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ABSTRACT

Contrastive learning has emerged as a powerful framework for learning general-
izable representations, yet its theoretical understanding remains limited, particu-
larly under imbalanced data distributions that are prevalent in real-world applica-
tions. Such an imbalance can degrade representation quality and induce biased
model behavior, yet a rigorous characterization of these effects is lacking. In
this work, we develop a theoretical framework to analyze the training dynamics of
contrastive learning with Transformer-based encoders under imbalanced data. Our
results reveal that neuron weights evolve through three distinct stages of training,
with different dynamics for majority features, minority features, and noise. We
further show that minority features reduce representational capacity, increase the
need for more complex architectures, and hinder the separation of ground-truth
features from noise. Inspired by these neuron-level behaviors, we show that prun-
ing restores performance degraded by imbalance and enhances feature separation,
offering both conceptual insights and practical guidance. Major theoretical find-
ings are validated through numerical experiments.

1 INTRODUCTION

Contrastive learning has emerged as a powerful paradigm in representation learning, effectively
leveraging unlabeled data without relying on labels. Within this framework, samples with similar
semantic meaning are treated as positive pairs, while those with different semantics are considered
negative pairs. By pulling positive pairs closer together and pushing negative pairs farther apart
in the representation space, contrastive learning enables models to capture rich and discriminative
features. Compared with supervised learning, the resulting representations are often more robust
and less sensitive to noise (Xue et al., 2022; |Ghosh & Lanl 2021} |Zhong et al., [2022a} Jiang et al.,
2020; Yang & Xu, 2020; |Kang et al.| [2020). This approach has demonstrated remarkable success
across a wide range of applications (Zhong et al.,2022b; Zhang et al.| 2022} Jiang et al.| [2023; [Luo
et al.} 2023) and has been particularly influential in multi-modal learning (Nakada et al., 2023} |Khan
et al., 2025)), driving major advances in the early development of vision-language models (Radford
et al., 2021} [Li et al.| 2022; |2023).

Despite its strengths, contrastive learning struggles with class imbalance in real-world datasets Jiang
et al.| (2021), where majority classes dominate pair formation and minority classes are underrepre-
sented. This imbalance hinders the capture of discriminative features for minority classes and de-
grades representation quality. Conventional approaches to class imbalance in supervised learning
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typically rely on re-weighting and re-sampling, and these ideas have inspired analogous methods in
contrastive learning. Re-weighting strategies adjust the contribution of pairs or instances to reduce
the dominance of majority classes (Cui et al., 2019; Huang et al.| 2016), while resampling meth-
ods construct more balanced training batches by oversampling minority samples or undersampling
majority ones (Drummond & Holte, 2003;|He & Garcia,|2009; Peng et al.,[2020). Although these ap-
proaches have shown effectiveness in certain cases, their application in contrastive settings remains
challenging, as they often rely on accurate class labels that are unavailable in self-supervised learn-
ing. To address this limitation, an alternative line of research has proposed pruning-based methods,
which have been empirically validated to enhance the representation of underrepresented classes
(Jiang et al.| 2021} Qian et al.,|2022).

Despite the progress made by these approaches, most efforts have been largely empirical, relying on
heuristic methods to alleviate the imbalance problem. While these techniques often provide perfor-
mance gains in practice, they do not explain why or how imbalance undermines the quality of learned
representations. Recent work has begun to develop theoretical understandings of contrastive learn-
ing, primarily addressing questions such as its superiority over traditional generative approaches like
GANSs (Ji et al.L[2023), the necessity of data augmentation for effective representation learning (Wen
& Li, [2021)), and its ability to produce representations that reduce the sample complexity of down-
stream tasks (Garg & Liang}2020). Nonetheless, these studies have not considered the implications
of imbalanced data distributions.

In this work, we provide a theoretical analysis of how neurons learn feature representations through
contrastive training. We study a simplified but representative setting: a Transformer-MLP frame-
work with a single-head attention mechanism followed by an MLP with bilateral ReLU activations.
To make the analysis clear, we use a structured data model where each input includes majority and
minority features with different frequencies. This setup highlights the key role of feature frequencies
and helps us describe their impact on training dynamics and how neurons learn features. In turn,
the model allows us to formalize how contrastive learning enhances majority features and drives
neurons to learn purer feature representations. Overall, our paper makes three main contributions:

First, we develop a theoretical frame-
work to characterize the training dy-
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Second, we quantitatively character-
ize how the presence of minority fea-
tures influences neurons’ learning ca-
pacity and, consequently, representa-
tion learning. Our analysis reveals that
imbalance degrades representation perfor-
mance in multiple ways: it slows the learn-
ing of minority features, decreases the
number of neurons that specialize in a sin-
gle feature, and produces a chain effect
that necessitates a more complex model to
adequately capture all features.

Figure 1: Neuron projection dynamics over training
epochs. The blue curve shows the growth of a neu-
ron’s projection onto its dominant feature, the orange
curve shows the projection onto a non-dominant fea-
ture, and the green curve shows the projection onto
the noise space direction (which remains larger than
the projections onto other features). In the first stage,
the neuron grows mainly along feature directions while
suppressing noise. In the second stage, the projection
onto the dominant feature grows faster than all other
features, creating clear separation. In the third stage,
as training approaches T3, the neuron converges, and
its final representation is dominated by the learned fea-
ture, with negligible components in other directions.
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Third, magnitude-based pruning can enhance the learning of minority features. Our results re-
veal that magnitude-based pruning enhances updates along minority feature directions, encouraging
more neurons to specialize in pure minority features and thereby yielding more robust and balanced
representations. Intuitively, neurons with small magnitudes are more sensitive to samples containing
minority features, which implicitly allows pruning to amplify their contribution.

1.1 RELATED WORK

Data Imbalance in Self-Supervised Learning: Data imbalance or long-tail data has been a long-
standing challenge since the early development of supervised learning (Chu et al., |2020; Liu et al.,
2020; |Yang et al.l [2022; |Chawla et al.| [2002). At a high level, tackling data imbalance follows a
simple principle: balancing the influence of different groups of data during weight updates, typically
through re-sampling (Buda et al.l 2018} |Choti et al.| 2018)), which alters the data distribution, or re-
weighting (Mahajan et al.,2018]), which adjusts loss contributions across classes. These methods all
require label information (Cui et al.|, |2021; |Zhu et al., 2022)). However, without label information,
as in self-supervised learning (SSL), these strategies are far more difficult to apply, and only a
few works have addressed the imbalance. Beyond re-weighting and re-sampling (Lin et al., 2017}
Shrivastava et al.| [2016; [Shang et al., 2025} [Shen et al., [2016), other alternative approaches have
been proposed: optimization-based regularization for rare samples (Liu et al.), mixup for implicit
rebalancing (Li & Jia, [2025)), and pruning as an implicit means of detecting long-tail data (Jiang
et al.} 2021} |Qian et al.} [2022).

Convergence and Generalization Analysis of Contrastive Learning: Despite its empirical suc-
cess, contrastive learning lacks a mature theoretical understanding, largely due to the complexity of
its loss function. Early research investigates why augmentation is essential for the success of con-
trastive learning, showing that such an alignment between augmented positive pairs facilitates learn-
ing useful representations (Saunshi et al. [2022; [Tian et al., 2020; |[Saunshi et al., 2019; Wen & Li,
2021). [Tian et al.[(2021);|Wang et al.|(2023) establishes a connection between the gradients of con-
trastive learning and graph neural networks, highlighting interpretability through a graph-theoretic
perspective. [HaoChen et al.| (2021) also explores the connections between contrastive learning and
graph theory, proposing a new loss function linked to graph spectral clustering to help explain its
success. [Wen & Li(2021) emphasizes the necessity of data augmentation for breaking dependencies
on spurious noise. None of these works has explored how imbalanced data influences the training
dynamics of contrastive learning.

Feature Learning Paradigm: The mathematical framework in this paper is closely related to the
feature learning paradigm. Specifically, we assume the data follow a sparse coding model, which
is a mixture of latent features, and study the training dynamics of model weights to examine how
they align with these features. Most prior works focus on supervised learning (Allen-Zhu & Li,
2022} Zhang et al., 2023} |Li et al., 2025} |Cao et al.| [2022; |Chowdhury et al., [2023} [Shandirasegaran
et al.,|2025)), where features are tied to ground-truth labels; however, such settings cannot be directly
extended to contrastive learning. Because of the complexity of analyzing fine-grained training dy-
namics, existing studies are typically limited to simple one-hidden-layer neural networks, with some
recent efforts exploring Transformers but still restricted to a single layer (Huang et al., [2024; [Oy-
mak et al., [2023}; [Li et al., [2024), even under supervised settings. The most relevant works are Wen
& Li (2021); Sun et al.| (2025), which analyze the training dynamics of contrastive learning with
one-hidden-layer feedforward networks. In contrast, our paper studies Transformer architectures
under a different data model, and further incorporates data imbalance, providing a comprehensive
analysis of how it influences the model’s ability to decouple features, rather than being only a direct
extension through feature magnitude changes.

2 PROBLEM FORMULATION AND ALGORITHM

Contrastive Learning Framework. Let X = [z ... 2(F)] € R®*L or Y € RU*L be
an input sequence with L tokens. The goal of contrastive learning is to learn a mapping f(-) :
R%*L 5 R™ that outputs a meaningful embedding from the input sequence.

Let (X,,Y,) denote a positive pair (e.g., derived from the same objective or sharing semantic
meaning), and let 91 denote a set of corresponding negative samples (e.g., random samples). The
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InfoNCE loss with temperature parameter 7 > 0 is defined as:
eSimfe (Xn,Yy)/T
simg, (Xn,X)/T > ’

E(f@;XTMYTLvm) = 710g < (1)
er{yn}usne

where the similarity function is given by
sim g, (X5, Yy) = <f9 (X0), StopGrad(fg (Y;z)) >7 2
and StopGrad(+) acts as the identity in forward pass while blocking gradients in backpropagation.

Then, the learning objective is to minimize an empirical risk with l»-regularizer, i.e.,

K
~ - A 1 A
Laus(fo) = L(fo) + 5110115 = = > £(fo, X, Ye, M) + 5110113, 3)
k=1
where 0 denotes the neural network parameters and K = poly(dy).

Model Architecture: Transformer-MLP. We employ a simplified single-head self-attention mech-
anism on top of an MLP layer. Each input sequence is passed through the attention layer, where
every token serves as a query. Then, it is followed by a bilateral ReLU (BReLU) activation in the
MLP layer, where BReLU,(s) = ReLU(s — b) — ReLU(—s — b). Specifically, the embedding
function f is expressed as

Fo(X,) = (h(Xn), . h(X,)) | € R™,

= ) 4)
with i (X,) = Z BReLU ) ((wl ,Attention(WQ:):gf), WkX,, WVXn)>>
r=1 ‘

Pruning Algorithm. To address the issue of data imbalance, we revisit (Jiang et al., [2021}; |Qian
et al., 2022) and propose a pruning algorithm that dynamically removes small-magnitude neuron
weights during the forward pass, while retaining all parameters as trainable in the backward pass

Specifically, we initialize the MLP layer weights with Gaussian distributions and the attention
weights as identity matrices. The binary mask is initially set to all ones, meaning no neurons are
pruned at the start. At each epoch, a fraction « of the neurons with the smallest magnitudes are
pruned, and the corresponding binary mask is updated. During the forward pass, the masked param-
eters 053( are used to encode the inputs. In the backward pass, gradients are computed with respect
to the pruned model but applied to the full parameter set, namely, the gradient is calculated as

1 K

e(t) M(t) —
9(6,”, ) Kk:l

[(6; ot — 1)hL(Yk)v9hL(Xk) + Z Z; o hi(X7L’5)V9hi(Xk) , 05
*“mk Xnysemk *“mk

exp (Simf, (XImYk)/T)
er{Yk}umk exp (Simf‘ (Xk’X)/T)
exp (Simf, (Xkan.,s)/T)

2 xe{v,jum, XP (Simf. (Xk,X)/T

where (), = is the positive logit and ¢, — :=

) is negative logit with respect to the native sample X, ;.

Note that this procedure does not permanently eliminate any neurons for efficiency purposes, even
though a reduction in computation cost can be observed. The pruning mask acts as a temporary filter
by automatically removing small-magnitude neurons. As shown in Theorem [3.2] these neurons are
associated with minority features. Consequently, samples containing such features incur a higher
loss, which in turn encourages the model to allocate greater attention to them during training.

3 THEORETICAL ANALYSIS

3.1 KEY INSIGHTS OF THE FINDINGS

We first give a summary of the key insights from our analysis before turning to the data model and
the formal theoretical results. Our findings show how neurons gradually learn feature representations
across different stages of training. In particular, we have

"We do not introduce a new algorithm; instead, we adapt established approaches to our theoretical setting.
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Algorithm 1 Forward Magnitude Pruning with Backward Unmasked Update

Require: Training dataset {( X}, Yy, mk)}le (positive pairs (X}, Yy ) and negative set D)
Require: Pruning ratio a
Require: Training epochs 7', weight decay parameter \, temperature 7
1: Initialize network parameters wgo) ~N(0,0814,), W}(f ) = WC(?O) =1
2: Set the initial pruning mask M (®) « 1 with the same shape as 8(°).
3: fort=0to7 — 1do
4:  Magnitude based pruning: At each iteration ¢, prune « fraction of neurons with the smallest
magnitude in 8(Y) by creating the corresponding binary mask M ().
5:  Forward (masked): Apply the mask to obtain Or(flf{ +— 00 © M® | then encode X}, Y,
and negatives 91 using fe“) .
mk

6: Compute loss: faug(f9<tl)() =+ Zkl,il E(fa(tl)(,Xk,Yk,mk;T) + %HBE&H%

7:  Backward and update: Release the mask M () on the masked parameters and update the
full parameters by

60 (1— N8 — - (6", M)

(]

end for
return (1)

o

(K1). Training dynamics of contrastive learning based on the Transformer-MLP framework.
The theory divides the learning process into three stages. In Stage 1 (Lemma [3.1), neuron weights
grow in feature directions at rates determined by the feature frequencies ¢;, while their components
in non-feature directions are suppressed. In Stage 2 (Lemma , lucky neurons in M strengthen
their alignment with the feature direction M}, and ordinary neurons in M ; remain bounded by these
lucky neurons, so that the learned features become purer and non-feature components remain sup-
pressed. In the final stage, each neuron aligns with a specific set of features N;, becoming strongly
aligned with some features, weakly with others, and remaining small in non-feature directions.

(K2). Feature frequency ratio controls neuron specialization. At convergence, each neuron is
dominated by features in A;, with negligible contribution from other directions. First, the neuron
magnitude in V;, denoted oy 5, scales as £i sorarer features are learned more weakly. Second, the

€max
size of \; scales as d!—(emin/ emax)”: smaller ratios enlarge NV; and cause feature mixing, while larger
ratios shrink it and yield purer alignment. Third, the number of neurons specializing in purified
features scales as d—(Fmax/ sm‘")z, which decreases as the gap between e ax and i, grows. Since
contrastive learning works best when neurons specialize in purified features, imbalance introduces
three interrelated obstacles: minority features are learned with smaller magnitude, neurons mix
multiple features instead of staying pure, and the overall number of specialized neurons decreases.
Together, these effects weaken representation quality and require larger models to learn all features.

(K3). Pruning enhances minority feature learning. With pruning ratio «, neurons aligned with
minority features gain stronger updates of order &, while those aligned with non-minority features
grow only weakly, with updates of order 7. At convergence, the coefficient of neurons learning a
minority feature can reach the same order as that of majority features, so the performance downgrade
from imbalance is alleviated. Intuitively, minority neurons are pruned more often because their
magnitudes are smaller, which in turn amplifies the contribution of samples containing the minority
feature in gradient updates. As a result, pruning strengthens the minority feature, makes it clearly
distinguished from other contributions, and drives more neurons to specialize in it, leading to more
robust representation learning.

3.2 ASSUMPTIONS

Data Model. Our data assumption is adopted from the widely used sparse coding model, which
constitutes a common foundation for theoretical analyses of deep learning (Allen-Zhu & Li, 2022
Wen & Li, 2021). Moreover, sparse coding provides a conceptual framework for modeling real-
world data across diverse domains, including CV (Protter & Elad, 2008} [Yang et al., 2009} Mairal
et al., 2014; [Liao et al., [2025), NLP (Arora et al., 2018)), compressed sensing (Candes & Recht,
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Table 1: Summary of main notations

n Learning rate A Regularization parameter

T Temperature coefficient K Batch size

N Set of negative samples B The set of Y,, and negative samples
€min | frequency of minority feature €max | frequency of majority feature

€; Feature frequency for feature j N; Set of dominate features for neuron %
M; Set of ordinary neurons for feature j Mz Set of lucky neurons for feature j

2012; |Candes & Taol [2010), and neuroscience (Vinje & Gallant, 2000; |Olshausen & Field, [1997;
20044 [Foldiak, [2003).

Assumption states that each token within a sample can be expressed as a weighted sum of a
subset of features from the dictionary matrix M, corrupted by additive noise £. Here, M denotes the
dictionary matrix, z represents the latent signal, and &€ corresponds to spurious noise. Importantly, in
the presence of noise, particularly when the noise level is comparable to or even exceeds the signal
magnitude, no linear mapping can recover the latent signal directly from the input. This makes the
model simple in form yet intrinsically challenging, thereby providing a favorable abstraction for
theoretical analyses of nonlinear neural networks.

Assumption 3.1 (Sparse Coding Model). For a paired data (X ,,,Y,,), the data structure is:

Xn = [Mzr(Ll) + 557,1)7 MZ7(L2) + 67(12)’ A Mz’glL) + £§LL):|
Y, = [Mz® 4 650 Mz ® 4 eh @ M) 4 g 0)] (6)

Here, each zg) e R4 represents the latent signal at the (-th token, and ££:’ ) denotes the additive
noise. M = [My, ..., My € R4*4 s the dictionary matrix, which is a column-orthonormal

matrix and satisfies | M|/ < 6(\/%), Vj € [d]. We also assume dqi = poly(d).

Assumption [3.2]requires that the latent signal be both bounded and sparse. Sparsity is a standard as-
sumption, introduced primarily to facilitate the theoretical analysis, yet it also agrees with empirical
observations that real-world data typically activate only a small subset of latent factors rather than
spreading energy across all coordinates. Moreover, the assumption enforces sign consistency across
tokens within the same sample, meaning that whenever a particular coordinate is active, its sign
remains identical across all tokens. This ensures that different parts of the same sample contribute
coherently to the underlying latent feature instead of producing conflicting activations.

Assumption 3.2 (Latent Signal). We have assumptions on the latent signal {zD}E_ | with 2() =
(zil), R zj(-l), . ,z((;))—r: (i) all zj(-l) are bounded and symmetric around zero over all samples.

Moreover, we have Pr(\sz)J| #£0)=0 (%); (ii) z](i) share the same sign across all i € [L).

Assumption states that noise follows Gaussian distributions. This is a mild condition, as no
strong restriction is imposed on its variance. In particular, the noise magnitude can exceed that of
the sparse signal when d; >> d. The assumption is adopted for analytical purposes and demonstrates
that contrastive learning can recover meaningful latent representations even in regimes where the
signal is dominated by noise.

Assumption 3.3 (Noise). Here each noise term 555) and E:{ ® for £ € [L] is independently drawn

from the same distribution £ ~ N(0,0214,), with variance o7 = @( Y 13g d).

Assumption [3.4]states that a pair of positive samples shares the same set of features when aggregated
over all tokens within the sample. Intuitively, this means that the two samples encode the same
semantic structure, even though their individual token-level representations may differ. In contrast,
a negative pair is formed by two random samples whose latent signals are completely independent.

Assumption 3.4 (Positive and Negative Pairs). A pair of samples X,, andY,, form a positive pair

; ; L ¢ L _+(e . L [ . L _+(
if and only if supp(>_,_, 2! )) = supp( >, 2 ))7 sign( Y-, 4 2! )) =sign( Y, 2 )).
By contrast, negative pairs are defined such that the corresponding latent signals are independent.
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Definition [3.1] states that each feature is controlled by ;. Intuitively, ¢; characterizes how often
feature j appears across the data. When ¢; is small, feature j is regarded as a minority feature.

Definition 3.1 (Majority and minority features). For each feature index j € [d], and for all i €
[L] and all samples, the activation probability of the sparse signal satisfies: Pr(‘z](.l)’ + 0) =

(C) (q%) . We define the majority features as those associated with €yax = maXx;cq) €5, and

the minority features as those associated with €yin = minje[d] €;

3.3 FORMAL THEORETICAL RESULTS

Theorem 3.1 analyzes the vanilla contrastive learning algorithm without pruning, showing how data
imbalance affects performance. Lemmas and provide intermediate steps toward its proof
and reveal how training dynamics evolve, despite the algorithm appearing to follow a consistent
gradient-based procedure. Theorem [3.2]then gives the results with pruning, showing how pruning
improves performance under imbalance.

3.3.1 VANILLA CONTRASTIVE LEARNING

Lemma [3.1] shows two main effects of contrastive learning in the first training stage: (a) neuron
weights grow in feature directions but are suppressed in non-feature directions, and (b) the growth
rate in a feature direction M; depends on its frequency €, with larger €; leading to faster growth and
smaller €; making the feature harder to capture early in training. We can find the Proof of Lemma
3.1 in Appendix [C|4.

Lemma 3.1 (Stage 1). During the first training stage, the update of neuron weights 'wl(t)

bounded for all t € [0, T1] as follows, where C, denotes positive constants and Ty = © (ncféglﬁcg)gd 7 )

can be

(D) Ary) > _ nC: loglogd nllw(” 2
(0™, M) = J{wl®, M) (1= A+ ¢ T80 o(poly(dl)), ™

(t)
(t+1) 1 (t) 1 nljw; |2
d [(w; MY < (1 —nA)|{w;”’, M;-)| + 8
an |< 2 ) 7 >|—( n )|< [ i >| (pOIy(d1)> ( )

Before presenting the theoretical results in Stage 2, we first categorize neurons into two groups.
The ordinary neurons M; strongly align with a certain direction, while the lucky neurons M3
form a special subset that aligns with only one feature direction (see Appendix [B| for the formal
definition). In Stage 2: (a) lucky neurons in M7 grow significantly in alignment with M}, controlled
by €;, though their number remains small; (b) ordinary neurons in M are bounded by the feature
components of lucky neurons up to a constant factor. We can find the Proof of Lemma 3.2 in
Appendix [D]4.

()

Lemma 3.2 (Stage 2). During the second training stage, the update of neuron weights w; "~ can be
bounded for all t € [Ty, T5] as follows, where To =T} + © (%).
(a) For each j € [d}, ifi € M, then:
Emax \2
(™ Mj)[P 220 ™5, with M| 2 m e d ©)
max
(b) For each j € [d], ifi' € M; and i € M, then:
[(wy, M;)| < O (w™), M), (10)

Theorem [3.1] establishes the convergence of the algorithm. In particular, (TI)) shows that the al-
gorithm converges with bounded training error. Moreover, (I2) characterizes the structure of the
learned neuron weights: upon convergence, they become strongly aligned with a subset of features
within AV, weakly aligned with the remaining features, and remain small in the non-feature direc-
tions. The size of N is bounded as in , and only a limited number of neurons specialize in
learning a single feature. We can find the Proof of Theorem 3.1 in Appendix [El4.
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Theorem 3.1 (Stage 3: Convergence). Let m = d°m be the number of neurons and T =

€min \2
e G '
max / | uppose we train

1.01
and

polylog(d), where C,, denotes positive constants and =5 = d

the neural net fg via contrastive learning, and consider iterations T € [T3,Ty] with T5 =

Ty = dlnﬁ. Then the following guarantees hold:
1
7 2 Laws(fow) < o(1) (1)
te[T)

Moreover, for each neuron i € [m) and t € [T3,Ty), the weight will learn the following set of

features:
=DM+ )y oM+ Y B M (12)
JEN; JEN; j€ldi]\[d]
where
a € |z g s aly < of s ) w8l < o A2 ) el le. (13)
Furthermore, the size of N is bounded as
€min )2
NG| = O(dlf(mx) ) , (14)

Emax

2
Finally, for each M}, there are at least Q(m - d” " =min ) ) neurons i € [m] such that N; = {j}.

Remark 1: For a neuron w;, its convergent weights are aligned with a subset of features A;. In
contrast, all other feature directions are smaller by an order of %. Hence, we can say that neuron

w; is dominated by the features in ;. Moreover, the neurons associated with learning feature j
are influenced by the frequency of that feature, which intuitively explains how imbalance shapes the
distribution of neuron weights.

Remark 2: We emphasize that the success of contrastive learning relies on neurons that specialize
in a single feature, referred to as lucky neurons, i.e., U jJ\/l;‘ In contrast, neurons that learn mixtures
of features are useful only for a limited subset of downstream tasks. The number of lucky neurons

€max )2

for each feature is lower bounded by m - d~ (Goin , as derived from (@) Consequently, beyond
the reduced neuron magnitude in minority feature dlrections, imbalance also decreases the number
of neurons that learn purified features. This, in turn, requires a more complex model with a larger
number of neurons to capture all features, leading to higher computational cost. Moreover, the upper
bound of || increases as the ratio £=i» decreases, which is undesirable because it indicates that
more neurons learn mixtures of features rather than pure ones.

Remark 3: Theorem [3.1] shows that each underlying semantic feature is captured cleanly by a
subset of lucky neurons. When upstream contrastive learning produces a representation in which all
semantic features are encoded in pure and separable directions, the resulting feature space becomes
highly structured: it contains explicit axes corresponding to every true feature. If a downstream task
relies on any subset of these features, a linear probe (or any simple classifier) can easily extract them
because the corresponding feature directions are directly represented by the lucky neurons. In this
sense, stronger neuron specialization leads to better linear separability and, consequently, improved
downstream generalization.

3.3.2 CONTRASTIVE LEARNING WITH PRUNING

Theorem 3.2]describes the training dynamics in the pruning setting, serving as the counterpart to the
earlier result obtained without pruning. To highlight the effect more clearly, we focus on stage 3.
In particular, pruning amplifies the learning of minority features: (a) for lucky neurons aligned with
minority directions, the neuron weights increase in that direction at the order of <, where « is the
pruning ratio. (b) In contrast, neurons associated with non- minority features exhibit much smaller
growth, with updates in those directions on the order of 7z per iteration. (c) Most importantly,
when training converges, the coefficients «; j+, projecting neuron weights onto the minority feature
M+, become dominant and independent of the ratio f::T‘; We can find the Proof of Theorem 3.2 in
Appendix [F]4.
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Theorem 3.2 (Pruning: Reinforcing Minority Feature Learning). With pruning ratio «, the
following statements hold:

(a) When i* € M., we have

C, loglogd
() M) > (1 I (ngg)) (w M., (s)
(b) When Yi and j # j*, we have
C. loglogd
(w ™Y M) < (1 +0 <ne§?*a odg20g>) (w, M;). (16)

(c) For neuron i € ./\/l;.* and t = Ts, contrastive learning learns the following decomposition:

w' = ;s M. + Z o M + Z Bi, i M-, (a7
JEN; JEldi\[d]

where

T ’ 1 1 (t) 1 ()
e | 1 ( <o — 18
O[%J € |:52’T:|7 a’LJ — <( + d) \/g) ||wz ||27 |BZ~,]| >0 \/d71 H'LU H ( )
Finally, for feature M, there are at least Q(m - d=1) neurons i € [m] such that N; = {j*}.

Remark 1: We would like to clarify two implicit assumptions underlying the results. First, the
pruning ratio is implicitly upper bounded by |M |, so that under magnitude-based pruning, we
can guarantee that all pruned neurons are those aligned with the minority feature Mj+. In practice,
however, the pruning ratio can be extended to include any neurons that have learned minority fea-
tures, i.e., any 7 with j € A;. Second, we assume that the magnitude of all non-minority features
is comparable. Intuitively, in the general case, neurons associated with the minority feature grow
until their magnitude reaches the level of the second-smallest feature. At that point, both the original
minority feature and the second-smallest feature effectively become the new minority features, and
the process continues inductively across features. A detailed analysis of this extension is omitted for
simplicity, so that we can prove and present the pruning benefits in a clear manner.

Remark 2: The difference between neurons learning minority features and those learning majority
features arises from their sensitivity to pruning. As shown in Theorem the magnitude of a
neuron is determined by its dominant feature and the frequency of that feature. For neurons in M ;«
that specialize in purified minority features, their magnitudes are significantly smaller than those of
other neurons and are therefore more likely to be pruned. This pruning effect results in relatively
smaller positive logits and larger negative logits on samples containing the minority feature (see
(3)), thereby increasing the influence of these samples on the gradient updates. Since features are
assumed to be independent across the data, such samples have a low probability of simultaneously
containing other features, resulting in a difference on the order of 1/d in the growth dynamics of
these neurons.

Remark 3: Unlike in the vanilla learning paradigm, the magnitude of «; ;~ no longer depends
on the ratio ===, which suggests that the representatmn of the minority feature is not suppressed
by data 1mbalance Although the coefficients o ;,; for other features may grow slightly due to the
extended number of iterations requ1red for convergence, their increase remains only on the order of
1/d. Consequently, o; ;= > o _j» Which suggests that the minority feature is strongly amplified and
clearly distinguished from other contributions. This, in turn, drives more neurons to specialize in
the purified minority feature, leading to more robust and effective representation learning.

4 NUMERICAL EXPERIMENTS

Experiments on CIFAR10-LT, CIFAR100-LT, and ImageNet-LT. Table [2] reports the results of
linear probe evaluation on CIFAR10-LT, CIFAR100-LT, and ImageNet-LT under long-tailed set-
tings, comparing vanilla contrastive learning (w/o pruning) against our proposed approach (w/ prun-
ing). Following the setup in (Jiang et al., 2021} Kang et al., 2020; |Chen et al., 2020), models are
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first pretrained and then evaluated using a linear probe, where a linear classifier is trained on frozen
representations. The imbalance ratio, p, is defined as the ratio between the number of samples in the
majority and minority classes, with larger values indicating more severe imbalance. Two evaluation
metrics are considered: overall classification accuracy (%) and the accuracy gap (Ayg) between the
top 20% head classes and the bottom 20% tail classes. The results show that pruning consistently
improves accuracy across all datasets, with improvements becoming more substantial as p increases.
Furthermore, pruning generally reduces Ay, indicating better balance between head and tail classes.
These results indicate that pruning not only enhances overall downstream task performance but also
reduces the performance gap between head and tail classes. We also provide additional synthetic
data experiments to support our theoretical insights; due to space limitations, these results are de-

ferred to Appendix

Table 2: Linear probe accuracy (%) on CIFAR10-LT, CIFAR100-LT, and ImageNet-LT. Ay, denotes
the accuracy gap between the top 20% head classes and bottom 20% tail classes.

Dataset p Accuracy Ao

w/o pruning  w/pruning w/o pruning Ww/ pruning

CIFAR10-LT 1 90.93 91.52 1.54 1.28
10 79.25£1.03 84.92+0.67 3.42+1.02 2.99+0.92
50 75.58=£0.84 83.60+1.02 392+121 3.35£0.76
100 74.24+0.82 81.314+094 5.69+£1.35 5.624+0.99

CIFAR100-LT 10 51.21£1.21 56.33+1.51 2454057 1.37+0.46
50 49.32£045 56.12+0.32 4.95+1.02 2.57£0.92
100 47.12+0.51 54.93+£0.50 7.11+£045 4.38+£0.22

ImageNet-LT 256 63.21 65.12 8.47 7.21

5 LIMITATION

Our work has two main limitations. The first concerns studying the pruning ratio and pruning scheme
in magnitude-based pruning. Providing a fully precise characterization of how performance varies
across different ratios and schemes is highly nontrivial, and doing so would require making more
precise assumptions about the data distribution. This will be part of our future work. Furthermore,
existing theoretical results in our feature learning framework focus on a single, simplified architec-
tural setting. Extending the analysis to more complex or realistic models will be another direction
for future work, and may require fundamentally different derivations and analytical tools.

6 CONCLUSION

This work provides a theoretical analysis of the training dynamics of a Transformer-MLP model in
learning feature representations through contrastive learning under imbalanced data settings. Specif-
ically, we quantitatively characterize how the presence of minority features reduces the number of
neurons that capture those features, as well as the number of “lucky neurons” that specialize in a
single feature. This reduction, in turn, harms the overall representation learning ability of the model.
Motivated by this theoretical characterization, we revisit the magnitude-based pruning approach to
address data imbalance. In particular, we theoretically demonstrate that pruning can enhance gra-
dient updates along the minority feature direction. This encourages more neurons to specialize in
pure minority features, thereby yielding more robust and balanced representations. Looking ahead,
promising directions include exploring alternative strategies beyond pruning that could further pro-
mote minority-feature learning.
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A OVERVIEW OF THE APPENDIX AND PROOF SKETCH

The appendices are organized systematically to provide supporting materials for the main text. Ap-
pendix [B] introduces key notations and definitions, along with basic lemmas describing properties
at initialization. Appendices [C] [D} and [E] present the proofs of the training dynamics of vanilla
contrastive learning (without pruning) under the imbalanced data setting. Specifically, Appendix
contains the proof of Stage 1, corresponding to Lemma [3.1] in the main text; Appendix [D] contains
the proof of Stage 2, corresponding to Lemma [3.2} and Appendix [E] contains the proof of Stage
3, corresponding to Theorem (3.1} which concludes the analysis with the final convergence results.
Appendix [F then provides the proof of our proposed algorithm (with pruning), corresponding to
Theorem [3.2] in the main text. We recommend that readers first consult the proof sketch before
examining the detailed lemmas and proofs in the appendices.

In addition, Appendices [GHK collect the proofs of the lemmas referenced throughout the earlier
appendices. To maintain readability, some of these lemma proofs are included only in the supple-
mentary material. While these details are not essential for following the main arguments, we provide
them in full for completeness.

A.1 PROOF SKETCH

In Stage 1, we analyze how neurons learn the features. Each neuron gradually learns the relevant
feature directions while hardly learning the non-feature directions. Concretely, the projection of a
neuron weights onto the feature subspace, though small at the beginning, grows rapidly during train-

ing and becomes significant, reaching the order of Q(||w§T1) |12) (see Appendix @ Theorem ,
while the projection onto the non-feature subspace stays nearly unchanged. The reason why the
neuron weights grow toward the feature subspace is that the latent variable 27(11)3 and z: g;)

nC, loglog d

are depen-

dent. This dependence produces an incremental term of order: ¢; , which accumulates
during training and drives the neuron weights further into the feature space. In contrast, because the
feature are orthogonal to the non-feature directions, and the latent variable zr(f), is independent of
the noise, the weights in the non-feature subspace remain essentially unchanged. The only variation

that appears there is a negligible increment of size about ﬁ(«h)' (see Appendix |C} Lemma .

In Stage 2, the lucky neurons with large projection on a feature direction become activated and
align clearly with that feature. If a neuron does not belong to M, its projection on feature j re-
mains small, so it cannot be activated and has only weak alignment. The projection on non-feature
directions stays very small, so neurons do not learn the non-feature components (Appendix [D]

Lemma . As a result, if neuron ¢ is lucky for feature j, the projection of waQ) onto M is on
the order of the Q(1)||w(T2)|

Theorem D). '

In Stage 3, neurons in M continue to strengthen their projection on the corresponding feature j,
and this projection remains the dominant part of their weight. Neurons not in M; keep only a
small projection on feature j, so they cannot be activated. The projections on non-feature directions
stay negligible throughout. Overall, the growth of neurons continues along the same directions
established earlier, and the network starts to converge around 75. At this point, each neuron weight
vector w; eventually aligns with a set of features V;, which corresponds to the features that already

had some degree of alignment with w; at initialization.

2, meaning the neuron has already focused on M (see Appendix

In pruning stage, we rigorously show that pruning the neurons which have learned minority fea-
tures enhances the learning of those features. After pruning, the gradients in backpropagation for
neurons aligned with minority features become significantly stronger, which forces these neurons to
further learn the minority features. To some extent, this reinforcement compensates for their lower
frequency €;+ compared to majority features. In contrast, for neurons associated with majority fea-
tures, pruning does not change their gradients, so they continue to update in the same speed and
direction as before. As a result, the decomposition of neurons aligned with minority features be-
comes concentrated on those features, while contributions from other features and from non-feature
directions remain suppressed and negligible.
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A.2 SYNTHETIC EXPERIMENTAL SETTINGS

In this subsection, we provide the detailed settings of our synthetic experiments. We follow the
standard sparse coding model to generate synthetic data, consistent with our main paper. Each
generated data sample is passed into a Transformer to obtain a token embeddings, which is then
processed by an MLP trained with a contrastive objective. After training, we evaluate the alignment
of the learned neurons to the minority feature. Specifically, we report: (i) the number of neurons
with alignment above a threshold (Figure ; (i1) the maximum alignment value (Figure ; (iii) the
mean cosine similarity between positive pairs on the test set (Figure [d); and (iv) the regression test
mean squared error (MSE) (Figure E])

Experiment 1-2 (Alignment with the minority feature). We evaluate how well the learned neu-
rons align with the minority feature. Specifically, for each w;, we compute its normalized pro-
jection onto the minority feature. Figure [2| reports the number of neurons with projection larger
than 0.3, while Figure [3] shows the maximum projection value across neurons. We vary €y, from
0.1 to 1.0, and consider different noise-to-signal ratio (NSR) levels, where NSR = o2dy with
o? € {(1/100)2,(3/100)%, (5/100)?} and d; = 500. Each experiment is independently repeated
100 times, and we report the mean results. The results demonstrate that as €,,;,, increases, both the
number of aligned neurons and the maximum alignment consistently grow, providing direct empir-
ical support for our theoretical results. The detailed hyperparameter settings can be found in the
code.

Experiment 3 (Average cosine similarity on the test set). We evaluate performance on the test
set using the average cosine similarity between positive pairs. At test time, we keep the feature
space identical. For each configuration, we generate 5000 test pairs with a fixed test seed and report
the mean cosine similarity. We vary €p,i, from 0.05 to 0.5 in increments of 0.05, and use o2 €
(5/100)2, (7.5/100)2, (10/100)? to compute the corresponding NSR levels. Each configuration
is independently repeated 100 times, and the averaged results are reported. The results in Figure
[ show that the average test cosine similarity consistently increases as emin grows, indicating a
stronger ability to learn the minority feature. Consequently, the quality of the learned features on the
test set is enhanced, the model generalizes better, and the test performance becomes stronger, which
provides further empirical support for our theoretical results. Detailed hyperparameter settings can
be found in the code.

Experiment 4 (Test MSE on the downstream regression task). We evaluate the performance
of the downstream regression task on the test set, measured by Test MSE. Both the downstream
training stage and the test stage use a unified feature space. A linear regression head is trained on
the representations obtained from upstream learning, using 1000 training pairs, and then evaluated
on 5000 test pairs with a fixed test seed. In the setup, we vary en;, from 0.05 to 0.5 with a step
size of 0.05, and use 0% € {(3/100)2, (5/100)2, (7.5/100)?} to compute the corresponding NSR
levels. Each configuration is independently repeated 100 times, and the averaged results are reported
(Figure E]) The results show that as €,,;,, increases, the test MSE consistently decreases, indicating
a stronger ability to learn the minority feature. Consequently, the model achieves better overall
learning and stronger generalization in downstream tasks, which is consistent with our theoretical
analysis. Detailed hyperparameter settings can be found in the code.

Number of neurons with % = 0.3 VS Emin m/_ax% VS Emin
2 10/ 4 NSR=0.1 067 _§— NSR=0.1
g NSR=0.5 05 NSR=0.5
@ | -$- NSR=13 TIF 0a] —F- NSR=13 oyt
y— 6 = _
o { EIENE
— 4 —— x
8 e { g T 02
g z 0.1
Z 0 > 0.0 { &
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Emin Emin
Figure 2: Number of neurons with W > Figure 3: Maximum % VS €min for dif-
. K3 J k3 7
0.3 VS €min for different NSR values. ferent NSR values.
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Downstream Regression Task: Test MSE vs &min

N
Testset:1 3 MKRYD oo
N & T Y,

0.09 —f— NSR=0.45
% & & &+ —+ 0.08 - -~ NSR=1.25
Wl 007 \}\ -$- NSR=2.81
T S e e S S oos Sy
S S 7 oos % o S S
2[/\1_7 0.825 + NSR=1.3 ﬂ 0.04 1
=" ogo0| 17 NSR=2.8 _{ _____ E— —%—'{‘" {—'_{ 0.03 e S i
o7rs| ~F- NSR=5.0 0.02 S,
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Emin Emin
Figure 4: + ZN:1 A SXn)) Emin fOr Figure 5: Downstream regression task: Test
N £an=1 [f(X)If ¥l .
different NSR values. MSE Vs ey for different NSR values.

Experiment 5 (lucky vs. mixed-feature neurons).

The following heatmap visualizes the alignment values of 24 neurons (indexed 0-23) across 9 fea-
tures (indexed 0-8), where the first five features are majority features and the last four are minority
features.

Example of a lucky neuron: In our experiment, d; = 500, so the expected alignment from random
initialization is approximately 0.002. After training, Neuron O exhibits a strong alignment with
Feature 4 (around 0.3), while its alignment with the remaining eight features is negligible. Thus,
Neuron 0 can be viewed as a lucky neuron for Feature 4.

Example of a mixed-feature neuron: Neuron 10, in contrast, does not exhibit a dominant alignment
with any single feature. Instead, it shows moderate alignment with multiple features, specifically, its
values on Features 0, 2, and 7 are 0.13, 0.18, and 0.15 respectively, while remaining negligible on
all other features. This behavior corresponds to a mixed-feature neuron.

Additional examples: Further instances observed in our experiments include, but are not limited to.
Lucky neurons: Neuron 6 and Neuron 17 for Feature 0; Neuron 3 and Neuron 18 for Feature 1;
Neuron 4 for Feature 2; Neuron 13 for Feature 3. Mixed-feature neurons: Neuron 1 (Features 1 and
2), Neuron 2 (Features 1 and 3), Neuron 21 (Features 3 and 8).

These empirical patterns closely reflect the specialization and superposition behaviors predicted by
our theoretical analysis.

Squared Cosine Projection of W on M

0 )

0.17 0.20 0.35 3

0.21 0.18 0

_ 027 0.09 o
| 0.24 ] ; 030 Y

= 5 c
- 0.25 =
— ] U
X 0.15 0.11 (1]
Q 10 0.18 0.15 =y
o] ) 020 2
£ 0.12 ()
0.16 0.15 ¢

C 15 0.12 0.10 o
o 0.13 0.10 o
5 0.10 O
D | 0.13 | 8
20 =

< 00 m
0.16 o

0.21  0.14 0.15 | 0.09 A

0 1 2 3 4 5 6 7 8
Feature Index j (M _j)

Figure 6: Squared cosine alignment heatmap between 24 neurons and 9 features, illustrating lucky
neurons (single strong alignment) and mixed-feature neurons (multiple features alignment).
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B NOTATIONS AND LEMMAS

To streamline the presentations, we begin by introducing the key notations and outlining key funda-
mental derivations that will serve as the basis for the subsequent analysis.

Notations. First, we introduce the notations that will appear in the appendix.

Let z&? denote the representation of the r-th token of data sample X,, after passing through the
(s)

transformer. Similarly, zy,” denotes the s-th token of data sample Y, after the transformer.
Empirical Gradient. To facilitate the calculation of the gradient of the loss function

E( fo, Xi,B k) with respect to the weights {wft)}ie[m], we introduce the following notation. We
denote the positive logit by £}, ,(X,B) and the negative logits by £ ,(X,,,B).

, o exp (Sirnft (Xn,Yn)/T)
0, (X0, B) = S o o0 (Simy, (X, X)/7) (19)

O (X, B) = b (Simy, (X, Xn.s)/7) (20)
8.t n ' ZXG% exp (Slmft(XnaX)/T) .

For convenience, we simplify the positive logit é; o (X, Yo, M,) as Z;,t’
U oy (X, Yo, X 5, My, ) as £ ;. For clarity of exposition, we suppress the dependence on (X, B)

when it can be inferred from the context.

and the negative logit

®

Then, the gradient of the empirical risk function Z( f+) with respect to the weight w, ’ at iteration ¢

is given by:

21

Population Gradient. Similar to the empirical gradient, the gradient of the population risk func-
()

tion L( f;) with respect to the weight w, " at iteration ¢ is given by:

L
Va, L(ft) = E[(£,; — Dhi(Yn) Z 1‘<wi,z§>>|2biz§?
r=1 i 22)
D DJRAIIIC O e ITEE Sk
X, €N r=1
where L is the population risk function as
L(f:) = E[£(fo. X0, Y0, M) . (23)

Stop Gradient. Note that the similarity measure explicitly uses the St opGrad operation to block
gradient flow through the second input. The similarity is computed as

Simft (X17X2) = <ft(X1), StopGrad(ft(Xg)». (24)

Concentration Bound. The following lemma shows that, given a sufficiently large number of
samples, the approximation error between the empirical gradient and the population gradient re-
mains bounded with high probability. Building on this principle, we will first analyze the training
dynamics under the population gradient, and subsequently account for the deviation arising from the
empirical gradient. The proof of Lemma[B.T|follows standard techniques based on sub-Gaussian tail
bounds and is therefore omitted.
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Lemma B.1 (Approximation of empirical gradients by population gradients). Suppose that
[W® |2, < poly(d). Then there exists some K = poly(dy) such that, with high probability,
the difference between the empirical gradients and the population gradients is bounded for every
iteration t:

w2

vaiZaUg(ft) - VwiLaug(ft) 2 pOIY(dl)

Vi € [m). (25)

This Definition [B.I]divides neurons into two categories, ordinary neurons and lucky neurons, based
on their initial alignment with feature vectors M. These sets will serve as the foundation for our
later analysis.

Definition B.1 (Characterization of Neurons). We define the following sets of neurons, which will
be useful for analyzing the stochastic gradient descent trajectory in later sections:

(a) For each j € [d], we define the set of ordinary neurons M; C [m] as:

M; = {ie[m};<w,§°),Mj> C210gd||MMT o2 } Vi € [d] (26)

(b) For each j € [d], we define the set of lucky neurons M7 C [m] as:

c1 log d

icm]: (w, M;)? > |MM T w <°>||
ME = , (27)

J
<w§°>,Mj/>2§021°gd||MMT Ol v eldg £

where

2 2
c1 = (Gmax) 2(14+7), c2= (Emm) -2(1 —7), ~isasmall constant. (28)

€min €max

Properties at initialization: At initialization (¢ = 0), we note key facts about the neurons for later
analysis of the SGD trajectory.

Before presenting Lemma we outline its essential idea: (a) Each 'wEO) has magnitude in the

order of 0(2) dq; (b) Each 'wgo) has a projection onto the feature subspace in the order of agd; (c) For
each feature, the numbers of lucky and ordinary neurons are influenced by the frequencies of the
majority and minority features; (d) For each neuron, the number of aligned features forms only a
limited subset, typically of size smaller than d. We defer the proof of Lemma[B.2]to Appendix [G]for
the clarification of presentation.

Lemma B.2. At initialization (t = 0), the following properties hold:
(a) With high probability, for every i € [m],

lw®13 € [odd: (1-0(4)) o3 (1+0(4))] - (29)
(b) With high probability, for every i € [m],
IMM w2 e [agd (1 - 6(%)) , 02d (1 + 6(%))] . (30)
(c) Let m = d®™ be the number of neurons. With probability at least 1 — 0(%) foreach j € [d],
MG > Q(d*) =: Ey, M| < O(d*?) =: Es. (31)
where ) )
wi = C = () (147),  wy=Cp— () (1-7). (32)

min

(d) For each i € [m), there are at most O (dl (fmm)™a- 7)) indices j € [d] such that i € M.
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C THEOREM C.1

In this section we analyze the training process at the initial stage. Here we define the stage transition
time

dilogd
T, =0 <1og) (33)
nloglogd
to be the iteration when
IMM w3 > w3, (34)

where the neuron weights are more concentrated in the feature space.

C.1 THEOREM C.1

Before stating Theorem [C.1] we give a short description of its parts: (a) For all neurons, most of
the weights lie in the feature subspace; (b) Lucky neurons are strongly aligned with their associated
feature directions; (c) Neurons not in the set M ; have only weak alignment with feature j; (d) Each
neuron can have strong alignment with only a limited number of features; and (e) All neuron weights
have only small components in non-feature directions.

Theorem C.1 (Initial feature decoupling). At iteration t = Ty, we have the following results:
(a) For all i € [m),

IMM T w!™|3 > §]lw!™)|3. (35)
(b) For each j € [d], and each i € M,
v/2logd
uwF%A@szﬁ+v—;§Lw¢ﬂwz (36)

(c) For each j € [d], and each i ¢ M,

v2logd
[(w{™), M) < v/T=7 Y25 ™. (37)
Vd
(d) For each i € [m],
log1/4d

(W™, M| > lw™ s, foratmost@(2 ldgd) indices j € [d.  (38)

Vo
(e) For eachi € [m| and j € [d1] \ [d],

|@$Wwﬁns0Qﬂ%ﬂnwﬂw (39)

C.2 USEFUL LEMMAS

In Lemma we show that for each neuron i € [m], the weight vector w; largely disregards the
non-feature components M+ and instead focuses on the relevant features M.

We first describe Lemma (a) The projection of wgt) onto the feature subspace, though initially
small, grows rapidly during training and reaches the order of d; relative to its initialization. (b)

The component of w,Et) in the non-feature subspace remains essentially unchanged, up to negligible
variation.

Lemma C.1. Forallt < T3, the following properties hold:
(a)

2t
R e IR

2<0<W¢mw). w
2" toll2

21
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(b)
MM HMM w(O)H — A+ e 29115 0 (1) | M T “”H @1
(c)
1 AINT, (¢ L L
[ ey Tl )< (140 (g )) [ vy Tl @
Lemma C.2. Foreachi € [m], there are at most O(2-V1°84q) indices j € [d] such that
[(wi”, M;)| > Qo log'/* d). (43)
C.3 PROOF OF THEOREM C.1
Proof of Theorem|Cfa): The result (a) can be derived from Lemma[C.1](c). We have,
IMM "™ |3 =l ™3 - HM%MH I3
Sl T2 T,,(0))2
2™ = (14 s ) IO Tl
>[lw{™|I3 — w®|3 (44)
(T1) 2
(T1) ||w1 II2
> v v s 0000
2l ™z - (1+ €minC- log d)
1
>3 llwi™ 5.
O]

Proof of Theorem|C1[b): Note that from similar gradient calculations to those in the proof of

Lemma|C.1|(b), we have, for j € [d] and i € M:

(w™), M;)|

=|(w!" Y, M) -

w0, ) (1 1

" 8| (1= + 2

77<Vw,;Laug(fT1—1), M]>

log log d
nC., og0g> O<

nC, loglog d)

! Y5
poly(dy) |

O
poly(dy)

(45)

T fw!™
poly(d1)

o

These gradient descent steps above can be derived from the last few inequalities in the proof of

Lemma[C.I|b).

|, M)

O Veilogd
TV

@ \/cl logd
— 7

@ \/cl logd
f

MM " w s (1—nX+¢;

w2

|IMMT 1-

(
(
I s (1
(
(

nA+e€
nA+
@
2\/cllogd DA+ e
Vid

ver logd
Vid

o Vlogd
v L

MM w2 (1~

>

0
IMM w2 (1 A+

22

nC: log logd

nC, log logd
.7

nC. log log d
€5

nC, log logd

)
)
, C-loglog d loglogd>
)
)

T nTy ”w(Tl)H

( poly(di1)
Hw”“u
poly(d
( @u
VMM w0,
poly(d)

MM T w
poly(d)

-0

)

T

Q

Ty

poly(d (46)

Ty

)

Ty
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nT 1
poly(ldl) < poly(d)
2
o(1) szgo) H2 (equation 258). (») is because Lemma (a) (b). (® holds because the following
equation is valid:

[(w!™), M)
VAT
-V

Tog d d
:@“MMwao)llz (1 —nA+ ejglcz logd>

Vd

e \Veilogd
_(E) \/g

o Waload
(emax) 7
L( € )W
\/5 €max \/Zl
>i(€min)m
_\/5 €max \/(j

Vlogd
>\/1 HWwa“nz.

(6) holds because of the conclusion of Theorem C.1(a).

2
(v is because Definition (b). (2@ is because . (3 is because ngt)H <
2

0 C.loglogd\™ |MM w®|,
MM W), (1_77A+6j77 j g ) _H M |
MM w5
~ poly(d)
MM Tw
~ poly(d)

V

||MMTwEO) l|2 (1 — A+ emax%lC’Z log d)
47

MM Tw™|,

Ve

T
lw{™

T
lw{™ |

O

Proof of Theorem|[C1c): Theorem|[C.I|c) can be verified using Definition [B-1] (b), Lemma [B.2] (a)
(b) together with the proof of Lemma [C.T|a).

[(w™) M;)|

0 nC:loglogd |~ n\\"" | = (uTifw!™ | (48)
Sl M) (146 T 40 ()0 (T )

The above equation can be obtained from the first inequality in the proof of Lemma[C.I|a).

[(w!™), M;)|

C,loglogd ~ MM Tw®
1€ loglog +0(1) 4 IM(M) w; 7|2
d d? poly(d)

T T (012

cologd H T (O)H nC,loglogd ~ /7 IM(M)" w; |5
<G —— ||MM " w,; 1 —— 40 (= :
V4 wl|,(1r e 40 () ¢ poly(d)

0
<5 [co lggd HMMTwZ(Tl) 4O (IIM(M)TwE )|§>
€min 2

<|(w®, M) (1 e

poly(d) (49)
(T1)
€ [calogd (1) l[w;"ll2
<7J P \ A1 ol ————=
~ €min a el poly(d)
(T1)
€max [C2 1Og d (Th) H'UJ ||2
Temin Vo d oozl + poly(d)
2log d
S AL
Vd
O
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Proof of Theorem[C.I(d): First, by Lemma we obtain that for each i € [m)], there are at most
O(27 V8 dq) indices j € [d] such that:

[(w”, M;)| > Qo0 log"/ d). (50)

Next, we proceed to the formal calculation:

C.loglogd\ ™
™, M) 21wl M) (1 g+ ¢, IR
L loglogd\ ™
> (o0 log™* d) (1 s ”Cdgg)
(0) D
T Wdr d
log’*d, (z,
> =2 Zlw (™ |l,.
Vd
O
Proof of Theorem|[C.Ie). At initialization we have
wZ(O) ~ ,/\/(07 O’(Q)Idl). (52)
Hence for any unit vector M. jL, the projection satisfies
(w® M) ~ N(0,02). (53)
By the standard Gaussian tail bound (sub-Gaussian with parameter o),
2
(0) n t 2
P(‘(wi , M| >am/2logd) g2exp(—208) =:. (54)
Therefore, with high probability,
[(w”, M| < o0 - O(/log d). (55)
Moreover, since ngo) l2 = ©(09+/d1) with high probability, the above bound is equivalently
logd
wﬁWNGMSO< ;ﬁ)-wwz. (56)
We have )
(wi ", M)
2
(®
~ UZie[m] sz‘ H
_ (Ti—1) L 2 ®
—(1— g\ M)+ 0 - Hw
<(1 =g\ MY +0 nlwi”ls
B ’ Y poly(d1)
<, M) + Oyn) - maxd (12012 57
— 7 ) Vi 1?7 tSTl poly(dl) ( )

<Ti

logd © ~ (1w
< . ) . N7 e
0(\/ d1> lw; " ||2 + O(Tin) 2?’1‘O<poly(d1)
gd
V dy

(t)
(T1) A ”u‘z ”2
. , O(T,n) - o | 1= 12
lw;" " |l2 + O(T1n) ItnaX (poly(dl)
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. Tin logd
@ is because s </ =

Lemma [3.1] can be viewed as an informal version of Theorem [C.I] In particular, part (a) of
Lemma [3.1] corresponds to the first inequality in the proof of Theorem [C.I[b), while part (b) of
Lemma|3.1|corresponds to the first inequality in the proof of Theorem|[C.Ife). Hence, Lemma [3.1]is
essentially a simplified restatement of the more general Theorem [C.1}

C.4 PROOF OF LEMMA 3.1

Proof of Lemma[3.1} For j € [d] and i € [m], the following bounds hold for all ¢ € [0, T} ]:

(a) Lower bound:

(t)
(t+1) ®) nC. loglogd ~(77||’wi ||2)
w, ", M;)| > [(w;”, M;)|(1 —n\+¢;—————) — O ——L—= ). (58)
(4,5 = !, M) (1 =+ ¢ 0B - O s
(b) Orthogonal component:
(t)
(t+1) MV < (1 —n) (®) ML 5(77”% ||2 (59)
M) < (1=l M)+ OS2 ).
O
D THEOREM D.1
The second stage is defined as the iterations ¢ > 77 but ¢t < 75, where
drlogd
T,=T\+0 80 _ (60)
€max? log log d
is defined as the iteration when one of the neuron i € [m] satisfies
2 2
i = i

D.1 THEOREM D.1

We first provide an explanation of Theorem (a) If a neuron 7 is a lucky neuron for feature j,

gTQ) onto M; is very large, on the order of the full neuron weight HwETQ) Il2-

In other words, such neurons have already “focused” on M. (b) The bias term bl(.Tz) grows propor-

T2)H2'

then the projection of w

tionally with the neuron weight HwETQ) |l2, and at iteration T% it reaches at least m\/‘f(@ wa
In other words, the continuously increasing bias effectively controls the activation of the neuron
wETz). (c) Among the lucky neurons in M7, there exists one neuron wETQ) whose projection onto
M is the largest, and this neuron has a larger projection than all the other neurons in M.
Theorem D.1 (Emergence of singletons). For each neuron i € [m], the following conditions hold
at iterationt = Ty:

(a) For each j € [d], if i € M, then

[wf™, M| > () a0l 62)
(b)
b > Iﬂ“’j}f“’”llw?”l» (63)
(c) Let
aj = max (w(™, M;)]. (64)

then there exists a constant C; = O(1) such that

|<wz(t)7Mj>| < Cjaj, Vie M;. (65)
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D.2 USEFUL LEMMAS

Next, we discuss Lemma For example, the first item illustrates how each feature M can be
captured by certain subsets of neurons, a process influenced by the stochastic nature of initialization.
We elaborate on the full content of Lemma[D.1] below.

(a) Lucky neurons have large projection on their feature direction, which means they can be activated
and are clearly aligned with that feature. (b) If a neuron does not belong to M, then its projection
on feature j stays small, which means it cannot be activated and has only weak alignment. (c) A
neuron can only be well aligned with a small number of features, not with many at the same time. (d)
The projection of a neuron weight on non-feature directions is very small, which means the neuron
does not learn the non-feature directions. (e) The size of each neuron weight is controlled by its
bias, so the weight does not grow without limit.

Lemma D.1. For all iterations t € (Ty,Ts], the neurons i € [m] satisfy the following properties:
(a) For j € [d], if i € M, then
®,

> /T+~b". (66)

(b) For j € [d], ifi ¢ M, then

‘< ’ VI 70, 67)

w2
<0 4—?7§f7 ) (68)

(c) For each i € [m), there are at most O(2~V'°84d) many j € [d] such that
(b))’
Viogd

and furthermore,

‘<w§t)7 Mj>

(", M;)? >

1 )

(69)

(d) For each i € [m], and for all j € [di] \ [d],

|, M| < 0<”w(t)” ) (70)
i oAV \/a .

(e) For all i € [m),

(t)y2
(f) d(bi )
—_. 71
Lemma D.2. For each i € [m], define
Aii={j el 1w M) < %} € [d]. (72)
Then

D.3 PROOF OF THEOREM D.1

Proof of Theorem[D.1 'We follow similar analysis as in the proof of Lemma[D.1] In order to prove
(a)-(c), we have to discuss the two substages of the learning process below.

When all ||w ||2 < (14 2o flw (Tl) |l2: From similar analysis in the proof of Lemma | the
iteration complexity for a neuron ¢ € [m] to reach ||w( )||2 > (1+ fmin) |wl( ) |l2 is no smaller
than Jlog d
T/, =max{Ti +Q —22% ) pt (74)
' €max? log log d
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When some ||w§t)||2 > (1+ L)HW(TI)H%

€max ?

We first prove Theorem[D.1|(a). In the first stage, for j ¢ A/;, we have
/ O o (T1))12
Z (wET"l),MﬁZ < Z (wZ(Tl),MﬁQ 1+¢ (n) + 0 lw; 12
= A d polylog(d) 3/
J€ [d] 5J QNL Jj€ [d] »J ¢N-L

< (1+o(1)(=2) + o(1)(

emax Emax

2

b

€

)2) HMMTwz(Tl)

(75)
where we used the fact that ||w(T1) 2 < ||MMTwET1) Il2-

For j € [d1] \ [d] we have

S qwl™ My
j€ldi]\[d]

< (T1) 142 W(Tz‘l,l -T) —Q(log!/* d) )2
< g (w;"", M;)*+ O ¥ e , Jhax, lw;” |5 (76)
jeldd) ST

. 2
<(1+0(2 -

i

)) HMJ_(MJ_)T,w(Tl)

emax 2

Typically, if i € M, there exists ¢ < T such that ngt)Hg > (1+ EE—"&)ngTZ)Hg, as we have
argued in the proof of Lemma[D.1] Thus, we have

() (/1) (1/1) (/1)
[(w; M = g U - Y (wy M) = Y (MG

JE[d],IEN; J€[d1]\[d]
Ej T € €, T
> (14— ™3~ (L o(1) (=) + o) (L)) w5 D)
max 61‘[1&)( 611]3,)(
Ej T
> L (2= o) w3,

which proves the claim.

In the second stage, if i € M; then from similar calculations as above, we can prove by induction
that starting from ¢ = Ti'71 , it holds:

loglog d
w0 = ol p) (140 (L) )

loglogd
> w2 (1 +0 (egnogdog»

@) 2 (78)
S s Y w0 (1600 )
Jreldl 4 jreldly#i boyos
(t4+1) (t) O(n) ?
> M < S (w M) <1 " dll@l))
sl jela boios
which implies
(1+1) 0 ey V2 (t+1)
[(w; 7, M) = [(w; 7, Mj)| - === > (1 = o(1))[w; " |2 (79)
[w; |2
Next, we prove Theorem [D.T|(b). In the first stage, the bias growth is large, i.e.,
by = b{T(1 4 D)Ta=T > 6™ - polylog(d)
(80)

olylog(d olylog(d T!
Vd Vd
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In the second stage, the bias is large consistently, i.e.,

1
pitD) 5 0 ||wz(t+ )||2

polylog(d) ; 1, (@)
i O o2 M
w2 Vd

i > *H’UJ

2 llw; 2. (81)

2

Finally, we prove Theorem c): Assuming ('wz(t), M) > 0 (the opposite case is similar), from
t =T, fori € M7, we have

log1 ® M,
(w{"™V M) = <<w§t)7Mj> - bgt)) (1 + ejincz = Ogd) +0 <77<w1 ’ 3>|>

d d polylog(d)
C.loglogd 1
> Q1) (w®, M) (14 ¢ 1- (82)
- ( )<w7, ) J> < +EJ d pOlleg(d)
C, loglogd 1 =T
> oW)(w!™ M) (14,122 1- .
= ( )<wz ) J> + 6] d polylog(d)

which implies that after certain iteration ¢t = Ty + T”, where T" = © (%), we shall have

(a1 M;)| > loglogd - |(w{™), M;)| > b -loglog d. (83)

i
However, at iteration t = T} + © (%) we can see from previous analysis that H'wgt)Hg < (1+
o(1)) ||w§T1) |l2, so the bias growth can be bounded as

o) ()
bt < b (1+Q) " .max{ ”ule )||2 1
d [[w;” ]2

< b (1 + @<Z>> ~max {(1+o(1)), 1} o

< o(b{™).

Now from our initialization properties in Lemma we have that(w§,0 ) M )2 < O(ologd) for
all ¢ € [m]. Thus via similar arguments, we also have

|<w(t) M;)| < |<w(0) M) 1+ G,M 1+ # ' (85)
o= VT T J d polylog(d) ’
holds for all i’ € [m]. Now it is easy to see that fort < T =T + © (n’ﬁgl‘ffgd d) , we have

(Ty) ‘ nC.loglogd (1 _ n t=T
[(wi”, M;)| Q(1) - (oo ™, Myl (1 T (1 Polylog(d>))
(t) . - T C, loglo =T
[(w}!), M;)| (), M) | (14 ¢ aCloptond 4 a0 (86)
nloglogd =h
>(1-0lej—m—"— > Q(1).
- ( ( dpolylog(d)))) =
Thus, the last claim is proved. O

D.4 PROOF OF LEMMA 3.2
Lemma [3.2] can be viewed as an informal version of Theorem In particular, part (a) of

Lemma [3.2] corresponds to and Lemma [B.Z] (c), while part (b) of Lemma [3.2] corresponds
to another formulation of Theorem[D.1](c).
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E THEOREME.1

E.1 THEOREME.1

At the final stage, we show that sparse activation of neurons naturally leads to convergence toward
sparse solutions, thereby guaranteeing sparse representations. For all £ > T5:

Theorem E.1. For all iterations t, the neurons i € [m] satisfy the following properties:

(a) For j € [d}, ifi € M, then

[ M| > (1) > (87)
(b) Fori € [m], we have
lwl2 < 0(1). (88)
(c) For each j € [d],
8= 3 (w” . M;)? = 6((—L-)*rlog’ d). (89)
iEM; max

(d) Let j € [d] and i € M, then there exists C = O(1) such that

[(w, My)| > € max [(w, M) (90)
(e) For i ¢ M, it holds
‘.
[(w”. M) < O(e ] ﬁ:) ey o1
max 2

(f) For any i € [m] and any j € [dy] \ [d], it holds

. M) < O tgg) Il ©2)

(g) For all i € [m), the bias satisfies

bl > pobeld) |4y (0)),. 93)

E.2 USEFUL LEMMAS

When all the conditions in Theoremhold for some iteration ¢ > T5, we have the following fact,
which is a simple corollary of Lemma|E.9]

Lemma E.1. For any i € [m], we denote N; = {j € [d] : i € M;}. Suppose Theorem|E.1|holds at
iteration t > Tb, then with high probability over x € D,:

1, T < 12 ) 94
e Ini@zo S g/\:/ 12,5120 44)

which implies that

max  Pr(h;.(z) #0) < 0( (95)

loglog d
2€{X,,Y, }UN ’

d

Now for the simplicity of calculations, we define the following notations which are used through out
this section
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Definition E.1 (Expansion of gradient). For each i € [m|, j € [d], we expand (V,, L( f;), M) as
<vw7:L(ft)» M]>

L
r (96)
=E || (6 = Dhia(Ya) + D LoshialXns) | D010 0155, (2% M) |
X, s€EN
and t t) t
(Ve L(fe), M) = 07 + @) + £ 97)
where the U, 1) £W) gre defined as follows. For each
1 o
X = Z Z szn,j + é-n ~ DZX’ Z M 71 J + £+ ~ Dzyv (98)
J
we write
L
~+(s t
Z ( J)Z;,(j ) —b| )> Liw® 2()y>p®
99)
1 ¢ _+ ¢
Z ( ) n(J s) _|_b( )> w §t>,z§f’><—bﬁt)]’
L
t t s)\J s
(ZS,E,])(Y,”) = Z<w1( ),ng)\j> < (t) >>b(t) <w1( )7Z§/)\J> < (t) >< b(t) (100)
s=1
Now we define
(#) _ 0 x < 20
t t -
Ui =E | (G —1) ¥ D ) (Xns) | D a0y5p Eag |+ (10D)
Xn,sEN r=1

L
(). (t Z (t ~(r)
‘I) i =K (zlp’ ) ¢2 g rL E ¢1, g rL s) E 1|(wi,z§;‘>)|2bizn’j ) (102)

L
gi(f]? =K (ﬁ; ¢ 1) . hi,t(Yn) + Z €;7t : hi,t(Xn,s) Z 1|<wi,zgg)>|2bi <Mj7 §£T)>

Xn,s€EN r=1
(103)
Moreover, for j € [d1] \ [d], we can similarly define
v el =0, (104)
eV =E ||, ~1) h Z O R (X Z L 20y 35, (M, ED)
X, €N
(105)

Equipped with the above definition, we are ready to characterize the training process at the final
stage.

Lemma E.2 (Lower bound for \Ilgt)). Suppose Theorem holds at iteration t. For j € [d] and
i € M, there exists G1 = O(1) such that if

L 2 2
7= 3wl M (Z ) <€’> Gi7logd, (106)

€
i’ eEM; max



Published as a conference paper at ICLR 2026

then we have

(107)

\Ifft]) - sign (i( () S M)z +(‘5 )
E|Sr |20 )
M (&) (e )

Lemma E.3 (Upper bound for \Il( )) Let j € [d] and i € M. Suppose Theorem holds at
)

iteration t, then there exists a constant Gy =0(1

such that if
() (t) 2 - 5+(s) i € ’
5 ::jngfwi , M) (;zm> > (emx> Garlogd, (108)
we have
) LN S+()
v < poly(d)§‘<wi M) (109)
Similarly, for i € Mj, we have
t = ¢ t
e s o) o

Lemma E4. At iteration t > Ty, let j € [d] and i € [m]. Suppose Theorem|E.1|holds at t. Then
for each j € [dy], we have

e®

2Y

< O(%%) - max (|(wl®, M;)]). (111)

d?r i'e[m]

Lemma E.5 (Reduction of ®®) to the bounds of ). Let j € [d] and i € M;. Suppose The-
orem holds for all iterations before t € [dl'm i

} and after Ts. Also suppose that for all

n o’ om
l € [d], we have
2
S’l(t) = Q(( & ) Tlogd> at some t' = O(Ty). (112)
Emax
Then the following bounds hold:
For iteration t € {ﬂ, du%},
n n
o) < o 22wl (113)
’J - €max d3/? i N2
For iteration t € [d1'495, dl'gg},
n n
~ 1
o) < 0<dl.98> w2 (114)

Definition E.2 (Optimal Learner). We define a learner network that we deem as the optimal feature
map for this task. Let k > 0, we define 0* := {0} }icn as follows:

ﬁm (T2) s
- sign| M), ifte M7,
or — { Tag) Mo - nllwn L M), i € M (115)
0, ifi ¢ Ujepg M-
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Furthermore, we define the optimal feature map f} as follows. For i € [m], the i-th neuron of fi ¢
given weight 0; € R™ is

L
fr0,i(X5) = Z [(<9i,Z(XT)> b; )1<w5”,z(”>zbi - (—<9i,z§?> - bi)17<w§t)’z(§)>2b

r=1

(116)
Finally, we write f; g as the concatenation
-
fro() = (froa()s- o from()) - (117)
Lemma E.6 (Optimality). Let {0 }ic(m) and fio be defined as in Definition When Theo-
rem[E_1| define the pseudo loss functlon
~ e<ft,,9* (Xn)vft(}]n»/T
L(fro+, ft) =E |—7log er% oo K T 0 . (118)

Then by choosing k = ©(Zy), and assuming

> lw” M) > Q(\[> (119)

ieMx =2

we obtain the following loss guarantee:
L(fios /1) < O(kq)- (120)
€ R%. Define

zZx)

Lemma E.7 (Pre-activation size I) Let z(r) = % (M iff) + é@) ~ D
(T)\J =41 (Z] 124, i7€ld) M; /z , +§ ) . Then the following results hold:
(a) Naive Chebyshev bound: For any \ > 0,

<ﬁm)((<wwz&“>+L<wz,MJ—>£¥3) > AT <o(d).

(), i
The same tail bound applies to (w;, z(Xr)>, (w;, 2225, and (w;, 38 )>.

(b) High probability bound for sparse signal:
Pr (<wi, MZ7)* > w3 - max | M2, log* d) S e fles™d), (122)

(¢) High probability bound for dense signal: Let Z = (w;, &, i )> Then
Pr(z2 > \Iwil\gdlog“ d) < o~ Qlog? d) (123)

Lemma E.8 (Pre-activation size II). Suppose the following conditions hold:

(wgt),Mj> > Q((bgt)) ) for at most O(1) indices j € [d], (124)
) (6{")? Q(v/logd
(w;”, M;)* > Q N for at most O(e~ ( Ogd)d) indices j € [d], (125)
(t)y2
O)2 < o Ao 12

o ||2_0< . (126

Then, for any A > 0.0001,
Pr([(w”, 2))] = 20(") g e 2", (127)

and

PT(KU’?) e E Ab?’) S e es M), (128)
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Lemma E.9 (Pre-activation size IIl). Let i € [m]. Suppose there exists a set N; C [d] with |N;| =
O(1) such that

(t)y2
(t) 2 (b;") .
MY < —_—t A is 12
<wz 9 ]> — O(p(ﬂylog(d)) 9 .7 ¢ N ( 9)
and »
2
W2 < of _4b:i7) 130
Then, for any X € [0.01,0.99],
Pr{| S (wl M)z + (w;, €)= A | < emos™ D), (131)

JEN;
Lemma E.10 (Gradient for sparse features). Suppose[D.1|holds at iteration t > 0. For j € [d], we

denote events '
A= {8 = b\ —allc:},

A= {84 = —all)c:},

s (132)
o= {[82+ ol 2 3 (el -7},
Ari={sY = 3(al)cs —b") };

and quantities L1, Lo, L, L4 as
E[|S)2(1a, + 14,)]
Ly := UL (t)l v 22, Ly:= Pr(Ay),
E[{w; ", £)?]
(133)

E[|5)72(1a; + 14,)]
Ly = ot D o . Ly :=Pr(As).
E[<w1 , > ]

Then we have the following results:

(a) (all features) For all i € [m), if agtj) > 0, we have (when ozgtj) < 0 the opposite inequality holds)

E hi(Yn)Zl\(wz,z ))\>b ~’EL73‘|
r=1
PENOIE - SH+(s) SNt
_Law S;zn)] ;z”’JIH () zx+zy>‘>b {w (r)’z)(iw>| (134)
+ (o A2 LS 50)
(o) +0(VEaDR) ) B Y 01| 0 + 1),
s=1r=1

(b) (lucky features) If a > b( ) we have
3 o )

L
E( ¥ b(t)) lz Z 2 ft>,”§”>>bi+|<w§‘%zxz"§”>|] (135)
L L
(ol ool |2))“[22

51 5+
FnatEna N1z0011 . O(Ls + La).

(r

|Z
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Ifo; (t) < b( ) then the opposite inequality holds with (aftj) - bl(-t)) replaced by (aﬁtj + bgt)).

Lemma E.11 (Gradient from dense signals). Let i € [m] and j € [d]. Suppose[D.|holds for the
current iteration t. Then

L
(¥2) 2 100 oy 7 M >1
r=1

g
For dense features MJJ‘, J € [d1] \ [d], we have a similar result:

L t)
A [[w; |l
E[hi(Yn);_ll(wgﬂyzwzf,gt)(gg>,Mji>1 (df2> Pr(hi (Y,) #0). (137

E.3 PROOF OF THEOREM E.1

Proof of Theorem[EZI} First we need to prove all the Theorem [E.T|hold for ¢ = T>. Indeed, (1), (4),
(5), (6), (7) is valid at 75 from Lemma|E.9} and TheoremD.I}, (2) and (3) holds at 7% obviously.

Now suppose it hold for some ¢ > 15, we will prove that it still hold for ¢ + 1. We first deal with the
case where j € [d] and i ¢ M, where it holds that

L
) K
(!, M) = (w0l M) (1= 00) + 1Bl (Ya) 301405, (25 M)
=1
r (138)
B o O )|+ —1
nE Z gs,t zt X, s Zl\(w 2 >bs ZX ,MJ> + pOly(dl)'

Xn,sEN

In this case, to calculate the expectation, we need to use Lemma [E.T0] Lemma[E4] First we com-
pute the probability of events A; — A4 by using Lemma [E77] Lemma [E38] Lemma [E9] and our
Theorem [E.] to obtain

1
PI‘(Al),PI‘(AQ) S W’ (139)
which implies
1
Li,Ly < poly (d)0osd)” (140)
Furthermore, from Fact[E.T] we also have
6 NP 50 1
EY zH9y 2 . oo | S eg—rom—.  (141)
; gL En |(wi,ﬂ)|>b (w2 — zX>2+z(y)>|] 7 poly(d) 2oz d)
Now we further take into considerations Lemma[E. 11} Lemma[E.4] We can obtain
(t)
(t-‘rl) M.V < (t) M A O ,’7‘—‘2Hw HQ £ n 142
(Y M) < (M) - ) + 0 [ 15 e T e)

Indeed, since we have chosen learning rate n =
as follows:

poly(d) and \ € [dl oT» gt 49] it is easy to prove (5)

Ol ® - . .
o Fori ¢ M, |<w§t),Mj>| <O~ l\/éﬁ,’h): This is easy since by using Lemma [E.10
max =9

Lemmal[E-4] we can prove the following inequality by contradiction

=2
_ n n=
ol M) <l M+ ¢35 =) + 0 (22 ) ],

& ], (14
<. < J .
o o © <€max \[ )
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)
Now we begin to prove (6). For all i € [m], we have max c(q, )\ (] |(w; ® , M| <0 <|\wﬁ_|f>

at iteration t = T5. Now, by expanding the gradient updates of (w(t) M -L> we can see that
t+1 t) t t
(i, M| < [, MG (L= ) + [0 )] + |20 + 7]
(144)

< [, MF)|(1 - ) +o( 0.

i)

where the last inequality are obtained as follows: From Lemma[E.4] we have

£9) <0<” ”2“2> max (1, M)

27 i/ €[m]

o (Iwil=t) o( 1) a0 () 0
e e— . —— since max ’LU/, i ~
d?T Vdq i’ €[m] J \/dlES

O (—2 ) Jw®l.
(o) Il

After (5) and (6) are proven, it is easy to observe (1) is true at t. Below we shall prove (2), (3) and
(4), after which (7) can be also trivially proven.

IN

IN

Indeed, (2) is a corollary of (3) and (4), since if S;t) <O(r log® d) and (4) holds, we simply have
w5 =3 M2+ 3w M)+ YT (wl M

JEN; JE€Ni,j€d] J€ldi]\[d]
O g2 & o w3 w13
<Y (w”, M) +0(d) - O | (=) L2 | +0(d) - O | 562 | (146)
; €max d—'g d1_42
JEN;
€ 1
< 3w M) ko (Lo )
je/\ﬁ max —92

which implies (2).

w13 < 3 w0l )7+ o (L 12

JEN; max

< 3w, M;)?

JEN;
< O0(1)O(
<0(1).

(147)

polylod(d)
de )

Thus we only need to prove (3) and (4). Indeed, for (3), letting ¢ € M, we proceed as follows: we
first write the updates of (wgt), M) as

(w{ M) = (w, M) (1 ) + 0+ o) 1 g

148
— (w®, M) (1 - ) + Ww( )uw o (149

where the last inequality comes again from Lemma Now suppose for some t we have Sg»t) >
Q((=)%7log” d), by Lemma we have

1 2
(™ M) =(w | M) (1 +ejm /\) +0 ( ) w2

(t) M1 . 1 _@
<wz ) J>( +€jpoly(d) 2 :

(149)

IN
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which means that (w; 0 ) < (wgt)7 M;). This in fact gives Sgtﬂ) < Sg-t), so that (3) is
proven.

dlogd
log log d

Now for (4), we need to induct as follows: for ¢t < TJ( = which is the specific iteration

when Sg-t) > Got1logd, where G4 is defined in Lemma The induction of (4) follows from
similar proof in Theorem After T( , we discuss as follows

e Whent € {T’ 2 } from above calculations, for each i’ € M, we have

(), M) l<w5”’M->l<1—nA>+W“w( o) LN
1 = .
oy ™ ML [l M) I(1 = n3) +nwl) £ 0 (Y52 ]

On one hand, for those i’ € M such that |(w(,t)7 M;)| < b(lt 2 <0 (“2 ||w§t)||2), we can

safely get ’( (t+1) MJ>‘ > ‘( (1) , M) , if ‘(w(,t),Mj)‘ > b(t)uz, then

we have
vl vt b -
‘ T T T | O(t()”” ) < Of 212) < O( =2 b(t)> (151)
(w,; ", Mj) <wi, , M) <wi, , M) d?=3 tfn
Thus by letting¥ ; := (wl(";;]Jv[  then
‘(wzﬁtﬂ) M;) ‘ ‘ (t) ‘ 1+77‘I/(t) —pAN)£0 ( E, ) ||w(t)||2
(1) = = S a5
[l e V=) =0 (F) Il
Since at iteration ¢ € {T;, dlni} , it is easy to obtain that ‘\Il(t )\‘ <0 (%)
Thus we have
1
<w'§t+ )7Mj>
1
<w§’t+ )7Mj>‘
~ o
[l a0+ @0 -0 - )
@l )| (@ =N+ 22)
(t)
; =2 =\ |w, M)
> (1490 — )1 — Z2) - (@ - N1+ ~2)> | ezl
( J \/a J \/E ’<w(/t),Mj>‘
153
—2 ‘(w(t) M> ( )
> (1@ -]

if( 2\ | )

. 1—0(“ ))- > Q(1).
= ) Z

=2 AT M)

where in the last inequality we have used our Theorem E.1|at T}
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dl:g , dlni} is largely similar to the above. The only difference
here is that we rely on a slightly different comparison here: Indeed, we have
t+1 t =(t E t
@ Mp)| [l M) (8 =) 0 (33) w0l

(w{ Y, M)

e The proof for iterations t € [

- . (154)
(147 — 520 £ 0 (3) w5

(2

- ’<w(’t)7M7>

Here we can use similar techniques as above to require

\Tf§t) — /\’ <0 (%) Now we also have
1 H
™8|l | (@ - 20— )
1 B2
’<w§f+ ) M) ‘ ‘ (w, M ’ 1+ \1/(“ N+ )
=2 ’<w§) M;)
>(1- e (155)
( W> (!, M)
t—1 9 ’< (a2 /) , M) ‘
Z H (1_ /H0201>' Q(1).
dl 49
p—di 49 t'd ‘( /n) , M) ‘
Now (4) are proven. (7) is an immediate result of our update scheme. O

E.4 PROOF OF THEOREM 3.1

The first part proves the convergence of the loss function. The second part is a further extension of
Theorem E.1.

Proof of Theorem We start with the proof of convergence ((IT)) in Theorem [3.1)).

Denote w(*) = (wgt) w,(n)) since our update is
w(t+1) - w(t) - vaaug(ft) + m’ (156)
we have
< w aug(ft) w(t) _6*>
2 * * 2
=2V Lag (FOlF + $lw® = 075 — 3wl — 6 II% + ol (157)
<P poly(d) + 4w ® — 6|3 — LD — %3 + 2o
where the inequality comes from
[V L (S = Z Ve, L (£ (158)

=1
Each term is O(1), and since m = poly(d), the overall complexity is poly(d).

Now we will use the tools from online learning to obtain a loss guarantee: define a pseudo objective
for parameter 6

Laug, (0) == L(fro. f) + 3 > 116313
i€[m]

<ft Q(Xn)vft(}fn»/T
N e A 12
=k [ 7log (er% e<f,,,e<xn>,ft<x>>/f)] +3 2 65

i€[m]

(159)

Which is a convex function over 6 since it is linear in 6 (for a fixed f;, we can consider L( f: g, f:)
to be convex with respect to 6, because f; g(x) is linear, and softmax + log is a convex composition;
the regularization term is convex).

37



Published as a conference paper at ICLR 2026

Moreover, we have

Laug, (W) = Laug(f1), (160)

and

V0, Lang, (0") = Voo, Laug (f1)- (161)

Thus we have

77<vaaug(ft)7 w(t) - 9*>
:77<v0f/2mgt (w(t)% w® — %)

O~ T *
zLaugt (w(t)) - Laugt (9 )

(Froow (Xn) fo(Y)) /7

ev/t,

—7lo -2 07 ||2

T g(g 6%e<ft,9*(xn),ff,(X>>/r>] 22{%}' ill2 (162)

@~ *
> Laug, (0) = 0(k3) = Y o0N6:13)
1€[m]

ZLaugt (w(t)) -E

>Laug (ft) — O(@) :

(@ is because the surrogate objective function Eaugt is a convex function with respect to 6, so
we can use a first-order convex lower bound: f(0) — f(6) < (Vf(0),0 — 0'). (@ is because

* _ * _ T2 %2 AtkK2

—

Now choosing x = ©(Z2) < 37 (so that 31,1 All6F |13 < 1553), and by a telescoping summation,
we have

Ts+T—-1 T3+T-1
1°° 1°°

= 3 (L) - 0(50)) £ 5 3 nVuLaug(fo)w® = 0%)

t=T} t=T
_ O(w™ — 6*[13)
< T
~ O([lw ™))%+ 110%[1% — 2 Te((w ) T6*))
B Tn (163)
_ 0w ™3+ 16°]3)

Since Ty > mZiY, this proves the claim.
For (12) in Theorem 3.1} we have
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w' = 3 @ MM+ Y (w MM+ Y (w”, MM
JEN;, jE[d] JENi, j€ld] J€[d1]\[d]
. (t) (t)
< Y wlamane Yoo i)ae Y ool )my
JEN:, jeEld] JEN;, jeld] e j€ld]\[d]
= Z o M; + Z Olé)ij + Z BZJMJ'
JENG, jeld] JEN;, jEld] j€ldi)\[d]

(164)

From Lemma c), we know that for each j € [d], there is at least one neuron that can fully
learn the feature M, and at most Z; neurons can learn the feature M;. Combining this with

Theorem [E-T|(c):
2
> <w§”,Mj>2=@<( & ) Tlog3d>, (165)

€
iEM, max

€5 T

we can conclude that the range of (w Z( ) M; ;) is [-“=Z-, 27|, and hence the range of Qi.j is

[ L 7]. Furthermore, from Theorem.(e) and (f), we can obtain that a ;< o( =2

€max 227 €m

€max f)
and 3; ; < o( \/LT) respectively.

Next, we compute the upper bound of |A;|. As a first step, we calculate the expectation of |N;].

EHM—H:EZ\Nl ZlM |<* d-O(d*)
i=1
1 O(dH“’?) _ (166)
— = . O(d w2 = — O(ditw2z=Cnm
m ( ) anL ( )
— o(dl—(fi‘?;i)z'(l—ﬂ) .
Fix a neuron i, we have: u; := E[|V;|. By Bernstein’s inequality,
2
PN > s +t] < exp| ————— ), ¢>0. 167
NG 2 0] < ep(—g )t (167
We set ¢ = 3(y/u; L + L) and plug this into the inequality above. Then we obtain
Pr[INi| > i +3(ViL+1)] < eh (168)
Hence, for any constant ¢ > 0, taking L = clog d yields
PI‘|:|M‘ S/Li-i-?)(\/uiclogd-i-clogd)} > 1—d“. (169)
Next, we apply the union bound. For the event
A= { Nl < i+ 30/ + 1) }, (170)
the union bound gives
Pri()Ai| > 1-) Pr(4f) > 1-me " (171)
i=1 i=1
Taking L = clog(md), we obtain
Pr|Vi € [m], |Ni| < p; + 3(\/ piclog(md) + clog(md))} > 1—(md)”°. (172)
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We know p1; > log(md), so we have

Hi

- ,ui(lio(l)> (173)

€min

1 %a
< O(d —(&n) _7)) with probability at least 1 — (md) ¢

Wil = i (1 + O( 10g(md)))

Finally, for each dictionary atom M, there are at least (d“* ) neurons ¢ € [m] such that \; = {j}.
From Lemma (c), we recall that \M;| > Q(d“*). Moreover, if a neuron belongs to M, then it
cannot belong to M /.

For (12) in Theorem 3.1] our proof is complete. O

F THEOREM F.1

From Lemma B.2|c), we know that for each j € [d], there is at least one neuron that can fully learn
the minority feature M;-. When we prune out the lucky neurons that learn these minority features
during the forward pass, the network will force the lucky neurons to further strengthen their feature
learning ability on the minority features during the backward pass.

After magnitude pruning, neurons encoding a specific minority feature are removed. Pruning these
lucky neurons reduces sim ¢, (X, Y,,) during the forward pass. The decrease in similarity reduces
the positive logit ¢’ ot which in turn increases the gradient of the loss function, thereby encour-

Y mask

aging these lucky neurons to further enhance their learning ability on the minority features.

Fix one specific minority feature Mj-, and let M7, C [m] denote the subset of neurons primarily
aligned with it, with | M. | = n. For a pruning rate & € [1/m, n/m|, the number of pruned neurons
is am < n. Let P C M. be the pruned set with |P| = am.

F.1 THEOREM F.1

Theorem F.1 (Feature Dynamics After Pruning). Starting from the pruning stage Ty with pruning
ratio «, the following statements hold.

(a) When i* € M., we have

(W) M, > (1 A+ ey e loBlogd (0 (somtee ) + (222 logk’gd))) (wl, Mj+).

d polylog(d) dEg
(174)
(b) When i ¢ M. and j # j*, we have
(t+1 C.loglogd
<wi )7 MJ> S <1 - 77)\ + U d @(polyltg(d))
(175)

log logd ame;x loglogd (t)
+ €5+ P <@<p01y110g(d)) +O( JdE% ))))('wz , M;).

(c) For each neuroni € P andt € [Ty, Ts), contrastive learning learns the following decomposition:

w = ;M. + Z o ;M + Z Bi, i M, (176)
JEN; JEldi\[d]

where

T 1, 1 1
ai,j*e[:m], az,jsO((Hg)ﬁ) [ |ﬁi,j\§o(ﬁ) [l (77)

=)
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F.2 USEFUL LEMMAS

Lemma F.1 (Expected values of neuron activations after 7). From T, onward, the following results
hold:

(a) For positive pair,

72 loglogd
E[;hi(xn) hi(Yn)| = Q(amageﬁ y ) (178)
(b) For negative pair,
icP
(c) For negative pair,
E i (Xns) (Vau, hi( X), M;)| = 0. (180)

Lemma F.2 (Effect of Pruning on Positive Logit Weight). At the pruning stage, for the data follow-
ing distribution D1, the post-pruning positive logit ¢ o satisfies

Y mask

1 am loglog d
]E|:1 — e’ G(t) :| Z @(T) + Q(:Q 6]‘* d) . (181)

Y mask —9

Lemma FE.3 (Positive gradient). Let h;,(-) denote the i-th neuron at iteration t < T (so that
bgt) = 0). Then the following hold:

(a) For each j € [d],

Elhii(Ya) (Ve hio(Xn), Mj)] = — (wi”, My)YE[2] 2,;] . (182)

(b) For each j € [d1]\ [d],
E[Rhit(Yn) (Ve hit(Xn), M:5)] = 0. (183)

F.3 PROOF OF THEOREM F.1

Overview of the proof: first, the data can be divided into two parts: the samples that contain M~ and
those that do not. The former follow distribution Dy, while the latter follow distribution D5. Next,
letus examine ¢’ _,, . The values of ¢/ o differ depending on the distribution: for samples from

Y mask ’ m'].sk

Dy, wehave 0, =1- o) - Q(Oé’gej loaload) 'whereas for samples from Dy, ¢/ e
7Y mask mask
1- @(%) Since the latter do not contain M+, pruning does not affect them.
Proof of Theorem F.1. For any neuron i* € P we have
(wii ™, M)
—(w Mj+) — 1 (Vo Laug (f), M) £ lwi?l
i* 7 n wix Haug\Jt ) ¥ poly(d)
¢
=(1 -\ (w, M) (184)
0B, v (1= g (XnyB) - hie o (Ya) (Vaa,s i (Xa), M)
- Z [z' (X0, B) hiv 1(Xns) (Vo his (Xin) M»*)} ,
n s.t ny n,s w,x 1V n), {VL; poly(d)

’Vl Sem

At stage Ty, pruning is applied. We regard ¢ o0 and /' o 33 fixed, and by combining
Y mask Y mask

Lemma [FI]c) with the law of total probability, we obtain
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< (t+1) Mv*>
=(1 -\ (w, M)

+nEx, v, {(1 - f;ﬂ(t)

mask

)}Exmyn [hi*’t(Yn) (Voo hie (Xin), MH}
=(1 — A\ (w'?, M;.)

9“)

PyYmask

)] Ex, y. D, {hmt(Yn) (Voo his (Xin), Mj*ﬁ Px, y,~D:

)} Ex,.v,~Ds [hi*,t(Yn) (Vaw,» hix (X)), Mj*ﬂ ‘Px, v,~D,
(185)

+nEx, v,~D, {(1 v

+nEx, ¥, ~D, [(1 € o

mask

Combining Lemma[F3|a) with (I8T) in Lemma[F2] we obtain

(w) (t+1) ,M;.)
=(1 =\ (w?, Mj:)

+nEx, v,~D, {(1 4 )}Exn,YwD[ <w§t)7Mj>E[2vtj*2n,j*]>}'Pxn,n~01

9(')

mask

+nEx, v,~D, [(1 l o )}Exmnwz{ (w® Mj>E[2:,j*£n,j*]} ‘Px.,,,v,~D,

mask

=(1 -\ (wl, M)

1 log log d log log d
+n<@( >+Q(O‘meﬁ et )>-<w§”,Mj>.ej*°gd°g
=2

+n-®<>~0-1-< 0 M)
T

1 1 I
- gl (01 ) + 0 Ty o EED) ) 0l M) e EDES
(186)

Hence, the post-pruning one-step update along M« is

C,loglogd ame;x loglog d
<wgi+l)7Mj*> 2 (1 — 7])\ + €% d (e(polylog(d)> —+ Q(%))) <wz(i)’MJ*>
(187)

Similarly to (186, for any neuron i ¢ P, we have:

<’l,l)<t+1)7 Mj>

K2

=(1 - n\)(w!”, M;)

1 PO
+nEx, v,~D, [(1 — L o )]]EX,,L,Y,WDl [ﬁ(w(t), M;)E[2, ;2,5] >} ‘Px,, v,~D,

Y mask

t At A
+nEx, v,~D, [(1 4 1) )]EXH,Y ~D3y {L2< ( ) J>E[Z:£jzn,j]} ‘Px,. v,~D,

mask

=(1 - n\)(w!”, M;)

+n(®(1>+9<am63 logilogd>> (! ® M) e logilogdej*logllogd
=3

loglog d
o (1) o 0

(188)
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Hence, the post-pruning one-step update along M is
loglog d
B

d polylog(d)
logloz d (189)
og log ame;+ loglogd (t)
TGy (G(polylog(d)) +O(W)) )><wi , Mj).
The above constitutes the proof of Theorem F.1 regarding pruning. O

F.4 PROOF OF THEOREM 3.2

Theorem [3.2] (a) and (b) can be derived as simplifications of Theorem[F.I] (a) and (b). Theorem
((emv(/é *) 1)

nee?, C, TogTog d and simplifying

(c) coincides with Theorem|F.1|(c). By taking the elapsed time T' =

(a) and (b), then substituting into the conclusion of Theorem 3.1, the proof follows.

F.5 PROOF OF LEMMA [E. L

Proof of Lemma@] The alignment with the target minority feature M « is (w;, Mj«), and we
have [(w;, Mj+)| > Q(Z;) at Ty (This is the conclusion of Theorem Wthh can be found in the

second part of the proof of Theorem [3.1] . For the positive pair (X,,,Y,,), the latent variables z,, ;«
and z: ;- are correlated through the augmentation process. For a negative sample X, ,, its latent
variable z,, , ;+ is independent of those of the positive pair (2, ; 2 ..), so we have:

»n,g*
(Zn,0> 2 o) AL Zn s v (190)
For the anchor X, and its positive Y;,, we have
3 m\ _ 1 )L N E)
hl(Xn) = w;, 2 Y == w;, M 2nr + fnr s (191)
> () = (e MYED +32E0)
L
hi(Ya) = (wi o) = <w“M§j*@+§}+ﬂ (192)
s=1
L L L
2o=Y 20, gh=) g L= =) M0 (193)
r=1 s=1 r=1 s=1

We can write the outputs as:

(X)) = ~lwi, Mz, 46, hi(Ya) = —(wi, M5} + £5). (194)

L L
For a negative sample X, ;: 2,, 5 := Zj 1 20, fns = ZqL:l €49 the output is:
1 . ~
hi(Xn,s) = Z<wu Mzn,s + §7z,s>- (195)

We first establish a lower bound for E[h; (X, )h;(Y,)].

Expanding and using zero-mean and independence of latent variables and noises, we have

Elha(Xo)hi (V)] = 7Bl (i, M2,) (i, M)

j=1 (196)

1 .
> ﬁ<w“Mj*> E[an* an*:l
72 loglogd
Z Q(—Q Jj* d )
=2
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Therefore , o lond
T 0g 10
Efhi(Xa)hi(Y)] > Q(Zyepr —20). (197)
—2

Next, we compute the expectation of h;(X,,), hi (X s).hi (X ) hi (X s),

Elha(Xa)ha( X, o)] = B[ (7 (wi, Mo+ €)) (7 (wi Mns+&))]. 199)

By the assumption, the latent variables of X, are independent of those of the negative X, ,, and all
noises are mean-zero and independent. Therefore,

E[(w;, M 2,) (w;, M2, )] =0,  E[(wi, &) (Wi, &) =0 (199)

Therefore, we conclude that
E[hi(Xn)hi(Xn,s)] = 0 (200)

Let P be the pruned set with |P| = cvm. Summing the per-neuron bounds over i € P, we obtain

2
E[Z hi(Xn)hi(Yn)} > Q(amZ5p;»), 201)
ieP =2
E[ 3 hi(Xa)hi(Xns)| = 0. (202)
ieP

This completes the proof of Lemma [F.I] (a)(b).
Finally, we compute the expectation of h; ¢, (X, s), (Vaw, hi(X,), M+ ), and we have

E[hi0(Xn,0) (Vo hi( X,), M)

:]E[(%(wi, M2, +&ns)) (%(Mﬁn +én, Mj*>)]

1 N .

:E[(ﬁ@;i, Mz, +60) (Bnje + (En, Ma’*>)} (203)
1

:ﬁ]E [<w17 Mﬁn,s> . 73n,j*]

=0.

This completes the proof of Lemma[F.I]c),

E [hst(X0) (Vo hs(X0), M) | =0 (204)

F.6 PROOF OF LEMMA [E.2L

Proof of Lemma[F2} We link the logit to the pruning ratio and plug it into the gradient growth.
Recall the softmax weights and partial derivatives

Up /T eus/T S
é/ — e’r ’ gg _ , E‘IS — 1 _ €/7 (205)
Toew/T 4 Zf:1 eus/7 eur/T + 2521 eus/7 ; :
up = Simy(X,,Y,), us=Simy(X,, X, ), (206)
ol 1 o 1
L= @a-r P —__¢ 1. 207
8up T p( p)’ aus T pTs ( )
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Pruning the size am changes the similarities by

Aup == hi(X)hi(Yn),  Aug=—> hi(Xn)hi(Xn,s). (208)
€P i€P

Next, calculate the first order change of £/, we know:
u = (Up, U1,...,Us), Au = (Aup, Aug, ..., Aug). (209)
Using multivariate Taylor expansion up to second order with remainder:

1
O (u+ Au) — 0 (u) = VI (u) " Au + §AuTHp(u)Au +o(||Aul?), Au — 0.  (210)

By a first order Taylor expansion, we have

o 5. or
Al = 2 Au, + P Aug + o (||Aul)
P Ouy P ; Oug

. 211)
1 1
= 6,0 =) Ay, — — 0, > A,

s=1

We note that at Ty, by the convergence of the loss function, we obtain é; = 1,@(%)’ and both E; and
¢, take fixed values. Then, by taking expectations over A/}, and using the relation ) | £ =1 — (],
we obtain:

BIAL] = ~0() (B[ (X (%] ~E[ m(Xh(X,0)])). @12
1€EP i€EP

Also, by Lemma [F.1] given that

2 loglogd
E[Zhi(Xn)hi(Yn)] —E[Zhi(xn)hi(xn,s)} > Q(amye;- Og;g ). (213)
i€P icP =2
Hence,
loglogd
E[Al)] = —Q(Ere;. =2 ;g ) < 0. (214)
=2
Hence,
Ew;ﬁQSJ =E[l) gin] + E[AL)]
am  loglogd
=E[f, o] — Q(Efgq* ) (215)
1 am loglogd
Now, converting to the form of 1 — ¢':
E[]. 75;3,6[%;“(] - ]. 7E[£l,9$;5k]. (216)
Substituting the previous expression gives
1 log log d
E[l 0 o 1 =0(=) +0(Tpe —280), (217)
O mask T =3 d
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F.7 PROOF OF LEMMA [F3[(A):

Proof of Lemmal|F3{a):

E[hl(Ynwilhz(Xn)vMJ”
—F lhi(Yn)(zL: 1’<2>w(t) )0 20 M, >]
=E lZ(wi,z$)> . (i(z;),Mj})]

s=1 r=1
1 L L 3
L [Stwsro <o (Fine 2000
s=1 r=1
1 L L
" [Z wi, Mz ). (Z<M%¥>,MJ—>>]
s=1 r=1
1
E[<wzaMZ ) - (M2, Mj))]
(218)
1
:ﬁE (w;, Mz} Z Mz, j, M;)
L J'€ld]
1
=738 | (wi, MZ]) - > (M, M)
L J'€ld]
1 .
*ﬁE [(wi, M2T) - 2, 5]
1 TR
:ﬁ]E Z <wi7Mj”>zn,j“z”7j
1J" €ld]
1 . .
:ﬁ Z <1Ui,Mj//>E |:Z:,j,,zn7j:| .
J"€ld]
In the final step, we have
1 T 1 JRTEN
= O (wi, M )E [zw,,zn,j} = = (wi, M)E [} 20,] (219)
3" €ld]
This completes the proof. O
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F.8 PROOF OF LEMMA [F3](B):

Proof of Lemma|F3(b):
E [hi(Y, )<v hi(Xn), M)

=E Zl|<w<f> m>’>0 z‘(X),Ml)]
r L

=E | h;(Yy,) - (Z( ?<)w(,) (”>)>0 z(Xr),MH)]
L

=B |2t s 0 ) o ( 1<11(21»5t>,z;:>>1>0'ZQ’MJ'HN
ML L

=E Z wqu <Z<Z§),

r=1

Mh

i
Il

%
M“v

ML
=B | Yo, MEFO 4 E1O) - (S 4 £5:“%M#>)]
Ls=1 r=1
1 [& =
=B > (wi, MzFE)) - (Z (MZD), M) )
_s:l r=1 (220)
) L
- s+(s )
_L2E w;, MZ ( MZ )]
r=1
1 . .
1
:ﬁE 'wZ,MZ Z M’znja >
i Jj'€ld] J
1
:ﬁE (w;, M2}) Z n,j’
i J'€ld] |
1 . .
:ﬁE <wZ,MZTT> . Z <Mj/,MjJ_>zn,j’
i j'eld]
1
=5 E [(wi, M2]) - 0]
=0.
O

G PROOF OF LEMMAS IN APPENDIX B

G.1 PROOF OF LEMMA [B.2]A):

Proof of Lemma|B.2fa): At initialization, the neuron weight w”

vector :

is a high dimensional Gaussian

wi” ~ N (0,0314,), (221)
with w” € R% and each coordinate w'” (k) ~ N(0, 02), i.i.d.
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dy 2

(O - (0)

( H2 -y (wi (k:)) . (222)
k=1

We know that w'” (k) ~ N(0, 02), so:

= [w®]]] ~ 3. (223)

According to the concentration inequality of the chi-square distribution:

If X ~ x?(d,), then for any 0 < ¢ < 1, we have:

X dq£2
Pri|2 —1]>e| <2exp (-2 ). (224)
dq 4
Therefore, we have:
Ol
=1 b

Choose a suitable ¢ to derive the precision range and we choose: € = 0] ( \/%) .

At this time, the probability of deviation is:

~ 4 1
< O(ao\/@} 2 1= (226)

HwEO)Hz e [aﬁdl <1 -0 (\/167)) , o2d, (1 +0 (\/1(71»] . 227)

That is:

This holds with high probability (1 — m). O
G.2 PROOF OF LEMMA [B.2|B):
Proof of Lemma[B.2|b): Let:
Z; = iwﬁo) ~ N(0,1,). (228)
o
Then we have: )
|MMTw®| = o3 [MMTZ);. (229)

We regard MM T as a rank-d projection matrix, projecting Z; € R% onto the column space of M
so we can use the following property:

If MM 7 is a fixed rank-d projection matrix, and Z; ~ N(0, I;,), then:
IMM"Z|3=2Z;(MM")"MM"Z;,=Z MM'"Z, = |M" Z,3, (230)

M'"Z; ~ N(0,I). (231)
Therefore, we can conclude:

IMMTZ|[, ~*() = E[|MMTZ]|[;| =a (232)
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And it satisfies the following Chi-square concentration inequality:

P([|MMT 2z, - d <ed) > 1-2exp (%) (233)

Choose € = O(1/+/d), and the result holds with high probability. We substitute back wgo)

|MMTw (O)H o3| MM Z|[ e [agd (1 -0 (;&)) ,02d (1 +0 (;3))} . (234)

O
G.3 PROOF OF LEMMA [B.2[C):
Proof of Lemma|B.2c): Recall if g is standard Gaussian, then for every ¢ > 0,
1 t e 1L 1 2
—_— < P >t < — - = . 235
Vor 2+ 1° QNN(rOJ) lg>1] V2w ¢ (233)
Therefore, for every i € [m] and j € [d],
c1logd
=P [l M > E ol
©
=Pr 7@”1 M) Zva logd]
o
0 (236)
1
>0 (dq /2)
1
and o d
c og
=P |(wl” M2 > 2 el
©) pr.
= Pr M > \/co logd]
o
0 (237)

<0 <1) L

- Viegd) de2/?

-0 (om) 7
logd) gle2in)?-(1—v)"

We define the following events in definition [B.T}

* A;: Lucky neuron i satisfies conditions 1(i.e., the response is large enough and in the
correct direction)

e B;: for all 7/ # j, lucky neuron 4 satisfies condition 2 (i.e., small responses in other
directions)

We now compute the probability of the intersection event 4; N B;:

priag =% = (o ()00

Pr[B;] = (1 — po)? ! = e~ (@=Dp2 = o=(d=1)d™" _ o=d"™" _ ¢ (238)
pl d—1 1 —(M)Q-(l—‘r’y)
PAzﬂBZ:fl— =0 -d €min .
[ J=5 1-p) ( s d
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(1) We now have m = d“ neurons. Therefore, the expected number is:

€max 2
E[IM;]] = m - Pr{A; N Bi] =d%" - Q (d‘(em) '<1+w)>

2 (239)
_0 (fw(i::?:) ~(1+7>) |
Chernoff bound (Lower-tail form): For any § € (0, 1), we have:
2
Pr [Z X; < (1— 5)#} <e Th, (240)
Let § = 3, we obtain:
1
Pr {ZXl < 24 < e M3
Pr [|M;| < O(dwl)] < 6fﬂ(d“’1) (241)
Pr[|M}] > Q(d*)] > 1 — e ™),
(2) We now have m = d“= neurons. Therefore, the expected number is:
1 €min )?
E[M;]]=m-py =d° -0 < g () '<1—’Y)>
Vlogd
' o8 (242)
_o ( - gCm () ﬂ—v)) |
Vdogd
Chernoff bound (upper tail) tells us that for any 0 < § < 1, we have:
PS> (14 6)u < om0
1 w ) _Q(;d“’Q) 1
Pe LM > )| < 2T o
1 . 1 (243)
P | <O d? || >1—o| —
<o ()21 ()
w 1
Pr{M;| <O (@d*)]>1-o (d4>
O

G.4 PROOF OF LEMMA[B.2|D):

Proof of Lemma[B.2{d): We know: |M;| < O(d*?). There are d indices j € [d]. Therefore, the
total number of pairs (¢, j) such that ¢ € M is at most:

d
3 IMy| < d-0(d?) = O(d ), (244)

Jj=1

On the other hand, the total number of neurons is m = d°m. So for any fixed ¢, we define:

Ni={jeld:ieM,}. (245)
Then,
m d
SN =D IM | < OdHe). (246)
i=1 j=1
Therefore,
1 m crmin \2
== | < w2 =Cm) — 1 (i )" (1-7) )
E[|N;|] m;w <0(d )=0(d ) (247)
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Then:

Pr [ <wz(0)’ Mj>

t2
> Qo log'/* d)} < 2exp (-22) = 2~ UVlogd) (248)

0o

Fix i € [m], and consider d different j. Each has probability 2~ (V1°8d) o exceed the threshold.
Therefore, the expectation is:

E H{y e [d] ‘ ‘<w,§°>,Mj>‘ > Q (ao log!/4 d)}H -0 (2*@ - d) . (249)
0

H PROOF OF LEMMAS IN APPENDIX C

This section can be found in the Supplementary Material.

I PROOF OF LEMMAS IN APPENDIX D

This section can be found in the Supplementary Material.

J PROOF OF LEMMAS IN APPENDIX E

This section can be found in the Supplementary Material.

K PROOF OF ADDITIONAL LEMMAS

This section can be found in the Supplementary Material.

51



	Introduction
	Related Work

	Problem Formulation and Algorithm
	Theoretical Analysis
	Key Insights of the Findings
	Assumptions
	Formal Theoretical Results
	Vanilla Contrastive Learning
	Contrastive Learning with Pruning


	Numerical Experiments
	Limitation
	Conclusion
	Overview of the Appendix and Proof Sketch
	Proof Sketch
	Synthetic Experimental Settings

	Notations and Lemmas
	Theorem C.1
	Theorem C.1
	Useful Lemmas
	Proof of Theorem C.1
	Proof of Lemma 3.1

	Theorem D.1
	Theorem D.1
	Useful Lemmas
	Proof of Theorem D.1
	Proof of Lemma 3.2

	Theorem E.1
	Theorem E.1
	Useful Lemmas
	Proof of Theorem E.1
	Proof of Theorem 3.1

	Theorem F.1
	Theorem F.1
	Useful Lemmas
	Proof of Theorem F.1
	Proof of Theorem 3.2
	Proof of Lemma F.1:
	Proof of Lemma F.2:
	Proof of Lemma F.3(a):
	Proof of Lemma F.3(b):

	Proof of Lemmas in Appendix B
	Proof of Lemma B.2(a):
	Proof of Lemma B.2(b):
	Proof of Lemma B.2(c):
	Proof of Lemma B.2(d):

	Proof of Lemmas in Appendix C
	Proof of Lemmas in Appendix D
	Proof of Lemmas in Appendix E
	Proof of Additional Lemmas

