
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THEORETICAL ANALYSIS OF CONTRASTIVE LEARN-
ING UNDER IMBALANCED DATA: FROM TRAINING DY-
NAMICS TO A PRUNING SOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Contrastive learning has emerged as a powerful framework for learning general-
izable representations, yet its theoretical understanding remains limited, particu-
larly under imbalanced data distributions that are prevalent in real-world applica-
tions. Such an imbalance can degrade representation quality and induce biased
model behavior, yet a rigorous characterization of these effects is lacking. In
this work, we develop a theoretical framework to analyze the training dynamics of
contrastive learning with Transformer-based encoders under imbalanced data. Our
results reveal that neuron weights evolve through three distinct stages of training,
with different dynamics for majority features, minority features, and noise. We
further show that minority features reduce representational capacity, increase the
need for more complex architectures, and hinder the separation of ground-truth
features from noise. Inspired by these neuron-level behaviors, we show that prun-
ing restores performance degraded by imbalance and enhances feature separation,
offering both conceptual insights and practical guidance. Major theoretical find-
ings are validated through numerical experiments.

1 INTRODUCTION

Contrastive learning has emerged as a powerful paradigm in representation learning, effectively
leveraging unlabeled data without relying on labels. Within this framework, samples with similar
semantic meaning are treated as positive pairs, while those with different semantics are considered
negative pairs. By pulling positive pairs closer together and pushing negative pairs farther apart
in the representation space, contrastive learning enables models to capture rich and discriminative
features. Compared with supervised learning, the resulting representations are often more robust
and less sensitive to noise (Xue et al., 2022; Ghosh & Lan, 2021; Zhong et al., 2022a; Jiang et al.,
2020; Yang & Xu, 2020; Kang et al., 2020). This approach has demonstrated remarkable success
across a wide range of applications (Zhong et al., 2022b; Zhang et al., 2022; Jiang et al., 2023; Luo
et al., 2023) and has been particularly influential in multi-modal learning (Nakada et al., 2023; Khan
et al., 2025), driving major advances in the early development of vision-language models (Radford
et al., 2021; Li et al., 2022; 2023).

Despite its strengths, contrastive learning struggles with class imbalance in real-world datasets Jiang
et al. (2021), where majority classes dominate pair formation and minority classes are underrepre-
sented. This imbalance hinders the capture of discriminative features for minority classes and de-
grades representation quality. Conventional approaches to class imbalance in supervised learning
typically rely on re-weighting and resampling, and these ideas have inspired analogous methods in
contrastive learning. Re-weighting strategies adjust the contribution of pairs or instances to reduce
the dominance of majority classes (Cui et al., 2019; Huang et al., 2016), while resampling meth-
ods construct more balanced training batches by oversampling minority samples or undersampling
majority ones (Drummond & Holte, 2003; He & Garcia, 2009; Peng et al., 2020). Although these ap-
proaches have shown effectiveness in certain cases, their application in contrastive settings remains
challenging, as they often rely on accurate class labels that are unavailable in self-supervised learn-
ing. To address this limitation, an alternative line of research has proposed pruning-based methods,
which have been empirically validated to enhance the representation of underrepresented classes
(Jiang et al., 2021; Qian et al., 2022).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Despite the progress made by these approaches, most efforts have been largely empirical, relying on
heuristic methods to alleviate the imbalance problem. While these techniques often provide perfor-
mance gains in practice, they do not explain why or how imbalance undermines the quality of learned
representations. Recent work has begun to develop theoretical understandings of contrastive learn-
ing, primarily addressing questions such as its superiority over traditional generative approaches like
GANs (Ji et al., 2023), the necessity of data augmentation for effective representation learning (Wen
& Li, 2021), and its ability to produce representations that reduce the sample complexity of down-
stream tasks (Garg & Liang, 2020). Nonetheless, these studies have not considered the implications
of imbalanced data distributions.

In this work, we provide a theoretical analysis of how neurons learn feature representations through
contrastive training. We study a simplified but representative setting: a Transformer-MLP frame-
work with a single-head attention mechanism followed by an MLP with bilateral ReLU activations.
To make the analysis clear, we use a structured data model where each input includes majority and
minority features with different frequencies. This setup highlights the key role of feature frequencies
and helps us describe their impact on training dynamics and how neurons learn features. In turn,
the model allows us to formalize how contrastive learning enhances majority features and drives
neurons to learn purer feature representations. Overall, our paper makes three main contributions:

First, we develop a theoretical framework to characterize the training dynamics of contrastive
learning under Transformer-based encoders with an imbalanced data distribution. We show
that learning proceeds in three stages: first, neuron weights grow in feature directions while non-
feature components are suppressed; Second, Lucky neurons then specialize in single features, and
ordinary neurons learn a mix of features; Finally, each neuron converges in a way that guarantees a
small training loss, becoming strongly aligned with one or more features, weakly aligned with other
features, and remaining small in non-feature directions.

Second, we quantitatively characterize how the presence of minority features influences neu-
rons’ learning capacity and, consequently, representation learning. Our analysis reveals that
imbalance degrades representation performance in multiple ways: it slows the learning of minority
features, decreases the number of neurons that specialize in a single feature, and produces a chain
effect that necessitates a more complex model to adequately capture all features.

Third, magnitude-based pruning can enhance the learning of minority features. Our results re-
veal that magnitude-based pruning enhances updates along minority feature directions, encouraging
more neurons to specialize in pure minority features and thereby yielding more robust and balanced
representations. Intuitively, neurons with small magnitudes are more sensitive to samples containing
minority features, which implicitly allows pruning to amplify their contribution.

1.1 RELATED WORK

Data Imbalance in Self-Supervised Learning: Data imbalance or long-tail data has been a long-
standing challenge since the early development of supervised learning (Chu et al., 2020; Liu et al.,
2020; Yang et al., 2022; Chawla et al., 2002). At a high level, tackling data imbalance follows a
simple principle: balancing the influence of different groups of data during weight updates, typi-
cally through re-sampling (Buda et al., 2018; Choi et al., 2018), which alters the data distribution,
or re-weighting (Mahajan et al., 2018), which adjusts loss contributions across classes. However,
without label information, as in self-supervised learning (SSL), these strategies are far more difficult
to apply, and only a few works have addressed the imbalance. Beyond re-weighting and re-sampling
(Lin et al., 2017; Shrivastava et al., 2016; Shang et al., 2024; Shen et al., 2016), other alternative ap-
proaches have been proposed: optimization-based regularization for rare samples (Liu et al., 2021),
mixup for implicit rebalancing (Li & Jia, 2025), and pruning as an implicit means of detecting
long-tail data (Jiang et al., 2021; Qian et al., 2022).

Convergence and Generalization Analysis of Contrastive Learning: Despite its empirical suc-
cess, contrastive learning lacks a mature theoretical understanding, largely due to the complexity of
its loss function. Early research investigates why augmentation is essential for the success of con-
trastive learning, showing that such an alignment between augmented positive pairs facilitates learn-
ing useful representations (Saunshi et al., 2022; Tian et al., 2020; Saunshi et al., 2019; Wen & Li,
2021). Tian et al. (2021); Wang et al. (2023) establishes a connection between the gradients of con-
trastive learning and graph neural networks, highlighting interpretability through a graph-theoretic

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

perspective. HaoChen et al. (2021) also explores the connections between contrastive learning and
graph theory, proposing a new loss function linked to graph spectral clustering to help explain its
success. Wen & Li (2021) emphasizes the necessity of data augmentation for breaking dependencies
on spurious noise. None of these works has explored how imbalanced data influences the training
dynamics of contrastive learning.

Feature Learning Paradigm: The mathematical framework in this paper is closely related to the
feature learning paradigm. Specifically, we assume the data follow a sparse coding model, which
is a mixture of latent features, and study the training dynamics of model weights to examine how
they align with these features. Most prior works focus on supervised learning (Allen-Zhu & Li,
2022; Zhang et al., 2023; Li et al., 2025; Cao et al., 2022), where features are tied to ground-truth
labels; however, such settings cannot be directly extended to contrastive learning. Because of the
complexity of analyzing fine-grained training dynamics, existing studies are typically limited to
simple one-hidden-layer neural networks, with some recent efforts exploring Transformers but still
restricted to a single layer (Huang et al., 2024; Oymak et al., 2023; Li et al., 2024), even under super-
vised settings. The most relevant work is (Wen & Li, 2021), which analyzes the training dynamics
of contrastive learning with one-hidden-layer feedforward networks. In contrast, our paper studies
Transformer architectures under a different data model, and further incorporates data imbalance,
providing a comprehensive analysis of how it influences the model’s ability to decouple features,
rather than being only a direct extension through feature magnitude changes.

2 PROBLEM FORMULATION AND ALGORITHM

Contrastive Learning Framework. Let X = [x(1), . . . ,x(L)] ∈ Rd1×L or Y ∈ Rd1×L be
an input sequence with L tokens. The goal of contrastive learning is to learn a mapping f(·) :
Rd1×L → Rm that outputs a meaningful embedding from the input sequence.

Let (Xn,Yn) denote a positive pair (e.g., derived from the same objective or sharing semantic
meaning), and let N denote a set of corresponding negative samples (e.g., random samples). The
InfoNCE loss with temperature parameter τ > 0 is defined as:

ℓ(fθ,Xn,Yn,N) := − log

(
esimfθ

(Xn,Yn)/τ∑
X∈{Yn}∪N e

simfθ
(Xn,X)/τ

)
, (1)

where the similarity function is given by

simfθ
(Xn,Yn) :=

〈
fθ(Xn), StopGrad

(
fθ(Yn)

)〉
, (2)

and StopGrad(·) acts as the identity in forward pass while blocking gradients in backpropagation.

Then, the learning objective is to minimize an empirical risk with l2-regularizer, i.e.,

L̂aug(fθ) = L̂(fθ) +
λ

2
∥θ∥2F =

1

K

K∑
k=1

ℓ
(
fθ,Xk,Yk,Nk

)
+
λ

2
∥θ∥2F , (3)

where θ is the neural network parameters.

Model Architecture: Transformer-MLP. We employ a simplified single-head self-attention mech-
anism on top of an MLP layer. Each input sequence is passed through the attention layer, where
every token serves as a query. Then, it is followed by a bilateral ReLU (BReLU) activation in the
MLP layer, where BReLUb(s) = ReLU(s − b) − ReLU(−s − b). Specifically, the embedding
function f is expressed as

fθ(Xn) =
(
h1(Xn), . . . , hm(Xn)

)⊤ ∈ Rm,

with hi(Xn) =

L∑
r=1

BReLU
b
(t)
i

(
⟨w(t)

i ,Attention(WQx(r)
n ,WKXn,WV Xn)⟩

)
.

(4)

Pruning Algorithm. To address the issue of data imbalance, we revisit (Jiang et al., 2021; Qian
et al., 2022) and propose a pruning algorithm that dynamically removes small-magnitude neuron

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

weights during the forward pass, while retaining all parameters as trainable in the backward pass
1. Specifically, we initialize the MLP layer weights with Gaussian distributions and the attention
weights as identity matrices. The binary mask is initially set to all ones, meaning no neurons are
pruned at the start. At each epoch, a fraction α of the neurons with the smallest magnitudes are
pruned, and the corresponding binary mask is updated. During the forward pass, the masked param-
eters θ(t)mk are used to encode the inputs. In the backward pass, gradients are computed with respect
to the pruned model but applied to the full parameter set, namely, the gradient is calculated as

g(θ
(t)
t ,M (t)) :=

1

K

K∑
k=1

[
(ℓ′

p,θ
(t)
mk

− 1)hi(Yk)∇θhi(Xk) +
∑

Xn,s∈Nk

ℓ′
s,θ

(t)
mk

hi(Xn,s)∇θhi(Xk)
]
, (5)

where ℓ′p,· :=
exp
(
Simf· (Xk,Yk)/τ

)
∑

X∈{Yk}∪Nk
exp
(
Simf· (Xk,X)/τ

) is the positive logit and ℓ′s,· :=

exp
(
Simf· (Xk,Xn,s)/τ

)
∑

X∈{Yk}∪Nk
exp
(
Simf· (Xk,X)/τ

) is negative logit with respect to the native sample Xn,s.

Algorithm 1 Forward Magnitude Pruning with Backward Unmasked Update
Require: Training dataset {(Xk,Yk,Nk)}Kk=1 (positive pairs (Xk,Yk) and negative set Nk)
Require: Pruning ratio α
Require: Training epochs T , weight decay parameter λ, temperature τ

1: Initialize network parameters w(0)
i ∼ N (0, σ2

0Id1), W
(0)
K = W

(0)
Q = I .

2: Set the initial pruning mask M (0) ← 1 with the same shape as θ(0).
3: for t = 0 to T − 1 do
4: Magnitude based pruning: At each iteration t, prune α of the smallest magnitude parame-

ters in θ(t) by creating the corresponding binary mask M (t).
5: Forward (masked): Apply the mask to obtain θ

(t)
mk ← θ(t) ⊙M (t), then encode Xk, Yk,

and negatives Nk using f
θ
(t)
mk

.

6: Compute loss: L̂aug(fθ
(t)
mk

) = 1
K

∑K
k=1 ℓ

(
f
θ
(t)
mk

,Xk,Yk,Nk; τ
)
+ λ

2 ∥θ
(t)
mk∥2F .

7: Backward and update: Release the mask M (t) on the masked parameters and update the
full parameters by

θ(t+1) ← (1− ηλ)θ(t) − η · g(θ(t)t ,M (t))

8: end for
9: return θ(T )

Note that this procedure does not permanently eliminate any neurons for efficiency purposes, even
though a reduction in computation cost can be observed. The pruning mask acts as a temporary filter
by automatically removing small-magnitude neurons. As shown in Theorem 3.1, these neurons are
associated with minority features. Consequently, samples containing such features incur a higher
loss, which in turn encourages the model to allocate greater attention to them during training.

3 THEORETICAL ANALYSIS

3.1 KEY INSIGHTS OF THE FINDINGS

We first give a summary of the key insights from our analysis before turning to the data model and
the formal theoretical results. Our findings show how neurons gradually learn feature representations
across different stages of training. In particular, we have

(K1). Training dynamics of contrastive learning based on the Transformer-MLP framework.
The theory divides the learning process into three stages. In Stage 1 (Lemma 3.1), neuron weights
grow in feature directions at rates determined by the feature frequencies ϵj , while their components
in non-feature directions are suppressed. In Stage 2 (Lemma 3.2), lucky neurons inM⋆

j strengthen

1We do not introduce a new algorithm; instead, we adapt established approaches to our theoretical setting.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

their alignment with the feature direction Mj , and ordinary neurons inMj remain bounded by these
lucky neurons, so that the learned features become purer and non-feature components remain sup-
pressed. In the final stage, each neuron aligns with a specific set of features Ni, becoming strongly
aligned with some features, weakly with others, and remaining small in non-feature directions.

(K2). Feature frequency ratio controls neuron specialization. At convergence, each neuron is
dominated by features in Ni, with negligible contribution from other directions. First, the neuron
magnitude in Ni, denoted α, scales as εj

εmax
, so rarer features are learned more weakly. Second, the

size ofNi scales as d1−(εmin/εmax)
2

: smaller ratios enlargeNi and cause feature mixing, while larger
ratios shrink it and yield purer alignment. Third, the number of neurons specializing in purified
features scales as d−(εmax/εmin)

2

, which decreases as the gap between εmax and εmin grows. Since
contrastive learning works best when neurons specialize in purified features, imbalance introduces
three interrelated obstacles: minority features are learned with smaller magnitude, neurons mix
multiple features instead of staying pure, and the overall number of specialized neurons decreases.
Together, these effects weaken representation quality and require larger models to learn all features.

(K3). Pruning enhances minority feature learning. With pruning, neurons aligned with minority
features gain stronger updates of order α

d , while those aligned with non-minority features grow only
weakly, with updates of order α

d2 . At convergence, the coefficient of neurons learning a minority
feature can reach the same order as that of majority features, so the performance downgrade from
imbalance is alleviated. Intuitively, minority neurons are pruned more often because their magni-
tudes are smaller, which in turn amplifies the contribution of samples containing the minority feature
in gradient updates. As a result, pruning strengthens the minority feature, makes it clearly distin-
guished from other contributions, and drives more neurons to specialize in it, leading to more robust
representation learning.

Table 1: Summary of main notations

η Learning rate λ Regularization parameter
τ Temperature coefficient K Batch size
N Set of negative samples B The set of Yn and negative samples
ϵmin frequency of minority feature ϵmax frequency of majority feature
ϵj Feature frequency for feature j Ni Set of dominate features for neuron i
Mj Set of ordinary neurons for feature j M⋆

j Set of lucky neurons for feature j

3.2 ASSUMPTIONS

Data Model. Our data assumption is adopted from the widely used sparse coding model, which
constitutes a common foundation for theoretical analyses of deep learning (Allen-Zhu & Li, 2022;
Wen & Li, 2021). Moreover, sparse coding provides a conceptual framework for modeling real-
world data across diverse domains, including CV (Protter & Elad, 2008; Yang et al., 2009; Mairal
et al., 2014), NLP (Arora et al., 2018), compressed sensing (Candes & Recht, 2012; Candès & Tao,
2010), and neuroscience (Vinje & Gallant, 2000; Olshausen & Field, 1997; 2004; Foldiak, 2003).

Assumption 3.1 states that each token within a sample can be expressed as a weighted sum of a
subset of features from the dictionary matrix M , corrupted by additive noise ξ. Here, M denotes the
dictionary matrix, z represents the latent signal, and ξ corresponds to spurious noise. Importantly, in
the presence of noise, particularly when the noise level is comparable to or even exceeds the signal
magnitude, no linear mapping can recover the latent signal directly from the input. This makes the
model simple in form yet intrinsically challenging, thereby providing a favorable abstraction for
theoretical analyses of nonlinear neural networks.
Assumption 3.1 (Sparse Coding Model). For a paired data (Xn,Yn), the data structure is:

Xn =
[
Mz(1)

n + ξ(1)n , Mz(2)
n + ξ(2)n , . . . , Mz(L)

n + ξ(L)
n

]
Yn =

[
Mz+(1)

n + ξ+(1)
n , Mz+(2)

n + ξ+(2)
n , . . . , Mz+(L)

n + ξ+(L)
n

] (6)

Here, each z
(i)
n ∈ Rd represents the latent signal at the ℓ-th token, and ξ

(i)
n denotes the additive

noise. M = [M1, . . . ,Md] ∈ Rd1×d is the dictionary matrix, which is a column-orthonormal
matrix and satisfies ∥Mj∥∞ ≤ Õ

(
1√
d1

)
, ∀j ∈ [d]. We also assume d1 = poly(d).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Assumption 3.2 requires that the latent signal be both bounded and sparse. Sparsity is a standard as-
sumption, introduced primarily to facilitate the theoretical analysis, yet it also agrees with empirical
observations that real-world data typically activate only a small subset of latent factors rather than
spreading energy across all coordinates. Moreover, the assumption enforces sign consistency across
tokens within the same sample, meaning that whenever a particular coordinate is active, its sign
remains identical across all tokens. This ensures that different parts of the same sample contribute
coherently to the underlying latent feature instead of producing conflicting activations.

Assumption 3.2 (Latent Signal). We have assumptions on the latent signal {z(i)}Li=1 with z(i) =

(z
(i)
1 , . . . , z

(i)
j , . . . , z

(i)
d )⊤: (i) all z(i)j are bounded and symmetric around zero over all samples.

Moreover, we have Pr(|z(i)n,j | ≠ 0) = Θ
(

log log d
d

)
; (ii) z(i)j share the same sign across all i ∈ [L].

Assumption 3.3 states that noise follows Gaussian distributions. This is a mild condition, as no
strong restriction is imposed on its variance. In particular, the noise magnitude can exceed that of
the sparse signal when d1 ≫ d. The assumption is adopted for analytical purposes and demonstrates
that contrastive learning can recover meaningful latent representations even in regimes where the
signal is dominated by noise.

Assumption 3.3 (Noise). Here each noise term ξ
(ℓ)
n and ξ

+(ℓ)
n for ℓ ∈ [L] is independently drawn

from the same distribution ξ
(ℓ)
n ∼ N (0, σ2

ξId1
), with variance σ2

ξ = Θ
(√

log d
d

)
.

Assumption 3.4 states that a pair of positive samples shares the same set of features when aggregated
over all tokens within the sample. Intuitively, this means that the two samples encode the same
semantic structure, even though their individual token-level representations may differ. In contrast,
a negative pair is formed by two random samples whose latent signals are completely independent.

Assumption 3.4 (Positive and Negative Pairs). A pair of samples Xn and Yn form a positive pair
if and only if supp

(∑L
ℓ=1 z

(ℓ)
n

)
= supp

(∑L
ℓ=1 z

+(ℓ)
n

)
, sign

(∑L
ℓ=1 z

(ℓ)
n

)
= sign

(∑L
ℓ=1 z

+(ℓ)
n

)
.

By contrast, negative pairs are defined such that the corresponding latent signals are independent.

Definition 3.1 states that each feature is controlled by ϵj . Intuitively, ϵj characterizes how often
feature j appears across the data. When ϵj is small, feature j is regarded as a minority feature.

Definition 3.1 (Majority and minority features). For each feature index j ∈ [d], and for all i ∈
[L] and all samples, the activation probability of the sparse signal satisfies: Pr

(∣∣z(i)
j

∣∣ ̸= 0
)

=

Θ
(
ϵj

log log d
d

)
. We define the majority features as those associated with ϵmax = maxj∈[d] ϵj , and

the minority features as those associated with ϵmin = minj∈[d] ϵj .

3.3 FORMAL THEORETICAL RESULTS

Theorem 3.1 analyzes the vanilla contrastive learning algorithm without pruning, showing how data
imbalance affects performance. Lemmas 3.1 and 3.2 provide intermediate steps toward its proof
and reveal how training dynamics evolve, despite the algorithm appearing to follow a consistent
gradient-based procedure. Theorem 3.2 then gives the results with pruning, showing how pruning
improves performance under imbalance.

3.3.1 VANILLA CONTRASTIVE LEARNING

Lemma 3.1 shows two main effects of contrastive learning in the first training stage: (a) neuron
weights grow in feature directions but are suppressed in non-feature directions, and (b) the growth
rate in a feature direction Mj depends on its frequency ϵj , with larger ϵj leading to faster growth
and smaller ϵj making the feature harder to capture early in training.

Lemma 3.1 (Stage 1). During the first training stage, the update of neuron weights w
(t)
i can be

bounded for all t ∈ [0, T1] as follows.

|⟨w(t+1)
i ,Mj⟩| ≥ |⟨w(t)

i ,Mj⟩|(1− ηλ+ ϵj
ηCz log log d

d
)− Õ

(η∥w(t)
i ∥2

poly(d1)

)
, (7)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

and |⟨w(t+1)
i ,M⊥

j ⟩| ≤ (1− ηλ)|⟨w(t)
i ,M⊥

j ⟩|+ Õ
(η∥w(t)

i ∥2
poly(d1)

)
. (8)

Before presenting the theoretical results in Stage 2, we first categorize neurons into two groups.
The ordinary neurons Mj strongly align with a certain direction, while the lucky neurons M⋆

j
form a special subset that aligns with only one feature direction (see Appendix B for the formal
definition). In Stage 2: (a) lucky neurons inM⋆

j grow significantly in alignment with Mj , controlled
by ϵj , though their number remains small; (b) ordinary neurons inMj are bounded by the feature
components of lucky neurons up to a constant factor.

Lemma 3.2 (Stage 2). During the second training stage, the update of neuron weights w(t)
i can be

bounded for all t ∈ [T1, T2] as follows.

(a) For each j ∈ [d], if i ∈M⋆
j , then:

|⟨w(T2)
i ,Mj⟩|2 ≥ 2 · εj

εmax
· ∥w(T1)

i ∥22, with |M⋆
j | ≥ m · d

−( εmax
εmin

)2
. (9)

(b) For each j ∈ [d], if i′ ∈Mj and i ∈M⋆
j , then:

|⟨w(T2)
i′ ,Mj⟩| ≤ O(|⟨w(T2)

i ,Mj⟩|). (10)

Theorem 3.1 establishes the convergence of the algorithm. In particular, (11) shows that the al-
gorithm converges with bounded training error. Moreover, (12) characterizes the structure of the
learned neuron weights: upon convergence, they become strongly aligned with a subset of features
within Nj , weakly aligned with the remaining features, and remain small in the non-feature direc-
tions. The size of Nj is bounded as in (14), and only a limited number of neurons specialize in
learning a single feature.
Theorem 3.1 (Stage 3: Convergence). Let m = dCm be the number of neurons and τ =
polylog(d). Suppose we train the neural net fθ via contrastive learning, and consider iterations
T ∈ [T3, T4] with T3 = d1.01

η and T4 = d1.99

η . Then the following guarantees hold:

1

T

∑
t∈[T ]

Laug(fθ(t)) ≤ o(1) (11)

Moreover, for each neuron i ∈ [m] and t ∈ [T3, T4], the weight will learn the following set of
features:

w
(t)
i =

∑
j∈Ni

αi,jMj +
∑
j /∈Ni

α′
i,jMj +

∑
j∈[d1]\[d]

βi,jM
⊥
j , (12)

where

αi,j ∈
[

ϵj
ϵmax

τ
Ξ2
,

ϵj
ϵmax

τ
]
, α′

i,j ≤ o
(

ϵj
ϵmax

1√
d

)
∥w(t)

i ∥2, |βi,j | ≤ o
(

1√
d1

)
∥w(t)

i ∥2. (13)

Furthermore, the size of Ni is bounded as

|Ni| = O
(
d1−(

ϵmin
ϵmax

)
2)
. (14)

Finally, for each Mj , there are at least Ω(m · d−( εmax
εmin

)2
) neurons i ∈ [m] such that Ni = {j}.

Remark 1: For a neuron wi, its convergent weights are aligned with a subset of features Ni. In
contrast, all other feature directions are smaller by an order of 1√

d
. Hence, we can say that neuron

wi is dominated by the features in Ni. Moreover, the neurons associated with learning feature j
are influenced by the frequency of that feature, which intuitively explains how imbalance shapes the
distribution of neuron weights.

Remark 2: We emphasize that the success of contrastive learning relies on neurons that specialize
in a single feature, referred to as lucky neurons, i.e., ∪jM⋆

j . In contrast, neurons that learn mixtures
of features are useful only for a limited subset of downstream tasks. The number of lucky neurons

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

for each feature is lower bounded by m · d−( εmax
εmin

)2 , as derived from (9). Consequently, beyond
the reduced neuron magnitude in minority feature directions, imbalance also decreases the number
of neurons that learn purified features. This, in turn, requires a more complex model with a larger
number of neurons to capture all features, leading to higher computational cost. Moreover, the upper
bound of |Ni| increases as the ratio εmin

εmax
decreases, which is undesirable because it indicates that

more neurons learn mixtures of features rather than pure ones.

3.3.2 CONTRASTIVE LEARNING WITH PRUNING

Theorem 3.2 describes the training dynamics in the pruning setting, serving as the counterpart to the
earlier result obtained without pruning. To highlight the effect more clearly, we focus on stage 3.
In particular, pruning amplifies the learning of minority features: (a) for lucky neurons aligned with
minority directions, the neuron weights increase in that direction at the order of α

d , where α is the
pruning ratio. (b) In contrast, neurons associated with non-minority features exhibit much smaller
growth, with updates in those directions on the order of α

d2 per iteration. (c) Most importantly, when
training converges, the coefficients αi,j⋆ , projecting neuron weights onto the minority feature Mj⋆ ,
become dominant and independent of the ratio εmin

εmax
.

Theorem 3.2 (Pruning: Reinforcing Minority Feature Learning). With pruning ratio α, the
following statements hold:

(a) When i∗ ∈M∗
j∗ , we have

⟨w(t+1)
i⋆ ,Mj∗⟩ ≥

(
1− ηλ+Ω

(
ηϵ2j∗α

Cz log log d

d

))
⟨w(t)

i⋆ ,Mj∗⟩. (15)

(b) When ∀i and j ̸= j∗, we have

⟨w(t+1)
i ,Mj⟩ ≤

(
1 +O

(
ηϵ3j∗α

Cz log log d

d2

))
⟨w(t)

i ,Mj⟩. (16)

(c) For neuron i ∈M⋆
j⋆ and t = T5, contrastive learning learns the following decomposition:

w
(t)
i = αi,j∗Mj∗ +

∑
j /∈Ni

α′
i,jMj +

∑
j∈[d1]\[d]

βi,jM
⊥
j , (17)

where

αi,j∗ ∈
[
τ

Ξ2
, τ

]
, α′

i,j ≤ o
((

1 +
1

d

)
· 1√

d

)
∥w(t)

i ∥2, |βi,j | ≤ o
(

1√
d1

)
∥w(t)

i ∥2. (18)

Finally, for feature Mj⋆ , there are at least Ω(m · d−1) neurons i ∈ [m] such that Ni = {j⋆}.

Remark 1: We would like to clarify two implicit assumptions underlying the results. First, the
pruning ratio is implicitly upper bounded by |Mj⋆ |, so that under magnitude-based pruning, we
can guarantee that all pruned neurons are those aligned with the minority feature Mj⋆ . In practice,
however, the pruning ratio can be extended to include any neurons that have learned minority fea-
tures, i.e., any i with j ∈ Ni. Second, we assume that the magnitude of all non-minority features
is comparable. Intuitively, in the general case, neurons associated with the minority feature grow
until their magnitude reaches the level of the second-smallest feature. At that point, both the original
minority feature and the second-smallest feature effectively become the new minority features, and
the process continues inductively across features. A detailed analysis of this extension is omitted for
simplicity, so that we can prove and present the pruning benefits in a clear manner.

Remark 2: The difference between neurons learning minority features and those learning majority
features arises from their sensitivity to pruning. As shown in Theorem 3.1, the magnitude of a
neuron is determined by its dominant feature and the frequency of that feature. For neurons inMj⋆

that specialize in purified minority features, their magnitudes are significantly smaller than those of
other neurons and are therefore more likely to be pruned. This pruning effect results in relatively
smaller positive logits and larger negative logits on samples containing the minority feature (see
(5)), thereby increasing the influence of these samples on the gradient updates. Since features are

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

assumed to be independent across the data, such samples have a low probability of simultaneously
containing other features, resulting in a difference on the order of 1/d in the growth dynamics of
these neurons.

Remark 3: Unlike in the vanilla learning paradigm, the magnitude of αi,j⋆ no longer depends
on the ratio εmin

εmax
, which suggests that the representation of the minority feature is not suppressed

by data imbalance. Although the coefficients α′
i,j for other features may grow slightly due to the

extended number of iterations required for convergence, their increase remains only on the order of
1/d. Consequently, αi,j⋆ ≫ α′

i,j , which suggests that the minority feature is strongly amplified and
clearly distinguished from other contributions. This, in turn, drives more neurons to specialize in
the purified minority feature, leading to more robust and effective representation learning.

4 NUMERICAL EXPERIMENTS

Experiments on CIFAR10-LT, CIFAR100-LT, and ImageNet-LT. Table 4 reports the results of
linear probe evaluation on CIFAR10-LT, CIFAR100-LT, and ImageNet-LT under long-tailed set-
tings, comparing vanilla contrastive learning (w/o pruning) against our proposed approach (w/ prun-
ing). Following the setup in (Jiang et al., 2021; Kang et al., 2020; Chen et al., 2020), models are
first pretrained and then evaluated using a linear probe, where a linear classifier is trained on frozen
representations. The imbalance ratio, ρ, is defined as the ratio between the number of samples in the
majority and minority classes, with larger values indicating more severe imbalance. Two evaluation
metrics are considered: overall classification accuracy (%) and the accuracy gap (∆20) between the
top 20% head classes and the bottom 20% tail classes. The results show that pruning consistently
improves accuracy across all datasets, with improvements becoming more substantial as ρ increases.
Furthermore, pruning generally reduces ∆20, indicating better balance between head and tail classes.
These results indicate that pruning not only enhances overall downstream task performance but also
reduces the performance gap between head and tail classes. We also provide additional synthetic
data experiments to support our theoretical insights; due to space limitations, these results are de-
ferred to Appendix A.2.

Table 2: Linear probe accuracy (%) on CIFAR10-LT, CIFAR100-LT, and ImageNet-LT. ∆20 denotes
the accuracy gap between the top 20% head classes and bottom 20% tail classes.

Dataset ρ
Accuracy ∆20

w/o pruning w/ pruning w/o pruning w/ pruning
CIFAR10-LT 10 79.25± 1.03 84.92± 0.67 3.42± 1.02 2.99± 0.92

50 75.58± 0.84 83.60± 1.02 3.92± 1.21 3.35± 0.76
100 74.24± 0.82 81.31± 0.94 5.69± 1.35 5.62± 0.99

CIFAR100-LT 10 51.21± 1.21 56.33± 1.51 2.45± 0.57 1.37± 0.46
50 49.32± 0.45 56.12± 0.32 4.95± 1.02 2.57± 0.92

100 47.12± 0.51 54.93± 0.50 7.11± 0.45 4.38± 0.22

ImageNet-LT 256 63.21 65.12 8.47 7.21

5 CONCLUSION

This work provides a theoretical analysis of the training dynamics of a Transformer-MLP model in
learning feature representations through contrastive learning under imbalanced data settings. Specif-
ically, we quantitatively characterize how the presence of minority features reduces the number of
neurons that capture those features, as well as the number of “lucky neurons” that specialize in a
single feature. This reduction, in turn, harms the overall representation learning ability of the model.
Motivated by this theoretical characterization, we revisit the magnitude-based pruning approach to
address data imbalance. In particular, we theoretically demonstrate that pruning can enhance gra-
dient updates along the minority feature direction. This encourages more neurons to specialize in
pure minority features, thereby yielding more robust and balanced representations. Looking ahead,
promising directions include exploring alternative strategies beyond pruning that could further pro-
mote minority-feature learning.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

LLM USAGE DISCLOSURE

We used large-language models (ChatGPT) to aid in polishing the writing of this paper. For numer-
ical experiments, we employed AI-assisted coding tools (GitHub Copilot and ChatGPT) to support
code development.

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs robust
deep learning. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 977–988. IEEE, 2022.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Linear algebraic struc-
ture of word senses, with applications to polysemy. Transactions of the Association for Compu-
tational Linguistics, 6:483–495, 2018.

Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. A systematic study of the class imbalance
problem in convolutional neural networks. Neural networks, 106:249–259, 2018.

Emmanuel Candes and Benjamin Recht. Exact matrix completion via convex optimization. Com-
munications of the ACM, 55(6):111–119, 2012.

Emmanuel J Candès and Terence Tao. The power of convex relaxation: Near-optimal matrix com-
pletion. IEEE transactions on information theory, 56(5):2053–2080, 2010.

Yuan Cao, Zixiang Chen, Misha Belkin, and Quanquan Gu. Benign overfitting in two-layer convo-
lutional neural networks. Advances in neural information processing systems, 35:25237–25250,
2022.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International Conference on Machine Learning,
pp. 1597–1607. PMLR, 2020.

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo. Star-
gan: Unified generative adversarial networks for multi-domain image-to-image translation. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8789–8797,
2018.

Peng Chu, Xiao Bian, Shaopeng Liu, and Haibin Ling. Feature space augmentation for long-tailed
data. In European conference on computer vision, pp. 694–710. Springer, 2020.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on
effective number of samples. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

Chris Drummond and Robert C. Holte. C4.5, class imbalance, and cost sensitivity: Why under-
sampling beats over-sampling. In Workshop on Learning from Imbalanced Datasets II, 2003.

Peter Foldiak. Sparse coding in the primate cortex. In The Handbook of Brain Theory and Neural
Networks. MIT Press, 2003.

Siddhant Garg and Yingyu Liang. Functional regularization for representation learning: A unified
theoretical perspective. In Advances in Neural Information Processing Systems, 2020.

Aritra Ghosh and Andrew Lan. Contrastive learning improves model robustness under label noise.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
2703–2708, 2021.

Jeff Z HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for self-supervised
deep learning with spectral contrastive loss. Advances in neural information processing systems,
34:5000–5011, 2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Haibo He and Edwardo A. Garcia. Learning from imbalanced data. IEEE Transactions on Knowl-
edge and Data Engineering, 2009.

Chen Huang, Yining Li, Chen Change Loy, and Xiaoou Tang. Learning deep representation for im-
balanced classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

Yu Huang, Zixin Wen, Yuejie Chi, and Yingbin Liang. Transformers provably learn feature-position
correlations in masked image modeling. CoRR, 2024.

Wenlong Ji, Zhun Deng, Ryumei Nakada, James Zou, and Linjun Zhang. The power of contrast for
feature learning: A theoretical analysis. Journal of Machine Learning Research, 2023.

Yangqin Jiang, Chao Huang, and Lianghao Huang. Adaptive graph contrastive learning for recom-
mendation. In Proceedings of the 29th ACM SIGKDD conference on knowledge discovery and
data mining, pp. 4252–4261, 2023.

Ziyu Jiang, Tianlong Chen, Ting Chen, and Zhangyang Wang. Robust pre-training by adversarial
contrastive learning. Advances in neural information processing systems, 33:16199–16210, 2020.

Ziyu Jiang, Tianlong Chen, Bobak J Mortazavi, and Zhangyang Wang. Self-damaging contrastive
learning. In International conference on machine learning, pp. 4927–4939. PMLR, 2021.

Bingyi Kang, Yu Li, Sa Xie, Zehuan Yuan, and Jiashi Feng. Exploring balanced feature spaces for
representation learning. In International conference on learning representations, 2020.

Asifullah Khan, Laiba Asmatullah, Anza Malik, Shahzaib Khan, and Hamna Asif. A survey
on self-supervised contrastive learning for multimodal text-image analysis. arXiv preprint
arXiv:2503.11101, 2025.

Hongkang Li, Meng Wang, Songtao Lu, Xiaodong Cui, and Pin-Yu Chen. How do nonlinear trans-
formers learn and generalize in in-context learning? arXiv preprint arXiv:2402.15607, 2024.

Hongkang Li, Yihua Zhang, Shuai Zhang, Meng Wang, Sijia Liu, and Pin-Yu Chen. When is task
vector provably effective for model editing? a generalization analysis of nonlinear transformers.
arXiv preprint arXiv:2504.10957, 2025.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888–12900. PMLR, 2022.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023.

Zhixin Li and Yuheng Jia. Conmix: Contrastive mixup at representation level for long-tailed deep
clustering. In The Thirteenth International Conference on Learning Representations, 2025.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for dense object
detection. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Oct
2017.

Hong Liu, Jeff Z HaoChen, Adrien Gaidon, and Tengyu Ma. Self-supervised learning is more robust
to dataset imbalance. arXiv preprint arXiv:2110.05025, 2021.

Jialun Liu, Yifan Sun, Chuchu Han, Zhaopeng Dou, and Wenhui Li. Deep representation learning
on long-tailed data: A learnable embedding augmentation perspective. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

Dongsheng Luo, Wei Cheng, Yingheng Wang, Dongkuan Xu, Jingchao Ni, Wenchao Yu, Xuchao
Zhang, Yanchi Liu, Yuncong Chen, Haifeng Chen, et al. Time series contrastive learning with
information-aware augmentations. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 37, pp. 4534–4542, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li,
Ashwin Bharambe, and Laurens Van Der Maaten. Exploring the limits of weakly supervised
pretraining. In Proceedings of the European conference on computer vision (ECCV), pp. 181–
196, 2018.

Julien Mairal, Francis Bach, and Jean Ponce. Sparse modeling for image and vision processing.
Foundations and Trends in Computer Graphics and Vision, 2014.

Ryumei Nakada, Halil Ibrahim Gulluk, Zhun Deng, Wenlong Ji, James Zou, and Linjun Zhang.
Understanding multimodal contrastive learning and incorporating unpaired data. In International
Conference on Artificial Intelligence and Statistics, pp. 4348–4380. PMLR, 2023.

Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision Research, 1997.

Bruno A Olshausen and David J Field. Sparse coding of sensory inputs. Current Opinion in Neuro-
biology, 2004.

Samet Oymak, Ankit Singh Rawat, Mahdi Soltanolkotabi, and Christos Thrampoulidis. On the role
of attention in prompt-tuning. In International Conference on Machine Learning, pp. 26724–
26768. PMLR, 2023.

Junran Peng, Xingyuan Bu, Ming Sun, Zhaoxiang Zhang, Tieniu Tan, and Junjie Yan. Large-scale
object detection in the wild from imbalanced multi-labels. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

Matan Protter and Michael Elad. Image sequence denoising via sparse and redundant representa-
tions. IEEE Transactions on Image Processing, 2008.

Yiyue Qian, Chunhui Zhang, Yiming Zhang, Qianlong Wen, Yanfang Ye, and Chuxu Zhang. Co-
modality graph contrastive learning for imbalanced node classification. Advances in Neural In-
formation Processing Systems, 35:15862–15874, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora, Mikhail Khodak, and Hrishikesh Khandeparkar.
A theoretical analysis of contrastive unsupervised representation learning. In Proceedings of the
International Conference on Machine Learning (ICML), pp. 5628–5637. PMLR, 2019.

Nikunj Saunshi, Jordan Ash, Surbhi Goel, Dipendra Misra, Cyril Zhang, Sanjeev Arora, Sham
Kakade, and Akshay Krishnamurthy. Understanding contrastive learning requires incorporating
inductive biases. In International Conference on Machine Learning, pp. 19250–19286. PMLR,
2022.

Ziqiao Shang, Bin Liu, Fengmao Lv, Fei Teng, and Tianrui Li. Learning contrastive feature repre-
sentations for facial action unit detection. arXiv preprint arXiv:2402.06165, 2024.

Li Shen, Zhouchen Lin, and Qingming Huang. Relay backpropagation for effective learning of deep
convolutional neural networks. In Computer Vision – ECCV 2016, 2016.

Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-based object detectors
with online hard example mining. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016.

Yuandong Tian, Lantao Yu, Xinlei Chen, and Surya Ganguli. Understanding self-supervised learning
with dual deep networks. arXiv preprint arXiv:2010.00578, 2020.

Yuandong Tian, Xinlei Chen, and Surya Ganguli. Understanding self-supervised learning dynamics
without contrastive pairs. In International Conference on Machine Learning, pp. 10268–10278.
PMLR, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

William E Vinje and Jack L Gallant. Sparse coding and decorrelation in primary visual cortex during
natural vision. Science, 2000.

Y. Wang, Q. Zhang, T. Du, J. Yang, Z. Lin, and Y. Wang. A message passing perspective on learn-
ing dynamics of contrastive learning. In International Conference on Learning Representations
(ICLR), 2023.

Zixin Wen and Yuanzhi Li. Toward understanding the feature learning process of self-supervised
contrastive learning. In International Conference on Machine Learning, pp. 11112–11122.
PMLR, 2021.

Yihao Xue, Kyle Whitecross, and Baharan Mirzasoleiman. Investigating why contrastive learning
benefits robustness against label noise. In International Conference on Machine Learning, pp.
24851–24871. PMLR, 2022.

Jianchao Yang, Kai Yu, Yihong Gong, and Thomas Huang. Linear spatial pyramid matching using
sparse coding for image classification. In 2009 IEEE Conference on computer vision and pattern
recognition, pp. 1794–1801. IEEE, 2009.

Lu Yang, He Jiang, Qing Song, and Jun Guo. A survey on long-tailed visual recognition. Interna-
tional Journal of Computer Vision, 130(7):1837–1872, 2022.

Yuzhe Yang and Zhi Xu. Rethinking the value of labels for improving class-imbalanced learning.
Advances in neural information processing systems, 33:19290–19301, 2020.

S. Zhang, M. Wang, P.-Y. Chen, S. Liu, S. Lu, and M. Liu. Joint edge-model sparse learning
is provably efficient for graph neural networks. In The Eleventh International Conference on
Learning Representations, 2023.

Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D Manning, and Curtis P Langlotz. Con-
trastive learning of medical visual representations from paired images and text. In Machine learn-
ing for healthcare conference, pp. 2–25. PMLR, 2022.

Y Zhong, H Tang, J Chen, J Peng, and Y-X Wang. Is self-supervised learning more robust than
supervised learning? In Proc ICML Workshop on Pre-training, 2022a.

Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chunyuan Li, Noel Codella, Liunian Harold Li,
Luowei Zhou, Xiyang Dai, Lu Yuan, Yin Li, et al. Regionclip: Region-based language-image
pretraining. In Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition, pp. 16793–16803, 2022b.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A OVERVIEW OF THE APPENDIX AND PROOF SKETCH

The appendices are organized systematically to provide supporting materials for the main text. Ap-
pendix B introduces key notations and definitions, along with basic lemmas describing properties
at initialization. Appendices C, D, and E present the proofs of the training dynamics of vanilla
contrastive learning (without pruning) under the imbalanced data setting. Specifically, Appendix C
contains the proof of Stage 1, corresponding to Lemma 3.1 in the main text; Appendix D contains
the proof of Stage 2, corresponding to Lemma 3.2; and Appendix E contains the proof of Stage
3, corresponding to Theorem 3.1, which concludes the analysis with the final convergence results.
Appendix F then provides the proof of our proposed algorithm (with pruning), corresponding to
Theorem 3.2 in the main text. We recommend that readers first consult the proof sketch before
examining the detailed lemmas and proofs in the appendices.

In addition, Appendices G-K collect the proofs of the lemmas referenced throughout the earlier
appendices. To maintain readability, some of these lemma proofs are included only in the supple-
mentary material. While these details are not essential for following the main arguments, we provide
them in full for completeness.

A.1 PROOF SKETCH

In Stage 1, we analyze how neurons learn the features. Each neuron gradually learns the relevant
feature directions while hardly learning the non-feature directions. Concretely, the projection of a
neuron weights onto the feature subspace, though small at the beginning, grows rapidly during train-
ing and becomes significant, reaching the order of Ω(∥w(T1)

i ∥22) (see Appendix D, Theorem C.1),
while the projection onto the non-feature subspace stays nearly unchanged. The reason why the
neuron weights grow toward the feature subspace is that the latent variable z(i)n,j and z+(i)

n,j are depen-
dent. This dependence produces an incremental term of order: ϵj ηCz log log d

d , which accumulates
during training and drives the neuron weights further into the feature space. In contrast, because the
feature are orthogonal to the non-feature directions, and the latent variable z(i)n,j is independent of
the noise, the weights in the non-feature subspace remain essentially unchanged. The only variation
that appears there is a negligible increment of size about 1

poly(d1)
. (see Appendix C, Lemma C.1).

In Stage 2, the lucky neurons with large projection on a feature direction become activated and
align clearly with that feature. If a neuron does not belong to Mj , its projection on feature j re-
mains small, so it cannot be activated and has only weak alignment. The projection on non-feature
directions stays very small, so neurons do not learn the non-feature components (Appendix D,
Lemma D.1). As a result, if neuron i is lucky for feature j, the projection of w(T2)

i onto Mj is on
the order of the Ω(1)∥w(T2)

i ∥2, meaning the neuron has already focused on Mj (see Appendix D,
Theorem D.1).

In Stage 3, neurons inM∗
j continue to strengthen their projection on the corresponding feature j,

and this projection remains the dominant part of their weight. Neurons not in Mj keep only a
small projection on feature j, so they cannot be activated. The projections on non-feature directions
stay negligible throughout. Overall, the growth of neurons continues along the same directions
established earlier, and the network starts to converge around T3. At this point, each neuron weight
vector wi eventually aligns with a set of features Ni, which corresponds to the features that already
had some degree of alignment with wi at initialization.

In pruning stage, we rigorously show that pruning the neurons which have learned minority fea-
tures enhances the learning of those features. After pruning, the gradients in backpropagation for
neurons aligned with minority features become significantly stronger, which forces these neurons to
further learn the minority features. To some extent, this reinforcement compensates for their lower
frequency ϵj∗ compared to majority features. In contrast, for neurons associated with majority fea-
tures, pruning does not change their gradients, so they continue to update in the same speed and
direction as before. As a result, the decomposition of neurons aligned with minority features be-
comes concentrated on those features, while contributions from other features and from non-feature
directions remain suppressed and negligible.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 SYNTHETIC EXPERIMENTAL SETTINGS

In this subsection, we provide the detailed settings of our synthetic experiments. We follow the
standard sparse coding model to generate synthetic data, consistent with our main paper. Each
generated data sample is passed into a Transformer to obtain a token embeddings, which is then
processed by an MLP trained with a contrastive objective. After training, we evaluate the alignment
of the learned neurons to the minority feature. Specifically, we report: (i) the number of neurons
with alignment above a threshold (Figure 1); (ii) the maximum alignment value (Figure 2); (iii) the
mean cosine similarity between positive pairs on the test set (Figure 3); and (iv) the regression test
mean squared error (MSE) (Figure 4).

Experiment 1–2 (Alignment with the minority feature). We evaluate how well the learned neu-
rons align with the minority feature. Specifically, for each wi, we compute its normalized pro-
jection onto the minority feature. Figure 1 reports the number of neurons with projection larger
than 0.3, while Figure 2 shows the maximum projection value across neurons. We vary εmin from
0.1 to 1.0, and consider different noise-to-signal ratio (NSR) levels, where NSR = σ2d1 with
σ2 ∈ {(1/100)2, (3/100)2, (5/100)2} and d1 = 500. Each experiment is independently repeated
100 times, and we report the mean results. The results demonstrate that as εmin increases, both the
number of aligned neurons and the maximum alignment consistently grow, providing direct empir-
ical support for our theoretical results. The detailed hyperparameter settings can be found in the
code.

Experiment 3 (Average cosine similarity on the test set). We evaluate performance on the test
set using the average cosine similarity between positive pairs. At test time, we keep the feature
space identical. For each configuration, we generate 5000 test pairs with a fixed test seed and report
the mean cosine similarity. We vary εmin from 0.05 to 0.5 in increments of 0.05, and use σ2 ∈
(5/100)2, (7.5/100)2, (10/100)2 to compute the corresponding NSR levels. Each configuration
is independently repeated 100 times, and the averaged results are reported. The results in Figure
3 show that the average test cosine similarity consistently increases as εmin grows, indicating a
stronger ability to learn the minority feature. Consequently, the quality of the learned features on the
test set is enhanced, the model generalizes better, and the test performance becomes stronger, which
provides further empirical support for our theoretical results. Detailed hyperparameter settings can
be found in the code.

Experiment 4 (Test MSE on the downstream regression task). We evaluate the performance
of the downstream regression task on the test set, measured by Test MSE. Both the downstream
training stage and the test stage use a unified feature space. A linear regression head is trained on
the representations obtained from upstream learning, using 1000 training pairs, and then evaluated
on 5000 test pairs with a fixed test seed. In the setup, we vary εmin from 0.05 to 0.5 with a step
size of 0.05, and use σ2 ∈ {(3/100)2, (5/100)2, (7.5/100)2} to compute the corresponding NSR
levels. Each configuration is independently repeated 100 times, and the averaged results are reported
(Figure 4). The results show that as εmin increases, the test MSE consistently decreases, indicating
a stronger ability to learn the minority feature. Consequently, the model achieves better overall
learning and stronger generalization in downstream tasks, which is consistent with our theoretical
analysis. Detailed hyperparameter settings can be found in the code.

Figure 1: Number of neurons with |⟨wi,Mj⟩|
∥wi∥∥Mj∥ ≥

0.3 vs εmin for different NSR values.
Figure 2: Maximum |⟨wi,Mj⟩|

∥wi∥∥Mj∥ vs εmin for dif-
ferent NSR values.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 3: 1
N

∑N
n=1

⟨f(Xn),f(Yn)⟩
∥f(Xn)∥∥f(Yn)∥ vs εmin for

different NSR values.
Figure 4: Downstream regression task: Test
MSE vs εmin for different NSR values.

B NOTATIONS AND LEMMAS

To streamline the presentations, we begin by introducing the key notations and outlining key funda-
mental derivations that will serve as the basis for the subsequent analysis.

Notations. First, we introduce the notations that will appear in the appendix.

Let z(r)
X denote the representation of the r-th token of data sample Xn after passing through the

transformer. Similarly, z(s)
Y denotes the s-th token of data sample Yn after the transformer.

Empirical Gradient. To facilitate the calculation of the gradient of the loss function
ℓ
(
fθ,Xk,Bk

)
with respect to the weights {w(t)

i }i∈[m], we introduce the following notation. We
denote the positive logit by ℓ′p,t(Xn,B) and the negative logits by ℓ′s,t(Xn,B).

ℓ′p,t(Xn,B) :=
exp

(
Simft(Xn,Yn)/τ

)∑
X∈B exp

(
Simft(Xn,X)/τ

) , (19)

ℓ′s,t(Xn,B) :=
exp

(
Simft(Xn,Xn,s)/τ

)∑
X∈B exp

(
Simft(Xn,X)/τ

) . (20)

For convenience, we simplify the positive logit ℓ′
p,θ(t)(Xn,Yn,Nn) as ℓ′p,t, and the negative logit

ℓ′
s,θ(t)(Xn,Yn,Xn,s,Nn) as ℓ′s,t. For clarity of exposition, we suppress the dependence on (Xn,B)

when it can be inferred from the context.

Then, the gradient of the empirical risk function L̂(ft) with respect to the weight w(t)
i at iteration t

is given by:

∇wi
L̂(ft) =

1

K

K∑
n=1

[
(ℓ′p,t − 1)hi(Yn)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

z
(r)
X

+
∑

Xn,s∈N

ℓ′s,thi(Xn,s)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

z
(r)
X

]
.

(21)

Population Gradient. Similar to the empirical gradient, the gradient of the population risk func-
tion L(ft) with respect to the weight w(t)

i at iteration t is given by:

∇wiL(ft) = E[(ℓ′p,t − 1)hi(Yn)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

z
(r)
X

+
∑

Xn,s∈N

ℓ′s,thi(Xn,s)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

z
(r)
X ],

(22)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where L is the population risk function as

L(ft) = E
[
ℓ(fθ,Xn,Yn,N)

]
. (23)

Stop Gradient. Note that the similarity measure explicitly uses the StopGrad operation to block
gradient flow through the second input. The similarity is computed as

Simft(X1,X2) = ⟨ft(X1),StopGrad(ft(X2))⟩. (24)

Concentration Bound. The following lemma shows that, given a sufficiently large number of
samples, the approximation error between the empirical gradient and the population gradient re-
mains bounded with high probability. Building on this principle, we will first analyze the training
dynamics under the population gradient, and subsequently account for the deviation arising from the
empirical gradient. The proof of Lemma B.1 follows standard techniques based on sub-Gaussian tail
bounds and is therefore omitted.
Lemma B.1 (Approximation of empirical gradients by population gradients). Suppose that
∥W (t)∥2F ≤ poly(d). Then there exists some K = poly(d1) such that, with high probability,
the difference between the empirical gradients and the population gradients is bounded for every
iteration t: ∥∥∥∇wi

L̂aug(ft)−∇wi
Laug(ft)

∥∥∥
2
≤ ∥w

(t)
i ∥2

poly(d1)
, ∀i ∈ [m]. (25)

This Definition B.1 divides neurons into two categories, ordinary neurons and lucky neurons, based
on their initial alignment with feature vectors Mj . These sets will serve as the foundation for our
later analysis.
Definition B.1 (Characterization of Neurons). We define the following sets of neurons, which will
be useful for analyzing the stochastic gradient descent trajectory in later sections:

(a) For each j ∈ [d], we define the set of ordinary neuronsMj ⊆ [m] as:

Mj :=

{
i ∈ [m] : ⟨w(0)

i ,Mj⟩2 ≥
c2 log d

d

∥∥MM⊤w
(0)
i

∥∥2
2

}
, ∀j ∈ [d] (26)

(b) For each j ∈ [d], we define the set of lucky neuronsM⋆
j ⊆ [m] as:

M⋆
j :=


i ∈ [m] : ⟨w(0)

i ,Mj⟩2 ≥
c1 log d

d

∥∥MM⊤w
(0)
i

∥∥2
2
,

⟨w(0)
i ,Mj′⟩2 ≤

c2 log d

d

∥∥MM⊤w
(0)
i

∥∥2
2
, ∀j′ ∈ [d], j′ ̸= j

 , (27)

where

c1 =

(
ϵmax

ϵmin

)2

· 2(1 + γ), c2 =

(
ϵmin

ϵmax

)2

· 2(1− γ), γ is a small constant. (28)

Properties at initialization: At initialization (t = 0), we note key facts about the neurons for later
analysis of the SGD trajectory.

Before presenting Lemma B.2, we outline its essential idea: (a) Each w
(0)
i has magnitude in the

order of σ2
0d1; (b) Each w

(0)
i has a projection onto the feature subspace in the order of σ2

0d; (c) For
each feature, the numbers of lucky and ordinary neurons are influenced by the frequencies of the
majority and minority features; (d) For each neuron, the number of aligned features forms only a
limited subset, typically of size smaller than d. We defer the proof of Lemma B.2 to Appendix G for
the clarification of presentation.
Lemma B.2. At initialization (t = 0), the following properties hold:

(a) With high probability, for every i ∈ [m],

∥w(0)
i ∥

2
2 ∈

[
σ2
0d1

(
1− Õ

(
1√
d1

))
, σ2

0d1

(
1 + Õ

(
1√
d1

))]
. (29)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(b) With high probability, for every i ∈ [m],

∥MM⊤w
(0)
i ∥

2
2 ∈

[
σ2
0d
(
1− Õ

(
1√
d

))
, σ2

0d
(
1 + Õ

(
1√
d

))]
. (30)

(c) Let m = dCm be the number of neurons. With probability at least 1− o
(

1
d4

)
, for each j ∈ [d],

|M⋆
j | ≥ Ω(dω1) =: Ξ1, |Mj | ≤ O(dω2) =: Ξ2. (31)

where

ω1 = Cm −
(

ϵmax

ϵmin

)2
(1 + γ), ω2 = Cm −

(
ϵmin

ϵmax

)2
(1− γ). (32)

(d) For each i ∈ [m], there are at most O
(
d1−(

ϵmin
ϵmax

)
2·(1−γ)

)
indices j ∈ [d] such that i ∈Mj .

C THEOREM C.1

In this section we analyze the training process at the initial stage. Here we define the stage transition
time

T1 = Θ

(
d1 log d

η log log d

)
(33)

to be the iteration when

∥MM⊤w
(t)
i ∥

2
2 ≥ 1

2∥w
(t)
i ∥

2
2, (34)

where the neuron weights are more concentrated in the feature space.

C.1 THEOREM C.1

Before stating Theorem C.1, we give a short description of its parts: (a) For all neurons, most of
the weights lie in the feature subspace; (b) Lucky neurons are strongly aligned with their associated
feature directions; (c) Neurons not in the setMj have only weak alignment with feature j; (d) Each
neuron can have strong alignment with only a limited number of features; and (e) All neuron weights
have only small components in non-feature directions.

Theorem C.1 (Initial feature decoupling). At iteration t = T1, we have the following results:

(a) For all i ∈ [m],
∥MM⊤w

(T1)
i ∥22 ≥ 1

2∥w
(T1)
i ∥22. (35)

(b) For each j ∈ [d], and each i ∈M⋆
j ,

|⟨w(T1)
i ,Mj⟩| ≥

√
1 + γ

√
2 log d√
d
∥w(T1)

i ∥2. (36)

(c) For each j ∈ [d], and each i /∈Mj ,

|⟨w(T1)
i ,Mj⟩| ≤

√
1− γ

√
2 log d√
d
∥w(T1)

i ∥2. (37)

(d) For each i ∈ [m],

|⟨w(T1)
i ,Mj⟩| ≥

log1/4 d√
d
∥w(T1)

i ∥2, for at most O
(

d
2
√
log d

)
indices j ∈ [d]. (38)

(e) For each i ∈ [m] and j ∈ [d1] \ [d],

|⟨w(T1)
i ,M⊥

j ⟩| ≤ O
(√

log d
d1

)
∥w(T1)

i ∥2. (39)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.2 USEFUL LEMMAS

In Lemma C.1, we show that for each neuron i ∈ [m], the weight vector wi largely disregards the
non-feature components M⊥ and instead focuses on the relevant features M .

We first describe Lemma C.1: (a) The projection of w(t)
i onto the feature subspace, though initially

small, grows rapidly during training and reaches the order of d1 relative to its initialization. (b)
The component of w(t)

i in the non-feature subspace remains essentially unchanged, up to negligible
variation.

Lemma C.1. For all t ≤ T1, the following properties hold:

(a)∥∥∥MM⊤w
(t)
i

∥∥∥2
2
≤
∥∥∥MM⊤w

(0)
i

∥∥∥2
2

(
1 + ϵmax

ηCz log log d
d

)2t
+O

(
1
d

) ∥∥∥MM⊤w
(0)
i

∥∥∥2
2
,

moreover,
∥∥∥MM⊤w

(t)
i

∥∥∥2
2
≤ O

(∥∥∥w(0)
i

∥∥∥2
2

)
.

(40)

(b) ∥∥∥MM⊤w
(t)
i

∥∥∥2
2
≥
∥∥∥MM⊤w

(0)
i

∥∥∥2
2

(
1− ηλ+ ϵmin

ηCz log log d
d

)2t −O
(
1
d

) ∥∥∥MM⊤w
(0)
i

∥∥∥2
2
. (41)

(c) ∥∥∥M⊥(M⊥)⊤w
(t)
i

∥∥∥2
2
≤
(
1 +O

(
1

poly(d)

))∥∥∥M⊥(M⊥)⊤w
(0)
i

∥∥∥2
2
. (42)

Lemma C.2. For each i ∈ [m], there are at most O(2−
√
log dd) indices j ∈ [d] such that

|⟨w(0)
i ,Mj⟩| ≥ Ω(σ0 log

1/4 d). (43)

C.3 PROOF OF THEOREM C.1

Proof of Theorem C.1(a): The result (a) can be derived from Lemma C.1 (c). We have,

∥MM⊤w
(T1)
i ∥22 =∥w(T1)

i ∥22 − ∥M⊥(M⊥)⊤w
(T1)
i ∥22

≥∥w(T1)
i ∥22 −

(
1 +

1

poly(d)

)
∥M⊥(M⊥)⊤w

(0)
i ∥22

≥∥w(T1)
i ∥22 − ∥w(0)

i ∥22

≥∥w(T1)
i ∥22 −

∥w(T1)
i ∥22

(1 + ϵminCz log d)

≥1

2
∥w(T1)

i ∥22.

(44)

Proof of Theorem C.1(b): Note that from similar gradient calculations to those in the proof of
Lemma C.1 (b), we have, for j ∈ [d] and i ∈M∗

j :

|⟨w(T1)
i ,Mj⟩|

=|⟨w(T1−1)
i ,Mj⟩ − η⟨∇wi

Laug(fT1−1),Mj⟩ ±
∥w((T1−1)

i ∥2
poly(d1)

|

≥|⟨w(T1−1)
i ,Mj⟩|

(
1− ηλ+ ϵj

ηCz log log d

d

)
− Õ

(
η∥w((T1−1)

i ∥2
poly(d1)

)

≥|⟨w(0)
i ,Mj⟩|

(
1− ηλ+ ϵj

ηCz log log d

d

)T1

− Õ

(
ηT1∥w(T1)

i ∥2
poly(d1)

)
.

(45)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

These gradient descent steps above can be derived from the last few inequalities in the proof of
Lemma C.1(b).

|⟨w(T1)
i ,Mj⟩|

1⃝
≥
√
c1 log d√

d
∥MM⊤w

(0)
i ∥2

(
1− ηλ+ ϵj

ηCz log log d

d

)T1

− Õ

(
ηT1∥w(T1)

i ∥2
poly(d1)

)
2⃝
≥
√
c1 log d√

d
∥MM⊤w

(0)
i ∥2

(
1− ηλ+ ϵj

ηCz log log d

d

)T1

− Õ

(
∥w(T1)

i ∥2
poly(d)

)

3⃝
≥
√
c1 log d√

d
∥MM⊤w

(0)
i ∥2

(
1− ηλ+ ϵj

ηCz log log d

d

)T1

− Õ


∥∥∥w(0)

i

∥∥∥
2

poly(d)


4⃝
≥
√
c1 log d√

d
∥MM⊤w

(0)
i ∥2

(
1− ηλ+ ϵj

ηCz log log d

d

)T1

− Õ


√

d1
d
∥MM⊤w

(0)
i ∥2

poly(d)


≥
√
c1 log d√

d
∥MM⊤w

(0)
i ∥2

(
1− ηλ+ ϵj

ηCz log log d

d

)T1

− ∥MM⊤w
(0)
i ∥2

poly(d)

5⃝
≥
√

1 + γ

√
log d√
d

∥w(T1)
i ∥2.

(46)

1⃝ is because Definition B.1 (b). 2⃝ is because ηT1

poly(d1)
≤ 1

poly(d) . 3⃝ is because
∥∥∥w(t)

i

∥∥∥2
2
≤

O(1)
∥∥∥w(0)

i

∥∥∥2
2

(equation 258). 4⃝ is because Lemma B.2 (a) (b). 5⃝ holds because the following
equation is valid:

|⟨w(T1)
i ,Mj⟩|

≥
√
c1 log d√
d
∥MM⊤w

(0)
i ∥2

(
1− ηλ+ ϵj

ηCz log log d

d

)T1

− ∥MM⊤w
(0)
i ∥2

poly(d)

=

√
c1 log d√
d
∥MM⊤w

(0)
i ∥2

(
1− ηλ+ ϵj

d1
d
Cz log d

)
− ∥MM⊤w

(0)
i ∥2

poly(d)

≥( ϵj
ϵmax

)

√
c1 log d√
d
∥MM⊤w

(0)
i ∥2

(
1− ηλ+ ϵmax

d1
d
Cz log d

)
− ∥MM⊤w

(0)
i ∥2

poly(d)

≥( ϵj
ϵmax

)

√
c1 log d√
d
∥MM⊤w

(T1)
i ∥2

6⃝
≥ 1√

2
(
ϵj
ϵmax

)

√
c1 log d√
d
∥w(T1)

i ∥2

≥ 1√
2
(
ϵmin

ϵmax
)

√
c1 log d√
d
∥w(T1)

i ∥2

≥
√
1 + γ

√
log d√
d
∥w(T1)

i ∥2.

(47)

6⃝ holds because of the conclusion of Theorem C.1(a).

Proof of Theorem C.1(c): Theorem C.1(c) can be verified using Definition B.1 (b), Lemma B.2 (a)
(b) together with the proof of Lemma C.1(a).

|⟨w(T1)
i ,Mj⟩|

≤|⟨w(0)
i ,Mj⟩|

(
1 + ϵj

ηCz log log d

d
+ Õ

( η
d2

))T1

+ Õ

(
ηT1∥w(T1)

i ∥2
poly(d1)

)
.

(48)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The above equation can be obtained from the first inequality in the proof of Lemma C.1(a).

|⟨w(T1)
i ,Mj⟩|

≤|⟨w(0)
i ,Mj⟩|

(
1 + ϵj

ηCz log log d

d
+ Õ

( η
d2

))T1

+
∥M(M)⊤w

(0)
i ∥2

poly(d)

≤
√
c2 log d

d

∥∥∥MM⊤w
(0)
i

∥∥∥
2

(
1 + ϵj

ηCz log log d

d
+ Õ

( η
d2

))T1

+
∥M(M)⊤w

(0)
i ∥22

poly(d)

≤ ϵj
ϵmin

√
c2 log d

d

∥∥∥MM⊤w
(T1)
i

∥∥∥
2
+O

(
∥M(M)⊤w

(0)
i ∥22

poly(d)

)

≤ ϵj
ϵmin

√
c2 log d

d
∥w(T1)

i ∥2 +O

(
∥w(T1)

i ∥2
poly(d)

)

≤ϵmax

ϵmin

√
c2 log d

d
∥w(T1)

i ∥2 +O

(
∥w(T1)

i ∥2
poly(d)

)

≤
√

1− γ
√
2 log d√
d
∥w(T1)

i ∥2.

(49)

Proof of Theorem C.1(d): First, by Lemma C.2 we obtain that for each i ∈ [m], there are at most
O(2−

√
log dd) indices j ∈ [d] such that:

|⟨w(0)
i ,Mj⟩| ≥ Ω(σ0 log

1/4 d). (50)

Next, we proceed to the formal calculation:

|⟨w(T1)
i ,Mj⟩| ≥|⟨w(0)

i ,Mj⟩|
(
1− ηλ+ ϵj

ηCz log log d

d

)T1

≥Ω(σ0 log1/4 d)
(
1− ηλ+ ϵj

ηCz log log d

d

)T1

≥Ω(∥w
(0)
i ∥2√
d1

log1/4 d)Θ(
d1
d
)

≥ log1/4 d√
d
∥w(T1)

i ∥2.

(51)

Proof of Theorem C.1(e). At initialization we have

w
(0)
i ∼ N (0, σ2

0Id1
). (52)

Hence for any unit vector M⊥
j , the projection satisfies

⟨w(0)
i ,M⊥

j ⟩ ∼ N (0, σ2
0). (53)

By the standard Gaussian tail bound (sub-Gaussian with parameter σ0),

P
(∣∣⟨w(0)

i ,M⊥
j ⟩
∣∣ > σ0

√
2 log d

)
≤ 2 exp

(
− t2

2σ2
0

)
=

2

d
. (54)

Therefore, with high probability,∣∣⟨w(0)
i ,M⊥

j ⟩
∣∣ ≤ σ0 ·O(

√
log d). (55)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Moreover, since ∥w(0)
i ∥2 = Θ(σ0

√
d1) with high probability, the above bound is equivalently∣∣⟨w(0)

i ,M⊥
j ⟩
∣∣ ≤ O(√ log d

d1

)
· ∥w(0)

i ∥2. (56)

We have
⟨w(T1)

i ,M⊥
j ⟩

=(1− ηλ)⟨w(T1−1)
i ,M⊥

j ⟩ ± Õ

η
∑

i∈[m]

∥∥∥w(t)
i

∥∥∥2
2

τd
·
∥∥∥w(t)

i

∥∥∥
2


≤(1− ηλ)⟨w(T1−1)

i ,M⊥
j ⟩+ Õ

(
η∥w(t)

i ∥2
poly(d1)

)

≤|⟨w(0)
i ,M⊥

j ⟩|+O(T1η) ·max
t≤T1

Õ

(
∥w(t)

i ∥2
poly(d1)

)

≤O

(√
log d

d1

)
· ∥w(0)

i ∥2 +O(T1η) ·max
t≤T1

Õ

(
∥w(t)

i ∥2
poly(d1)

)

≤O

(√
log d

d1

)
· ∥w(T1)

i ∥2 +O(T1η) ·max
t≤T1

Õ

(
∥w(t)

i ∥2
poly(d1)

)
7⃝
≤O

(√
log d

d1

)
∥w(T1)

i ∥2.

(57)

7⃝ is because T1η
poly(d1)

≪
√

log d
d1

Lemma 3.1 can be viewed as an informal version of Theorem C.1. In particular, part (a) of
Lemma 3.1 corresponds to the first inequality in the proof of Theorem C.1(b), while part (b) of
Lemma 3.1 corresponds to the first inequality in the proof of Theorem C.1(e). Hence, Lemma 3.1 is
essentially a simplified restatement of the more general Theorem C.1.

C.4 PROOF OF LEMMA 3.1

Proof of Lemma 3.1. For j ∈ [d] and i ∈ [m], the following bounds hold for all t ∈ [0, T1]:

(a) Lower bound:

|⟨w(t+1)
i ,Mj⟩| ≥ |⟨w(t)

i ,Mj⟩|(1− ηλ+ ϵj
ηCz log log d

d
)− Õ

(η∥w(t)
i ∥2

poly(d1)

)
. (58)

(b) Orthogonal component:

|⟨w(t+1)
i ,M⊥

j ⟩| ≤ (1− ηλ)|⟨w(t)
i ,M⊥

j ⟩|+ Õ
(η∥w(t)

i ∥2
poly(d1)

)
. (59)

D THEOREM D.1

The second stage is defined as the iterations t ≥ T1 but t ≤ T2, where

T2 = T1 +Θ

(
d log d

ϵmaxη log log d

)
(60)

is defined as the iteration when one of the neuron i ∈ [m] satisfies∥∥∥w(T2)
i

∥∥∥2
2
≥ d

∥∥∥w(T1)
i

∥∥∥2
2
. (61)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D.1 THEOREM D.1

We first provide an explanation of Theorem D.1: (a) If a neuron i is a lucky neuron for feature j,
then the projection of w(T2)

i onto Mj is very large, on the order of the full neuron weight ∥w(T2)
i ∥2.

In other words, such neurons have already “focused” on Mj . (b) The bias term b
(T2)
i grows propor-

tionally with the neuron weight ∥w(T2)
i ∥2, and at iteration T2 it reaches at least polylog(d)√

d
∥w(T2)

i ∥2.
In other words, the continuously increasing bias effectively controls the activation of the neuron
w

(T2)
i . (c) Among the lucky neurons inM∗

j , there exists one neuron w
(T2)
i whose projection onto

Mj is the largest, and this neuron has a larger projection than all the other neurons inMj .
Theorem D.1 (Emergence of singletons). For each neuron i ∈ [m], the following conditions hold
at iteration t = T2:

(a) For each j ∈ [d], if i ∈M⋆
j , then∣∣⟨w(T2)

i ,Mj⟩
∣∣ ≥ Ω(

εmin

εmax
) ∥w(T2)

i ∥2. (62)

(b)

b
(T2)
i ≥ polylog(d)√

d
∥w(T2)

i ∥2. (63)

(c) Let
α⋆
j = max

i∈M⋆
j

∣∣⟨w(T2)
i ,Mj⟩

∣∣, (64)

then there exists a constant Cj = Θ(1) such that∣∣⟨w(t)
i ,Mj⟩

∣∣ ≤ Cjα
⋆
j , ∀i ∈Mj . (65)

D.2 USEFUL LEMMAS

Next, we discuss Lemma D.1. For example, the first item illustrates how each feature Mj can be
captured by certain subsets of neurons, a process influenced by the stochastic nature of initialization.
We elaborate on the full content of Lemma D.1 below.

(a) Lucky neurons have large projection on their feature direction, which means they can be activated
and are clearly aligned with that feature. (b) If a neuron does not belong toMj , then its projection
on feature j stays small, which means it cannot be activated and has only weak alignment. (c) A
neuron can only be well aligned with a small number of features, not with many at the same time. (d)
The projection of a neuron weight on non-feature directions is very small, which means the neuron
does not learn the non-feature directions. (e) The size of each neuron weight is controlled by its
bias, so the weight does not grow without limit.
Lemma D.1. For all iterations t ∈ (T1, T2], the neurons i ∈ [m] satisfy the following properties:

(a) For j ∈ [d], if i ∈M⋆
j , then ∣∣∣⟨w(t)

i ,Mj⟩
∣∣∣ ≥√1 + γ b

(t)
i . (66)

(b) For j ∈ [d], if i /∈Mj , then ∣∣∣⟨w(t)
i ,Mj⟩

∣∣∣ ≤√1− γ b(t)i , (67)

and furthermore, ∣∣∣⟨w(t)
i ,Mj⟩

∣∣∣ ≤ Õ(∥w(t)
i ∥2√
d

)
. (68)

(c) For each i ∈ [m], there are at most O(2−
√
log dd) many j ∈ [d] such that

⟨w(t)
i ,Mj⟩2 ≥

(b
(t)
i )2√
log d

. (69)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(d) For each i ∈ [m], and for all j ∈ [d1] \ [d],∣∣∣⟨w(t)
i ,M⊥

j ⟩
∣∣∣ ≤ Õ(∥w(t)

i ∥2√
d1

)
. (70)

(e) For all i ∈ [m],

∥w(t)
i ∥

2
2 ≤

d(b
(t)
i )2

log d
. (71)

Lemma D.2. For each i ∈ [m], define

Λi :=
{
j ∈ [d] : |⟨w(0)

i ,Mj⟩| ≤ σ0

d

}
⊆ [d]. (72)

Then
|Λi| = O

(
d

polylog(d)

)
. (73)

D.3 PROOF OF THEOREM D.1

Proof of Theorem D.1: We follow similar analysis as in the proof of Lemma D.1. In order to prove
(a)-(c), we have to discuss the two substages of the learning process below.

When all ∥w(t)
i ∥2 ≤ (1 + εmin

εmax
)∥w(T1)

i ∥2: From similar analysis in the proof of Lemma D.1, the

iteration complexity for a neuron i ∈ [m] to reach ∥w(t)
i ∥2 ≥ (1 + εmin

εmax
)∥w(T1)

i ∥2 is no smaller
than

T ′
i,1 := max

{
T1 +Ω

(
d log d

ϵmaxη log log d

)
, T2

}
. (74)

When some ∥w(t)
i ∥2 ≥ (1 +

εj
εmax

)∥w(T1)
i ∥2.

We first prove Theorem D.1(a). In the first stage, for j /∈ Ni, we have∑
j∈[d],j /∈Ni

⟨w(T ′
i,1)

i ,Mj⟩2 ≤
∑

j∈[d],j /∈Ni

⟨w(T1)
i ,Mj⟩2

(
1 + ϵj

O(η)

d polylog(d)

)T2

+ Õ

(
∥w(T1)

i ∥22
d3/2

)

≤ (1 + o(1)(
ϵj
ϵmax

) + o(1)(
ϵj
ϵmax

)2)
∥∥∥MM⊤w

(T1)
i

∥∥∥2
2
,

(75)
where we used the fact that ∥w(T1)

i ∥2 ≲ ∥MM⊤w
(T1)
i ∥2.

For j ∈ [d1] \ [d] we have∑
j∈[d1]\[d]

⟨w(T ′
i,1)

i ,M⊥
j ⟩2

≤
∑

j∈[d1]\[d]

⟨w(T1)
i ,M⊥

j ⟩2 +O

(
η(T ′

i,1 − T1)
d

)
e−Ω(log1/4 d) max

t′∈[T1,T ′
i,1]
∥w(t′)

i ∥
2
2

≤
(
1 + o

( ϵj
ϵmax

)) ∥∥∥M⊥(M⊥)⊤w
(T1)
i

∥∥∥2
2
.

(76)

Typically, if i ∈ M∗
j , there exists t ≤ T2 such that ∥w(t)

i ∥2 ≥ (1 +
εj

εmax
)∥w(T2)

i ∥2, as we have
argued in the proof of Lemma D.1. Thus, we have

|⟨w(T ′
i,1)

i ,Mj⟩|2 ≥ ∥w
(T ′

i,1)

i ∥22 −
∑

j∈[d],j /∈Ni

⟨w(T ′
i,1)

i ,Mj⟩2 −
∑

j∈[d1]\[d]

⟨w(T ′
i,1)

i ,M⊥
j ⟩2

≥ (1 +
εj
εmax

)2∥w(T1)
i ∥22 − (1 + o(1)(

ϵj
ϵmax

) + o(1)(
ϵj
ϵmax

)2)∥w(T1)
i ∥22

≥ εj
εmax

· (2− o(1))∥w(T1)
i ∥22,

(77)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

which proves the claim.

In the second stage, if i ∈ M∗
j , then from similar calculations as above, we can prove by induction

that starting from t = T ′
i,1, it holds:

|⟨w(t+1)
i ,Mj⟩| ≥ |⟨w(t)

i ,Mj⟩|
(
1 + Ω

(
ϵj
η log log d

d

))
≥ ∥w(t)

i ∥2
(
1 + Ω

(
ϵj
η log log d

d

))
∑

j′∈[d],j′ ̸=j

⟨w(t+1)
i ,Mj′⟩2 ≤

∑
j′∈[d],j′ ̸=j

⟨w(t)
i ,Mj′⟩2

(
1 + ϵj

O(η)

d polylog(d)

)2

∑
j∈[d1]\[d]

⟨w(t+1)
i ,M⊥

j ⟩2 ≤
∑

j∈[d1]\[d]

⟨w(t)
i ,M⊥

j ⟩2
(
1 +

O(η)

d polylog(d)

)2

,

(78)

which implies

|⟨w(t+1)
i ,Mj⟩| ≥ |⟨w(t)

i ,Mj⟩| ·
∥w(t+1)

i ∥2
∥w(t)

i ∥2
≥ (1− o(1))∥w(t+1)

i ∥2. (79)

Next, we prove Theorem D.1(b). In the first stage, the bias growth is large, i.e.,

b
(T ′

i,1)

i ≥ b
(T1)
i (1 +

η

d
)T

′
i,1−T1 ≥ b

(T1)
i · polylog(d)

≥ polylog(d)√
d

∥w(T1)
i ∥2 ≥

polylog(d)√
d

∥w(T ′
i,1)

i ∥2.
(80)

In the second stage, the bias is large consistently, i.e.,

b
(t+1)
i ≥ b

(t)
i ·
∥w(t+1)

i ∥2
∥w(t)

i ∥2
≥ polylog(d)√

d
∥w(t+1)

i ∥2 ≥
1

4
∥w(T ′

i,1)

i ∥2. (81)

Finally, we prove Theorem D.1(c): Assuming ⟨w(t)
i ,Mj⟩ > 0 (the opposite case is similar), from

t = T1, for i ∈M∗
j , we have

⟨w(t+1)
i ,Mj⟩ =

(
⟨w(t)

i ,Mj⟩ − b
(t)
i

)(
1 + ϵj

ηCz log log d

d

)
±O

(
η|⟨w(t)

i ,Mj⟩|
d polylog(d)

)

≥ Ω(1)⟨w(t)
i ,Mj⟩

(
1 + ϵj

ηCz log log d

d

(
1− 1

polylog(d)

))
≥ Ω(1)⟨w(T1)

i ,Mj⟩
(
1 + ϵj

ηCz log log d

d

(
1− 1

polylog(d)

))t+1−T1

.

(82)

which implies that after certain iteration t = T1 + T ′, where T ′ = Θ
(

d
η

)
, we shall have

|⟨w(T1+T ′)
i ,Mj⟩| ≥ log log d · |⟨w(T1)

i ,Mj⟩| ≥ b
(T1)
i · log log d. (83)

However, at iteration t = T1 + Θ
(

d
η

)
, we can see from previous analysis that ∥w(t)

i ∥2 ≤ (1 +

o(1))∥w(T1)
i ∥2, so the bias growth can be bounded as

b
(t)
i ≤ b

(T1)
i

(
1 +

η

d

)Θ( d
η )

·max

{
∥w(t)

i ∥2
∥w(T1)

i ∥2
, 1

}

≤ b
(T1)
i

(
1 +

η

d
·Θ(

d

η
)

)
·max {(1 + o(1)), 1}

≤ O(b
(T1)
i ).

(84)

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Now from our initialization properties in Lemma D.2, we have that⟨w(0)
i′ ,Mj⟩2 ≤ O(σ2

0 log d) for
all i ∈ [m]. Thus via similar arguments, we also have

|⟨w(t)
i′ ,Mj⟩| ≤ |⟨w(0)

i′ ,Mj⟩|
(
1 + ϵj

ηCz log log d

d

(
1± 1

polylog(d)

))t

. (85)

holds for all i′ ∈ [m]. Now it is easy to see that for t ≤ T2 = T1 +Θ
(

d log d
η log log d

)
, we have

|⟨w(t)
i ,Mj⟩|

|⟨w(t)
i′ ,Mj⟩|

≥ Ω(1) ·
|⟨w(T1)

i ,Mj⟩|
(
1 + ϵj

ηCz log log d
d

(
1− η

polylog(d)

))t−T1

|⟨w(T1)
i′ ,Mj⟩|

(
1 + ϵj

ηCz log log d
d + η

d polylog(d)

)t−T1

≥
(
1−O

(
ϵj

η log log d

dpolylog(d))

))t−T1

≥ Ω(1).

(86)

Thus, the last claim is proved.

D.4 PROOF OF LEMMA 3.2

Lemma 3.2 can be viewed as an informal version of Theorem D.1. In particular, part (a) of
Lemma 3.2 corresponds to (77) and Lemma B.2 (c), while part (b) of Lemma 3.2 corresponds
to another formulation of Theorem D.1 (c).

E THEOREM E.1

E.1 THEOREM E.1

At the final stage, we show that sparse activation of neurons naturally leads to convergence toward
sparse solutions, thereby guaranteeing sparse representations. For all t ≥ T2:
Theorem E.1. For all iterations t, the neurons i ∈ [m] satisfy the following properties:

(a) For j ∈ [d], if i ∈M⋆
j , then ∣∣⟨w(t)

i ,Mj⟩
∣∣ ≥ Ω(1) ∥w(t)

i ∥2. (87)

(b) For i ∈ [m], we have
∥w(t)

i ∥2 ≤ O(1). (88)

(c) For each j ∈ [d],

F
(t)
j :=

∑
i∈Mj

⟨w(t)
i ,Mj⟩2 = Θ((

ϵj
ϵmax

)2τ log3 d). (89)

(d) Let j ∈ [d] and i ∈M⋆
j , then there exists C = Θ(1) such that∣∣⟨w(t)

i ,Mj⟩
∣∣ ≥ C max

i′∈Mj

∣∣⟨w(t)
i′ ,Mj⟩

∣∣. (90)

(e) For i /∈Mj , it holds ∣∣⟨w(t)
i ,Mj⟩

∣∣ ≤ O

(
ϵj
ϵmax

1√
dΞ5

2

)
∥w(t)

i ∥2. (91)

(f) For any i ∈ [m] and any j ∈ [d1] \ [d], it holds∣∣⟨w(t)
i ,M⊥

j ⟩
∣∣ ≤ O

(
1√

d1 Ξ5
2

)
∥w(t)

i ∥2. (92)

(g) For all i ∈ [m], the bias satisfies

b
(t)
i ≥ polylog(d)√

d
∥w(t)

i ∥2. (93)

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E.2 USEFUL LEMMAS

When all the conditions in Theorem E.1 hold for some iteration t ≥ T2, we have the following fact,
which is a simple corollary of Lemma E.9.
Lemma E.1. For any i ∈ [m], we denoteNi = {j ∈ [d] : i ∈Mj}. Suppose Theorem E.1 holds at
iteration t ≥ T2, then with high probability over x ∈ Dx:

max
x∈{Xn,Yn}

1hi,t(x) ̸=0 ≤
∑
j∈Ni

1|ẑp,j |≠0, (94)

which implies that

max
x∈{Xn,Yn}∪N

Pr
(
hi,t(x) ̸= 0

)
≤ O

(
log log d

d

)
. (95)

Now for the simplicity of calculations, we define the following notations which are used through out
this section
Definition E.1 (Expansion of gradient). For each i ∈ [m], j ∈ [d], we expand ⟨∇wi

L(ft),Mj⟩ as

⟨∇wi
L(ft),Mj⟩

=E

(ℓ′p,t − 1)hi,t(Yn) +
∑

Xn,s∈N

ℓ′s,thi,t(Xn,s)

 L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

⟨z(r)
X ,Mj⟩

 , (96)

and
⟨∇wiL(ft),Mj⟩ = Ψ

(t)
i,j +Φ

(t)
i,j + E

(t)
i,j , (97)

where the Ψ(t), Φ(t), E(t) are defined as follows. For each

zX =
1

L

∑
j

Mj z̃n,j + ξ̃n

 ∼ DzX
, zY =

1

L

∑
j

Mj z̃
+
n,j + ξ̃+n

 ∼ DzY
, (98)

we write

ψ
(t)
i,j (Yn) =

L∑
s=1

[( 1

L
⟨w(t)

i ,Mj⟩z̃+(s)
n,j − b

(t)
i

)
1⟨w(t)

i ,z
(s)
Y ⟩>b

(t)
i

−
(
1

L
⟨w(t)

i ,Mj⟩z̃+(s)
n,j + b

(t)
i

)
1⟨w(t)

i ,z
(s)
Y ⟩<−b

(t)
i

]
,

(99)

ϕ
(t)
i,j (Yn) =

L∑
s=1

⟨w(t)
i , z

(s)\j
Y ⟩1⟨w(t)

i ,z
(s)
Y ⟩>b

(t)
i
− ⟨w(t)

i , z
(s)\j
Y ⟩1⟨w(t)

i ,z
(s)
Y ⟩<−b

(t)
i
. (100)

Now we define

Ψ
(t)
i,j := E

(ℓ′p,t − 1) · ψ(t)
i,j (Yn) +

∑
Xn,s∈N

ℓ′s,t · ψ
(t)
i,j (Xn,s)

 L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

z̃
(r)
n,j

 , (101)

Φ
(t)
i,j := E

(ℓ′p,t − 1) · ϕ(t)i,j (Yn) +
∑

Xn,s∈N

ℓ′s,t · ϕ
(t)
i,j (Xn,s)

 L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

z̃
(r)
n,j

 , (102)

E(t)i,j := E

(ℓ′p,t − 1) · hi,t(Yn) +
∑

Xn,s∈N

ℓ′s,t · hi,t(Xn,s)

 L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

⟨Mj , ξ̃
(r)
n ⟩

 .
(103)

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Moreover, for j ∈ [d1] \ [d], we can similarly define

Ψ
(t)
i,j , Φ

(t)
i,j ≡ 0, (104)

E(t)i,j := E

(ℓ′p,t − 1) · hi,t(Yn) +
∑

Xn,s∈N

ℓ′s,t · hi,t(Xn,s)

 L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

⟨M⊥
j , ξ̃

(r)
n ⟩

 .
(105)

Equipped with the above definition, we are ready to characterize the training process at the final
stage.

Lemma E.2 (Lower bound for Ψ(t)
1 ). Suppose Theorem E.1 holds at iteration t. For j ∈ [d] and

i ∈M⋆
j , there exists G1 = Θ(1) such that if

F
(t)
j :=

∑
i′∈Mj

⟨w(t)
i′ ,Mj⟩2

(
L∑

r=1

z̃
(r)
n,j

)2

≤
(

ϵj
ϵmax

)2

G1τ log d, (106)

then we have

Ψ
(t)
i,j · sign

(
L∑

s=1

⟨w(t)
i ,Mj⟩z̃+(s)

n,j

)

≥
E
[∑L

r=1

∣∣z̃(r)
n,j

∣∣]
polylog(d)

(
1−O

(
1

Ξ3
2

))( L∑
s=1

∣∣⟨w(t)
i ,Mj⟩z̃+(s)

n,j − b
(t)
i

∣∣) .
(107)

Lemma E.3 (Upper bound for Ψ(t)
i,j ). Let j ∈ [d] and i ∈ M⋆

j . Suppose Theorem E.1 holds at
iteration t, then there exists a constant G2 = Θ(1) such that if

F
(t)
j :=

∑
j: i∈Mj

⟨w(t)
i ,Mj⟩2

(
L∑

s=1

z̃
+(s)
n,j

)2

≥
(

ϵj
ϵmax

)2

G2τ log d, (108)

we have

Ψ
(t)
i,j ≤

1

poly(d)

L∑
s=1

∣∣∣⟨w(t)
i ,Mj⟩z̃+(s)

n,j

∣∣∣ . (109)

Similarly, for i ∈Mj , we have

Ψ
(t)
i,j ≤

1

poly(d)

L∑
s=1

∣∣∣⟨w(t)
i ,Mj⟩z̃+(s)

n,j

∣∣∣+O

(
1

d2

)
b
(t)
i . (110)

Lemma E.4. At iteration t ≥ T2, let j ∈ [d] and i ∈ [m]. Suppose Theorem E.1 holds at t. Then
for each j ∈ [d1], we have∣∣∣E(t)i,j

∣∣∣ ≤ O

(
Ξ2
2 ∥w

(t)
i ∥2

d2τ

)
· max
i′∈[m]

(∣∣∣⟨w(t)
i′ ,Mj⟩

∣∣∣) . (111)

Lemma E.5 (Reduction of Φ(t) to the bounds of Ψ(t)). Let j ∈ [d] and i ∈ Mj . Suppose The-

orem E.1 holds for all iterations before t ∈
[
d1.01

η , d
1.99

η

]
and after T2. Also suppose that for all

l ∈ [d], we have

F
(t′)
l = Ω

((
ϵj
ϵmax

)2

τ log d

)
at some t′ = Θ(T2). (112)

Then the following bounds hold:

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

For iteration t ∈
[
d1.01

η , d
1.495

η

]
,

Φ
(t)
i,j ≤ Õ

(
ϵj
ϵmax

· Ξ2
2

d3/2

)
∥w(t)

i ∥2. (113)

For iteration t ∈
[
d1.495

η , d
1.99

η

]
,

Φ
(t)
i,j ≤ Õ

(
1

d1.98

)
∥w(t)

i ∥2. (114)

Definition E.2 (Optimal Learner). We define a learner network that we deem as the optimal feature
map for this task. Let κ > 0, we define θ⋆ := {θ⋆i }i∈[m] as follows:

θ⋆i =


√
τ κ

|M⋆
j |

Mj · sign
(
⟨w(T2)

i ,Mj⟩
)
, if i ∈M⋆

j ,

0, if i /∈
⋃

j∈[d]M⋆
j .

(115)

Furthermore, we define the optimal feature map f⋆t as follows. For i ∈ [m], the i-th neuron of ft,θ
given weight θi ∈ Rd1 is

ft,θ,i(Xn) =

L∑
r=1

[(
⟨θi, z(r)

X ⟩ − bi
)
1⟨w(t)

i ,z
(r)
X ⟩≥bi

−
(
−⟨θi, z(r)

X ⟩ − bi
)
1−⟨w(t)

i ,z
(r)
X ⟩≥bi

]
.

(116)

Finally, we write ft,θ as the concatenation

ft,θ(·) =
(
ft,θ,1(·), . . . , ft,θ,m(·)

)⊤
. (117)

Lemma E.6 (Optimality). Let {θ⋆i }i∈[m] and ft,θ be defined as in Definition E.1. When Theo-
rem E.1, define the pseudo loss function

L̃(ft,θ⋆ , ft) := E

[
−τ log

(
e⟨ft,θ⋆ (Xn),ft(Yn)⟩/τ∑

X∈B e⟨ft,θ⋆ (Xn),ft(X)⟩/τ

)]
. (118)

Then by choosing κ = Θ(Ξ2), and assuming∑
i∈M⋆

j

|⟨w(t)
i ,Mj⟩| ≥ Ω

(√
τ

Ξ2

)
, (119)

we obtain the following loss guarantee:

L̃(ft,θ⋆ , ft) ≤ O
(

1
log d

)
. (120)

Lemma E.7 (Pre-activation size I). Let z(r)
X = 1

L

(
Mz̃

(r)
n + ξ̃

(r)
n

)
∼ DzX

, wi ∈ Rd1 . Define

z
(r)\j
X = 1

L

(∑
j′ ̸=j, j′∈[d] Mj′ z̃

(r)
n,j′ + ξ̃

(r)
n

)
. Then the following results hold:

(a) Naive Chebyshev bound: For any λ > 0,

Pr
z̃
(r)\j
n , ξ̃

(r)
n

((
⟨wi, z

(r)\j
X ⟩+ 1

L ⟨wi,Mj⟩z̃(r)
n,j

)2
>

λ∥wi∥2
2

√
log d

d

)
≤ O

(
1
λ

)
. (121)

The same tail bound applies to ⟨wi, z
(r)
X ⟩, ⟨wi,

z
(s)
Y −z

(r)
X

2 ⟩, and ⟨wi, ξ̃
(r)
n ⟩.

(b) High probability bound for sparse signal:

Pr

(
⟨wi,Mz̃(r)

n ⟩2 > ∥wi∥22 ·max
j∈[d]
∥Mj∥2∞ log4 d

)
≲ e−Ω(log2 d). (122)

(c) High probability bound for dense signal: Let Z = ⟨wi, ξ̃
(r)
n ⟩. Then

Pr
(
z2 ≥ ∥wi∥2

2 log4 d
d

)
≲ e−Ω(log2 d). (123)

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Lemma E.8 (Pre-activation size II). Suppose the following conditions hold:

⟨w(t)
i ,Mj⟩2 ≥ Ω

(
(b

(t)
i )2

)
for at most O(1) indices j ∈ [d], (124)

⟨w(t)
i ,Mj⟩2 ≥ Ω

(
(b

(t)
i )2√
log d

)
for at most O

(
e−Ω(

√
log d)d

)
indices j ∈ [d], (125)

∥w(t)
i ∥

2
2 ≤ O

(
d(b

(t)
i )2

log d

)
. (126)

Then, for any λ ≥ 0.0001,

Pr
(∣∣⟨w(t)

i , z
(r)
X ⟩
∣∣ ≥ λb(t)i

)
≲ e−Ω(log1/4 d), (127)

and

Pr

(∣∣∣〈w(t)
i ,

z
(r)
X +z

(s)
X

2

〉∣∣∣ ≥ λb(t)i

)
≲ e−Ω(log1/4 d). (128)

Lemma E.9 (Pre-activation size III). Let i ∈ [m]. Suppose there exists a set Ni ⊆ [d] with |Ni| =
O(1) such that

⟨w(t)
i ,Mj⟩2 ≤ O

(
(b

(t)
i )2

polylog(d)

)
, ∀j /∈ Ni, (129)

and

∥w(t)
i ∥

2
2 ≤ O

(
d(b

(t)
i )2

polylog(d)

)
. (130)

Then, for any λ ∈ [0.01, 0.99],

Pr

∣∣∣∣∣∣
∑
j /∈Ni

⟨w(t)
i ,Mj⟩z̃(r)

n,j + ⟨wi, ξ̃
(r)
n ⟩

∣∣∣∣∣∣ ≥ λb(t)i

 ≲ e−Ω(log2 d). (131)

Lemma E.10 (Gradient for sparse features). Suppose D.1 holds at iteration t ≥ 0. For j ∈ [d], we
denote events

A1 :=
{
S
\j
i,t ≥ b

(t)
i − α

(t)
i,jCz̃

}
,

A2 :=
{
S̄
\j
i,t ≥ b

(t)
i − ᾱ

(t)
i,jCz̃

}
,

A3 :=
{∣∣∣S̄\j

i,t + ᾱ
(t)
i,jCz̃

∣∣∣ ≥ 1
2

(
α
(t)
i,jCz̃ − b

(t)
i

)}
,

A4 :=
{
S
\j
i,t ≥ 1

2

(
α
(t)
i,jCz̃ − b

(t)
i

)}
;

(132)

and quantities L1, L2, L3, L4 as

L1 :=

√√√√E[|S̄\j
i,t|2(1A1

+ 1A2
)]

E[⟨w(t)
i , ξ̃⟩2]

, L2 := Pr(A1),

L3 :=

√√√√E[|S̄\j
i,t|2(1A3 + 1A4)]

E[⟨w(t)
i , ξ̃⟩2]

, L4 := Pr(A3).

(133)

Then we have the following results:

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

(a) (all features) For all i ∈ [m], if α(t)
i,j ≥ 0, we have (when α(t)

i,j ≤ 0 the opposite inequality holds)

E

[
hi(Yn)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

z̃
(r)
n,j

]

≤ 1

L
α
(t)
i,j · E

[
L∑

s=1

z̃
+(s)
n,j

L∑
r=1

z̃
(r)
n,j1|⟨w(t)

i ,
zX+zY

2 ⟩|≥bi+|⟨w(t)
i ,zX−zX+zY

2 ⟩|

]

±
(
α
(t)
i,j +O

(√
E|ᾱ(t)

i,j |2
))
· E

[
L∑

s=1

L∑
r=1

∣∣∣ z̃(r)
n,j+z̃

+(s)
n,j

2

∣∣∣|z̃(r)
n,j |

]
·O(L1 + L2).

(134)

(b) (lucky features) If α(t)
i,j > b

(t)
i , we have

E

[
hi(Yn)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

z̃
(r)
n,j

]

≤ 1

L

(
α
(t)
i,j − b

(t)
i

)
· E

[
L∑

s=1

z̃
+(s)
n,j

L∑
r=1

z̃
(r)
n,j1|⟨w(t)

i ,
zX+zY

2 ⟩|≥bi+|⟨w(t)
i ,zX−zX+zY

2 ⟩|

]

±
(
α
(t)
i,j +O

(√
E|ᾱ(t)

i,j |2
))
· E

[
L∑

s=1

L∑
r=1

∣∣∣ z̃(r)
n,j+z̃

+(s)
n,j

2

∣∣∣|z̃(r)
n,j |

]
·O(L3 + L4).

(135)

If α(t)
i,j < −b

(t)
i , then the opposite inequality holds with (α

(t)
i,j − b

(t)
i ) replaced by (α

(t)
i,j + b

(t)
i ).

Lemma E.11 (Gradient from dense signals). Let i ∈ [m] and j ∈ [d]. Suppose D.1 holds for the
current iteration t. Then∣∣∣∣∣E

[
hi(Yn)

L∑
r=1

1|⟨w(t)
i ,z

(r)
X ⟩|≥b

(t)
i
⟨ξ̃(r)n ,Mj⟩

]∣∣∣∣∣ ≤ Õ
(
∥w(t)

i ∥2
d2

)
· Pr
(
hi,t(Yn) ̸= 0

)
. (136)

For dense features M⊥
j , j ∈ [d1] \ [d], we have a similar result:∣∣∣∣∣E

[
hi(Yn)

L∑
r=1

1|⟨w(t)
i ,z

(r)
X ⟩|≥b

(t)
i
⟨ξ̃(r)n ,M⊥

j ⟩

]∣∣∣∣∣ ≤ Õ
(
∥w(t)

i ∥2
d
√
d1

)
· Pr
(
hi,t(Yn) ̸= 0

)
. (137)

E.3 PROOF OF THEOREM E.1

Proof of Theorem E.1: First we need to prove all the Theorem E.1 hold for t = T2. Indeed, (1), (4),
(5), (6), (7) is valid at T2 from Lemma E.9. and Theorem D.1; (2) and (3) holds at T2 obviously.

Now suppose it hold for some t ≥ T2, we will prove that it still hold for t+1. We first deal with the
case where j ∈ [d] and i /∈Mj , where it holds that

⟨w(t+1)
i ,Mj⟩ = ⟨w(t)

i ,Mj⟩(1− ηλ) + ηE[hi,t(Yn)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

⟨z(r)
X ,Mj⟩]

− ηE

 ∑
Xn,s∈N

ℓ′s,t · hi,t(Xn,s)

L∑
r=1

1|⟨wi,z
(r)
X ⟩|≥bi

⟨z(r)
X ,Mj⟩

± η

poly(d1)
.

(138)

In this case, to calculate the expectation, we need to use Lemma E.10, Lemma E.4. First we com-
pute the probability of events A1 − A4 by using Lemma E.7, Lemma E.8, Lemma E.9 and our
Theorem E.1 to obtain

Pr(A1),Pr(A2) ≤
1

poly(d)Ω(log d)
, (139)

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

which implies

L1, L2 ≤
1

poly(d)Ω(log d)
. (140)

Furthermore, from Fact E.1, we also have

E

[
L∑

s=1

z̃
+(s)
n,j

L∑
r=1

z̃
(r)
n,j1

|⟨wi,
z
(r)
X

+z
(s)
Y

2 ⟩|≥bi+|⟨wi,z
(r)
X −

z
(r)
X

+z
(s)
Y

2 ⟩|

]
≤ ϵj

1

poly(d)Ω(log d)
. (141)

Now we further take into considerations Lemma E.11, Lemma E.4. We can obtain

|⟨w(t+1)
i ,Mj⟩| ≤ ⟨w(t)

i ,Mj⟩(1− ηλ) + Õ

(
ηΞ2

2∥w
(t)
i ∥2

d2

)
± η

poly(d1)
. (142)

Indeed, since we have chosen learning rate η = 1
poly(d) and λ ∈

[
1

d1.01 ,
1

d1.49

]
, it is easy to prove (5)

as follows:

• For i /∈ Mj , |⟨w(t)
i ,Mj⟩| ≤ O

(
ϵj

ϵmax

∥w(t)
i ∥2√
dΞ5

2

)
: This is easy since by using Lemma E.10,

Lemma E.4, we can prove the following inequality by contradiction

|⟨w(t)
i ,Mj⟩| ≤|⟨w(t−1)

i ,Mj⟩|(1 + ϵj
η

d2
− ηλ) + Õ

(
ηΞ2

2

d2

)
∥w(t)

i ∥2

≤ · · · ≤ O

(
ϵj
ϵmax

∥w(t)
i ∥2√
dΞ5

2

)
.

(143)

Now we begin to prove (6). For all i ∈ [m], we have maxj∈[d1]\[d] |⟨w
(t)
i ,M⊥

j ⟩| ≤ O

(
∥w(t)

i ∥2√
d1Ξ5

2

)
at iteration t = T2. Now, by expanding the gradient updates of ⟨w(t)

i ,M⊥
j ⟩, we can see that

|⟨w(t+1)
i ,M⊥

j ⟩| ≤ |⟨w
(t)
i ,M⊥

j ⟩|(1− ηλ) + |Ψ
(t)
i,j |+ |Φ

(t)
i,j |+ |E

(t)
i,j |

≤ |⟨w(t)
i ,M⊥

j ⟩|(1− ηλ) + Õ
(

Ξ5
2

τ
√
d1d2

)
∥w(t)

i ∥2.
(144)

where the last inequality are obtained as follows: From Lemma E.4 we have

|E(t)i,j | ≤ O

(
∥w(t)

i ∥2Ξ2
2

d2τ

)
· max
i′∈[m]

(
|⟨w(t)

i′ ,M
⊥
j ⟩|
)

≤ O

(
∥w(t)

i ∥2Ξ2
2

d2τ

)
· Õ
(

1√
d1

)
(since max

i′∈[m]
|⟨w(t)

i′ ,M
⊥
j ⟩| ≤ Õ

(
1√
d1Ξ5

2

)
≤ Õ

(
Ξ5
2

τ
√
d1d2

)
∥w(t)

i ∥2.

(145)

After (5) and (6) are proven, it is easy to observe (1) is true at t. Below we shall prove (2), (3) and
(4), after which (7) can be also trivially proven.

Indeed, (2) is a corollary of (3) and (4), since if F(t)
j ≤ O(τ log3 d) and (4) holds, we simply have

∥w(t)
i ∥

2
2 =

∑
j∈Ni

⟨w(t)
i ,Mj⟩2 +

∑
j /∈Ni,j∈[d]

⟨w(t)
i ,Mj⟩2 +

∑
j∈[d1]\[d]

⟨w(t)
i ,M⊥

j ⟩2

≤
∑
j∈Ni

⟨w(t)
i ,Mj⟩2 +O(d) ·O

(
(
ϵj
ϵmax

)2
∥w(t)

i ∥22
dΞ10

2

)
+O(d1) ·O

(
∥w(t)

i ∥22
d1Ξ10

2

)

≤
∑
j∈Ni

⟨w(t)
i ,Mj⟩2 + o

(
(
ϵj
ϵmax

)2
1

Ξ10
2

∥w(t)
i ∥

2
2

)
,

(146)

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

which implies (2).

∥w(t)
i ∥

2
2 ≤

∑
j∈Ni

⟨w(t)
i ,Mj⟩2 + o

(
(
ϵj
ϵmax

)2
1

Ξ10
2

∥w(t)
i ∥

2
2

)
≤
∑
j∈Ni

⟨w(t)
i ,Mj⟩2

≤ O(1)O(
polylod(d)

dc
)

≤ O(1).

(147)

Thus we only need to prove (3) and (4). Indeed, for (3), letting i ∈ Mj , we proceed as follows: we
first write the updates of ⟨w(t)

i ,Mj⟩ as

⟨w(t+1)
i ,Mj⟩ = ⟨w(t)

i ,Mj⟩(1− ηλ) + Ψ
(t)
i,j +Φ

(t)
i,j + E

(t)
i,j

= ⟨w(t)
i ,Mj⟩(1− ηλ) + Ψ

(t)
i,j + Õ

(
Ξ2
2

d2

)
∥w(t)

i ∥2.
(148)

where the last inequality comes again from Lemma E.4. Now suppose for some t we have F
(t)
j ≥

Ω((
ϵj

ϵmax
)2τ log3 d), by Lemma E.3, we have

⟨w(t+1)
i ,Mj⟩ =⟨w(t)

i ,Mj⟩
(
1 + ϵj

1

poly(d)
− ηλ

)
+ Õ

(
Ξ2
2

d2

)
∥w(t)

i ∥2

≤⟨w(t)
i ,Mj⟩

(
1 + ϵj

1

poly(d)
− ηλ

2

)
.

(149)

which means that ⟨w(t+1)
i ,Mj⟩ ≤ ⟨w(t)

i ,Mj⟩. This in fact gives F
(t+1)
j ≤ F

(t)
j , so that (3) is

proven.

Now for (4), we need to induct as follows: for t ≤ T ′
j := d log d

η log log d which is the specific iteration

when F
(t)
j ≥ G2τ log d, where G2 is defined in Lemma E.3. The induction of (4) follows from

similar proof in Theorem D.1. After T ′
j , we discuss as follows

•When t ∈
[
T ′
j ,

d1.49

η

]
, from above calculations, for each i′ ∈Mj , we have

|⟨w(t+1)
i ,Mj⟩|

|⟨w(t+1)
i′ ,Mj⟩|

=
|⟨w(t)

i ,Mj⟩|(1− ηλ) + ηΨ
(t)
i,j ±O

(√
Ξ2

t
√
d

)
∥w(t)

i ∥2

|⟨w(t)
i′ ,Mj⟩|(1− ηλ) + ηΨ

(t)
i′,j ±O

(√
Ξ2

t
√
d

)
∥w(t)

i′ ∥2
. (150)

On one hand, for those i′ ∈ Mj such that |⟨w(t)
i′ ,Mj⟩| ≤ b

(t)
i Ξ2

2 ≤ O
(

Ξ2
2√
d
∥w(t)

i ∥2
)

, we can

safely get
∣∣∣⟨w(t+1)

i ,Mj⟩
∣∣∣ ≫ ∣∣∣⟨w(t+1)

i′ ,Mj⟩
∣∣∣. On the other hand, if

∣∣∣⟨w(t)
i′ ,Mj⟩

∣∣∣ ≥ b
(t)
i Ξ2

2, then
we have∣∣∣∣∣ Ψ

(t)
i,j

⟨w(t)
i ,Mj⟩

−
Ψ

(t)
i′,j

⟨w(t)
i′ ,Mj⟩

∣∣∣∣∣ = O(
b
(t)
i

d2 )

⟨w(t)
i′ ,Mj⟩

≤ O(
1

d2Ξ2
2

) ≤ O
(

Ξ2

t
√
dη

b
(t)
i

)
. (151)

Thus by lettingΨ̃j :=
Ψ

(t)
i,j

⟨w(t)
i ,Mj⟩

, then∣∣∣⟨w(t+1)
i ,Mj⟩

∣∣∣∣∣∣⟨w(t+1)
i′ ,Mj⟩

∣∣∣ =
∣∣∣⟨w(t)

i ,Mj⟩
∣∣∣ (1 + ηΨ̃

(t)
j − ηλ)±O

(
Ξ2

t
√
d

)
∥w(t)

i ∥2∣∣∣⟨w(t)
i′ ,Mj⟩

∣∣∣ (1 + ηΨ̃
(t)
j − ηλ)±O

(
Ξ2

t
√
d

)
∥w(t)

i′ ∥2
. (152)

Since at iteration t ∈
[
T ′
j ,

d1.49

η

]
, it is easy to obtain that

∣∣∣Ψ̃(t)
j − λ

∣∣∣ ≤ O (Ξ2

ηt

)
.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Thus we have ∣∣∣⟨w(t+1)
i ,Mj⟩

∣∣∣∣∣∣⟨w(t+1)
i′ ,Mj⟩

∣∣∣
≥

∣∣∣⟨w(t)
i ,Mj⟩

∣∣∣ (1 + η(Ψ̃
(t)
j − λ)(1−

Ξ2
2√
d
))∣∣∣⟨w(t)

i′ ,Mj⟩
∣∣∣ (1 + η(Ψ̃

(t)
j − λ)(1 +

Ξ2√
d
))

≥
(
1 + η(Ψ̃

(t)
j − λ)(1−

Ξ2
2√
d
)− η(Ψ̃(t)

j − λ)(1 +
Ξ2√
d
)

)
·

∣∣∣⟨w(t)
i ,Mj⟩

∣∣∣∣∣∣⟨w(t)
i′ ,Mj⟩

∣∣∣
≥
(
1− η(Ψ̃(t)

j − λ)(
Ξ2
2√
d
)

)
·

∣∣∣⟨w(t)
i ,Mj⟩

∣∣∣∣∣∣⟨w(t)
i′ ,Mj⟩

∣∣∣
≥
(
1− Ξ2

2

t
√
d

)
·

∣∣∣⟨w(t)
i ,Mj⟩

∣∣∣∣∣∣⟨w(t)
i′ ,Mj⟩

∣∣∣
≥

t−1∏
t′=T ′

j

(
1−O

(
Ξ2
2

t′
√
d

))
·

∣∣∣⟨w(T ′
j)

i ,Mj⟩
∣∣∣∣∣∣⟨w(T ′

j)

i′ ,Mj⟩
∣∣∣ ≥ Ω(1).

(153)

where in the last inequality we have used our Theorem E.1 at T ′
j

• The proof for iterations t ∈
[
d1.49

η , d
1.99

η

]
is largely similar to the above. The only difference

here is that we rely on a slightly different comparison here: Indeed, we have∣∣∣⟨w(t+1)
i ,Mj⟩

∣∣∣∣∣∣⟨w(t+1)
i′ ,Mj⟩

∣∣∣ =
∣∣∣⟨w(t)

i ,Mj⟩
∣∣∣ (1 + ηΨ̃

(t)
j − ηλ)±O

(
Ξ2

d2

)
∥w(t)

i ∥2∣∣∣⟨w(t)
i′ ,Mj⟩

∣∣∣ (1 + ηΨ̃
(t)
j − ηλ)±O

(
Ξ2

d2

)
∥w(t)

i′ ∥2
. (154)

Here we can use similar techniques as above to require
∣∣∣Ψ̃(t)

j − λ
∣∣∣ ≤ O (Ξ2

tη

)
Now we also have∣∣∣⟨w(t+1)

i ,Mj⟩
∣∣∣∣∣∣⟨w(t+1)

i′ ,Mj⟩
∣∣∣ ≥

∣∣∣⟨w(t)
i ,Mj⟩

∣∣∣ (1 + η(Ψ̃
(t)
j − λ)(1−

Ξ2
2√
d
))∣∣∣⟨w(t)

i′ ,Mj⟩
∣∣∣ (1 + η(Ψ̃

(t)
j − λ)(1 +

Ξ2
2√
d
))

≥
(
1− Ξ2

2

t
√
d

)
·

∣∣∣⟨w(t)
i ,Mj⟩

∣∣∣∣∣∣⟨w(t)
i′ ,Mj⟩

∣∣∣
≥

t−1∏
t′=d1.49/η

(
1− Ξ2

2

t′d0.01

)
·

∣∣∣⟨w(d1.49/η)
i ,Mj⟩

∣∣∣∣∣∣⟨w(d1.49/η)
i′ ,Mj⟩

∣∣∣ ≥ Ω(1).

(155)

Now (4) are proven. (7) is an immediate result of our update scheme.

E.4 PROOF OF THEOREM 3.1

The first part proves the convergence of the loss function. The second part is a further extension of
Theorem E.1.

Proof of Theorem 3.1. We start with the proof of convergence ((11) in Theorem 3.1).

Denote w(t) = (w
(t)
1 , . . . , w

(t)
m ), since our update is

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

w(t+1) = w(t) −∇wLaug(ft) +
1

poly(d1)
, (156)

we have
η⟨∇wLaug(ft), w

(t) − θ⋆⟩

=η2

2 ∥∇wLaug(ft)∥2F + 1
2∥w

(t) − θ⋆∥2F − 1
2∥w

(t+1) − θ⋆∥2F + η2

poly(d1)

≤η2 poly(d) + 1
2∥w

(t) − θ⋆∥2F − 1
2∥w

(t+1) − θ⋆∥2F + η2

poly(d1)
,

(157)

where the inequality comes from

∥∇wLaug(ft)∥2F =

m∑
i=1

∥∇wi
Laug(ft)∥2 . (158)

Each term is O(1), and since m = poly(d), the overall complexity is poly(d).

Now we will use the tools from online learning to obtain a loss guarantee: define a pseudo objective
for parameter θ

L̃augt
(θ) := L̃(ft,θ, ft) +

λ
2

∑
i∈[m]

∥θi∥22

= E
[
−τ log

(
e⟨ft,θ(Xn),ft(Yn)⟩/τ∑

X∈B e⟨ft,θ(Xn),ft(X)⟩/τ

)]
+ λ

2

∑
i∈[m]

∥θi∥22.
(159)

Which is a convex function over θ since it is linear in θ (for a fixed ft, we can consider L̃(ft,θ, ft)
to be convex with respect to θ, because ft,θ(x) is linear, and softmax + log is a convex composition;
the regularization term is convex).

Moreover, we have
L̃augt

(w(t)) = Laug(ft), (160)

and
∇θiL̃augt

(w
(t)
i ) = ∇wi

Laug(ft). (161)

Thus we have

η⟨∇wLaug(ft), w
(t) − θ⋆⟩

=η⟨∇θL̃augt
(w(t)), w(t) − θ⋆⟩

1⃝
≥L̃augt

(w(t))− L̃augt
(θ⋆)

≥L̃augt
(w(t))− E

[
−τ log

(
e⟨ft,θ⋆ (Xn),ft(Yn)⟩/τ∑

X∈B e⟨ft,θ⋆ (Xn),ft(X)⟩/τ

)]
− λ

2

∑
i∈[m]

∥θ⋆i ∥22

2⃝
≥L̃augt

(w(t))−O
(

1
log d

)
−
∑
i∈[m]

O(λ∥θ⋆i ∥22)

≥Laug(ft)−O
(

1
log d

)
.

(162)

1⃝ is because the surrogate objective function L̃augt
is a convex function with respect to θ, so

we can use a first-order convex lower bound: f(θ) − f(θ′) ≤ ⟨∇f(θ), θ − θ′⟩. 2⃝ is because∑
i∈[m] λ∥θ⋆i ∥22 =

∑
j∈[d]

∑
i∈M⋆

j
λ∥θ⋆i ∥22 =

∑
j∈[d]

∑
i∈M⋆

j
λ τκ2

|M⋆
j |2

=
∑

j∈[d] λ
τκ2

|M⋆
j |

= λτκ2

|M⋆
j |

Now choosing κ = Θ(Ξ2) ≤ 1
λd (so that

∑
i∈[m] λ∥θ⋆i ∥22 <

1
log d ), and by a telescoping summation,

we have

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

1

T

T3+T−1∑
t=T3

(
Laug(ft)−O

(
1

log d

))
≤ 1

T

T3+T−1∑
t=T3

η⟨∇wLaug(ft), w
(t) − θ⋆⟩

≤ O(∥w(T3) − θ⋆∥2F )
Tη

=
O
(
∥w(T3)∥2F + ∥θ⋆∥2F − 2Tr((w(T3))⊤θ⋆)

)
Tη

≤
O
(
∥w(T3)∥2F + ∥θ⋆∥2F

)
Tη

≤
O
(
m∥w(T3)

i ∥22
)

Tη

≤ O
(

mΞ2

Tη

)
.

(163)

Since Tη ≥ mΞ10
2 , this proves the claim.

For (12) in Theorem 3.1, we have

w
(t)
i =

∑
j∈Ni, j∈[d]

⟨w(t)
i ,Mj⟩Mj +

∑
j /∈Ni, j∈[d]

⟨w(t)
i ,Mj⟩Mj +

∑
j∈[d1]\[d]

⟨w(t)
i ,M⊥

j ⟩M⊥
j

≤
∑

j∈Ni, j∈[d]

⟨w(t)
i ,Mj⟩Mj +

∑
j /∈Ni, j∈[d]

O

(
ϵj
ϵmax

∥w(t)
i ∥2√
dΞ5

2

)
Mj +

∑
j∈[d1]\[d]

O

(
∥w(t)

i ∥2√
d1 Ξ5

2

)
M⊥

j

=
∑

j∈Ni, j∈[d]

αi,jMj +
∑

j /∈Ni, j∈[d]

α′
i,jMj +

∑
j∈[d1]\[d]

βi,jM
⊥
j .

(164)

From Lemma B.2(c), we know that for each j ∈ [d], there is at least one neuron that can fully
learn the feature Mj , and at most Ξ2 neurons can learn the feature Mj . Combining this with
Theorem E.1(c): ∑

i∈Mj

⟨w(t)
i ,Mj⟩2 = Θ

((
ϵj
ϵmax

)2

τ log3 d

)
, (165)

we can conclude that the range of ⟨w(t)
i ,Mj⟩ is [

ϵj
ϵmax

τ
Ξ2
,

ϵj
ϵmax

τ ], and hence the range of αi,j is
[

ϵj
ϵmax

τ
Ξ2
,

ϵj
ϵmax

τ ]. Furthermore, from Theorem E.1 (e) and (f), we can obtain that α′
i,j ≤ o(

ϵj
ϵmax

1√
d
)

and βi,j ≤ o( 1√
d1
) respectively.

Next, we compute the upper bound of |Ni|. As a first step, we calculate the expectation of |Ni|.

E[|Ni|] =
1

m

m∑
i=1

|Ni| =
1

m

d∑
j=1

|Mj | ≤
1

m
· d ·O(dω2)

=
1

m
·O(d1+ω2) =

O(d1+ω2)

dCm
= O

(
d1+ω2−Cm

)
= O

(
d1−(

ϵmin
ϵmax

)
2·(1−γ)

)
.

(166)

Fix a neuron i, we have: µi := E[|Ni|. By Bernstein’s inequality,

Pr[ |Ni| ≥ µi + t ] ≤ exp

(
− t2

2(µi + t/3)

)
, t ≥ 0. (167)

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

We set t = 3
(√
µiL+ L

)
and plug this into the inequality above. Then we obtain

Pr
[
|Ni| ≥ µi + 3

(√
µiL+ L

) ]
≤ e−L. (168)

Hence, for any constant c > 0, taking L = c log d yields

Pr
[
|Ni| ≤ µi + 3(

√
µic log d+ c log d)

]
≥ 1− d−c. (169)

Next, we apply the union bound. For the event

Ai :=
{
|Ni| ≤ µi + 3(

√
µiL+ L)

}
, (170)

the union bound gives

Pr

[
m⋂
i=1

Ai

]
≥ 1−

m∑
i=1

Pr(Ac
i ) ≥ 1−me−L. (171)

Taking L = c log(md), we obtain

Pr
[
∀i ∈ [m], |Ni| ≤ µi + 3

(√
µic log(md) + c log(md)

) ]
≥ 1− (md)−c. (172)

We know µi ≫ log(md), so we have

|Ni| = µi

(
1±O

(√ log(md)
µi

))
= µi

(
1± o(1)

)
≤ O

(
d1−(

ϵmin
ϵmax

)
2·(1−γ)

)
with probability at least 1− (md)−c

(173)

Finally, for each dictionary atom Mj , there are at least Ω(dω1) neurons i ∈ [m] such thatNi = {j}.
From Lemma B.2 (c), we recall that |M⋆

j | ≥ Ω(dω1). Moreover, if a neuron belongs toM⋆
j , then it

cannot belong toMj′ .

For (12) in Theorem 3.1, our proof is complete.

F THEOREM F.1

From Lemma B.2(c), we know that for each j ∈ [d], there is at least one neuron that can fully learn
the minority feature Mj⋆ . When we prune out the lucky neurons that learn these minority features
during the forward pass, the network will force the lucky neurons to further strengthen their feature
learning ability on the minority features during the backward pass.

After magnitude pruning, neurons encoding a specific minority feature are removed. Pruning these
lucky neurons reduces simfθ

(Xn,Yn) during the forward pass. The decrease in similarity reduces
the positive logit ℓ′

p,θ
(t)
mask

, which in turn increases the gradient of the loss function, thereby encour-

aging these lucky neurons to further enhance their learning ability on the minority features.

Fix one specific minority feature Mj∗ , and letM∗
j∗ ⊆ [m] denote the subset of neurons primarily

aligned with it, with |M∗
j∗ | = n. For a pruning rate α ∈ [1/m, n/m], the number of pruned neurons

is αm ≤ n. Let P ⊆M∗
j∗ be the pruned set with |P| = αm.

F.1 THEOREM F.1

Theorem F.1 (Feature Dynamics After Pruning). Starting from the pruning stage T4 with pruning
ratio α, the following statements hold.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

(a) When i∗ ∈M∗
j∗ , we have

⟨w(t+1)
i∗ ,Mj∗⟩ ≥

(
1− ηλ+ ηϵj∗

Cz log log d

d

(
Θ
(

1
polylog(d)

)
+Ω

(
αmϵj∗ log log d

dΞ2
2

)))
⟨w(t)

i∗ ,Mj∗⟩.

(174)

(b) When i /∈M∗
j∗ and j ̸= j∗, we have

⟨w(t+1)
i ,Mj⟩ ≤

(
1− ηλ+ ηϵj

Cz log log d

d

(
Θ
(

1
polylog(d)

)
+ ϵj∗

log log d

d

(
Θ
(

1
polylog(d)

)
+O

(
αmϵj∗ log log d

dΞ2
2

))))
⟨w(t)

i ,Mj⟩.

(175)

(c) For each neuron i ∈ P and t ∈ [T4, T5], contrastive learning learns the following decomposition:

w
(t)
i = αi,j∗Mj∗ +

∑
j /∈Ni

α′
i,jMj +

∑
j∈[d1]\[d]

βi,jM
⊥
j , (176)

where

αi,j∗ ∈

[
τ

Ξ2
, τ

]
, α′

i,j ≤ o

((
1 +

1

d

) 1√
d

)
∥w(t)

i ∥2, |βi,j | ≤ o

(
1√
d1

)
∥w(t)

i ∥2. (177)

F.2 USEFUL LEMMAS

Lemma F.1 (Expected values of neuron activations after T4). From T4 onward, the following results
hold:

(a) For positive pair,

E

[∑
i∈P

hi
(
Xn

)
hi
(
Yn

)]
≥ Ω

(
αm

τ2

Ξ2
2

ϵj∗
log log d

d

)
. (178)

(b) For negative pair,

E

[∑
i∈P

hi
(
Xn

)
hi(Xn,s)

]
= 0. (179)

(c) For negative pair,

E
[
hi,t(Xn,s) ⟨∇wi

hi(Xn), Mj∗⟩
]

= 0. (180)

Lemma F.2 (Effect of Pruning on Positive Logit Weight). At the pruning stage, for the data follow-
ing distribution D1, the post-pruning positive logit ℓ′

p,θ
(t)
mask

satisfies

E
[
1− ℓ′

p,θ
(t)
mask

]
≥ Θ

(
1

τ

)
+Ω

(
αm

Ξ2
2

ϵj∗
log log d

d

)
. (181)

Lemma F.3 (Positive gradient). Let hi,t(·) denote the i-th neuron at iteration t ≤ T1 (so that
b
(t)
i = 0). Then the following hold:

(a) For each j ∈ [d],

E[hi,t(Yn) ⟨∇wihi,t(Xn),Mj⟩] =
1

L2
⟨w(t)

i ,Mj⟩E
[
ẑ+
n,j ẑn,j

]
. (182)

(b) For each j ∈ [d1] \ [d],

E
[
hi,t(Yn) ⟨∇wihi,t(Xn),M

⊥
j ⟩
]
= 0. (183)

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

F.3 PROOF OF THEOREM F.1

Overview of the proof: first, the data can be divided into two parts: the samples that contain Mj∗ and
those that do not. The former follow distribution D1, while the latter follow distribution D2. Next,
let us examine ℓ′

p,θ
(t)
mask

. The values of ℓ′
p,θ

(t)
mask

differ depending on the distribution: for samples from

D1, we have ℓ′
p,θ

(t)
mask

= 1 − Θ( 1τ ) − Ω(αm
Ξ2

2
ϵj∗

log log d
d ), whereas for samples from D2, ℓ′

p,θ
(t)
mask

=

1−Θ( 1τ ). Since the latter do not contain Mj∗ , pruning does not affect them.

Proof of Theorem F.1. For any neuron i∗ ∈ P we have

⟨w(t+1)
i∗ ,Mj∗⟩

=⟨w(t)
i∗ ,Mj∗⟩ − η

〈
∇wi∗Laug(ft),Mj∗

〉
± ∥w

(t)
i∗ ∥2

poly(d)

=(1− ηλ)⟨w(t)
i∗ ,Mj∗⟩

+η EXn,Yn

[
(1− ℓ′

p,θ
(t)
mask

(Xn,B)) · hi∗,t(Yn) ⟨∇wi∗hi∗(Xn),Mj∗⟩
]

−η
∑

Xn,s∈N

E
[
l′s,t(Xn,B)hi∗,t(Xn,s) ⟨∇wi∗hi∗(Xn),Mj∗⟩

]
± ∥w

(t)
i∗ ∥2

poly(d)

(184)

At stage T4, pruning is applied. We regard ℓ′
p,θ

(t)
mask

and ℓ′
s,θ

(t)
mask

as fixed, and by combining

Lemma F.1(c) with the law of total probability, we obtain

⟨w(t+1)
i∗ ,Mj∗⟩

=(1− ηλ)⟨w(t)
i∗ ,Mj∗⟩

+η EXn,Yn

[
(1− ℓ′

p,θ
(t)
mask

)
]
EXn,Yn

[
hi∗,t(Yn) ⟨∇wi∗hi∗(Xn),Mj∗⟩

]
=(1− ηλ)⟨w(t)

i∗ ,Mj∗⟩

+η EXn,Yn∼D1

[
(1− ℓ′

p,θ
(t)
mask

)
]
EXn,Yn∼D1

[
hi∗,t(Yn) ⟨∇wi∗hi∗(Xn),Mj∗⟩

]
· PXn,Yn∼D1

+η EXn,Yn∼D2

[
(1− ℓ′

p,θ
(t)
mask

)
]
EXn,Yn∼D2

[
hi∗,t(Yn) ⟨∇wi∗hi∗(Xn),Mj∗⟩

]
· PXn,Yn∼D2

(185)

Combining Lemma F.3(a) with (181) in Lemma F.2, we obtain

⟨w(t+1)
i∗ ,Mj∗⟩

=(1− ηλ)⟨w(t)
i∗ ,Mj∗⟩

+η EXn,Yn∼D1

[
(1− ℓ′

p,θ
(t)
mask

)
]
EXn,Yn∼D1

[ 1

L2
⟨w(t)

i ,Mj⟩E
[
ẑ+
n,j∗ ẑn,j∗

]
⟩
]
· PXn,Yn∼D1

+η EXn,Yn∼D2

[
(1− ℓ′

p,θ
(t)
mask

)
]
EXn,Yn∼D2

[ 1

L2
⟨w(t)

i ,Mj⟩E
[
ẑ+
n,j∗ ẑn,j∗

] ]
· PXn,Yn∼D2

=(1− ηλ)⟨w(t)
i∗ ,Mj∗⟩

+η

(
Θ

(
1

τ

)
+Ω

(
αm

Ξ2
2

ϵj∗
log log d

d

))
· ⟨w(t)

i ,Mj⟩ · ϵj∗
log log d

d

+η ·Θ
(
1

τ

)
· 0 · 1 · ⟨w(t)

i∗ ,Mj∗⟩

=(1− ηλ)⟨w(t)
i∗ ,Mj∗⟩+ η

(
Θ

(
1

τ

)
+Ω

(
αm

Ξ2
2

ϵj∗
log log d

d

))
· ⟨w(t)

i∗ ,Mj∗⟩ · ϵj∗
log log d

d
(186)

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Hence, the post-pruning one-step update along Mj∗ is

⟨w(t+1)
i∗ ,Mj∗⟩ ≥

(
1− ηλ+ ηϵj∗

Cz log log d

d

(
Θ
(

1
polylog(d)

)
+Ω

(
αmϵj∗ log log d

dΞ2
2

)))
⟨w(t)

i∗ ,Mj∗⟩.

(187)

Similarly to (186), for any neuron i /∈ P , we have:

⟨w(t+1)
i ,Mj⟩

=(1− ηλ)⟨w(t)
i ,Mj⟩

+ η EXn,Yn∼D1

[
(1− ℓ′

p,θ
(t)
mask

)
]
EXn,Yn∼D1

[ 1

L2
⟨w(t)

i ,Mj⟩E
[
ẑ+
n,j ẑn,j

]
⟩
]
· PXn,Yn∼D1

+ η EXn,Yn∼D2

[
(1− ℓ′

p,θ
(t)
mask

)
]
EXn,Yn∼D2

[ 1

L2
⟨w(t)

i ,Mj⟩E
[
ẑ+
n,j ẑn,j

] ]
· PXn,Yn∼D2

=(1− ηλ)⟨w(t)
i ,Mj⟩

+ η

(
Θ

(
1

τ

)
+Ω

(
αm

Ξ2
2

ϵj∗
log log d

d

))
· ⟨w(t)

i ,Mj⟩ · ϵj
log log d

d
ϵj∗

log log d

d

+ η ·Θ
(
1

τ

)
· ϵj

log log d

d
· 1 · ⟨w(t)

i ,Mj⟩

(188)

Hence, the post-pruning one-step update along Mj is

⟨w(t+1)
i ,Mj⟩ ≤

(
1− ηλ+ ηϵj

Cz log log d

d

(
Θ
(

1
polylog(d)

)
+ ϵj∗

log log d

d

(
Θ
(

1
polylog(d)

)
+O

(
αmϵj∗ log log d

dΞ2
2

))))
⟨w(t)

i ,Mj⟩.
(189)

The above constitutes the proof of Theorem F.1 regarding pruning.

F.4 PROOF OF THEOREM 3.2

Theorem 3.2 (a) and (b) can be derived as simplifications of Theorem F.1 (a) and (b). Theorem 3.2
(c) coincides with Theorem F.1 (c). By taking the elapsed time T =

((ϵmax/ϵj∗ )−1)d

ηαϵ2
j∗Cz log log d

and simplifying

(a) and (b), then substituting into the conclusion of Theorem 3.1, the proof follows.

F.5 PROOF OF LEMMA F.1:

Proof of Lemma F.1: The alignment with the target minority feature Mj∗ is ⟨wi,Mj∗⟩, and we
have |⟨wi,Mj∗⟩| ≥ Ω( τ

Ξ2
) at T4 (This is the conclusion of Theorem 3.1, which can be found in the

second part of the proof of Theorem 3.1. For the positive pair (Xn,Yn), the latent variables zn,j∗
and z+

n,j∗ are correlated through the augmentation process. For a negative sample Xn,s, its latent
variable zn,s,j∗ is independent of those of the positive pair (zn,j∗ , z+

n,j∗), so we have:

(zn,j∗ , z
+
n,j∗) ⊥⊥ zn,s,j∗ . (190)

For the anchor Xn and its positive Yn, we have

hi(Xn) =

L∑
r=1

〈
wi, z

(r)
Y

〉
=

1

L

〈
wi, M

L∑
r=1

z̃(r)
n +

L∑
r=1

ξ̃(r)n

〉
, (191)

hi(Yn) =

L∑
s=1

〈
wi, z

(s)
Y

〉
=

1

L

〈
wi, M

L∑
s=1

z̃+(s)
n +

L∑
s=1

ξ̃+(s)
n

〉
, (192)

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

ẑn :=

L∑
r=1

z̃(r)
n , ẑ+

n :=

L∑
s=1

z̃+(s)
n , ξ̂n :=

L∑
r=1

ξ̃(r)n , ξ̂+n :=

L∑
s=1

ξ̃+(s)
n . (193)

We can write the outputs as:

hi(Xn) =
1

L

〈
wi, Mẑn + ξ̂n

〉
, hi(Yn) =

1

L

〈
wi, Mẑ+

n + ξ̂+n
〉
. (194)

For a negative sample Xn,s: ẑn,s :=
∑L

q=1 z̃
(q)
n,s, ξ̂n,s :=

∑L
q=1 ξ̃

(q)
n,s, the output is:

hi(Xn,s) =
1

L

〈
wi,Mẑn,s + ξ̂n,s

〉
. (195)

We first establish a lower bound for E[hi(Xn)hi(Yn)].

Expanding and using zero-mean and independence of latent variables and noises, we have

E[hi(Xn)hi(Yn)] =
1

L2
E
[
⟨wi,Mẑn⟩ ⟨wi,Mẑ+

n ⟩
]

=
1

L2

d∑
j=1

⟨wi,Mj⟩ 2 E
[
ẑn,j ẑ

+
n,j

]
≥ 1

L2
⟨wi,Mj∗⟩ 2 E

[
ẑn,j∗ ẑ

+
n,j∗

]
≥ Ω(

τ2

Ξ2
2

ϵj∗
log log d

d
).

(196)

Therefore

E[hi(Xn)hi(Yn)] ≥ Ω(
τ2

Ξ2
2

ϵj∗
log log d

d
). (197)

Next, we compute the expectation of hi(Xn), hi(Xn,s).hi(Xn)hi(Xn,s),

E[hi(Xn)hi(Xn,s)] = E
[( 1
L

〈
wi, Mẑn + ξ̂n

〉)( 1
L

〈
wi, Mẑn,s + ξ̂n,s

〉)]
. (198)

By the assumption, the latent variables of Xn are independent of those of the negative Xn,s, and all
noises are mean-zero and independent. Therefore,

E
[
⟨wi,Mẑn⟩ ⟨wi,Mẑn,s⟩

]
= 0, E[⟨wi, ξ̂n⟩ ⟨wi, ξ̂n,s⟩] = 0 (199)

Therefore, we conclude that
E[hi(Xn)hi(Xn,s)] = 0 (200)

Let P be the pruned set with |P| = αm. Summing the per-neuron bounds over i ∈ P , we obtain

E
[∑
i∈P

hi(Xn)hi(Yn)
]
≥ Ω(αm

τ2

Ξ2
2

pj∗), (201)

E
[∑
i∈P

hi(Xn)hi(Xn,s)
]
= 0. (202)

This completes the proof of Lemma F.1 (a)(b).

Finally, we compute the expectation of hi,t, (Xn,s), ⟨∇wihi(Xn),Mj∗⟩, and we have

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

E
[
hi,t(Xn,s) ⟨∇wihi(Xn),Mj∗⟩

]
=E
[( 1
L

〈
wi, Mẑn,s + ξ̂n,s

〉)( 1
L

〈
Mẑn + ξ̂n,Mj∗

〉)]
=E
[( 1

L2

〈
wi, Mẑn,s + ξ̂n,s

〉)(
ẑn,j∗ +

〈
ξ̂n,Mj∗

〉)]
=

1

L2
E [⟨wi,Mẑn,s⟩ · ẑn,j∗ ]

=0.

(203)

This completes the proof of Lemma F.1(c),

E
[
hi,t(Xn,s) ⟨∇wi

hi(Xn),Mj∗⟩
]
= 0. (204)

F.6 PROOF OF LEMMA F.2:

Proof of Lemma F.2: We link the logit to the pruning ratio and plug it into the gradient growth.
Recall the softmax weights and partial derivatives

ℓ′p =
eup/τ

eup/τ +
∑S

s=1 e
us/τ

, ℓ′s =
eus/τ

eup/τ +
∑S

s=1 e
us/τ

,

S∑
s=1

ℓ′s = 1− ℓ′p, (205)

up = Simf (Xn,Yn), us = Simf (Xn,Xn,s), (206)

∂ℓ′p
∂up

=
1

τ
ℓ′p(1− ℓ′p),

∂ℓ′p
∂us

= −1

τ
ℓ′p ℓ

′
s. (207)

Pruning the size αm changes the similarities by

∆up = −
∑
i∈P

hi(Xn)hi(Yn), ∆us = −
∑
i∈P

hi(Xn)hi(Xn,s). (208)

Next, calculate the first order change of ℓ′p, we know:

u = (up, u1, . . . , uS), ∆u = (∆up,∆u1, . . . ,∆uS). (209)

Using multivariate Taylor expansion up to second order with remainder:

ℓ′p(u+∆u)− ℓ′p(u) = ∇ℓ′p(u)⊤∆u+
1

2
∆u⊤Hp(u)∆u+ o(∥∆u∥2),∆u→ 0. (210)

By a first order Taylor expansion, we have

∆ℓ′p =
∂ℓ′p
∂up

∆up +

S∑
s=1

∂ℓ′p
∂us

∆us + o (∥∆u∥)

=
1

τ
ℓ′p(1− ℓ′p)∆up −

1

τ
ℓ′p

S∑
s=1

ℓ′s∆us.

(211)

We note that at T4, by the convergence of the loss function, we obtain ℓ′p = 1−Θ( 1τ ), and both ℓ′p and
ℓ′s take fixed values. Then, by taking expectations over ∆ℓ′p and using the relation

∑
s ℓ

′
s = 1− ℓ′p,

we obtain:

E[∆ℓ′p] = −Θ(
1

τ2
)
(
E
[∑
i∈P

hi(Xn)hi(Yn)
]
− E

[∑
i∈P

hi(Xn)hi(Xn,s)
])
. (212)

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Also, by Lemma F.1, given that

E
[∑
i∈P

hi(Xn)hi(Yn)
]
− E

[∑
i∈P

hi(Xn)hi(Xn,s)
]
≥ Ω(αm

τ2

Ξ2
2

ϵj∗
log log d

d
). (213)

Hence,

E[∆ℓ′p] = −Ω(
αm

Ξ2
2

ϵj∗
log log d

d
) < 0. (214)

Hence,

E[ℓ′
p,θ

(t)
mask

] = E[ℓ′p,θ(t) ] + E[∆ℓ′p]

= E[ℓ′p,θ(t) ]− Ω(
αm

Ξ2
2

ϵj∗
log log d

d
)

= 1−Θ(
1

τ
)− Ω(

αm

Ξ2
2

ϵj∗
log log d

d
).

(215)

Now, converting to the form of 1− ℓ′:

E[1− ℓ′
p,θ

(t)
mask

] = 1− E[ℓ′
p,θ

(t)
mask

]. (216)

Substituting the previous expression gives

E[1− ℓ′
p,θ

(t)
mask

] = Θ(
1

τ
) + Ω(

αm

Ξ2
2

ϵj∗
log log d

d
). (217)

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

F.7 PROOF OF LEMMA F.3(A):

Proof of Lemma F.3(a):

E [hi(Yn)⟨∇wi
hi(Xn),Mj⟩]

=E

[
hi(Yn)⟨

L∑
r=1

1
(r)∣∣∣〈w(t)

i ,z
(r)
X

〉∣∣∣≥0
· z(r)

X ,Mj⟩

]

=E

[
L∑

s=1

⟨wi, z
(s)
Y ⟩ ·

(
L∑

r=1

⟨z(r)
X ,Mj⟩

)]

=
1

L2
E

[
L∑

s=1

⟨wi,M z̃+(s)
n + ξ̃+(s)

n ⟩ ·

(
L∑

r=1

⟨M z̃(r)n + ξ̃(r)n ,Mj⟩

)]

=
1

L2
E

[
L∑

s=1

⟨wi,M z̃+(s)
n ⟩ ·

(
L∑

r=1

⟨M z̃(r)n ,Mj⟩

)]

=
1

L2
E
[
⟨wi,Mẑ+

n ⟩ · (⟨M ẑn,Mj⟩)
]

=
1

L2
E

⟨wi,Mẑ+
n ⟩ · ⟨

∑
j′∈[d]

Mj′ ẑn,j′ ,Mj⟩


=

1

L2
E

⟨wi,Mẑ+
n ⟩ ·

∑
j′∈[d]

⟨Mj′ ,Mj⟩ẑn,j′


=

1

L2
E
[
⟨wi,Mẑ+

n ⟩ · ẑn,j
]

=
1

L2
E

 ∑
j′′∈[d]

⟨wi,Mj′′⟩ẑ+
n,j′′ ẑn,j


=

1

L2

∑
j′′∈[d]

⟨wi,Mj′′⟩E
[
ẑ+
n,j′′ ẑn,j

]
.

(218)

In the final step, we have

1

L2

∑
j′′∈[d]

⟨wi,Mj′′⟩E
[
ẑ+
n,j′′ ẑn,j

]
=

1

L2
⟨wi,Mj⟩E

[
ẑ+
n,j ẑn,j

]
. (219)

This completes the proof.

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

F.8 PROOF OF LEMMA F.3(B):

Proof of Lemma F.3(b):

E
[
hi(Yn)⟨∇wi

hi(Xn),M
⊥
j ⟩
]

=E

[
hi(Yn)⟨

L∑
r=1

1
(r)∣∣∣〈w(t)

i ,z
(r)
X

〉∣∣∣≥0
· z(r)

X ,M⊥
j ⟩

]

=E

[
hi(Yn) ·

(
L∑

r=1

⟨1(r)∣∣∣〈w(t)
i ,z

(r)
X

〉∣∣∣≥0
· z(r)

X ,M⊥
j ⟩

)]

=E

[
L∑

s=1

⟨wi, z
(s)
Y ⟩1

(s)∣∣∣〈w(t)
i ,z

(s)
X

〉∣∣∣≥0
·

(
L∑

r=1

⟨1(r)∣∣∣〈w(t)
i ,z

(r)
X

〉∣∣∣≥0
· z(r)

X ,M⊥
j ⟩

)]

=E

[
L∑

s=1

⟨wi, z
(s)
Y ⟩ ·

(
L∑

r=1

⟨z(r)
X ,M⊥

j ⟩

)]

=
1

L2
E

[
L∑

s=1

⟨wi,M z̃+(s)
n + ξ̃+(s)

n ⟩ ·

(
L∑

r=1

⟨M z̃(r)n + ξ̃(r)n ,M⊥
j ⟩

)]

=
1

L2
E

[
L∑

s=1

⟨wi,M z̃+(s)
n ⟩ ·

(
L∑

r=1

⟨M z̃(r)n ,M⊥
j ⟩

)]

=
1

L2
E

[
⟨wi,M

L∑
s=1

z̃+(s)
n ⟩ ·

(
⟨M

L∑
r=1

z̃(r)n ,M⊥
j ⟩

)]

=
1

L2
E
[
⟨wi,Mẑ+

n ⟩ ·
(
⟨Mẑn,M

⊥
j ⟩
)]

=
1

L2
E

⟨wi,Mẑ+
n ⟩ · ⟨

∑
j′∈[d]

Mj′ ẑn,j′ ,M
⊥
j ⟩


=

1

L2
E

⟨wi,Mẑ+
n ⟩ · ⟨

∑
j′∈[d]

Mj′ ,M
⊥
j ⟩ẑn,j′


=

1

L2
E

⟨wi,Mẑ+
n ⟩ ·

∑
j′∈[d]

⟨Mj′ ,M
⊥
j ⟩ẑn,j′


=

1

L2
E
[
⟨wi,Mẑ+

n ⟩ · 0
]

=0.

(220)

G PROOF OF LEMMAS IN APPENDIX B

G.1 PROOF OF LEMMA B.2(A):

Proof of Lemma B.2(a): At initialization, the neuron weight w(0)
i is a high dimensional Gaussian

vector :

w
(0)
i ∼ N (0, σ2

0Id1), (221)

with w
(0)
i ∈ Rd1 and each coordinate w

(0)
i (k) ∼ N (0, σ2

0), i.i.d.

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

∥∥∥w(0)
i

∥∥∥2
2
=

d1∑
k=1

(
w

(0)
i (k)

)2
. (222)

We know that w(0)
i (k) ∼ N (0, σ2

0), so:

1

σ2
0

∥∥∥w(0)
i

∥∥∥2
2
∼ χ2(d1). (223)

According to the concentration inequality of the chi-square distribution:

If X ∼ χ2(d1), then for any 0 < ε < 1, we have:

Pr

[∣∣∣∣Xd1 − 1

∣∣∣∣ ≥ ε] ≤ 2 exp

(
−d1ε

2

4

)
. (224)

Therefore, we have:

Pr


∣∣∣∣∣∣∣
∥∥∥w(0)

i

∥∥∥2
2

σ2
0d1

− 1

∣∣∣∣∣∣∣ ≥ ε
 ≤ 2 exp

(
−d1ε

2

4

)
. (225)

Choose a suitable ε to derive the precision range and we choose: ε = Õ
(

1√
d1

)
.

At this time, the probability of deviation is:

Pr

[∣∣∣∣∥∥∥w(0)
i

∥∥∥2
2
− σ2

0d1

∣∣∣∣ ≤ Õ(σ2
0

√
d1)

]
≥ 1− 1

poly(d)
. (226)

That is: ∥∥∥w(0)
i

∥∥∥2
2
∈
[
σ2
0d1

(
1− Õ

(
1√
d1

))
, σ2

0d1

(
1 + Õ

(
1√
d1

))]
. (227)

This holds with high probability (1− 1
poly(d) ).

G.2 PROOF OF LEMMA B.2(B):

Proof of Lemma B.2(b): Let:

Zi :=
1

σ0
w

(0)
i ∼ N (0, Id1

). (228)

Then we have: ∥∥∥MM⊤w
(0)
i

∥∥∥2
2
= σ2

0 ·
∥∥MM⊤Zi

∥∥2
2
. (229)

We regard MM⊤ as a rank-d projection matrix, projecting Zi ∈ Rd1 onto the column space of M
so we can use the following property:

If MM⊤ is a fixed rank-d projection matrix, and Zi ∼ N (0, Id1
), then:

∥MM⊤Zi∥22 = Z⊤
i (MM⊤)⊤MM⊤Zi = Z⊤

i MM⊤Zi = ∥M⊤Zi∥22, (230)

M⊤Zi ∼ N (0, Id). (231)

Therefore, we can conclude:∥∥MM⊤Zi

∥∥2
2
∼ χ2(d) =⇒ E

[∥∥MM⊤Zi

∥∥2
2

]
= d. (232)

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

And it satisfies the following Chi-square concentration inequality:

P
(∣∣∣∥∥MM⊤Zi

∥∥2
2
− d
∣∣∣ ≤ εd) ≥ 1− 2 exp

(
−cε2d

)
. (233)

Choose ε = Õ(1/
√
d), and the result holds with high probability. We substitute back w

(0)
i∥∥∥MM⊤w

(0)
i

∥∥∥2
2
= σ2

0 ·
∥∥MM⊤Zi

∥∥2
2
∈
[
σ2
0d

(
1− Õ

(
1√
d

))
, σ2

0d

(
1 + Õ

(
1√
d

))]
. (234)

G.3 PROOF OF LEMMA B.2(C):

Proof of Lemma B.2(c): Recall if g is standard Gaussian, then for every t > 0,

1√
2π
· t

t2 + 1
e−t2/2 < Pr

g∼N (0,1)
[g > t] <

1√
2π
· 1
t
e−t2/2. (235)

Therefore, for every i ∈ [m] and j ∈ [d],

p1 = Pr

[
⟨w(0)

i ,Mj⟩2 ≥
c1 log d

d
∥MM⊤w

(0)
i ∥

2
2

]
= Pr

[
⟨w(0)

i ,Mj⟩
σ0

≥
√
c1 log d

]

≥ Ω

(
1

dc1/2

)
= Ω

(
1

d
( ϵmax
ϵmin

)2·(1+γ)

)
,

(236)

and

p2 = Pr

[
⟨w(0)

i ,Mj⟩2 ≥
c2 log d

d
∥MM⊤w

(0)
i ∥

2
2

]
= Pr

[
⟨w(0)

i ,Mj⟩
σ0

≥
√
c2 log d

]

≤ O
(

1√
log d

)
· 1

dc2/2

= O

(
1√
log d

)
· 1

d(
ϵmin
ϵmax

)2·(1−γ)
.

(237)

We define the following events in definition B.1:

• Ai: Lucky neuron i satisfies conditions 1(i.e., the response is large enough and in the
correct direction)

• Bi: for all j′ ̸= j, lucky neuron i satisfies condition 2 (i.e., small responses in other
directions)

We now compute the probability of the intersection event Ai ∩Bi:

Pr[Ai] =
p1
2

= Ω

(
d
−
(

ϵmax
ϵmin

)2
·(1+γ)

)
,

Pr[Bi] = (1− p2)d−1 = e−(d−1)p2 = e−(d−1)d−a

= e−d1−a

= 1,

Pr[Ai ∩Bi] =
p1
2
· (1− p2)d−1 = Ω

(
1√
log d

· d−
(

ϵmax
ϵmin

)2
·(1+γ)

)
.

(238)

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

(1) We now have m = dCm neurons. Therefore, the expected number is:

E
[
|M⋆

j |
]
= m · Pr[Ai ∩Bi] = dCm · Ω

(
d
−
(

ϵmax
ϵmin

)2
·(1+γ)

)
= Ω

(
d
Cm−

(
ϵmax
ϵmin

)2
·(1+γ)

)
.

(239)

Chernoff bound (Lower-tail form): For any δ ∈ (0, 1), we have:

Pr
[∑

Xi < (1− δ)µ
]
≤ e− δ2

2 µ. (240)

Let δ = 1
2 , we obtain:

Pr

[∑
Xi <

1

2
µ

]
≤ e−µ/8

Pr
[
|M⋆

j | < O (dω1)
]
≤ e−Ω(dω1 )

Pr
[
|M⋆

j | > Ω (dω1)
]
≥ 1− e−Ω(dω1 ).

(241)

(2) We now have m = dCm neurons. Therefore, the expected number is:

E [|Mj |] = m · p2 = dCm · O
(

1√
log d

· d−(
ϵmin
ϵmax

)
2·(1−γ)

)
= O

(
1√
log d

· dCm−( ϵmin
ϵmax

)
2·(1−γ)

)
.

(242)

Chernoff bound (upper tail) tells us that for any 0 < δ < 1, we have:

Pr
[∑

Xi > (1 + δ)µ
]
≤ e−Ω(δ2µ)

Pr

[
|Mj | > Ω(

1√
log d

dω2)

]
≤ e−Ω( 1√

log d
dω2 )

= o

(
1

d4

)
Pr

[
|Mj | < O

(
1√
log d

dω2

)]
≥ 1− o

(
1

d4

)
Pr [|Mj | < O (dω2)] ≥ 1− o

(
1

d4

)
.

(243)

G.4 PROOF OF LEMMA B.2(D):

Proof of Lemma B.2(d): We know: |Mj | ≤ O(dω2). There are d indices j ∈ [d]. Therefore, the
total number of pairs (i, j) such that i ∈Mj is at most:

d∑
j=1

|Mj | ≤ d ·O(dω2) = O(d1+ω2). (244)

On the other hand, the total number of neurons is m = dCm . So for any fixed i, we define:

Ni := {j ∈ [d] : i ∈Mj}. (245)

Then,
m∑
i=1

|Ni| =
d∑

j=1

|Mj | ≤ O(d1+ω2). (246)

Therefore,

E[|Ni|] =
1

m

m∑
i=1

|Ni| ≤ O
(
d1+ω2−Cm

)
= O

(
d1−(

ϵmin
ϵmax

)
2·(1−γ)

)
. (247)

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Then:

Pr
[∣∣∣⟨w(0)

i ,Mj⟩
∣∣∣ ≥ Ω(σ0 log

1/4 d)
]
≤ 2 exp

(
− t2

2σ2
0

)
= 2−Ω(

√
log d). (248)

Fix i ∈ [m], and consider d different j. Each has probability 2−Ω(
√
log d) to exceed the threshold.

Therefore, the expectation is:

E
[∣∣∣{j ∈ [d]

∣∣∣ ∣∣∣⟨w(0)
i ,Mj⟩

∣∣∣ ≥ Ω
(
σ0 log

1/4 d
)}∣∣∣] = O

(
2−

√
log d · d

)
. (249)

H PROOF OF LEMMAS IN APPENDIX C

This section can be found in the Supplementary Material.

I PROOF OF LEMMAS IN APPENDIX D

This section can be found in the Supplementary Material.

J PROOF OF LEMMAS IN APPENDIX E

This section can be found in the Supplementary Material.

K PROOF OF ADDITIONAL LEMMAS

This section can be found in the Supplementary Material.

49


	Introduction
	Related Work

	Problem Formulation and Algorithm
	Theoretical Analysis
	Key Insights of the Findings
	Assumptions
	Formal Theoretical Results
	Vanilla Contrastive Learning
	Contrastive Learning with Pruning


	Numerical Experiments
	Conclusion
	Overview of the Appendix and Proof Sketch
	Proof Sketch
	Synthetic Experimental Settings

	Notations and Lemmas
	Theorem C.1
	Theorem C.1
	Useful Lemmas
	Proof of Theorem C.1
	Proof of Lemma 3.1

	Theorem D.1
	Theorem D.1
	Useful Lemmas
	Proof of Theorem D.1
	Proof of Lemma 3.2

	Theorem E.1
	Theorem E.1
	Useful Lemmas
	Proof of Theorem E.1
	Proof of Theorem 3.1

	Theorem F.1
	Theorem F.1
	Useful Lemmas
	Proof of Theorem F.1
	Proof of Theorem 3.2
	Proof of Lemma F.1:
	Proof of Lemma F.2:
	Proof of Lemma F.3(a):
	Proof of Lemma F.3(b):

	Proof of Lemmas in Appendix B
	Proof of Lemma B.2(a):
	Proof of Lemma B.2(b):
	Proof of Lemma B.2(c):
	Proof of Lemma B.2(d):

	Proof of Lemmas in Appendix C
	Proof of Lemmas in Appendix D
	Proof of Lemmas in Appendix E
	Proof of Additional Lemmas

