for each j ∈ [d1], we have∣∣∣E(t)i,j

∣∣∣ ≤ O

(
Ξ2
2 ∥w

(t)
i ∥2

d2τ

)
· max
i′∈[m]

(∣∣∣⟨w(t)
i′ ,Mj⟩

∣∣∣) . (111)

Lemma E.5 (Reduction of Φ(t) to the bounds of Ψ(t)). Let j ∈ [d] and i ∈ Mj . Suppose The-

orem E.1 holds for all iterations before t ∈
[
d1.01

η , d
1.99

η

]
and after T2. Also suppose that for all

l ∈ [d], we have

F
(t′)
l = Ω

((
ϵj
ϵmax

)2

τ log d

)
at some t′ = Θ(T2). (112)

Then the following bounds hold:
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For iteration t ∈
[
d1.01

η , d
1.495

η

]
,

Φ
(t)
i,j ≤ Õ

(
ϵj
ϵmax

· Ξ2
2

d3/2

)
∥w(t)

i ∥2. (113)

For iteration t ∈
[
d1.495

η , d
1.99

η

]
,

Φ
(t)
i,j ≤ Õ

(
1

d1.98

)
∥w(t)

i ∥2. (114)

Definition E.2 (Optimal Learner). We define a learner network that we deem as the optimal feature
map for this task. Let κ > 0, we define θ⋆ := {θ⋆i }i∈[m] as follows:

θ⋆i =


√
τ κ

|M⋆
j |

Mj · sign
(
⟨w(T2)

i ,Mj⟩
)
, if i ∈M⋆

j ,

0, if i /∈
⋃

j∈[d]M⋆
j .

(115)

Furthermore, we define the optimal feature map f⋆t as follows. For i ∈ [m], the i-th neuron of ft,θ
given weight θi ∈ Rd1 is

ft,θ,i(Xn) =

L∑
r=1

[(
⟨θi, z(r)

X ⟩ − bi
)
1⟨w(t)

i ,z
(r)
X ⟩≥bi

−
(
−⟨θi, z(r)

X ⟩ − bi
)
1−⟨w(t)

i ,z
(r)
X ⟩≥bi

]
.

(116)

Finally, we write ft,θ as the concatenation

ft,θ(·) =
(
ft,θ,1(·), . . . , ft,θ,m(·)

)⊤
. (117)

Lemma E.6 (Optimality). Let {θ⋆i }i∈[m] and ft,θ be defined as in Definition E.1. When Theo-
rem E.1, define the pseudo loss function

L̃(ft,θ⋆ , ft) := E

[
−τ log

(
e⟨ft,θ⋆ (Xn),ft(Yn)⟩/τ∑

X∈B e⟨ft,θ⋆ (Xn),ft(X)⟩/τ

)]
. (118)

Then by choosing κ = Θ(Ξ2), and assuming∑
i∈M⋆

j

|⟨w(t)
i ,Mj⟩| ≥ Ω

(√
τ

Ξ2

)
, (119)

we obtain the following loss guarantee:

L̃(ft,θ⋆ , ft) ≤ O
(

1
log d

)
. (120)

Lemma E.7 (Pre-activation size I). Let z(r)
X = 1

L

(
Mz̃

(r)
n + ξ̃

(r)
n

)
∼ DzX

, wi ∈ Rd1 . Define

z
(r)\j
X = 1

L

(∑
j′ ̸=j, j′∈[d] Mj′ z̃

(r)
n,j′ + ξ̃

(r)
n

)
. Then the following results hold:

(a) Naive Chebyshev bound: For any λ > 0,

Pr
z̃
(r)\j
n , ξ̃

(r)
n

((
⟨wi, z

(r)\j
X ⟩+ 1

L ⟨wi,Mj⟩z̃(r)
n,j

)2
>

λ∥wi∥2
2

√
log d

d

)
≤ O

(
1
λ

)
. (121)

The same tail bound applies to ⟨wi, z
(r)
X ⟩, ⟨wi,

z
(s)
Y −z

(r)
X

2 ⟩, and ⟨wi, ξ̃
(r)
n ⟩.

(b) High probability bound for sparse signal:

Pr

(
⟨wi,Mz̃(r)

n ⟩2 > ∥wi∥22 ·max
j∈[d]
∥Mj∥2∞ log4 d

)
≲ e−Ω(log2 d). (122)

(c) High probability bound for dense signal: Let Z = ⟨wi, ξ̃
(r)
n ⟩. Then

Pr
(
z2 ≥ ∥wi∥2

2 log4 d
d

)
≲ e−Ω(log2 d). (123)
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Lemma E.8 (Pre-activation size II). Suppose the following conditions hold:

⟨w(t)
i ,Mj⟩2 ≥ Ω

(
(b

(t)
i )2

)
for at most O(1) indices j ∈ [d], (124)

⟨w(t)
i ,Mj⟩2 ≥ Ω

(
(b

(t)
i )2√
log d

)
for at most O

(
e−Ω(

√
log d)d

)
indices j ∈ [d], (125)

∥w(t)
i ∥

2
2 ≤ O

(
d(b

(t)
i )2

log d

)
. (126)

Then, for any λ ≥ 0.0001,

Pr
(∣∣⟨w(t)

i , z
(r)
X ⟩
∣∣ ≥ λb(t)i

)
≲ e−Ω(log1/4 d), (127)

and

Pr

(∣∣∣〈w(t)
i ,

z
(r)
X +z

(s)
X

2

〉∣∣∣ ≥ λb(t)i

)
≲ e−Ω(log1/4 d). (128)

Lemma E.9 (Pre-activation size III). Let i ∈ [m]. Suppose there exists a set Ni ⊆ [d] with |Ni| =
O(1) such that

⟨w(t)
i ,Mj⟩2 ≤ O

(
(b

(t)
i )2

polylog(d)

)
, ∀j /∈ Ni, (129)

and

∥w(t)
i ∥

2
2 ≤ O

(
d(b

(t)
i )2

polylog(d)

)
. (130)

Then, for any λ ∈ [0.01, 0.99],

Pr

∣∣∣∣∣∣
∑
j /∈Ni

⟨w(t)
i ,Mj⟩z̃(r)

n,j + ⟨wi, ξ̃
(r)
n ⟩

∣∣∣∣∣∣ ≥ λb(t)i

 ≲ e−Ω(log2 d). (131)

Lemma E.10 (Gradient for sparse features). Suppose D.1 holds at iteration t ≥ 0. For j ∈ [d], we
denote events

A1 :=
{
S
\j
i,t ≥ b

(t)
i − α

(t)
i,jCz̃

}
,

A2 :=
{
S̄
\j
i,t ≥ b

(t)
i − ᾱ

(t)
i,jCz̃

}
,

A3 :=
{∣∣∣S̄\j

i,t + ᾱ
(t)
i,jCz̃

∣∣∣ ≥ 1
2

(
α
(t)
i,jCz̃ − b

(t)
i

)}
,

A4 :=
{
S
\j
i,t ≥ 1

2

(
α
(t)
i,jCz̃ − b

(t)
i

)}
;

(132)

and quantities L1, L2, L3, L4 as

L1 :=

√√√√E[|S̄\j
i,t|2(1A1

+ 1A2
)]

E[⟨w(t)
i , ξ̃⟩2]

, L2 := Pr(A1),

L3 :=

√√√√E[|S̄\j
i,t|2(1A3 + 1A4)]

E[⟨w(t)
i , ξ̃⟩2]

, L4 := Pr(A3).

(133)

Then we have the following results:
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(a) (all features) For all i ∈ [m], if α(t)
i,j ≥ 0, we have (when α(t)

i,j ≤ 0 the opposite inequality holds)

E

[
hi(Yn)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

z̃
(r)
n,j

]

≤ 1

L
α
(t)
i,j · E

[
L∑

s=1

z̃
+(s)
n,j

L∑
r=1

z̃
(r)
n,j1|⟨w(t)

i ,
zX+zY

2 ⟩|≥bi+|⟨w(t)
i ,zX−zX+zY

2 ⟩|

]

±
(
α
(t)
i,j +O

(√
E|ᾱ(t)

i,j |2
))
· E

[
L∑

s=1

L∑
r=1

∣∣∣ z̃(r)
n,j+z̃

+(s)
n,j

2

∣∣∣|z̃(r)
n,j |

]
·O(L1 + L2).

(134)

(b) (lucky features) If α(t)
i,j > b

(t)
i , we have

E

[
hi(Yn)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

z̃
(r)
n,j

]

≤ 1

L

(
α
(t)
i,j − b

(t)
i

)
· E

[
L∑

s=1

z̃
+(s)
n,j

L∑
r=1

z̃
(r)
n,j1|⟨w(t)

i ,
zX+zY

2 ⟩|≥bi+|⟨w(t)
i ,zX−zX+zY

2 ⟩|

]

±
(
α
(t)
i,j +O

(√
E|ᾱ(t)

i,j |2
))
· E

[
L∑

s=1

L∑
r=1

∣∣∣ z̃(r)
n,j+z̃

+(s)
n,j

2

∣∣∣|z̃(r)
n,j |

]
·O(L3 + L4).

(135)

If α(t)
i,j < −b

(t)
i , then the opposite inequality holds with (α

(t)
i,j − b

(t)
i ) replaced by (α

(t)
i,j + b

(t)
i ).

Lemma E.11 (Gradient from dense signals). Let i ∈ [m] and j ∈ [d]. Suppose D.1 holds for the
current iteration t. Then∣∣∣∣∣E

[
hi(Yn)

L∑
r=1

1|⟨w(t)
i ,z

(r)
X ⟩|≥b

(t)
i
⟨ξ̃(r)n ,Mj⟩

]∣∣∣∣∣ ≤ Õ
(
∥w(t)

i ∥2
d2

)
· Pr
(
hi,t(Yn) ̸= 0

)
. (136)

For dense features M⊥
j , j ∈ [d1] \ [d], we have a similar result:∣∣∣∣∣E

[
hi(Yn)

L∑
r=1

1|⟨w(t)
i ,z

(r)
X ⟩|≥b

(t)
i
⟨ξ̃(r)n ,M⊥

j ⟩

]∣∣∣∣∣ ≤ Õ
(
∥w(t)

i ∥2
d
√
d1

)
· Pr
(
hi,t(Yn) ̸= 0

)
. (137)

E.3 PROOF OF THEOREM E.1

Proof of Theorem E.1: First we need to prove all the Theorem E.1 hold for t = T2. Indeed, (1), (4),
(5), (6), (7) is valid at T2 from Lemma E.9. and Theorem D.1; (2) and (3) holds at T2 obviously.

Now suppose it hold for some t ≥ T2, we will prove that it still hold for t+1. We first deal with the
case where j ∈ [d] and i /∈Mj , where it holds that

⟨w(t+1)
i ,Mj⟩ = ⟨w(t)

i ,Mj⟩(1− ηλ) + ηE[hi,t(Yn)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

⟨z(r)
X ,Mj⟩]

− ηE

 ∑
Xn,s∈N

ℓ′s,t · hi,t(Xn,s)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

⟨z(r)
X ,Mj⟩

± η

poly(d1)
.

(138)

In this case, to calculate the expectation, we need to use Lemma E.10, Lemma E.4. First we com-
pute the probability of events A1 − A4 by using Lemma E.7, Lemma E.8, Lemma E.9 and our
Theorem E.1 to obtain

Pr(A1),Pr(A2) ≤
1

poly(d)Ω(log d)
, (139)
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which implies

L1, L2 ≤
1

poly(d)Ω(log d)
. (140)

Furthermore, from Fact E.1, we also have

E

[
L∑

s=1

z̃
+(s)
n,j

L∑
r=1

z̃
(r)
n,j1

|⟨wi,
z
(r)
X

+z
(s)
Y

2 ⟩|≥bi+|⟨wi,z
(r)
X −

z
(r)
X

+z
(s)
Y

2 ⟩|

]
≤ ϵj

1

poly(d)Ω(log d)
. (141)

Now we further take into considerations Lemma E.11, Lemma E.4. We can obtain

|⟨w(t+1)
i ,Mj⟩| ≤ ⟨w(t)

i ,Mj⟩(1− ηλ) + Õ

(
ηΞ2

2∥w
(t)
i ∥2

d2

)
± η

poly(d1)
. (142)

Indeed, since we have chosen learning rate η = 1
poly(d) and λ ∈

[
1

d1.01 ,
1

d1.49

]
, it is easy to prove (5)

as follows:

• For i /∈ Mj , |⟨w(t)
i ,Mj⟩| ≤ O

(
ϵj

ϵmax

∥w(t)
i ∥2√
dΞ5

2

)
: This is easy since by using Lemma E.10,

Lemma E.4, we can prove the following inequality by contradiction

|⟨w(t)
i ,Mj⟩| ≤|⟨w(t−1)

i ,Mj⟩|(1 + ϵj
η

d2
− ηλ) + Õ

(
ηΞ2

2

d2

)
∥w(t)

i ∥2

≤ · · · ≤ O

(
ϵj
ϵmax

∥w(t)
i ∥2√
dΞ5

2

)
.

(143)

Now we begin to prove (6). For all i ∈ [m], we have maxj∈[d1]\[d] |⟨w
(t)
i ,M⊥

j ⟩| ≤ O

(
∥w(t)

i ∥2√
d1Ξ5

2

)
at iteration t = T2. Now, by expanding the gradient updates of ⟨w(t)

i ,M⊥
j ⟩, we can see that

|⟨w(t+1)
i ,M⊥

j ⟩| ≤ |⟨w
(t)
i ,M⊥

j ⟩|(1− ηλ) + |Ψ
(t)
i,j |+ |Φ

(t)
i,j |+ |E

(t)
i,j |

≤ |⟨w(t)
i ,M⊥

j ⟩|(1− ηλ) + Õ
(

Ξ5
2

τ
√
d1d2

)
∥w(t)

i ∥2.
(144)

where the last inequality are obtained as follows: From Lemma E.4 we have

|E(t)i,j | ≤ O

(
∥w(t)

i ∥2Ξ2
2

d2τ

)
· max
i′∈[m]

(
|⟨w(t)

i′ ,M
⊥
j ⟩|
)

≤ O

(
∥w(t)

i ∥2Ξ2
2

d2τ

)
· Õ
(

1√
d1

)
(since max

i′∈[m]
|⟨w(t)

i′ ,M
⊥
j ⟩| ≤ Õ

(
1√
d1Ξ5

2

)
≤ Õ

(
Ξ5
2

τ
√
d1d2

)
∥w(t)

i ∥2.

(145)

After (5) and (6) are proven, it is easy to observe (1) is true at t. Below we shall prove (2), (3) and
(4), after which (7) can be also trivially proven.

Indeed, (2) is a corollary of (3) and (4), since if F(t)
j ≤ O(τ log3 d) and (4) holds, we simply have

∥w(t)
i ∥

2
2 =

∑
j∈Ni

⟨w(t)
i ,Mj⟩2 +

∑
j /∈Ni,j∈[d]

⟨w(t)
i ,Mj⟩2 +

∑
j∈[d1]\[d]

⟨w(t)
i ,M⊥

j ⟩2

≤
∑
j∈Ni

⟨w(t)
i ,Mj⟩2 +O(d) ·O

(
(
ϵj
ϵmax

)2
∥w(t)

i ∥22
dΞ10

2

)
+O(d1) ·O

(
∥w(t)

i ∥22
d1Ξ10

2

)

≤
∑
j∈Ni

⟨w(t)
i ,Mj⟩2 + o

(
(
ϵj
ϵmax

)2
1

Ξ10
2

∥w(t)
i ∥

2
2

)
,

(146)
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which implies (2).

∥w(t)
i ∥

2
2 ≤

∑
j∈Ni

⟨w(t)
i ,Mj⟩2 + o

(
(
ϵj
ϵmax

)2
1

Ξ10
2

∥w(t)
i ∥

2
2

)
≤
∑
j∈Ni

⟨w(t)
i ,Mj⟩2

≤ O(1)O(
polylod(d)

dc
)

≤ O(1).

(147)

Thus we only need to prove (3) and (4). Indeed, for (3), letting i ∈ Mj , we proceed as follows: we
first write the updates of ⟨w(t)

i ,Mj⟩ as

⟨w(t+1)
i ,Mj⟩ = ⟨w(t)

i ,Mj⟩(1− ηλ) + Ψ
(t)
i,j +Φ

(t)
i,j + E

(t)
i,j

= ⟨w(t)
i ,Mj⟩(1− ηλ) + Ψ

(t)
i,j + Õ

(
Ξ2
2

d2

)
∥w(t)

i ∥2.
(148)

where the last inequality comes again from Lemma E.4. Now suppose for some t we have F
(t)
j ≥

Ω((
ϵj

ϵmax
)2τ log3 d), by Lemma E.3, we have

⟨w(t+1)
i ,Mj⟩ =⟨w(t)

i ,Mj⟩
(
1 + ϵj

1

poly(d)
− ηλ

)
+ Õ

(
Ξ2
2

d2

)
∥w(t)

i ∥2

≤⟨w(t)
i ,Mj⟩

(
1 + ϵj

1

poly(d)
− ηλ

2

)
.

(149)

which means that ⟨w(t+1)
i ,Mj⟩ ≤ ⟨w(t)

i ,Mj⟩. This in fact gives F
(t+1)
j ≤ F

(t)
j , so that (3) is

proven.

Now for (4), we need to induct as follows: for t ≤ T ′
j := d log d

η log log d which is the specific iteration

when F
(t)
j ≥ G2τ log d, where G2 is defined in Lemma E.3. The induction of (4) follows from

similar proof in Theorem D.1. After T ′
j , we discuss as follows

•When t ∈
[
T ′
j ,

d1.49

η

]
, from above calculations, for each i′ ∈Mj , we have

|⟨w(t+1)
i ,Mj⟩|

|⟨w(t+1)
i′ ,Mj⟩|

=
|⟨w(t)

i ,Mj⟩|(1− ηλ) + ηΨ
(t)
i,j ±O

(√
Ξ2

t
√
d

)
∥w(t)

i ∥2

|⟨w(t)
i′ ,Mj⟩|(1− ηλ) + ηΨ

(t)
i′,j ±O

(√
Ξ2

t
√
d

)
∥w(t)

i′ ∥2
. (150)

On one hand, for those i′ ∈ Mj such that |⟨w(t)
i′ ,Mj⟩| ≤ b

(t)
i Ξ2

2 ≤ O
(

Ξ2
2√
d
∥w(t)

i ∥2
)

, we can

safely get
∣∣∣⟨w(t+1)

i ,Mj⟩
∣∣∣ ≫ ∣∣∣⟨w(t+1)

i′ ,Mj⟩
∣∣∣. On the other hand, if

∣∣∣⟨w(t)
i′ ,Mj⟩

∣∣∣ ≥ b
(t)
i Ξ2

2, then
we have∣∣∣∣∣ Ψ

(t)
i,j

⟨w(t)
i ,Mj⟩

−
Ψ

(t)
i′,j

⟨w(t)
i′ ,Mj⟩

∣∣∣∣∣ = O(
b
(t)
i

d2 )

⟨w(t)
i′ ,Mj⟩

≤ O(
1

d2Ξ2
2

) ≤ O
(

Ξ2

t
√
dη

b
(t)
i

)
. (151)

Thus by lettingΨ̃j :=
Ψ

(t)
i,j

⟨w(t)
i ,Mj⟩

, then∣∣∣⟨w(t+1)
i ,Mj⟩

∣∣∣∣∣∣⟨w(t+1)
i′ ,Mj⟩

∣∣∣ =
∣∣∣⟨w(t)

i ,Mj⟩
∣∣∣ (1 + ηΨ̃

(t)
j − ηλ)±O

(
Ξ2

t
√
d

)
∥w(t)

i ∥2∣∣∣⟨w(t)
i′ ,Mj⟩

∣∣∣ (1 + ηΨ̃
(t)
j − ηλ)±O

(
Ξ2

t
√
d

)
∥w(t)

i′ ∥2
. (152)

Since at iteration t ∈
[
T ′
j ,

d1.49

η

]
, it is easy to obtain that

∣∣∣Ψ̃(t)
j − λ

∣∣∣ ≤ O (Ξ2

ηt

)
.
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Thus we have ∣∣∣⟨w(t+1)
i ,Mj⟩

∣∣∣∣∣∣⟨w(t+1)
i′ ,Mj⟩

∣∣∣
≥

∣∣∣⟨w(t)
i ,Mj⟩

∣∣∣ (1 + η(Ψ̃
(t)
j − λ)(1−

Ξ2
2√
d
))∣∣∣⟨w(t)

i′ ,Mj⟩
∣∣∣ (1 + η(Ψ̃

(t)
j − λ)(1 +

Ξ2√
d
))

≥
(
1 + η(Ψ̃

(t)
j − λ)(1−

Ξ2
2√
d
)− η(Ψ̃(t)

j − λ)(1 +
Ξ2√
d
)

)
·

∣∣∣⟨w(t)
i ,Mj⟩

∣∣∣∣∣∣⟨w(t)
i′ ,Mj⟩

∣∣∣
≥
(
1− η(Ψ̃(t)

j − λ)(
Ξ2
2√
d
)

)
·

∣∣∣⟨w(t)
i ,Mj⟩

∣∣∣∣∣∣⟨w(t)
i′ ,Mj⟩

∣∣∣
≥
(
1− Ξ2

2

t
√
d

)
·

∣∣∣⟨w(t)
i ,Mj⟩

∣∣∣∣∣∣⟨w(t)
i′ ,Mj⟩

∣∣∣
≥

t−1∏
t′=T ′

j

(
1−O

(
Ξ2
2

t′
√
d

))
·

∣∣∣⟨w(T ′
j)

i ,Mj⟩
∣∣∣∣∣∣⟨w(T ′

j)

i′ ,Mj⟩
∣∣∣ ≥ Ω(1).

(153)

where in the last inequality we have used our Theorem E.1 at T ′
j

• The proof for iterations t ∈
[
d1.49

η , d
1.99

η

]
is largely similar to the above. The only difference

here is that we rely on a slightly different comparison here: Indeed, we have∣∣∣⟨w(t+1)
i ,Mj⟩

∣∣∣∣∣∣⟨w(t+1)
i′ ,Mj⟩

∣∣∣ =
∣∣∣⟨w(t)

i ,Mj⟩
∣∣∣ (1 + ηΨ̃

(t)
j − ηλ)±O

(
Ξ2

d2

)
∥w(t)

i ∥2∣∣∣⟨w(t)
i′ ,Mj⟩

∣∣∣ (1 + ηΨ̃
(t)
j − ηλ)±O

(
Ξ2

d2

)
∥w(t)

i′ ∥2
. (154)

Here we can use similar techniques as above to require
∣∣∣Ψ̃(t)

j − λ
∣∣∣ ≤ O (Ξ2

tη

)
Now we also have∣∣∣⟨w(t+1)

i ,Mj⟩
∣∣∣∣∣∣⟨w(t+1)

i′ ,Mj⟩
∣∣∣ ≥

∣∣∣⟨w(t)
i ,Mj⟩

∣∣∣ (1 + η(Ψ̃
(t)
j − λ)(1−

Ξ2
2√
d
))∣∣∣⟨w(t)

i′ ,Mj⟩
∣∣∣ (1 + η(Ψ̃

(t)
j − λ)(1 +

Ξ2
2√
d
))

≥
(
1− Ξ2

2

t
√
d

)
·

∣∣∣⟨w(t)
i ,Mj⟩

∣∣∣∣∣∣⟨w(t)
i′ ,Mj⟩

∣∣∣
≥

t−1∏
t′=d1.49/η

(
1− Ξ2

2

t′d0.01

)
·

∣∣∣⟨w(d1.49/η)
i ,Mj⟩

∣∣∣∣∣∣⟨w(d1.49/η)
i′ ,Mj⟩

∣∣∣ ≥ Ω(1).

(155)

Now (4) are proven. (7) is an immediate result of our update scheme.

E.4 PROOF OF THEOREM 3.1

The first part proves the convergence of the loss function. The second part is a further extension of
Theorem E.1.

Proof of Theorem 3.1. We start with the proof of convergence ((11) in Theorem 3.1).

Denote w(t) = (w
(t)
1 , . . . , w

(t)
m ), since our update is
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w(t+1) = w(t) −∇wLaug(ft) +
1

poly(d1)
, (156)

we have
η⟨∇wLaug(ft), w

(t) − θ⋆⟩

=η2

2 ∥∇wLaug(ft)∥2F + 1
2∥w

(t) − θ⋆∥2F − 1
2∥w

(t+1) − θ⋆∥2F + η2

poly(d1)

≤η2 poly(d) + 1
2∥w

(t) − θ⋆∥2F − 1
2∥w

(t+1) − θ⋆∥2F + η2

poly(d1)
,

(157)

where the inequality comes from

∥∇wLaug(ft)∥2F =

m∑
i=1

∥∇wi
Laug(ft)∥2 . (158)

Each term is O(1), and since m = poly(d), the overall complexity is poly(d).

Now we will use the tools from online learning to obtain a loss guarantee: define a pseudo objective
for parameter θ

L̃augt
(θ) := L̃(ft,θ, ft) +

λ
2

∑
i∈[m]

∥θi∥22

= E
[
−τ log

(
e⟨ft,θ(Xn),ft(Yn)⟩/τ∑

X∈B e⟨ft,θ(Xn),ft(X)⟩/τ

)]
+ λ

2

∑
i∈[m]

∥θi∥22.
(159)

Which is a convex function over θ since it is linear in θ (for a fixed ft, we can consider L̃(ft,θ, ft)
to be convex with respect to θ, because ft,θ(x) is linear, and softmax + log is a convex composition;
the regularization term is convex).

Moreover, we have
L̃augt

(w(t)) = Laug(ft), (160)

and
∇θiL̃augt

(w
(t)
i ) = ∇wi

Laug(ft). (161)

Thus we have

η⟨∇wLaug(ft), w
(t) − θ⋆⟩

=η⟨∇θL̃augt
(w(t)), w(t) − θ⋆⟩

1⃝
≥L̃augt

(w(t))− L̃augt
(θ⋆)

≥L̃augt
(w(t))− E

[
−τ log

(
e⟨ft,θ⋆ (Xn),ft(Yn)⟩/τ∑

X∈B e⟨ft,θ⋆ (Xn),ft(X)⟩/τ

)]
− λ

2

∑
i∈[m]

∥θ⋆i ∥22

2⃝
≥L̃augt

(w(t))−O
(

1
log d

)
−
∑
i∈[m]

O(λ∥θ⋆i ∥22)

≥Laug(ft)−O
(

1
log d

)
.

(162)

1⃝ is because the surrogate objective function L̃augt
is a convex function with respect to θ, so

we can use a first-order convex lower bound: f(θ) − f(θ′) ≤ ⟨∇f(θ), θ − θ′⟩. 2⃝ is because∑
i∈[m] λ∥θ⋆i ∥22 =

∑
j∈[d]

∑
i∈M⋆

j
λ∥θ⋆i ∥22 =

∑
j∈[d]

∑
i∈M⋆

j
λ τκ2

|M⋆
j |2

=
∑

j∈[d] λ
τκ2

|M⋆
j |

= λτκ2

|M⋆
j |

Now choosing κ = Θ(Ξ2) ≤ 1
λd (so that

∑
i∈[m] λ∥θ⋆i ∥22 <

1
log d ), and by a telescoping summation,

we have
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1

T

T3+T−1∑
t=T3

(
Laug(ft)−O

(
1

log d

))
≤ 1

T

T3+T−1∑
t=T3

η⟨∇wLaug(ft), w
(t) − θ⋆⟩

≤ O(∥w(T3) − θ⋆∥2F )
Tη

=
O
(
∥w(T3)∥2F + ∥θ⋆∥2F − 2Tr((w(T3))⊤θ⋆)

)
Tη

≤
O
(
∥w(T3)∥2F + ∥θ⋆∥2F

)
Tη

≤
O
(
m∥w(T3)

i ∥22
)

Tη

≤ O
(

mΞ2

Tη

)
.

(163)

Since Tη ≥ mΞ10
2 , this proves the claim.

For (12) in Theorem 3.1, we have

w
(t)
i =

∑
j∈Ni, j∈[d]

⟨w(t)
i ,Mj⟩Mj +

∑
j /∈Ni, j∈[d]

⟨w(t)
i ,Mj⟩Mj +

∑
j∈[d1]\[d]

⟨w(t)
i ,M⊥

j ⟩M⊥
j

≤
∑

j∈Ni, j∈[d]

⟨w(t)
i ,Mj⟩Mj +

∑
j /∈Ni, j∈[d]

O

(
ϵj
ϵmax

∥w(t)
i ∥2√
dΞ5

2

)
Mj +

∑
j∈[d1]\[d]

O

(
∥w(t)

i ∥2√
d1 Ξ5

2

)
M⊥

j

=
∑

j∈Ni, j∈[d]

αi,jMj +
∑

j /∈Ni, j∈[d]

α′
i,jMj +

∑
j∈[d1]\[d]

βi,jM
⊥
j .

(164)

From Lemma B.2(c), we know that for each j ∈ [d], there is at least one neuron that can fully
learn the feature Mj , and at most Ξ2 neurons can learn the feature Mj . Combining this with
Theorem E.1(c): ∑

i∈Mj

⟨w(t)
i ,Mj⟩2 = Θ

((
ϵj
ϵmax

)2

τ log3 d

)
, (165)

we can conclude that the range of ⟨w(t)
i ,Mj⟩ is [

ϵj
ϵmax

τ
Ξ2
,

ϵj
ϵmax

τ ], and hence the range of αi,j is
[

ϵj
ϵmax

τ
Ξ2
,

ϵj
ϵmax

τ ]. Furthermore, from Theorem E.1 (e) and (f), we can obtain that α′
i,j ≤ o(

ϵj
ϵmax

1√
d
)

and βi,j ≤ o( 1√
d1
) respectively.

Next, we compute the upper bound of |Ni|. As a first step, we calculate the expectation of |Ni|.

E[|Ni|] =
1

m

m∑
i=1

|Ni| =
1

m

d∑
j=1

|Mj | ≤
1

m
· d ·O(dω2)

=
1

m
·O(d1+ω2) =

O(d1+ω2)

dCm
= O

(
d1+ω2−Cm

)
= O

(
d1−(

ϵmin
ϵmax

)
2·(1−γ)

)
.

(166)

Fix a neuron i, we have: µi := E[|Ni|. By Bernstein’s inequality,

Pr[ |Ni| ≥ µi + t ] ≤ exp

(
− t2

2(µi + t/3)

)
, t ≥ 0. (167)
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We set t = 3
(√
µiL+ L

)
and plug this into the inequality above. Then we obtain

Pr
[
|Ni| ≥ µi + 3

(√
µiL+ L

) ]
≤ e−L. (168)

Hence, for any constant c > 0, taking L = c log d yields

Pr
[
|Ni| ≤ µi + 3(

√
µic log d+ c log d)

]
≥ 1− d−c. (169)

Next, we apply the union bound. For the event

Ai :=
{
|Ni| ≤ µi + 3(

√
µiL+ L)

}
, (170)

the union bound gives

Pr

[
m⋂
i=1

Ai

]
≥ 1−

m∑
i=1

Pr(Ac
i ) ≥ 1−me−L. (171)

Taking L = c log(md), we obtain

Pr
[
∀i ∈ [m], |Ni| ≤ µi + 3

(√
µic log(md) + c log(md)

) ]
≥ 1− (md)−c. (172)

We know µi ≫ log(md), so we have

|Ni| = µi

(
1±O

(√ log(md)
µi

))
= µi

(
1± o(1)

)
≤ O

(
d1−(

ϵmin
ϵmax

)
2·(1−γ)

)
with probability at least 1− (md)−c

(173)

Finally, for each dictionary atom Mj , there are at least Ω(dω1) neurons i ∈ [m] such thatNi = {j}.
From Lemma B.2 (c), we recall that |M⋆

j | ≥ Ω(dω1). Moreover, if a neuron belongs toM⋆
j , then it

cannot belong toMj′ .

For (12) in Theorem 3.1, our proof is complete.

F THEOREM F.1

From Lemma B.2(c), we know that for each j ∈ [d], there is at least one neuron that can fully learn
the minority feature Mj⋆ . When we prune out the lucky neurons that learn these minority features
during the forward pass, the network will force the lucky neurons to further strengthen their feature
learning ability on the minority features during the backward pass.

After magnitude pruning, neurons encoding a specific minority feature are removed. Pruning these
lucky neurons reduces simfθ

(Xn,Yn) during the forward pass. The decrease in similarity reduces
the positive logit ℓ′

p,θ
(t)
mask

, which in turn increases the gradient of the loss function, thereby encour-

aging these lucky neurons to further enhance their learning ability on the minority features.

Fix one specific minority feature Mj∗ , and letM∗
j∗ ⊆ [m] denote the subset of neurons primarily

aligned with it, with |M∗
j∗ | = n. For a pruning rate α ∈ [1/m, n/m], the number of pruned neurons

is αm ≤ n. Let P ⊆M∗
j∗ be the pruned set with |P| = αm.

F.1 THEOREM F.1

Theorem F.1 (Feature Dynamics After Pruning). Starting from the pruning stage T4 with pruning
ratio α, the following statements hold.
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(a) When i∗ ∈M∗
j∗ , we have

⟨w(t+1)
i∗ ,Mj∗⟩ ≥

(
1− ηλ+ ηϵj∗

Cz log log d

d

(
Θ
(

1
polylog(d)

)
+Ω

(
αmϵj∗ log log d

dΞ2
2

)))
⟨w(t)

i∗ ,Mj∗⟩.

(174)

(b) When i /∈M∗
j∗ and j ̸= j∗, we have

⟨w(t+1)
i ,Mj⟩ ≤

(
1− ηλ+ ηϵj

Cz log log d

d

(
Θ
(

1
polylog(d)

)
+ ϵj∗

log log d

d

(
Θ
(

1
polylog(d)

)
+O

(
αmϵj∗ log log d

dΞ2
2

))))
⟨w(t)

i ,Mj⟩.

(175)

(c) For each neuron i ∈ P and t ∈ [T4, T5], contrastive learning learns the following decomposition:

w
(t)
i = αi,j∗Mj∗ +

∑
j /∈Ni

α′
i,jMj +

∑
j∈[d1]\[d]

βi,jM
⊥
j , (176)

where

αi,j∗ ∈

[
τ

Ξ2
, τ

]
, α′

i,j ≤ o

((
1 +

1

d

) 1√
d

)
∥w(t)

i ∥2, |βi,j | ≤ o

(
1√
d1

)
∥w(t)

i ∥2. (177)

F.2 USEFUL LEMMAS

Lemma F.1 (Expected values of neuron activations after T4). From T4 onward, the following results
hold:

(a) For positive pair,

E

[∑
i∈P

hi
(
Xn

)
hi
(
Yn

)]
≥ Ω

(
αm

τ2

Ξ2
2

ϵj∗
log log d

d

)
. (178)

(b) For negative pair,

E

[∑
i∈P

hi
(
Xn

)
hi(Xn,s)

]
= 0. (179)

(c) For negative pair,

E
[
hi,t(Xn,s) ⟨∇wi

hi(Xn), Mj∗⟩
]

= 0. (180)

Lemma F.2 (Effect of Pruning on Positive Logit Weight). At the pruning stage, for the data follow-
ing distribution D1, the post-pruning positive logit ℓ′

p,θ
(t)
mask

satisfies

E
[
1− ℓ′

p,θ
(t)
mask

]
≥ Θ

(
1

τ

)
+Ω

(
αm

Ξ2
2

ϵj∗
log log d

d

)
. (181)

Lemma F.3 (Positive gradient). Let hi,t(·) denote the i-th neuron at iteration t ≤ T1 (so that
b
(t)
i = 0). Then the following hold:

(a) For each j ∈ [d],

E[hi,t(Yn) ⟨∇wihi,t(Xn),Mj⟩] =
1

L2
⟨w(t)

i ,Mj⟩E
[
ẑ+
n,j ẑn,j

]
. (182)

(b) For each j ∈ [d1] \ [d],

E
[
hi,t(Yn) ⟨∇wihi,t(Xn),M

⊥
j ⟩
]
= 0. (183)
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F.3 PROOF OF THEOREM F.1

Overview of the proof: first, the data can be divided into two parts: the samples that contain Mj∗ and
those that do not. The former follow distribution D1, while the latter follow distribution D2. Next,
let us examine ℓ′

p,θ
(t)
mask

. The values of ℓ′
p,θ

(t)
mask

differ depending on the distribution: for samples from

D1, we have ℓ′
p,θ

(t)
mask

= 1 − Θ( 1τ ) − Ω(αm
Ξ2

2
ϵj∗

log log d
d ), whereas for samples from D2, ℓ′

p,θ
(t)
mask

=

1−Θ( 1τ ). Since the latter do not contain Mj∗ , pruning does not affect them.

Proof of Theorem F.1. For any neuron i∗ ∈ P we have

⟨w(t+1)
i∗ ,Mj∗⟩

=⟨w(t)
i∗ ,Mj∗⟩ − η

〈
∇wi∗Laug(ft),Mj∗

〉
± ∥w

(t)
i∗ ∥2

poly(d)

=(1− ηλ)⟨w(t)
i∗ ,Mj∗⟩

+η EXn,Yn

[
(1− ℓ′

p,θ
(t)
mask

(Xn,B)) · hi∗,t(Yn) ⟨∇wi∗hi∗(Xn),Mj∗⟩
]

−η
∑

Xn,s∈N

E
[
l′s,t(Xn,B)hi∗,t(Xn,s) ⟨∇wi∗hi∗(Xn),Mj∗⟩

]
± ∥w

(t)
i∗ ∥2

poly(d)

(184)

At stage T4, pruning is applied. We regard ℓ′
p,θ

(t)
mask

and ℓ′
s,θ

(t)
mask

as fixed, and by combining

Lemma F.1(c) with the law of total probability, we obtain

⟨w(t+1)
i∗ ,Mj∗⟩

=(1− ηλ)⟨w(t)
i∗ ,Mj∗⟩

+η EXn,Yn

[
(1− ℓ′

p,θ
(t)
mask

)
]
EXn,Yn

[
hi∗,t(Yn) ⟨∇wi∗hi∗(Xn),Mj∗⟩

]
=(1− ηλ)⟨w(t)

i∗ ,Mj∗⟩

+η EXn,Yn∼D1

[
(1− ℓ′

p,θ
(t)
mask

)
]
EXn,Yn∼D1

[
hi∗,t(Yn) ⟨∇wi∗hi∗(Xn),Mj∗⟩

]
· PXn,Yn∼D1

+η EXn,Yn∼D2

[
(1− ℓ′

p,θ
(t)
mask

)
]
EXn,Yn∼D2

[
hi∗,t(Yn) ⟨∇wi∗hi∗(Xn),Mj∗⟩

]
· PXn,Yn∼D2

(185)

Combining Lemma F.3(a) with (181) in Lemma F.2, we obtain

⟨w(t+1)
i∗ ,Mj∗⟩

=(1− ηλ)⟨w(t)
i∗ ,Mj∗⟩

+η EXn,Yn∼D1

[
(1− ℓ′

p,θ
(t)
mask

)
]
EXn,Yn∼D1

[ 1

L2
⟨w(t)

i ,Mj⟩E
[
ẑ+
n,j∗ ẑn,j∗

]
⟩
]
· PXn,Yn∼D1

+η EXn,Yn∼D2

[
(1− ℓ′

p,θ
(t)
mask

)
]
EXn,Yn∼D2

[ 1

L2
⟨w(t)

i ,Mj⟩E
[
ẑ+
n,j∗ ẑn,j∗

] ]
· PXn,Yn∼D2

=(1− ηλ)⟨w(t)
i∗ ,Mj∗⟩

+η

(
Θ

(
1

τ

)
+Ω

(
αm

Ξ2
2

ϵj∗
log log d

d

))
· ⟨w(t)

i ,Mj⟩ · ϵj∗
log log d

d

+η ·Θ
(
1

τ

)
· 0 · 1 · ⟨w(t)

i∗ ,Mj∗⟩

=(1− ηλ)⟨w(t)
i∗ ,Mj∗⟩+ η

(
Θ

(
1

τ

)
+Ω

(
αm

Ξ2
2

ϵj∗
log log d

d

))
· ⟨w(t)

i∗ ,Mj∗⟩ · ϵj∗
log log d

d
(186)
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Hence, the post-pruning one-step update along Mj∗ is

⟨w(t+1)
i∗ ,Mj∗⟩ ≥

(
1− ηλ+ ηϵj∗

Cz log log d

d

(
Θ
(

1
polylog(d)

)
+Ω

(
αmϵj∗ log log d

dΞ2
2

)))
⟨w(t)

i∗ ,Mj∗⟩.

(187)

Similarly to (186), for any neuron i /∈ P , we have:

⟨w(t+1)
i ,Mj⟩

=(1− ηλ)⟨w(t)
i ,Mj⟩

+ η EXn,Yn∼D1

[
(1− ℓ′

p,θ
(t)
mask

)
]
EXn,Yn∼D1

[ 1

L2
⟨w(t)

i ,Mj⟩E
[
ẑ+
n,j ẑn,j

]
⟩
]
· PXn,Yn∼D1

+ η EXn,Yn∼D2

[
(1− ℓ′

p,θ
(t)
mask

)
]
EXn,Yn∼D2

[ 1

L2
⟨w(t)

i ,Mj⟩E
[
ẑ+
n,j ẑn,j

] ]
· PXn,Yn∼D2

=(1− ηλ)⟨w(t)
i ,Mj⟩

+ η

(
Θ

(
1

τ

)
+Ω

(
αm

Ξ2
2

ϵj∗
log log d

d

))
· ⟨w(t)

i ,Mj⟩ · ϵj
log log d

d
ϵj∗

log log d

d

+ η ·Θ
(
1

τ

)
· ϵj

log log d

d
· 1 · ⟨w(t)

i ,Mj⟩

(188)

Hence, the post-pruning one-step update along Mj is

⟨w(t+1)
i ,Mj⟩ ≤

(
1− ηλ+ ηϵj

Cz log log d

d

(
Θ
(

1
polylog(d)

)
+ ϵj∗

log log d

d

(
Θ
(

1
polylog(d)

)
+O

(
αmϵj∗ log log d

dΞ2
2

))))
⟨w(t)

i ,Mj⟩.
(189)

The above constitutes the proof of Theorem F.1 regarding pruning.

F.4 PROOF OF THEOREM 3.2

Theorem 3.2 (a) and (b) can be derived as simplifications of Theorem F.1 (a) and (b). Theorem 3.2
(c) coincides with Theorem F.1 (c). By taking the elapsed time T =

((ϵmax/ϵj∗ )−1)d

ηαϵ2
j∗Cz log log d

and simplifying

(a) and (b), then substituting into the conclusion of Theorem 3.1, the proof follows.

F.5 PROOF OF LEMMA F.1:

Proof of Lemma F.1: The alignment with the target minority feature Mj∗ is ⟨wi,Mj∗⟩, and we
have |⟨wi,Mj∗⟩| ≥ Ω( τ

Ξ2
) at T4 (This is the conclusion of Theorem 3.1, which can be found in the

second part of the proof of Theorem 3.1. For the positive pair (Xn,Yn), the latent variables zn,j∗
and z+

n,j∗ are correlated through the augmentation process. For a negative sample Xn,s, its latent
variable zn,s,j∗ is independent of those of the positive pair (zn,j∗ , z+

n,j∗), so we have:

(zn,j∗ , z
+
n,j∗) ⊥⊥ zn,s,j∗ . (190)

For the anchor Xn and its positive Yn, we have

hi(Xn) =

L∑
r=1

〈
wi, z

(r)
Y

〉
=

1

L

〈
wi, M

L∑
r=1

z̃(r)
n +

L∑
r=1

ξ̃(r)n

〉
, (191)

hi(Yn) =

L∑
s=1

〈
wi, z

(s)
Y

〉
=

1

L

〈
wi, M

L∑
s=1

z̃+(s)
n +

L∑
s=1

ξ̃+(s)
n

〉
, (192)
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ẑn :=

L∑
r=1

z̃(r)
n , ẑ+

n :=

L∑
s=1

z̃+(s)
n , ξ̂n :=

L∑
r=1

ξ̃(r)n , ξ̂+n :=

L∑
s=1

ξ̃+(s)
n . (193)

We can write the outputs as:

hi(Xn) =
1

L

〈
wi, Mẑn + ξ̂n

〉
, hi(Yn) =

1

L

〈
wi, Mẑ+

n + ξ̂+n
〉
. (194)

For a negative sample Xn,s: ẑn,s :=
∑L

q=1 z̃
(q)
n,s, ξ̂n,s :=

∑L
q=1 ξ̃

(q)
n,s, the output is:

hi(Xn,s) =
1

L

〈
wi,Mẑn,s + ξ̂n,s

〉
. (195)

We first establish a lower bound for E[hi(Xn)hi(Yn)].

Expanding and using zero-mean and independence of latent variables and noises, we have

E[hi(Xn)hi(Yn)] =
1

L2
E
[
⟨wi,Mẑn⟩ ⟨wi,Mẑ+

n ⟩
]

=
1

L2

d∑
j=1

⟨wi,Mj⟩ 2 E
[
ẑn,j ẑ

+
n,j

]
≥ 1

L2
⟨wi,Mj∗⟩ 2 E

[
ẑn,j∗ ẑ

+
n,j∗

]
≥ Ω(

τ2

Ξ2
2

ϵj∗
log log d

d
).

(196)

Therefore

E[hi(Xn)hi(Yn)] ≥ Ω(
τ2

Ξ2
2

ϵj∗
log log d

d
). (197)

Next, we compute the expectation of hi(Xn), hi(Xn,s).hi(Xn)hi(Xn,s),

E[hi(Xn)hi(Xn,s)] = E
[( 1
L

〈
wi, Mẑn + ξ̂n

〉)( 1
L

〈
wi, Mẑn,s + ξ̂n,s

〉)]
. (198)

By the assumption, the latent variables of Xn are independent of those of the negative Xn,s, and all
noises are mean-zero and independent. Therefore,

E
[
⟨wi,Mẑn⟩ ⟨wi,Mẑn,s⟩

]
= 0, E[⟨wi, ξ̂n⟩ ⟨wi, ξ̂n,s⟩] = 0 (199)

Therefore, we conclude that
E[hi(Xn)hi(Xn,s)] = 0 (200)

Let P be the pruned set with |P| = αm. Summing the per-neuron bounds over i ∈ P , we obtain

E
[∑
i∈P

hi(Xn)hi(Yn)
]
≥ Ω(αm

τ2

Ξ2
2

pj∗), (201)

E
[∑
i∈P

hi(Xn)hi(Xn,s)
]
= 0. (202)

This completes the proof of Lemma F.1 (a)(b).

Finally, we compute the expectation of hi,t, (Xn,s), ⟨∇wihi(Xn),Mj∗⟩, and we have
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E
[
hi,t(Xn,s) ⟨∇wihi(Xn),Mj∗⟩

]
=E
[( 1
L

〈
wi, Mẑn,s + ξ̂n,s

〉)( 1
L

〈
Mẑn + ξ̂n,Mj∗

〉)]
=E
[( 1

L2

〈
wi, Mẑn,s + ξ̂n,s

〉)(
ẑn,j∗ +

〈
ξ̂n,Mj∗

〉)]
=

1

L2
E [⟨wi,Mẑn,s⟩ · ẑn,j∗ ]

=0.

(203)

This completes the proof of Lemma F.1(c),

E
[
hi,t(Xn,s) ⟨∇wi

hi(Xn),Mj∗⟩
]
= 0. (204)

F.6 PROOF OF LEMMA F.2:

Proof of Lemma F.2: We link the logit to the pruning ratio and plug it into the gradient growth.
Recall the softmax weights and partial derivatives

ℓ′p =
eup/τ

eup/τ +
∑S

s=1 e
us/τ

, ℓ′s =
eus/τ

eup/τ +
∑S

s=1 e
us/τ

,

S∑
s=1

ℓ′s = 1− ℓ′p, (205)

up = Simf (Xn,Yn), us = Simf (Xn,Xn,s), (206)

∂ℓ′p
∂up

=
1

τ
ℓ′p(1− ℓ′p),

∂ℓ′p
∂us

= −1

τ
ℓ′p ℓ

′
s. (207)

Pruning the size αm changes the similarities by

∆up = −
∑
i∈P

hi(Xn)hi(Yn), ∆us = −
∑
i∈P

hi(Xn)hi(Xn,s). (208)

Next, calculate the first order change of ℓ′p, we know:

u = (up, u1, . . . , uS), ∆u = (∆up,∆u1, . . . ,∆uS). (209)

Using multivariate Taylor expansion up to second order with remainder:

ℓ′p(u+∆u)− ℓ′p(u) = ∇ℓ′p(u)⊤∆u+
1

2
∆u⊤Hp(u)∆u+ o(∥∆u∥2),∆u→ 0. (210)

By a first order Taylor expansion, we have

∆ℓ′p =
∂ℓ′p
∂up

∆up +

S∑
s=1

∂ℓ′p
∂us

∆us + o (∥∆u∥)

=
1

τ
ℓ′p(1− ℓ′p)∆up −

1

τ
ℓ′p

S∑
s=1

ℓ′s∆us.

(211)

We note that at T4, by the convergence of the loss function, we obtain ℓ′p = 1−Θ( 1τ ), and both ℓ′p and
ℓ′s take fixed values. Then, by taking expectations over ∆ℓ′p and using the relation

∑
s ℓ

′
s = 1− ℓ′p,

we obtain:

E[∆ℓ′p] = −Θ(
1

τ2
)
(
E
[∑
i∈P

hi(Xn)hi(Yn)
]
− E

[∑
i∈P

hi(Xn)hi(Xn,s)
])
. (212)
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Also, by Lemma F.1, given that

E
[∑
i∈P

hi(Xn)hi(Yn)
]
− E

[∑
i∈P

hi(Xn)hi(Xn,s)
]
≥ Ω(αm

τ2

Ξ2
2

ϵj∗
log log d

d
). (213)

Hence,

E[∆ℓ′p] = −Ω(
αm

Ξ2
2

ϵj∗
log log d

d
) < 0. (214)

Hence,

E[ℓ′
p,θ

(t)
mask

] = E[ℓ′p,θ(t) ] + E[∆ℓ′p]

= E[ℓ′p,θ(t) ]− Ω(
αm

Ξ2
2

ϵj∗
log log d

d
)

= 1−Θ(
1

τ
)− Ω(

αm

Ξ2
2

ϵj∗
log log d

d
).

(215)

Now, converting to the form of 1− ℓ′:

E[1− ℓ′
p,θ

(t)
mask

] = 1− E[ℓ′
p,θ

(t)
mask

]. (216)

Substituting the previous expression gives

E[1− ℓ′
p,θ

(t)
mask

] = Θ(
1

τ
) + Ω(

αm

Ξ2
2

ϵj∗
log log d

d
). (217)
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F.7 PROOF OF LEMMA F.3(A):

Proof of Lemma F.3(a):

E [hi(Yn)⟨∇wi
hi(Xn),Mj⟩]

=E

[
hi(Yn)⟨

L∑
r=1

1
(r)∣∣∣〈w(t)

i ,z
(r)
X

〉∣∣∣≥0
· z(r)

X ,Mj⟩

]

=E

[
L∑

s=1

⟨wi, z
(s)
Y ⟩ ·

(
L∑

r=1

⟨z(r)
X ,Mj⟩

)]

=
1

L2
E

[
L∑

s=1

⟨wi,M z̃+(s)
n + ξ̃+(s)

n ⟩ ·

(
L∑

r=1

⟨M z̃(r)n + ξ̃(r)n ,Mj⟩

)]

=
1

L2
E

[
L∑

s=1

⟨wi,M z̃+(s)
n ⟩ ·

(
L∑

r=1

⟨M z̃(r)n ,Mj⟩

)]

=
1

L2
E
[
⟨wi,Mẑ+

n ⟩ · (⟨M ẑn,Mj⟩)
]

=
1

L2
E

⟨wi,Mẑ+
n ⟩ · ⟨

∑
j′∈[d]

Mj′ ẑn,j′ ,Mj⟩


=

1

L2
E

⟨wi,Mẑ+
n ⟩ ·

∑
j′∈[d]

⟨Mj′ ,Mj⟩ẑn,j′


=

1

L2
E
[
⟨wi,Mẑ+

n ⟩ · ẑn,j
]

=
1

L2
E

 ∑
j′′∈[d]

⟨wi,Mj′′⟩ẑ+
n,j′′ ẑn,j


=

1

L2

∑
j′′∈[d]

⟨wi,Mj′′⟩E
[
ẑ+
n,j′′ ẑn,j

]
.

(218)

In the final step, we have

1

L2

∑
j′′∈[d]

⟨wi,Mj′′⟩E
[
ẑ+
n,j′′ ẑn,j

]
=

1

L2
⟨wi,Mj⟩E

[
ẑ+
n,j ẑn,j

]
. (219)

This completes the proof.
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F.8 PROOF OF LEMMA F.3(B):

Proof of Lemma F.3(b):

E
[
hi(Yn)⟨∇wi

hi(Xn),M
⊥
j ⟩
]

=E

[
hi(Yn)⟨

L∑
r=1

1
(r)∣∣∣〈w(t)

i ,z
(r)
X

〉∣∣∣≥0
· z(r)

X ,M⊥
j ⟩

]

=E

[
hi(Yn) ·

(
L∑

r=1

⟨1(r)∣∣∣〈w(t)
i ,z

(r)
X

〉∣∣∣≥0
· z(r)

X ,M⊥
j ⟩

)]

=E

[
L∑

s=1

⟨wi, z
(s)
Y ⟩1

(s)∣∣∣〈w(t)
i ,z

(s)
X

〉∣∣∣≥0
·

(
L∑

r=1

⟨1(r)∣∣∣〈w(t)
i ,z

(r)
X

〉∣∣∣≥0
· z(r)

X ,M⊥
j ⟩

)]

=E

[
L∑

s=1

⟨wi, z
(s)
Y ⟩ ·

(
L∑

r=1

⟨z(r)
X ,M⊥

j ⟩

)]

=
1

L2
E

[
L∑

s=1

⟨wi,M z̃+(s)
n + ξ̃+(s)

n ⟩ ·

(
L∑

r=1

⟨M z̃(r)n + ξ̃(r)n ,M⊥
j ⟩

)]

=
1

L2
E

[
L∑

s=1

⟨wi,M z̃+(s)
n ⟩ ·

(
L∑

r=1

⟨M z̃(r)n ,M⊥
j ⟩

)]

=
1

L2
E

[
⟨wi,M

L∑
s=1

z̃+(s)
n ⟩ ·

(
⟨M

L∑
r=1

z̃(r)n ,M⊥
j ⟩

)]

=
1

L2
E
[
⟨wi,Mẑ+

n ⟩ ·
(
⟨Mẑn,M

⊥
j ⟩
)]

=
1

L2
E

⟨wi,Mẑ+
n ⟩ · ⟨

∑
j′∈[d]

Mj′ ẑn,j′ ,M
⊥
j ⟩


=

1

L2
E

⟨wi,Mẑ+
n ⟩ · ⟨

∑
j′∈[d]

Mj′ ,M
⊥
j ⟩ẑn,j′


=

1

L2
E

⟨wi,Mẑ+
n ⟩ ·

∑
j′∈[d]

⟨Mj′ ,M
⊥
j ⟩ẑn,j′


=

1

L2
E
[
⟨wi,Mẑ+

n ⟩ · 0
]

=0.

(220)

G PROOF OF LEMMAS IN APPENDIX B

G.1 PROOF OF LEMMA B.2(A):

Proof of Lemma B.2(a): At initialization, the neuron weight w(0)
i is a high dimensional Gaussian

vector :

w
(0)
i ∼ N (0, σ2

0Id1), (221)

with w
(0)
i ∈ Rd1 and each coordinate w

(0)
i (k) ∼ N (0, σ2

0), i.i.d.
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∥∥∥w(0)
i

∥∥∥2
2
=

d1∑
k=1

(
w

(0)
i (k)

)2
. (222)

We know that w(0)
i (k) ∼ N (0, σ2

0), so:

1

σ2
0

∥∥∥w(0)
i

∥∥∥2
2
∼ χ2(d1). (223)

According to the concentration inequality of the chi-square distribution:

If X ∼ χ2(d1), then for any 0 < ε < 1, we have:

Pr

[∣∣∣∣Xd1 − 1

∣∣∣∣ ≥ ε] ≤ 2 exp

(
−d1ε

2

4

)
. (224)

Therefore, we have:

Pr


∣∣∣∣∣∣∣
∥∥∥w(0)

i

∥∥∥2
2

σ2
0d1

− 1

∣∣∣∣∣∣∣ ≥ ε
 ≤ 2 exp

(
−d1ε

2

4

)
. (225)

Choose a suitable ε to derive the precision range and we choose: ε = Õ
(

1√
d1

)
.

At this time, the probability of deviation is:

Pr

[∣∣∣∣∥∥∥w(0)
i

∥∥∥2
2
− σ2

0d1

∣∣∣∣ ≤ Õ(σ2
0

√
d1)

]
≥ 1− 1

poly(d)
. (226)

That is: ∥∥∥w(0)
i

∥∥∥2
2
∈
[
σ2
0d1

(
1− Õ

(
1√
d1

))
, σ2

0d1

(
1 + Õ

(
1√
d1

))]
. (227)

This holds with high probability (1− 1
poly(d) ).

G.2 PROOF OF LEMMA B.2(B):

Proof of Lemma B.2(b): Let:

Zi :=
1

σ0
w

(0)
i ∼ N (0, Id1

). (228)

Then we have: ∥∥∥MM⊤w
(0)
i

∥∥∥2
2
= σ2

0 ·
∥∥MM⊤Zi

∥∥2
2
. (229)

We regard MM⊤ as a rank-d projection matrix, projecting Zi ∈ Rd1 onto the column space of M
so we can use the following property:

If MM⊤ is a fixed rank-d projection matrix, and Zi ∼ N (0, Id1
), then:

∥MM⊤Zi∥22 = Z⊤
i (MM⊤)⊤MM⊤Zi = Z⊤

i MM⊤Zi = ∥M⊤Zi∥22, (230)

M⊤Zi ∼ N (0, Id). (231)

Therefore, we can conclude:∥∥MM⊤Zi

∥∥2
2
∼ χ2(d) =⇒ E

[∥∥MM⊤Zi

∥∥2
2

]
= d. (232)
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And it satisfies the following Chi-square concentration inequality:

P
(∣∣∣∥∥MM⊤Zi

∥∥2
2
− d
∣∣∣ ≤ εd) ≥ 1− 2 exp

(
−cε2d

)
. (233)

Choose ε = Õ(1/
√
d), and the result holds with high probability. We substitute back w

(0)
i∥∥∥MM⊤w

(0)
i

∥∥∥2
2
= σ2

0 ·
∥∥MM⊤Zi

∥∥2
2
∈
[
σ2
0d

(
1− Õ

(
1√
d

))
, σ2

0d

(
1 + Õ

(
1√
d

))]
. (234)

G.3 PROOF OF LEMMA B.2(C):

Proof of Lemma B.2(c): Recall if g is standard Gaussian, then for every t > 0,

1√
2π
· t

t2 + 1
e−t2/2 < Pr

g∼N (0,1)
[g > t] <

1√
2π
· 1
t
e−t2/2. (235)

Therefore, for every i ∈ [m] and j ∈ [d],

p1 = Pr

[
⟨w(0)

i ,Mj⟩2 ≥
c1 log d

d
∥MM⊤w

(0)
i ∥

2
2

]
= Pr

[
⟨w(0)

i ,Mj⟩
σ0

≥
√
c1 log d

]

≥ Ω

(
1

dc1/2

)
= Ω

(
1

d
( ϵmax
ϵmin

)2·(1+γ)

)
,

(236)

and

p2 = Pr

[
⟨w(0)

i ,Mj⟩2 ≥
c2 log d

d
∥MM⊤w

(0)
i ∥

2
2

]
= Pr

[
⟨w(0)

i ,Mj⟩
σ0

≥
√
c2 log d

]

≤ O
(

1√
log d

)
· 1

dc2/2

= O

(
1√
log d

)
· 1

d(
ϵmin
ϵmax

)2·(1−γ)
.

(237)

We define the following events in definition B.1:

• Ai: Lucky neuron i satisfies conditions 1(i.e., the response is large enough and in the
correct direction)

• Bi: for all j′ ̸= j, lucky neuron i satisfies condition 2 (i.e., small responses in other
directions)

We now compute the probability of the intersection event Ai ∩Bi:

Pr[Ai] =
p1
2

= Ω

(
d
−
(

ϵmax
ϵmin

)2
·(1+γ)

)
,

Pr[Bi] = (1− p2)d−1 = e−(d−1)p2 = e−(d−1)d−a

= e−d1−a

= 1,

Pr[Ai ∩Bi] =
p1
2
· (1− p2)d−1 = Ω

(
1√
log d

· d−
(

ϵmax
ϵmin

)2
·(1+γ)

)
.

(238)
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(1) We now have m = dCm neurons. Therefore, the expected number is:

E
[
|M⋆

j |
]
= m · Pr[Ai ∩Bi] = dCm · Ω

(
d
−
(

ϵmax
ϵmin

)2
·(1+γ)

)
= Ω

(
d
Cm−

(
ϵmax
ϵmin

)2
·(1+γ)

)
.

(239)

Chernoff bound (Lower-tail form): For any δ ∈ (0, 1), we have:

Pr
[∑

Xi < (1− δ)µ
]
≤ e− δ2

2 µ. (240)

Let δ = 1
2 , we obtain:

Pr

[∑
Xi <

1

2
µ

]
≤ e−µ/8

Pr
[
|M⋆

j | < O (dω1)
]
≤ e−Ω(dω1 )

Pr
[
|M⋆

j | > Ω (dω1)
]
≥ 1− e−Ω(dω1 ).

(241)

(2) We now have m = dCm neurons. Therefore, the expected number is:

E [|Mj |] = m · p2 = dCm · O
(

1√
log d

· d−(
ϵmin
ϵmax

)
2·(1−γ)

)
= O

(
1√
log d

· dCm−( ϵmin
ϵmax

)
2·(1−γ)

)
.

(242)

Chernoff bound (upper tail) tells us that for any 0 < δ < 1, we have:

Pr
[∑

Xi > (1 + δ)µ
]
≤ e−Ω(δ2µ)

Pr

[
|Mj | > Ω(

1√
log d

dω2)

]
≤ e−Ω( 1√

log d
dω2 )

= o

(
1

d4

)
Pr

[
|Mj | < O

(
1√
log d

dω2

)]
≥ 1− o

(
1

d4

)
Pr [|Mj | < O (dω2)] ≥ 1− o

(
1

d4

)
.

(243)

G.4 PROOF OF LEMMA B.2(D):

Proof of Lemma B.2(d): We know: |Mj | ≤ O(dω2). There are d indices j ∈ [d]. Therefore, the
total number of pairs (i, j) such that i ∈Mj is at most:

d∑
j=1

|Mj | ≤ d ·O(dω2) = O(d1+ω2). (244)

On the other hand, the total number of neurons is m = dCm . So for any fixed i, we define:

Ni := {j ∈ [d] : i ∈Mj}. (245)

Then,
m∑
i=1

|Ni| =
d∑

j=1

|Mj | ≤ O(d1+ω2). (246)

Therefore,

E[|Ni|] =
1

m

m∑
i=1

|Ni| ≤ O
(
d1+ω2−Cm

)
= O

(
d1−(

ϵmin
ϵmax

)
2·(1−γ)

)
. (247)
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Then:

Pr
[∣∣∣⟨w(0)

i ,Mj⟩
∣∣∣ ≥ Ω(σ0 log

1/4 d)
]
≤ 2 exp

(
− t2

2σ2
0

)
= 2−Ω(

√
log d). (248)

Fix i ∈ [m], and consider d different j. Each has probability 2−Ω(
√
log d) to exceed the threshold.

Therefore, the expectation is:

E
[∣∣∣{j ∈ [d]

∣∣∣ ∣∣∣⟨w(0)
i ,Mj⟩

∣∣∣ ≥ Ω
(
σ0 log

1/4 d
)}∣∣∣] = O

(
2−

√
log d · d

)
. (249)

H PROOF OF LEMMAS IN APPENDIX C

This section can be found in the Supplementary Material.

I PROOF OF LEMMAS IN APPENDIX D

This section can be found in the Supplementary Material.

J PROOF OF LEMMAS IN APPENDIX E

This section can be found in the Supplementary Material.

K PROOF OF ADDITIONAL LEMMAS

This section can be found in the Supplementary Material.
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