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Abstract
Vector quantile regression (VQR) estimates the
conditional vector quantile function (CVQF), a
fundamental quantity which fully represents the
conditional distribution of Y|X. VQR is formu-
lated as an optimal transport (OT) problem be-
tween a uniform U ∼ µ and the target (X,Y) ∼
ν, the solution of which is a unique transport map,
co-monotonic with U. Recently non linear VQR
(NL-VQR) has been proposed to estimate sup-
port non-linear CVQFs, together with fast solvers
which enabled the use of this tool in practical ap-
plications. Despite its utility, the scalability and
estimation quality of NL-VQR is limited due to
a discretization of the OT problem onto a grid of
quantile levels. We propose a novel continuous
formulation and parametrization of VQR using
partial input-convex neural networks (PICNNs).
Our approach allows for accurate, scalable, dif-
ferentiable and invertible estimation of non-linear
CVQFs. We further demonstrate, theoretically
and experimentally, how continuous CVQFs can
be used for general statistical inference tasks: es-
timation of likelihoods, CDFs, confidence sets,
coverage, sampling, and more. This work is an
important step towards unlocking the full poten-
tial of VQR.

1. Introduction
Quantile regression (QR) (Koenker & Bassett, 1978) is a
widely-known approach for modeling the conditional quan-
tiles of a target variable Y given covariates X. Despite its
power and usefulness, QR is inherently limited in that it
deals only with scalar-valued random variables Y. This
limitation stems from the fact that QR minimizes the pinball
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loss, which is not defined for multivariate inputs. Moreover,
even the notion of quantiles is not trivial to define for high
dimensional variables.

Seminal works from Carlier et al. (2016) and Chernozhukov
et al. (2017) introduced the notion of vector quantiles func-
tions, defining them through the extension of two properties
of scalar quantile functions, namely co-monotonicity (Eq.
1) and strong representation (Eq. 2), to the vector case:

(QY(u)−QY(u′))> (u− u′) ≥ 0, ∀ u,u′ ∈ [0, 1]d (1)

Y = QY(U), U ∼ U[0, 1]d (2)
where Y is a d-dimensional variable, and QY : [0, 1]d 7→
Rd is its vector quantile function (VQF). Carlier et al. (2016)
also proposed vector quantile regression (VQR), an ex-
tension of QR to vector-valued targets which estimates
the conditional vector quantile function (CVQF) QY|X
from samples drawn from P(X,Y). VQR is formulated as
an optimal transport (OT) problem between the uniform
base distribution of U and the target conditional distri-
bution of Y|X, for which the resulting transport map is
the CVQF, QY|X. In order to account for the condition-
ing on X, the additional mean independence constraint
E [U|X] = E [X] is added to the OT problem, making
it challenging to solve. By modelling the CVQF as linear
in X, i.e. QY|X(u;x) = B(u)>x + a(u), the primal
of the VQR OT problem can be naïvely solved as a lin-
ear program. In a recent work, Rosenberg et al. (2023)
demonstrated that this approach is intractable for real-world
datasets, and proposed fast solvers for VQR by solving an
entropic-regularized dual formulation of the OT problem
which is amenable to gradient-based optimization. They
further proposed nonlinear VQR (NL-VQR), an extension
which overcomes the linearity assumption about the CVQF.

Despite the advantages of the fast nonlinear approach of
Rosenberg et al. (2023), they nevertheless solve a discrete
OT problem, based on the original formulation of Carlier
et al. (2016). We argue that using a discrete formulation
has significant drawbacks which hinder the full potential
of VQR. First, the discrete solvers estimate the CVQF on
a grid of T quantile levels per dimension. The number of
optimization variables is thus proportional to T d which hin-
ders scaling to data beyond a few dimensions. Moreover,
the CVQF is obtained through the gradient of a convex po-
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Figure 1. Continuous VQR accurately estimates the conditional likelihoods on the rotating stars dataset. Depicted from left to right
are likelihoods of a star shaped distribution fY|X, where X defines the rotation angle. Overlaid on each plot is the KL divergence of the
estimated likelihood with respect to the corresponding ground truth likelihood. Red marker on the plots is added to aid visualization.

tential function, which in this case is also discretized on
the grid of quantile levels. In the discrete case, this gradi-
ent is obtained by first-order differences, making it prone
to numerical errors which degrade performance, especially
when T is small. Second, as discussed in Section 3, the
CVQF, the inverse CVQF, and their derivatives are mean-
ingful statistical quantities. Estimating the convex poten-
tials discretely therefore hinders the accurate calculation of
their higher-order derivatives and therefore limits the utility
of VQR for general statistical inference. Third, NL-VQR
cannot exploit the underlying structure of the target vari-
able Y. This becomes especially important as d increases,
since high dimensional data, such as images, often lie on
lower-dimensional manifolds embedded in Rd. Lastly, an-
other drawback of the NL-VQR approach is that by solving
the entropic-regularized relaxed dual VQR OT problem co-
monotonicity of the CVQF is promoted but not enforced,
and since the discrete formulation parametrizes the convex
potentials as simple parameter vectors, it is not possible to
make them convex by construction.

Contributions. To address the aforementioned limitations,
our first contribution is a novel continuous formulation of
VQR, together with a convex parametrization based on par-
tial input convex neural networks (PICNNs). Instead of
explicitly evaluating the convex potentials over a discrete
grid, we propose to learn an implicit representation of the
convex potentials by modeling them via PICNNs (Amos
et al., 2017). By constraining our model space to input-
convex functions, we guarantee the co-monotonicity of the
estimated CVQF. Furthermore, one can encode any induc-
tive bias into the PICNN architecture to leverage the struc-
ture present in Y. Our approach is builds on recent progress
in neural optimal transport, where ICNNs are employed
to model transport maps, estimating e.g. Wasserstein dis-
tances between high-dimensional distributions (Makkuva
et al., 2020; Korotin et al., 2021b; 2022). To the best of our
knowledge, ours is the first approach to estimate continuous
CVQFs. Our second contribution is to leverage continu-
ous CVQFs for general statistical inference on arbitrarily
data distributions. We derive numerous statistical quanti-
ties as a function of their CVQF, namely: exact conditional
and unconditional likelihoods, cumulative distribution func-
tions (CDFs), confidence sets with their areas, and statistical

coverage in terms of the VQF and CVQF respectively. Esti-
mating statistical coverage of a high-dimentional variable
is notably difficult, as it requires testing the insideness of a
point in a high-dimensional set; however, we show that us-
ing the inverse CVQF the estimation becomes trivial. As far
as we know, ours is the first work to estimate the aforemen-
tioned statistical quantities directly from the (conditional)
vector quantile function. Finally, we employ challenging
synthetic data experiments to evaluate the performance of
the estimated quantile functions in terms of sampling quality,
likelihood estimation, and the statistical validity of the con-
fidence sets both in modeling conditional and unconditional
distributions. We demonstrate that continuous VQR is more
accurate and scales more effectively to higher dimensions
than its discrete counterparts.

Notation. Throughout, Y, X denote random variables and
vectors, respectively; deterministic scalars, vectors and ma-
trices are denoted as y, x, and A. |A| denotes the matrix
determinant. P(X,Y) denotes the joint distribution of the X
and Y. 1N denotes an N -dimensional vector of ones, �
denotes the elementwise product, and I {·} is an indicator.
We denote by N the number of samples, d the dimension of
the target variable, k the dimension of the covariates, and T
the number of vector quantile levels per target dimension.
QY|X(u;x) is the CVQF of the variable Y|X evaluated at
the vector quantile level u for X = x. The Jacobian of a
function f is denoted with Jf .

2. Continuous VQR
We refer the reader to Appendix A which provides a gentle
introduction to quantile regression and its optimal transport
formulation, and presents the discrete formulations of VQR
and NL-VQR on which we build our approach.

The semi-discrete dual formulation of NL-VQR (Rosen-
berg et al. (2023), appendix eq. 10) suffers from three
drawbacks: (i) the number of dual variables in β and ϕ
grows exponentially with the dimension of the target vari-
able d; (ii) approximating the the convex potential’s gradi-
ent via finite-differences is leads to inaccuracies which get
worse when coarsening the quantile level grid, as required
in higher dimensions; (iii) it is unclear how to compute the
inverse CVQF, Q−1

Y|X, since the required derivative is w.r.t.
y, whose discretization onto a fixed grid is infeasible.
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Figure 2. Continuous VQE accurately captures the sampling process, likelihoods, and confidence sets. (a) The first and second
panels depict the ground truth and estimated likelihoods, respectively, for d = 2. The third panel presents samples drawn from the quantile
function and the ground truth distribution. The fourth panel presents the α-confidence sets overlaid on the groundtruth distribution. (b)
The x-axis depicts the dimension d of the target variable. The y-axis presents the normalized KL divergence between the estimated and
the ground truth likelihoods. (c) Plots nominal vs achieved coverage for different α-confidence sets.

To overcome these limitations, we implicitly represent the
CVQF as a gradient of a partial input-convex neural network
f(u;x) : [0, 1]d ×Rk → R, that is convex in u and nonlin-
ear in x (see Appendix A for further details). We propose
solving an alternative formulation of the semi-discrete dual
formulation (Eq. 10), given as follows

min
f

T∑
i=1

µi

N∑
j=1

νjf(ui;xj)

+

N∑
j=1

νj max
u∈[0,1]d

{(
u>yj − f(u;xj)

)}
.

(3)

Note that the inner optimization problem calculates the con-
vex conjugate of the potential f(u;x) for a given (xj ,yj).
We solve the inner problem by evaluating the maximum
of over samples {ui}Ti=1 ∼ U[0, 1]d and approximate the
maximum with a soft-maximum. In our experiments we
use an affine formulation for the partial ICNN, given by
f(u;x) = β(u)>g(x) + ϕ(u), where β : Rd → Rk,
ϕ : Rd → R are ICNNs, and g : Rk′ → Rk

+ is an MLP with
a ReLU activation over the outputs to ensure convexity of
f(u;x) with respect to u. The conditional vector quantile
function is then obtained by

QY|X(u;x) = ∇u [f(u;x)] . (4)
Note that in the case of vector quantile estimation (VQE),
f : [0, 1]d → R can simply be an ICNN, then the VQF
becomes ∇u[f(u)].

3. Deriving statistical quantities from CVQFs
In what follows, we derive different statistical quantities as
a function of the VQF QY. The conditional analogues can
be simply obtained by substituting QY with QY|X.

Vector rank function. The vector rank function is defined
as the inverse of the VQF. It is derived through computing
the convex conjugate:

ψ(y) = max
u∈[0,1]d

{
u>y − f(u)

}
,

and taking its gradient with respect to y:
RY(y) := Q−1

Y (y) = ∇y [ψ(y)] .

Cumulative distribution function. The cumulative distri-
bution function for multivalued functions is defined as:

FY(y) = P [Y1 ≤ y1, . . . ,Yd ≤ yd] .

From the strong representation property (2), we have that,
∀i ∈ {1, . . . , d}, Yi = Qi

Y(U). Applying the change of
variables formula for multivariable integration yields:

FY(y) =

y1∫
−∞

· · ·
yd∫

−∞

∣∣∣JQ−1
Y
(y′)

∣∣∣ dy′1 . . . dy′d, (5)

Likelihood. The likelihood of a multivariate continuous
random variable Y, fY(y) is defined as:

FY(y) =

y1∫
−∞

· · ·
yd∫

−∞

fY(y′)dy′1 . . . dy
′
d

From Equation (5), we have the explicit expression for the
likelihood:

fY(y) =
∣∣∣JQ−1

Y
(y)

∣∣∣ .
Confidence sets. A valid α-confidence set for a random
vector Y is defined as a set CY

α for which the property
P
[
Y ∈ CY

α

]
= α holds.

In order to construct valid confidence sets for the target
distribution, we first build valid confidence intervals CU

α

in the base distribution, namely hypercubes centered in
(0.5, . . . , 0.5) and with side length equal to d

√
α. Then we

can construct a target α-confidence interval as:
CY
α = QY

(
CU
α

)
.

Validity is given by the following equalities:

P
[
Y ∈ CY

α

]
= P

[
QY (U) ∈ QY

(
CU
α

)]
= P

[
U ∈ CU

α

]
= α,

where the second equality is a consequence of the mono-
tonicity property of quantile functions.

Area of confidence sets. The area of the α-confidence set
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Figure 3. Continuous VQR accurately captures the conditional sampling process, likelihoods, and confidence sets. (a) The left and
center panels depict the ground truth and estimated likelihoods, respectively, for d = 2. The right panel presents samples drawn from the
conditional quantile function and the ground truth distribution. Top and bottom rows correspond to different conditioning values, namely
x = 0.7 and x = 1.9. (b) The x-axis depicts the dimension d of the target variable. The y-axis presents the KL divergence between the
estimated likelihoods and the ground truth likelihoods, normalized by the entropy of the respective ground truth distributions. (c) Plots
expected vs achieved marginal coverage values for α-confidence sets for different values of α, averaged over the conditioning value x.

is obtained as:

A(CY
α ) =

∫
CY
α

dy =

∫
CU
α

|JQY
(u)| du

Inclusion in a confidence set. Testing if a point is con-
tained in a given α-confidence set is a challenging problem
in high-dimensional domains, as it requires testing if a point
is contained into a general polygon. However, using the
continuous VQF, we can test if a sample y is contained in
CY
α by checking if Q−1

Y (y) is contained in CU
α , which is a

much simpler problem, i.e.,
I
{
y ∈ CY

α

}
= I

{
Q−1

Y (y) ∈ CU
α

}
. (6)

This procedure also makes it easier to measure statistical
coverage, the rate of inclusion in a α-confidence set, a stan-
dard metric to evaluate the quality of confidence sets.

4. Experimental Results
To evaluate the proposed continuous VQR formulation,
we conduct carefully designed synthetic data experiments
where groundtruth conditional likelihoods are known in
closed form. We evaluate the quality of CVQF based on
three criteria that capture different aspects of the estimated
conditional distribution: (i) statistical validity of the confi-
dence sets, (ii) likelihood estimation quality, and (iii) sam-
pling quality. Appendix B presents the details of the datasets
and evaluation metrics used in the experiments. We evaluate
continuous VQE and VQR by varying d ∈ {2, . . . , 7}. We
note that the discrete VQR formulation (Rosenberg et al.,
2023) is computationally infeasible for d > 3.

The qualitative and quantitative results for continuous VQE
on multimodal Gaussian data across different ds is presented
in Figure 2. Fig. 2b demonstrates that the normalized KL
divergence of the estimated likelihood w.r.t. the ground
truth stays small as the dimension increases indicating that
the continuous approach scales reasonably well with the

target dimension. Fig. 2c presents that the α-confidence
sets constructed over the distribution are statistically valid,
i.e., the achieved coverage matches the nominal rate. Fig.
2a further shows that the quality of estimated likelihoods
and sampling is visually consistent with the ground truth.

The results of continuous VQR that evaluate the quality of
estimated CVQFs are presented in Fig. 1 for the rotating
stars data, and in Fig. 3 for the conditional Gaussians data.
Fig 1 and Fig 3a demonstrate that the conditional likeli-
hood estimation via the CVQF is visually accurate. This is
further evidenced by the small normalized KL divergence
values presented in Fig. 3b. Finally, Fig 3c presents that
the marginal coverage of the conditional α-confidence sets
matches the nominal rate indicating their validity.

5. Conclusions
We present the first continuous formulation of VQR by mod-
eling the CVQF as the gradient of a partial ICNN. This
allows for accurate, scalable, differentiable and invertible
estimation of non-linear CVQFs. We further derived a vari-
ety of statistical quantities (CDF, likelihood, confidence sets
and areas) as a function of the CVQF, and were able to esti-
mate them by leveraging our continuous approach. Through
synthetic experiments, we verified the validity of the derived
quantities and demonstrated that the continuous formulation
offers better estimation quality and greater scalability than
its discrete counterpart.

Limitations. Our approach explicitly calculates the convex-
conjugate of the potential, thus leading to a min-max opti-
mization problem. We solved the inner problem by approx-
imating the maximum with a finite sample approximation,
the accuracy of which deteriorates as the dimensionality in-
creases, thus posing a scalability challenge. In future works,
we aim to adapt our solvers to prevent this limitation, e.g. by
incorporating recent advances in neural OT (Korotin et al.,
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2021a;b). Notwithstanding these limitations, we believe that
our continuous approach will help unlock the full potential
of VQR in a wide array of applications.
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A. Background
Quantiles. The u-th quantile QY(u) of a r.v. Y is defined as the smallest scalar y such that P [Y ≤ y] = u.

A well known property of the quantile function (strong representation) is that of being the only monotonic function such that
Y = QY(U) with probability 1. In other words, any density can be obtained by transforming a uniform random variable by
the quantile function.

Quantile Regression. The goal of quantile regression (QR) is to estimate the quantiles of a variable Y conditioned on
a vector X, i.e., of Y|X. Assuming a linear model QY(u) = bu

>x + au for the quantiles, QR amounts to solving the
following optimization problem (Koenker & Bassett, 1978):

min
b,a

E(X,Y)

[
ρu(Y − b>X− a)

]
,

where ρu(z), known as the pinball loss, is given by ρu(z) = max{0, z}+ (u− 1)z.

Solving this problem produces an estimate of QY|X for a single quantile level u. In order to estimate the full conditional
quantile function (CQF) QY|X(u), the problem must be solved at all levels of u with additional monotonicity constraints,
the quantile function being non-decreasing in u. The CQF discretized at T quantile levels can be estimated from N samples
{xi, yi}Ni=1 ∼ P(X,Y) by solving:

min
B,a

∑
u

N∑
i=1

ρu(yi − bu>xi − au)

s.t. ∀i, u′ ≥ u =⇒ bu′
>xi + au′ ≥ bu>xi + au,

(7)

whereB and a aggregate all the bu and au, respectively. We refer to Equation (7) as simultaneous linear quantile regression
(SLQR).

This problem is undefined for a vector-valued Y, due to the inherently 1D formulation of the monotonicity constraints and
of the pinball loss.

Optimal Transport Formulation. Carlier et al. (2016) showed that SLQR (7) can be equivalently formulated as an
optimal transport (OT) problem between the target variable and the quantile levels, with an additional constraint of
mean independence. Given N data samples arranged as y ∈ RN , X ∈ RN×k, and T quantile levels denoted by
u =

[
1
T ,

2
T , ..., 1

]> we can write:

max
Π≥0

u>Πy

s.t. Π>1T = ν

Π1N = µ [ϕ]

ΠX = X̄ [β]

(8)

where Π is the transport plan between quantile levels u and samples (x,y), with marginal constraints ν = 1
N 1N , µ = 1

T 1T

and mean-independence constraint X̄ = 1
T 1T

1
N 1N

>X . The dual variables are ϕ =D−>a and β =D−>B, whereD>

is a first-order finite differences matrix, and a ∈ RT ,B ∈ RT×k contain the regression coefficients for all quantile levels.

Vector quantile regression. The optimal transport formulation has the advantage of being amenable to extension to the
vector-valued case. Denote covariates and targets by {(xj ,yj)}Ni=1 ∼ P(X,Y), and vector quantile levels {ui}T

d

i=1 sampled
on a uniform grid on [0, 1]d with T evenly spaced points in each dimension. Assume a linear specification for the CVQF,
QY|X(u;x) = B(u)>x+ a(u). Performing vector quantile regression amounts to solving the following optimal transport
problem:

max
Π≥0

Td∑
i=1

N∑
j=1

ui
>yjΠi,j

s.t. Π>1Td = ν [ψ]

Π1N = µ [ϕ]

ΠX = X̄ [β]

(9)
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where Π ∈ RTd×N represents the optimal transport plan, and the dual variables ϕ ∈ RTd

,β ∈ RTd×k,ψ ∈ RN are the
discretized convex potentials. The discrete CVQF is then computed as follows Q̂Y|X (u;x) =D> (

β>x+ϕ
)
, whereD

is the first-order finite differences matrix; thus, the estimated CVQF satisfies the co-monotonicity (Eq. 1).

Nonlinear VQR. (Rosenberg et al., 2023) propose solving the semi-discrete dual formulation of the aforementioned
primal OT problem which is amenable to gradient-based optimization. Furthermore, they proposed performing VQR in the
embedding domain of X, where the embedding function is learned jointly with the discretized potentials, the optimization
problem reads as follows:

min
ψ,β,θ

ψ>ν + tr
(
β> ¯gθ(X)

)
+

Td∑
i=1

µi max
j

{(
ui

>yj − βi
>gθ(xj)− ψj

)}
. (10)

In practice, the inner maximum is approximated by a soft-maximum. The resulting nonlinear CVQF is given as
Q̂Y|X (u;x) =D> (

β>gθ(x) +ϕ
)
.

Partial ICNNs. We model the CVQF as the gradient of a convex function f(u;x). We implement f as a partial input
convex neural network (PICNN) (Amos et al., 2017). Given (u;x) ∈ Rd × Rk, the mapping (u;x) 7→ R is given by
L-layer of feed-forward neural network following the equations for l = 0, . . . , L− 1:

xl+1 =σ̃l(W̃lxl + b̃l)

zl+1 =σl

(
W

(z)
l

(
zl ◦ [W (zx)

l xl + b
(z)
l ]+

)
+

W
(u)
l

(
u ◦ (W (ux)

l ul + b
(u)
l )

)
+W

(x)
l xl + bl

)
f(u;x) =zk, x0 = x

(11)

where zi ∈ Rmi and xi ∈ Rni denote the hidden units for the “u-path” and “x-path”, and where ◦ denotes the Hadamard
product, the elementwise product between two vectors. The total set of parameters is composed by the weight matrices
({Wl}, {W (z)

l }, {W (u)
l }, {W (ux)

l }, {W (x)
l }) and the bias terms ({b̃l}, {b(z)l }, {b(u)l }, {bl}). To ensure the convexity in u,

Equation (11) needs to satisfy the following constrains: (i) all W (z)
1:L must be non-negative, (ii) σ̃l and σl must be convex and

non-decreasing entry-wise activation functions.

The class of PICNN can represent any ICNN (see Amos et al., 2017, Proposition 2) and therefore approximate any convex
function over a compact domain (see Chen et al., 2018, Theorem 1), making it a suitable parametrization of convex potential
in the OT problem.

B. Datasets, Metrics, and Baselines
Datasets. In order to compare our samples and likelihoods to the ground truth, we perform evaluations on synthetic
datasets for which sampling and likelihood evaluation are straightforward. For the experiments presented in the paper, we
use the following two synthetic datasets, and the rotating stars dataset introduced in (Rosenberg et al., 2023).

• Multi-modal Gaussians. To evaluate the performance of VQE, we use multi-modal high-dimensional Gaussian data,
whose density is given as follows:

fY(y) =

3∑
i=1

αiN (y;µi,Σi),

with coefficients α1 = α2 = 0.25 and α3 = 0.5. We choose µ1,µ2 and µ3 to lie on the hypersphere of unit radius,
and the covariances are generated as random positive semidefinite matrices.

• Conditional Gaussians. To evaluate the performance of VQR, we generate data from the following data-generating
process

X ∼ [0.5, 2.5], fY(y |X = x) = N (y;µx, xI), µx = (x, . . . , x).

Metrics. We measure the quality of CVQFs by measuring the normalized KL divergence and statistical coverage defined
as given below.
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• Normalized KL divergence. To evaluate the quality of likelihood estimation, we use the normalized KL divergence
defined as: KL divergence of the estimated likelihood w.r.t the ground truth likelihood, normalized by entropy of the
ground truth distribution, it can be written as

NormKL(fY∗ ||fŶ) =
KL(fY∗ ||fŶ)

Entropy(fY∗)
.

KL divergence between continuous distributions fŶ and fY∗ measures the minimum amount of bits wasted by
representing a K-bin discretization of fŶ with a code tailored for the K-bin discretization of fY∗ . The normalized KL
divergence thus indicates the proportion of bits wasted.

• Statistical coverage. The statistical validity of the α-confidence is measured by calculating the coverage. Namely,
given the α confidence level, we estimate its validity by sampling {yi}Ni=1 from the ground truth distribution fY(y)
and measuring:

1

N

N∑
i

I
{
yi ∈ CY

α

}
=

1

N

N∑
i

I
{
Q−1

Y (yi) ∈ CU
α

}
.

This computation trivially extends to the conditional case.

Baselines. In order to have a baseline for our estimated likelihoods, we fit simple parametric distributions both in the
conditional and unconditional settings.

• Unconditional. As a simple baseline for the multi-modal Gaussian data, we define a parametric multivariate Gaussian
distribution with the parameters given by the sample mean and sample covariance estimated from samples drawn from
the true distribution.

• Conditional. As a baseline for the conditional case, we first sample {xi}Ni=1 ∼ U([0.5, 2.5]) and, for each i, we sample
yi ∼ N (y;µx1 , xiI). We then define a parametric multivariate Gaussian distribution with the parameters given by the
sample mean and sample covariance computed from the samples {yi}Ni=1.

Machine configuration and training time. All experiments were run on a machine with an Intel Xeon E5 CPU, 256GB
of RAM and an Nvidia Titan 2080Ti GPU with 11GB dedicated graphics memory. Training time for PICNNs used in VQR
and VQE experiments was approximately 1 hour.


