

000 001 002 003 004 005 DIFFUSION META-PROMPTS FOR FOUNDATION 006 MODELS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Parameter-efficient fine-tuning techniques, such as prompting, are now popular to adapt foundation models to many tasks. In this paper, we introduce a diffusion-based approach to model the distribution of learned foundation models prompts. Specifically, we propose a **Diffusion Meta-Prompt (DMP)** model that generates prompts conditioned on text or prompt embeddings, and can be used to prompt both vision-language models and diffusion models for image synthesis. DMPs have several advantages: improved generalization of learned prompts; memory and runtime efficiency by eliminating the need to store and search over large repositories of prompts or LoRA weights; multiple applications ranging from open-set classification, to personalization or attribute control of image synthesis; support for operations like subject and concept composition, novel subject generation, negative prompting, and editing without explicit training. For open-set classification, DMP improves base-to-new class generalization, achieving upto **3% average gain** across 11 datasets with gains as high as **7.8%/5.4%** on specific datasets such as Eurosat/UCF101 respectively. DMP also enhances domain, cross-dataset and cross-task generalization with **~6-12%** improvement for hierarchical classification task. For image synthesis tasks, DMP improves generalization and prompt compliance by **1.4 points** as measured by CLIP score and reduces storage requirements by **91%** while improving runtime efficiency by **92%** over retrieval methods.

1 INTRODUCTION

Foundation models (Rombach et al., 2022; Radford et al., 2021) generalize to diverse tasks due to their large model sizes and large-scale training data. They can also be customized to specific downstream tasks, using parameter efficient methods (Hu et al., 2022; Zhang & Agrawala, 2023), such as prompt learning (Zhou et al., 2022b). Learned prompts are small parameter vectors (or tokens) introduced at the input or intermediate layers of the foundation model to improve its performance on specific tasks, typically using few-shot learning. For visual-language models, prompts are commonly introduced either in the visual (Jia et al., 2022) or textual space (Zhou et al., 2022a) or both (Roy & Etemad, 2024; Hao et al., 2025), to improve performance on tasks like fine-grained classification (Helber et al., 2018), enhance class discrimination (Zhou et al., 2022b;a), support taxonomic classification (Wu et al., 2024), overcome domains shifts (Ge et al., 2022), etc. For generative models, prompts are frequently used to customize the foundation model (Gal et al., 2022; Ruiz et al., 2023) to the synthesis of images containing a specific concept, person, or object. Prompts can also be learned to control the strength of fine-grained concepts or attributes (Sridhar & Vasconcelos, 2024), such as age, emotion, or style, allowing users to enhance or diminish these concepts in the generated image. Finally, learned prompts allow fine control over the editing of real images when combined with diffusion-based inversion techniques, such as the LEDITS++ (Brack et al., 2023) method.

Despite their power as a tool for foundation model adaptation and customization, prompts have the limitations and challenges summarized in the left of Figure 1. In open-set classification, learned prompts typically do not generalize well beyond the base classes used for few-shot learning, and requires separate tuning for each label set. Similarly, prompts for attributes such as age or smiling (see Figure 6) have to be learned separately per entity or concept in image editing/generation tasks. **Hence, they are inherently task-specific, requiring task-specific data and losses.** This is inefficient, as different applications may benefit from the same prompts or adaptation parameters. One solution, also illustrated in the figure, is the creation of shared repositories, where practitioners drop their prompts

Figure 1: **DMP versus existing approaches:** DMP models provide a natural language interface for the adaptation of foundation models, Prompt framework for Text-to-Prompt while eliminating the complexities of large prompt repositories, offering synthesis. **Right:** Prompt Variation synthesis conditioned on learned Textual Inversion Prompts. See Fig. 9.

for common use. Such efforts are already happening. For example, Concept Sliders (Gandikota et al., 2023b) have been quickly embraced by the diffusion model community, with many content creators producing sliders covering thousands of attributes and uploading them to sites like HuggingFace or Civitai (Civitai, 2023). However, these repositories are somewhat chaotic and require regular maintenance and updates. As they grow to the thousands of entries, it becomes cumbersome to know if a specific attribute is covered and how to find it in the repository. The task is so complex that the design of algorithms to locate, download, and apply the needed prompts to a foundation model has become a topic of research in itself (Luo et al., 2024). However, such prompt retrieval methods (Luo et al., 2024) involve time-consuming search, have limited generalization, require storing large prompt repositories in memory, and sophisticated methods to combine prompts.

In this paper, we propose to solve these problems by unifying prompt generation with a new family of diffusion models, denoted *Diffusion Meta-Prompting* (DMP) models. These are generative models of prompt distributions, capable of synthesizing prompts for downstream foundation models, conditioned on a natural language description of the prompting task. As shown in the rightmost panel of Figure 1, DMPs eliminate the complexities of dealing with prompt repositories, offering better generalization and compositionality with a minimal runtime overhead. For example, given a subject name (“Jennifer Aniston”) and attributes (“hair” and “age”), a DMP can generate a set of prompts for a foundation diffusion model like Stable Diffusion XL (SDXL) to produce the corresponding images.

We employ diffusion as the generative model since it offers better generalization than alternatives such as autoregressive methods (Radford et al., 2019). This is demonstrated in two ways. First, we show that *DMPs learn to produce a range of sophisticated prompt operations*, such as concept composition, novel subject generation, image inversion, editing and negative prompting *without explicit training*. We also provide a simple theoretical guarantee on the performance of DMPs. Second, we show that *DMPs can learn multiple tasks*, by showing that a single model can be trained to produce prompts for both subject personalization and slider attributes. This replaces the combinatorial complexities of searching separate prompt repositories for the two (and potentially more) tasks into a single DMP model. DMPs are also shown applicable to a diversity of fundamentally different tasks, ranging from image synthesis to open-set classification. For the latter, we show that learning the distribution of prompts across datasets and label sets generalizes to unseen classes better than the standard approach of individual prompt learning per dataset. The fact that this happens *even though the DMP model is trained on the individual prompts of the baseline approach* shows that there is structure in prompt space, which DMPs learn for improved generalization.

We leverage the DMP framework to develop diffusion models for open-set classification, personalized concept generation with attribute control, and synthesis of images with subject variations, yielding three fully automated prompting models: *DMPClass*, *DMPMulti*, and *DMPVariation*. Overall, the paper makes the following key contributions

- We propose the DMP, a new family of diffusion models trained to synthesize foundation model prompts. Beyond eliminating the need to maintain weight or prompt repositories and simplifying large-scale deployments ($\sim 91\%$ efficiency improvements), this approach enhances model generalization and enables flexible prompt manipulations.
- We introduce the *DMPClass* model, which unifies the generation of prompts for open-set classification with CLIP-style models. This is shown to outperform the baseline learned prompts in various challenging generalization tasks: base-to-new classification (upto 3%), domain generalization, and across levels of taxonomic classification (upto 12%).

Figure 3: **Pipeline of DMP.** Left: Prompt learning is a technique to specialize a foundation model, such as SD-XL or CLIP, to a specific task, using task data and a task loss to learn a task prompt. This task prompt allows the model to solve the task more effectively. Task examples include personalization of SD-XL to produce images of tattoos or anime characters, or CLIP tuning to the classification of dogs vs dinos. Center: The prompts learned for specific tasks are stored in a prompt repository, which is used to train the DMP model. This does not use any task specific losses nor data. Given enough prompts, the DMP model learns the distribution of prompts for many tasks. Right: After training, the DMP model is used to sample tasks to specialize foundation models, like SD-XL or CLIP to new tasks.

- We introduce the DMPMulti model to unify the generation of personalized subjects and sliders for the control of many attributes in a single model. DMPMulti obtains high identity fidelity and is also shown to support the generation of semantically negative concepts despite not being trained on them. The ability of this model to learn prompts for multiple tasks highlights the potential of DMPs to serve as foundation models for prompts.
- We introduce the DMPVariation model for generating novel variations of a given subject and show that it offers better generalization to unseen subjects (+1.4 CLIP score), allows composing multiple identities, and supports negative prompting without explicit training.

2 RELATED WORK

Foundation models. We focus on two classes of foundation models: vision-language representation models (Radford et al., 2021) and text-to-image (T2I) generation models (Rombach et al., 2022). Contrastively trained vision-language models, such as CLIP, are widely used for open-set classification, detection, and segmentation, with prompting techniques enabling adaptation to fine-grained tasks (Zhou et al., 2022b). In T2I models, personalization methods like Textual Inversion (Gal et al., 2022) and DreamBooth (Ruiz et al., 2023) allow generation of images of custom concepts using only a few examples. Building on these, several methods address concept discovery in T2I models (Dalva & Yanardag, 2024; Liu et al., 2023; Gandikota et al., 2023b; Dravid et al., 2024), enabling fine-grained editing or removal of undesirable concepts (Gandikota et al., 2023a; Zhou, 2023). Prompt Sliders (Sridhar & Vasconcelos, 2024) and (Baumann et al., 2024) learn concepts in textual space, either globally or locally. In this work, we propose to unify the prompt learning for foundation models by training a diffusion model to synthesize the prompts conditioned on natural language across tasks.

Prompt tuning. Prompt learning, originally developed for language models (Shin et al., 2020; Jiang et al., 2020), applies a fixed or learnable function to input tokens to provide task-specific instructions. In computer vision, prompts can be textual (Zhou et al., 2022a), visual (Jia et al., 2022), or multi-modal (Khattak et al., 2023; Yang et al., 2024; Li et al., 2025b;a). Textual prompt learning, pioneered by CoOp (Zhou et al., 2022b) and CoCoOp (Zhou et al., 2022a), fine-tunes a CLIP model (Radford et al., 2021) for few-shot transfer by optimizing continuous prompt vectors in the language branch. Visual prompt tuning (Jia et al., 2022) introduces task-specific learnable prompts in the visual encoder while keeping the backbone fixed. Multi-modal prompt learning (Roy & Etemad, 2024; Hao et al., 2025) optimizes prompts in both vision and language encoders to improve cross-modal alignment. Bayesian prompt learning (Derakhshani et al., 2023) formulated prompt learning as a variational inference problem and demonstrated its ability to generalize to unseen classes at the expense of base class accuracy. Table 9 in Appendix shows how DMP differs from prior prompt-learning approaches across key axes. Unlike prior approaches, which refine prompts for a single task or single example,

162 DMP is the only method that enables cross-task, data-free, multi-task prompt generation through a
 163 learned prompt distribution, highlighting its novelty and broader applicability.
 164

165 **Meta learning.** Meta-learning, or learning to learn, enables efficient adaptation to new tasks
 166 by leveraging past experience (Ha et al., 2017; Hospedales et al., 2021). It has been applied to
 167 learn loss functions (Bechtle et al., 2021), task-specific initialization (Gong et al., 2024), generate
 168 weights (Peebles et al., 2022; Zhmoginov et al., 2022; Nava et al., 2022; Zhang et al., 2024), and
 169 few-shot learning (Snell et al., 2017). Inspired by this, we propose Diffusion Meta-Prompts (DMP) to
 170 *synthesize* foundation model prompts conditioned on natural language for multiple tasks and concepts,
 171 to address the generalization limitations of existing prompt learning approaches. Recently, (Du
 172 et al., 2024) proposed a diffusion model for *refining* CLIP prompts for classification. It is trained
 173 on a *specific example and classification task* to improve CLIP prompts for that task. In contrast,
 174 DMP is a generalist, trained to sample prompts across tasks and downstream functionalities. The two
 175 approaches are complementary, as task-specific refinement from (Du et al., 2024) could be applied to
 176 DMP-generated prompts. Unlike this prior task-specific method, we further demonstrate that DMP
 177 generalizes across classes, models, and tasks, by introducing three new DMP variants.
 178

3 DIFFUSION META-PROMPTING

180 We introduce the *Diffusion-based Meta Prompting* (DMP) framework for synthesizing prompts
 181 conditioned on task descriptions. Let \mathcal{C} denote a distribution over tasks or concepts $c \sim \mathcal{C}$. For
 182 each concept c , we assume a textual description $y(c)$, and a repository \mathcal{R} of exemplar prompts
 183 $S(c) \in \mathbb{R}^d$ obtained from existing prompt-learning techniques. Figure 2 (left) illustrates the general
 184 implementation of the DMP framework. The objective is to learn a conditional generator $p_\theta(S | y)$,
 185 parameterized by a diffusion model for a downstream task with loss $\mathcal{L}_{\text{task}}(S; c)$, such that prompts
 186 $S \in \mathcal{P}$ (prompt space) drawn from it achieve low downstream risk. **Figure 3 illustrates the the novel**
 187 **formulation and the pipeline of DMP compared to classical prompt-learning approaches. Unlike**
 188 **prompt learning methods, DMP learns a task-agnostic prompt distribution from a prompt repository**
 189 **and can sample prompts for any task without additional supervision.**

190 **Training.** DMPs are diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020a) that synthesize
 191 prompts by iteratively denoising a noise seed. DMP training is based on a pair of forward and
 192 backward Markov chains. Given a concept c , an associated prompt $S(c)$ is retrieved from \mathcal{R} and
 193 noised according to a forward process that progressively adds Gaussian noise to $x_0 = S(c)$, according
 194 to

$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon_t, \quad (1)$$

195 where t is a timestep, $\bar{\alpha}_t := \prod_{s=1}^t (1 - \beta_s)$, $\{\beta_t\}_{t=1}^T$ is a variance schedule, $\epsilon_t \sim N(0, \mathbf{I})$ and N is a
 196 Gaussian distribution. In the reverse process, a neural network ϵ_θ recurrently denoises x_t to recover
 197 x_0 . This network is trained to predict noise ϵ_t , by minimizing the risk

$$\mathcal{L}_{\text{denoise}}(\theta) = \mathbb{E}_{t, x_0, \epsilon} \left[\|\epsilon_t - \epsilon_\theta(x_t, t)\|^2 \right]. \quad (2)$$

198 The process is repeated by sampling over concepts c and associated prompts $S(c)$. The network
 199 $\epsilon_\theta(x_t, t)$ is a U-Net (Ronneberger et al., 2015) with self and cross-attention layers (Vaswani et al.,
 200 2017). The latter are conditioned by a text prompt $y(c)$ that specifies the concept c , e.g. “a personal-
 202 ization prompt for Jennifer Anniston”, in the example of Figure 1. A text embedding τ_θ maps
 203 $y(c)$ into a conditioning vector $\tau_\theta(y)$, where we omit the argument c for brevity. The denoising
 204 network is then represented as $\epsilon_\theta(x_t, \tau_\theta(y), t)$. In our implementation, the DMP model is trained
 205 with classifier-free guidance, where an empty text or null prompt is used 20% of the time, to allow
 206 for better guidance during sampling. After training, a user simply specifies the text prompt $y(c)$.
 207 The diffusion model samples a prompt $S(c)$ with $x_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\theta(x_t, \tau_\theta(y), t) \right) + \sigma_t \epsilon$,
 208 where $x_T \sim N(0, \mathbf{I})$ is a noise seed, and $S(c) = x_0$. From a meta-learning perspective, θ are
 209 meta-parameters amortizing the construction of prompts across tasks. Unlike per-task optimization,
 210 DMP enables *one-shot prompt synthesis* by sampling from the learned generator.

211 **Architecture.** To implement the DMP model, we develop a 1D variant of the popular Stable Diffusion
 212 model, where 2D operations are replaced by their 1D counterpart (e.g., 1D-conv). Since the size of
 213 the prompt embeddings (d) is relatively small, we have found that, for most applications, the model
 214 can operate directly in the space \mathcal{P} of prompts $S(c) \in \mathbb{R}^d$. However, for applications involving

unusually long prompts($d \geq 2048$), we have also trained a variational autoencoder that maps prompts from \mathcal{P} into a space of lower dimensionality, for faster training and convergence. This is a 1D variant of stable diffusion autoencoder with less than 1M parameters and a latent dimension of 128. See appendix section A.10 for more details.

Concept Composition. By framing diffusion models as Energy Based Models, (Liu et al., 2022b) showed that it is possible to compose multiple concepts by conjunction or negation. Given a diffusion model $\epsilon_\theta(x_t, t)$, n concepts are combined by implementing the denoising chain with

$$\hat{\epsilon}(x_t, t) = \epsilon_\theta(x_t, t) + \sum_{i=1}^n \eta_i (\epsilon_\theta(x_t, \tau_\theta(y(c_i)), t) - \epsilon_\theta(x_t, t)), \quad (3)$$

where η_i is a hyperparameter corresponding to a temperature scaling of concept c_i . If the conditioning is just empty text, this reduces to classifier-free guidance. The standard implementation of concept composition is to run the *downstream* diffusion model n times (once per concept) and average noise predictions with (3). This is significantly more complex than performing the concept composition of (3) in the (much less complex) DMP, which enables the sampling of *single* prompts x_t for the downstream model that combine *all* concepts c_1, \dots, c_n . We show below that DMPs trained on the individual concepts can sample combined prompts (Table 8, Figure 23).

Concept Negation. Negative prompting, is commonly used in image diffusion models to direct image generation away from undesired semantic concepts, thus improving quality. Given a diffusion model $\epsilon_\theta(x_t, t)$, the denoising chain is implemented with $\hat{\epsilon}(x_t, t) = \epsilon_\theta(x_t, t) + \eta (\epsilon_\theta(x_t, \tau_\theta(y(p)), t) - \epsilon_\theta(x_t, \tau_\theta(y(n)), t))$, where η is the hyperparameter that controls the strength of the negation, p is a positive concept and n a negative one. We show that, without specific training, DMPs can sample *single* prompts x_t for the downstream model that oppose concept p to concept n or even purely negative prompts, by using an empty positive prompt p (see Figures 7,22).

Theoretical Guarantee. We provide a theoretical guarantee for the performance of DMP. The formal statement is below, with assumptions and proof discussed in Appendix A.1.

Proposition 1 (DMP performance guarantee). *Assume the denoising loss satisfies $\mathcal{L}_{\text{denoise}}(\theta) \leq \varepsilon$ and the repository contains n i.i.d. prompts for the condition y . Then with probability at least $1 - \delta$ over the repository sample,*

$$\mathbb{E}_{S \sim p_\theta(\cdot|y)} [\mathcal{L}_{\text{task}}(S)] \leq \mathbb{E}_{S \sim \hat{p}_{\text{data}}(\cdot|y)} [\mathcal{L}_{\text{task}}(S)] + L_{\max} \sqrt{2C\varepsilon} + L_{\max} \sqrt{\frac{\log(2/\delta)}{2n}} + o(1) \quad (4)$$

3.1 DMP FOR CLASSIFICATION

We train DMP models (DMPClass) for several state-of-the-art prompt tuning methods such as CoOp (Zhou et al., 2022b), CoCoOp (Zhou et al., 2022a), MapLe (khattak et al., 2023), CoPrompt (Roy & Etemad, 2024) and TAC (Hao et al., 2025). These include both unimodal and multimodal methods.

Prompt Repository. To create a repository of classification prompts, we train the CLIP ViT-B/16 model following the original CoOp/CoCoOp/MapLe/CoPrompt/TAC methods. Given a classification problem, a prompt set is trained for N epochs where N follows the original settings mentioned in the these papers, using a context vector of size K . We consider ImageNet and the standard 10 datasets used in the prompt learning literature (Zhou et al., 2022b;a). We use 40 different initializations per dataset and save the corresponding prompt embeddings to obtain the training tensor $\mathcal{T} \in \mathbb{R}^{11 \times 40 \times K \times d}$. See Appendix A.10 for more details.

Training. Due to the large dimensionality of the prompt embeddings ($K \times d = 2048$), the DMPClass models are trained with an autoencoder. To obtain the text inputs, we concatenate the respective dataset classnames into a text string, whose text embedding is used to condition the DMPClass model. This setup allows us to flexibly mix and match class names across datasets to enable straightforward compositionality (Table 8) without requiring handcrafted or semantically enriched descriptions. Since the CLIP text encoder has a limit of 77 tokens per input (around 50 words), this string can be too long for datasets with many classes (e.g. the 1,000 Imagenet classes). To overcome this, we consider each class name independently, obtain the CLIP embedding for each resulting in C embeddings for C classes, which are then used to prompt DMPClass models.

270 3.2 DMP FOR SUBJECT VARIATION
271272 DMPVariation synthesizes prompts learned via textual inversion (TI) (Gal et al., 2022) to generate
273 variations of a subject when conditioned on its TI prompt.274 **Prompt Repository.** TI uses the diffusion loss to learn a text prompt S^* for the downstream diffusion
275 model $\epsilon_\theta^d(x_t, \tau_\theta(y), t)$, from a few example images (typically 3-5 per concept), while keeping the
276 model weights unchanged. This allows the model to synthesize images containing the concept. The
277 prompt is learned through the optimization

278
$$S^* = \arg \min_S \mathbb{E}_{x \sim \mathcal{E}(x), y \sim \mathcal{N}(0, 1), t} \|\epsilon_t - \epsilon_\theta^d(x_t, \tau_\theta(y, S), t)\|_2^2 \quad (5)$$

280 where x_t is an image, and y is any additional prompt text, such as "a photo of a". Both τ_θ and ϵ_θ are
281 fixed during the optimization, which is performed by backpropagation.282 To produce a prompt repository \mathcal{R} , we split the CelebA dataset into unique identities using the
283 groundtruth labels, and use 3,000 of these as concepts c , for which we train personalized prompts $S(c)$
284 with (5) using 1,000 steps of gradient descent. To obtain variations, we note that earlier optimization
285 steps do not fully encode face attributes, as compared to steps later in the optimization. We save the
286 prompts $S(c)$ from 40 gradient steps (between 200 – 400 in intervals of 5), per identity. This produces
287 a repository \mathcal{R} of 40 prompt variations per identity to obtain a training tensor $\mathcal{T} \in \mathbb{R}^{3000 \times 40 \times d}$.288 **Training.** The DMPVariation model was trained directly in prompt space \mathcal{P} , i.e. without autoen-
289 coder. Each personalized prompt produced by TI is used as conditional input to DMPVariation, by
290 concatenating it with the noise vector, as illustrated in Figure 2. During training, the model learns to
291 denoise the 40 different variations of the conditional prompt input. At inference, prompts that induce
292 variations of novel subjects can be sampled by simply conditioning on a new subject prompt. We
293 show that *despite only training the model on prompts for faces from the CelebA dataset, the DMP*
294 *can synthesize variation prompts for very different concepts*, e.g. cats/dogs or statues or different
295 styles (downloaded from the internet repositories). See Figure 17 and Figure 18 in Appendix A.5.296 3.3 MULTI-TASK DMP
297298 We propose *DMPMulti*, a multi-task DMP model trained to synthesize prompts for personalized
299 subjects (Gal et al., 2022) and prompt sliders (Sridhar & Vasconcelos, 2024). Both tasks are unified
300 within a single framework through the shared CLIP-ViT L/16 text encoder.302 **Prompt Slider Repository.** Prompt Sliders is a technique to learn text prompts in the CLIP text
303 embedding space that allow control of particular attributes of a designated concept. Given a target
304 concept c_t , a prompt slider S^* is learned to encourage the distribution of images of c_t to exhibit
305 more positive attributes c^+ and fewer negative attributes c^- . This is implemented by replacing ϵ_t
306 with $\epsilon_t(\alpha) = \epsilon_\theta^d(x_t, \tau_\theta(y(c_t)), t) + \alpha \eta \sum_{p \in P} (\epsilon_\theta^d(x_t, \tau_\theta(y(c^+, p)), t) - \epsilon_\theta^d(x_t, \tau_\theta(y(c^-, p)), t))$ and
307 S by αS in (5), where η is a guidance scale, α a scaling parameter, and P a set of concepts that
308 the attribute manipulation should preserve (for example, race or gender). The positive c^+ , and
309 negative c^- attributes are sampled from a template predefined for concept c_t . To create a slider
310 repository \mathcal{R}_S , we trained prompt sliders for 20 different concepts using the SD-XL model and 3,000
311 backpropagation steps. For each concept c , we save 40 prompts $S(c)$ (from the last 200 steps in
312 intervals of 5) to obtain a training tensor $\mathcal{T} \in \mathbb{R}^{20 \times 40 \times d}$.313 **Prompt Identity Repository.** We use a random subset of 20 identities from the 3000 identities in
314 the DMPVariation prompt repository to create a prompt identity repository \mathcal{R}_I with each identity
315 containing 40 prompts obtained from the last 200 steps in intervals of 5 to obtain a training tensor
316 $\mathcal{T} \in \mathbb{R}^{20 \times 40 \times d}$.317 **Training.** The DMPMulti model was trained directly in prompt space \mathcal{P} , i.e. without autoencoder,
318 using the full set of prompts from both repositories, i.e. $\mathcal{R} = \mathcal{R}_S \cup \mathcal{R}_I$. For each slider concept c
319 (e.g., age, smiling etc.) we use the concept name as the text condition for DMPMulti. For identities,
320 we use "identity- c " as the text condition where $c = 1, \dots, 20$ is associated with each identity c in \mathcal{R} .321 **Inference.** At inference, DMPMulti can be conditioned with the slider concept name, to generate
322 prompt sliders, or with "identity- c " to generate identity prompts. Novel identities can be sampled by
323 specifying a new identity "identity- c " with $c > 20$. Slider and identity prompts can then be fed to the
downstream model in isolation or together.

324
325 Table 1: Memory and
326 complexity requirements.
327

Method	Mem (GB) \downarrow	Time (s) \downarrow
Stylus	1.30	12.1
DMP	0.12	1
Gain	(91% \downarrow)	(92% \downarrow)

328
329 Table 2: Performance of
330 different slider methods.
331

Method	CLIP-s \uparrow	LPIPS \downarrow
Concept Slider	28.90	0.086
Prompt Slider	30.00	0.219
DMPMulti	29.86	0.126

332
333 Table 3: Domain generalization accuracy (%)
334 for prompts learned on ImageNet.
335

Method	Source	Target			
		-V2	-S	-A	-R
CoOp	ImageNet	68.5	61.20	45.20	48.20
DMPCoOp	ImageNet	68.7	62.10	46.50	50.60

336 Table 4: **Base-to-novel generalization:** Accuracy of CLIP prompted classifier for All, Base, and New classes.
337 See Appendix Table 11 for the full results. The results reported are the average over three seed runs.
338

Method	(a) Avg (11 datasets)				(b) DTD				(c) EuroSAT				(d) UCF101			
	All	Base	New	HM	All	Base	New	HM	All	Base	New	HM	All	Base	New	HM
CoOp (Zhou et al., 2022b)	68.8	82.3	70.4	75.9	51.9	80.8	51.8	63.1	63.2	90.8	72.9	80.9	67.6	83.4	65.3	73.2
DMPCoOp	70.1	80.3	73.4	76.5	53.7	75.1	55.8	64.0	65.9	85.6	80.7	83.1	71.7	79.6	70.7	74.9
Δ	+1.3	-2.0	+3.0	+0.6	+1.8	-5.7	+4.0	+0.9	+2.7	-5.2	+7.8	+2.2	+4.1	-3.8	+5.4	+1.7
CoCoOp (Zhou et al., 2022a)	70.1	80.7	72.5	76.0	52.3	77.5	54.8	64.2	66.0	87.9	65.6	74.9	72.7	82.2	72.1	76.8
DMPCoCoOp	70.2	79.5	74.0	76.4	52.9	75.8	58.5	66.0	65.8	87.2	66.6	75.4	72.5	80.6	76.0	78.2
Δ	+0.1	-1.2	+1.5	+0.4	+0.6	-1.7	+3.7	+1.8	-0.2	-0.7	+1.0	+0.5	-0.2	-1.6	+3.9	+1.4
CoPrompt (Roy & Etemad, 2024)	72.3	83.1	74.6	78.3	56.3	82.1	57.6	67.6	67.1	94.3	66.8	78.0	76.5	86.8	78.7	82.5
DMPCoPrompt	72.9	82.5	75.4	78.5	57.4	80.5	62.1	70.1	70.7	91.1	69.6	78.6	76.5	86.4	78.8	82.4
Δ	+0.6	-0.6	+0.8	+0.2	+1.1	-1.6	+4.5	+2.5	+3.6	-3.2	+2.8	+0.6	0.0	-0.4	+0.1	-0.1
TAC (Hao et al., 2025)	74.6	85.2	77.1	80.8	59.1	83.6	62.7	71.6	76.4	94.3	80.2	86.6	78.2	87.2	81.1	84.1
DMP-TAC	75.0	85.1	77.5	80.9	59.3	83.3	63.6	72.1	76.7	93.9	81.5	87.2	78.2	87.2	81.4	84.2
Δ	+0.4	-0.1	+0.4	+0.1	+0.2	-0.3	+0.9	+0.5	+0.3	-0.4	+1.3	+0.6	0.0	0.0	+0.3	+0.1

343

4 EXPERIMENTS

344
345 In this section, we discuss experimental results obtained with the three DMPs. For classification
346 prompts, we evaluate accuracy across 11 datasets and OOD-generalization on ImageNet dataset
347 variants: ImageNetV2 (Recht et al., 2019), ImageNet-Sketch (Wang et al., 2019), ImageNet-
348 Rendition (Hendrycks et al., 2020) and ImageNet-Adversarial (Hendrycks et al., 2021). For slider
349 concept prompts, evaluations are based on CLIP/LPIPS-score and for variation prompts, we compute
350 Face ID similarity to groundtruth using a VGGFace2 (Cao et al., 2018) Inception ResNet model.
351352 **Implementation Details.** We conduct all experiments on 24GB (NVIDIA-A10 or 3090-RTX) GPUs
353 using pytorch. DMP models are trained with the standard hyperparameters of (Rombach et al., 2022),
354 a learning rate of $1e^{-6}$, and batch size of 320, for 2,000 epochs. This takes about a day to train on 4
355 GPUs for 3,000 identities. For classification prompts, the autoencoder is trained for 10,000 epochs,
356 which takes about 10 hours. DMP uses 50 DDIM timesteps to sample one prompt which takes about
357 1 sec and it can be sped up with faster sampling methods (Liu et al., 2022a). The original CoOp
358 paper reports the full results only for a context length of 16. We use a context length of 4 ($K = 4$) as
359 suggested in CoCoOp. For fair comparisons, we use the codebase of respective methods and run all
360 our experiments under this setup. More details are in the appendix A.10.361 **Storage and Runtime Efficiency.** One of the benefits of the DMP framework is its high efficiency.
362 DMP eliminates the need to manage a repository of prompts and associated *metadata*, such as text
363 descriptions. This contrasts with methods like Stylus (Luo et al., 2024), that automatically search,
364 retrieve, and compose LoRAs from a repository. Table 1 compares the storage and processing
365 requirements of DMP and Stylus, when used for the tasks that we consider in this work. DMP is
366 significantly more efficient, reducing storage needs by **91%** and improving inference speed by **92%**.
367 Further, Table 11 shows that DMP achieves better generalization than Stylus for classification, both
368 on new classes (**73.4** vs. 72.8) and across all classes (**70.1** vs. 67.5) over 11 datasets.
369370

4.1 DMP FOR CLASSIFICATION

371 To evaluate DMP-based classification, we conducted Base2New generalization experiments using
372 five different state-of-the-art prompting methods, across 11 diverse datasets. To assess the ability to
373 generalize to unseen classes, only the first half of the classes were used to learn prompts and evaluated
374 for those classes (Base), the remaining classes (New) and all classes (All). Table 4 summarizes
375 the performance of standard learned prompts and those synthesized by DMP. While DMP prompts
376 have slightly lower performance for the base classes, an expected outcome since they are inherently
377 bounded by the accuracy of the learned prompts used to train the DMP - they generalize better, with
378 an average accuracy gain ranging from **+0.5-3.0%** for unseen classes across all prompting methods.
379 In particular, for new classes, DMP outperforms the learned prompts on **11/11** datasets for CoOp,

Figure 4: **Cross-dataset**

generalization across 10 datasets: **generalization:** Comparison of Gain of DMPCoOp over CoOp for DMPCoOp against CoOp prompts

Figure 5: **Cross-task**

generalization: Comparison of MTA Score (%) for DMPCoOp against CoOp prompts

for hierarchical classification. sliders for 'age' and 'smiling'.

Table 5: Comparison of DMPMulti with baseline Textual Inversion (TI) prompts for identity synthesis.

Method (SD-RV)	Face-ID↑	DINO↓	CLIP-I↓	CLIP-T↑
Textual Inversion	0.428	0.627	0.696	0.244
Stylus (Top-1)	0.434	0.645	0.706	0.246
DMPMulti	0.434	0.558	0.653	0.245
DMPMulti(20)	0.429	0.595	0.599	0.285

CoCoOp, CoPrompt, and TAC methods. The table also shows that on certain datasets, the gain can be as high as **+7.8/5.4%** on Eurosat/UCF101 respectively. Note that for methods other than CoOp, DMP only synthesizes the text prompts attached to the input of CLIP and do not generate the weight or projection matrices of the deeper prompts used by those methods. The learned weights from the original prompting method is used together with the synthesized prompts from DMP. Despite only modifying the shallow prompts, DMP obtains **+0.4-1.5%** average accuracy improvement for these methods. These findings suggest that the original learned prompts may be somewhat overfitted to the base classes, whereas DMP prompts induce a classifier of stronger generalization. Over all classes (both seen and unseen) and datasets, DMP has an accuracy gain of upto **+1.3%**. It can be concluded that *meta-prompting with a diffusion model outperforms the existing prompting techniques that are used to train it.*

We conduct additional studies using DMPCoOp to evaluate generalization of DMP across tasks. First, we consider domain generalization. Table 3 demonstrates the robustness of a DMP model trained on ImageNet, by evaluating the performance of its prompts on four out-of-distribution (OOD) ImageNet datasets. The DMPCoOp model consistently improves over CoOp across all four ImageNet variants, with **1.16%** average gain in classification accuracy. Figure 4 summarizes the gains of cross-dataset generalization. Prompts learned on ImageNet are used for classification of the 10 other datasets considered in Table 4. DMPCoOp outperforms the baseline CoOp prompts in **7/10** datasets, achieving a significant overall average gain of **1%**. The gains are quite large for datasets with less common classes, such as “FGVC aircraft” (**+5.3%**), or involving very fine-grained classes, such as “Oxford Flowers” (**+2.5%**), which are not likely to appear in ImageNet. Conversely, CoOp does slightly better on datasets like Caltech101, whose classes have large overlap with ImageNet.

We next consider cross-task generalization in the more challenging task of taxonomic classification (Wu et al., 2024), which tests the ability of the classifier to classify images with respect to different class subsets in a class hierarchy, using metrics of Mean Treecut Accuracy (MTA) over 25 treecuts and Hierarchical Consistency Accuracy (HCA). Figure 5 summarizes the MTA gains of DMPCoOp over CoOp on Imagenet variants and the SUN dataset. DMPCoOp prompts obtains a significant **5.8-11.7%** average improvement over CoOp, even though no prompts are ever trained for hierarchical classification. These results align with the findings from the class, domain, and dataset generalization experiments above, confirming that the DMP model learns to generate prompts that are more robust than the original learned prompts on which it is trained. See Table 12 for the full results.

To evaluate the generalization ability of DMP, we introduce a composite classification task that require generalization across datasets and explain the procedure in detail as follows. As mentioned above, we used prompt learning to train prompts over the 11 datasets $\mathcal{D}_i, i \in \{1, \dots, 11\}$ considered in the paper. In all cases, we used the Base/New decomposition, where some classes (New) were left out of training to test generalization. We created a prompt repository with the prompts $\mathcal{P}_i, i \in \{1, \dots, 11\}$ learned from the 11 datasets and used it to train the DMP model. We then created all 55 datasets $\mathcal{T}_i, i \in \{1, \dots, 55\}$ containing pairs from these 11 datasets, to test generalization performance. For each dataset \mathcal{T}_i , we performed classification with (1) the prompt sampled from DMP, (2) the two prompts \mathcal{P}_i associated with the two datasets \mathcal{D}_i in the pair. For the baseline method (2), we then

432 Table 8: Comparison of CoOp vs DMPCoOp across All, Base, and New splits for 55 dataset combination pairs.
433

Split	Avg CoOp (%)	Avg DMPCoOp (%)	Avg Gain (%)	Top-3 Pairs: CoOp → DMPCoOp, Gain
All	57.9	62.2	4.3	EuroSAT&OxfordFlowers 35.5→61.2 (g=25.7) OxfordFlowers&OxfordPets 63.4→80.9 (g=17.5) EuroSAT&OxfordPets: 51.2→65.7 (g=14.5)
Base	63.4	68.1	4.7	ImageNet&OxfordFlowers 32.6→70.0 (g=37.4) FGVCAircraft&ImageNet 36.1→65.9 (g=29.8) EuroSAT&OxfordPets 58.0→76.1 (g=18.1)
New	66.4	69.7	3.3	OxfordPets&SUN397 47.6→69.7 (g=22.1) EuroSAT&OxfordFlowers 59.4→77.8 (g=18.4) EuroSAT&OxfordPets 67.6→81.1 (g=13.5)

441 measured the performance of the two prompts \mathcal{P}_i on the test classes of \mathcal{T}_i and chose the best for each
442 dataset. We also tested the average of the two prompts \mathcal{P}_i as the alternative to this but it did not
443 perform better. Note that this is a best-case scenario for prompt learning, which would not be feasible
444 in practice, where test labels are not available. This was then compared to the performance of the
445 DMP prompt, with the results shown in Table 8.

446 The table shows the average accuracy of baseline CoOp prompts and DMPCoOp prompts across all
447 55 dataset combination pairs. The last column reports the top-3 highest individual gains observed
448 in specific combinations mentioned which are significantly higher than the CoOp prompts. Table 8
449 shows that DMPCoOp outperforms the CoOp baseline by **+4.7%** for Base, **+3.3%** for New classes
450 and **+4.3%** for All classes with individual gains for specific pairs as high as **+37.4%/+22.1%/+25.7%**
451 for Base/New/All classes respectively. These results demonstrate that DMP generalizes across tasks
452 and datasets in ways that the base prompt learner cannot, despite being trained only on its prompt
453 embeddings. Additional results for TAC are included in Appendix A.3. We also compare DMPCoOp
454 with Bayesian Prompt Learning (BPL), which requires explicit training for each dataset pair. As
455 shown in Table 7, DMP outperforms the performance of a fully trained BPL model without any
456 task-specific training by **+2.7%** and exceeds BPL’s zero-shot baseline by **+13.2/+4.4%** for base/new
457 classes respectively on EuroSAT and Flowers dataset pair. We also note that BPL is computationally
458 expensive, requiring approximately 10 hours on a 40GB GPU even for a single dataset pair, which
459 limits its scalability compared to DMP.

460 Additional ablation studies on comparison with VAE, autoregressive methods (Table 11), impact of
461 text conditions (Table 18) and noisy prompts (Table 21) are discussed in Appendix A.6.1.

462 4.2 MULTITASK DMP

463 **Sliders.** Table 2 compares the performance of three slider approaches: the concept sliders
464 of (Gandikota et al., 2023b), the baseline prompt sliders of (Sridhar & Vasconcelos, 2024), and
465 those produced by DMPMulti. CLIP-scores are computed between the images synthesized by the
466 downstream SD-XL model, prompted with sliders for 20 attributes, and the attribute names. Both
467 CLIP and LPIPS scores are evaluated on a set of 100 custom prompts (see appendix A.10.2 for
468 details) with 5 prompts per concept. Concept Sliders often fail to induce noticeable changes in the
469 generated images (Fig. 16), resulting in strong LPIPS scores but weak CLIP scores. In contrast,
470 DMPMulti achieves a CLIP score similar to the Prompt Slider upper bound, and is more than 1 point
471 better than Concept Sliders. It also corrects a tendency of Prompt Sliders to produce exaggerated
472 attributes, which result in poor LPIPS scores. Overall, the sliders synthesized by DMPMulti achieve
473 the best balance, among the three approaches, between image quality and attribute manipulation. This
474 is also illustrated in Fig. 16. Figure 6 shows qualitative results of images synthesized by manipulating
475 the strength of prompts (for attributes ‘smiling,’ and ‘age,’) generated by the DMPMulti model. **See**
476 **appendix Figures 13, 14, and 15 for more qualitative results.**

477 **Semantic Negative Sliders.** Prompt Sliders are restricted to positive semantic directions due to
478 their training setup. In contrast, DMPMulti learns a unified text-conditioned prompt space that also
479 supports negative directions by setting the positive prompt to empty text and the negative prompt
480 to the target concept in (3). This enables attenuation of attributes *even though DMPMulti is trained*
481 *only with positive concepts*. Figure 7 demonstrates this capability; using LEDITS++ (Brack et al.,
482 2023) inversion, a real image is initialized in SDXL and edited with DMPMulti’s negative prompts
483 for “age” and “smiling”. Compared to InstructPix2Pix and LEDITS++, DMPMulti achieves superior
484 edits, effectively capturing negative semantics such as the absence of “age” or “smiling”. Together,
485 Figures 6 and 7 highlight DMPMulti’s ability to produce semantically consistent prompts for both
486 positive and negative concept directions.

Figure 7: **Editing real images** to reduce age (top) and remove smiling (bottom) attribute from real images using LEDITS++ image inversion and prompt sliders generated with a negative prompt using DMPMulti and compared with InstructPix2Pix.

Figure 8: **Generalization of DMPVariation model**. Images generated using prompts synthesized by TI (top) and DMPVariation (bottom) for various downstream model text prompts (shown on top). DMPVariation prompts are more robust than TI prompts, which impair the ability of the downstream model to generalize. See Fig. 20 for additional results.

Identities. Table 5 compares Identity prompts from DMPMulti with Stylus and Textual Inversion across face recognition accuracy, image-to-image similarity, and prompt fidelity. DMPMulti achieves higher identity scores, maintains prompt compliance comparable to TI/Stylus, and shows lower similarity to training images, indicating stronger generalization. In contrast, TI tends to overfit, consistent with prior findings (Yuan et al., 2023). The last row of Table 5 shows an ablation study of using fewer samples (20 vs 40) per identity for training DMP. Notably, DMPMulti (20) achieves similar identity fidelity and even higher prompt compliance ($\uparrow 17\%$) than the 40-sample variant.

4.3 DMPVARIATION

Figure 8 presents qualitative results comparing DMPVariation and Textual Inversion (TI) in generating personalized images across diverse contexts. In this example, the downstream model personalized with prompts produced by TI or DMPVariation, is asked to generate a new image of the subject in a different context, specified as a text prompt atop each image. The variation prompts produced by DMPVariation demonstrate greater robustness and generalization, effectively adapting to different contexts while preserving subject identity. This is unlike TI prompting, which tends to overfit to the subject, leading to poor generalization across contexts. In result, it fails to generate suitable images of the dog for all contexts other than “*in front of a house*”. The figure shows that DMPVariation produces successful variation prompts for general objects as diverse as dogs *despite being trained only on CelebA-face identities* (See Fig. 18 for other objects such as bird and statue). Fig. 20 in Appendix shows additional results where TI completely fails as opposed to DMPVariation.

To evaluate generalization, we compare DMPVariation prompts with learned TI prompts on CelebA dataset using Face-ID and CLIP-Text similarity across 28 diverse prompts (Table 19), [as well as using the HPSv2 metric on 100 prompt concepts downloaded from Huggingface repository](#). As shown in Table 6, DMPVariation achieves lower Face-ID similarity, indicating diverse yet identity-preserving prompts, and improves CLIP-Text similarity by **1.4%**, demonstrating better generalization to novel prompts compared to TI embeddings. The table further shows that DMP-generated prompts generalize better, achieving a **+0.7%** gain over TI on the HPSv2 metric, consistent with the clip score. However, as is typical in generative modeling, HPSv2 does not fully reflect the substantial qualitative gap, as illustrated in Figure 20 in Appendix. While TI prompts produce images that *simply do not comply with the instruction*, DMP prompts consistently produce images that satisfy the instructions.

See Appendix A.9 for a discussion on the limitations of DMP and scope for future works.

5 CONCLUSION

In this work, we propose a diffusion meta-learning framework for synthesizing versatile and generalizable prompts across classification, personalization, concept manipulation, and subject variation tasks. Our DMP models demonstrate robust prompt generation that avoids overfitting and achieves strong cross-dataset generalization, effective semantic manipulation, and high identity fidelity. DMPClass shows superior accuracy across diverse tasks (upto **3/12%**) and out-of-distribution datasets (**+1.2%**), DMPMulti enables seamless negative prompt generation, and DMPVariation synthesizes diverse subject variations with a **+1.4** increase in prompt compliance for generalization compared to the baseline. These results affirm the potential of our diffusion based meta-prompts approach as a powerful and adaptable tool for enhancing prompt quality and generalization in vision applications.

540
541

REPRODUCIBILITY STATEMENT

542
543
544
545

We are committed to reproducibility of the results presented in the paper and have included all necessary details including the algorithm experimental setup 4, hyperparameters A.10 used for our method. We will release the code and trained models publicly after acceptance of the paper for benefit of the community and drive further research in this area.

546

547

REFERENCES

548
549
550
551

Stefan Andreas Baumann, Felix Krause, Michael Neumayr, Nick Stracke, Vincent Tao Hu, and Björn Ommer. Continuous, Subject-Specific Attribute Control in T2I Models by Identifying Semantic Directions, 2024.

552
553
554
555
556

Sarah Bechtle, Artem Molchanov, Yevgen Chebotar, Edward Grefenstette, Ludovic Righetti, Gaurav Sukhatme, and Franziska Meier. Meta-learning via learned loss. In *Proceedings of the 25th International Conference on Pattern Recognition (ICPR)*, pp. 4161–4168. IEEE, 2021. doi: 10.1109/ICPR48806.2021.9334095. URL <https://doi.org/10.1109/ICPR48806.2021.9334095>.

557
558
559

Manuel Brack, Felix Friedrich, Katharina Kornmeier, Linoy Tsaban, Patrick Schramowski, Kristian Kersting, and Apolinário Passos. Ledits++: Limitless image editing using text-to-image models. *CVPR*, 2023.

560
561
562
563

Qiong Cao, Li Shen, Weidi Xie, Omkar M. Parkhi, and Andrew Zisserman. Vggface2: A dataset for recognising faces across pose and age. In *2018 13th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2018)*, pp. 67–74, 2018. doi: 10.1109/FG.2018.00020.

564

Civitai. <https://civitai.com/>, 2023. Webpage.

565
566
567

Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory*. Wiley-Interscience, 2 edition, 2006.

568
569
570

Yusuf Dalva and Pinar Yanardag. Noiseclr: A contrastive learning approach for unsupervised discovery of interpretable directions in diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 24209–24218, 2024.

571
572
573
574

Mohammad Mahdi Derakhshani, Enrique Sanchez, Adrian Bulat, Victor Guilherme Turrisi da Costa, Cees GM Snoek, Georgios Tzimiropoulos, and Brais Martinez. Bayesian prompt learning for image-language model generalization. *ICCV*, 2023.

575
576
577

Amil Dravid, Yossi Gandelsman, Kuan-Chieh Wang, Rameen Abdal, Gordon Wetzstein, Alexei A Efros, and Kfir Aberman. Interpreting the weight space of customized diffusion models. *NeurIPS*, 2024.

578
579
580

Yingjun Du, Gaowen Liu, Yuzhang Shang, Yuguang Yao, Ramana Kompella, and Cees G. M. Snoek. Prompt diffusion robustifies any-modality prompt learning, 2024. URL <https://arxiv.org/abs/2410.20164>.

581
582
583
584
585

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H. Bermano, Gal Chechik, and Daniel Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual inversion. *arXiv*, 2022. doi: 10.48550/ARXIV.2208.01618. URL <https://arxiv.org/abs/2208.01618>.

586
587
588

Rohit Gandikota, Joanna Materzyńska, Jaden Fiotto-Kaufman, and David Bau. Erasing concepts from diffusion models. In *Proceedings of the 2023 IEEE International Conference on Computer Vision*, 2023a.

589
590
591

Rohit Gandikota, Joanna Materzyńska, Tingrui Zhou, Antonio Torralba, and David Bau. Concept sliders: Lora adaptors for precise control in diffusion models. *arXiv preprint arXiv:2311.12092*, 2023b.

592
593

Chunjiang Ge, Rui Huang, Mixue Xie, Zihang Lai, Shiji Song, Shuang Li, and Gao Huang. Domain adaptation via prompt learning. *arXiv preprint arXiv:2202.06687*, 2022.

594 Yifan Gong, Zheng Zhan, Yanyu Li, Yerlan Idelbayev, Andrey Zharkov, Kfir Aberman, Sergey
 595 Tulyakov, Yanzhi Wang, et al. Efficient training with denoised neural weights. *arXiv preprint*
 596 *arXiv:2407.11966*, 2024.

597

598 David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In *International Conference on Learning*
 599 *Representations*, 2017. URL <https://openreview.net/forum?id=rkpACellx>.

600 Fusheng Hao, Fengxiang He, Fuxiang Wu, Tichao Wang, Chengqun Song, and Jun Cheng. Task-aware
 601 clustering for prompting vision-language models. In *Proceedings of the IEEE/CVF Conference on*
 602 *Computer Vision and Pattern Recognition (CVPR)*, June 2025.

603

604 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Introducing eurosat: A novel
 605 dataset and deep learning benchmark for land use and land cover classification. In *IGARSS 2018 -*
 606 *2018 IEEE International Geoscience and Remote Sensing Symposium*, pp. 204–207, 2018. doi:
 607 10.1109/IGARSS.2018.8519248.

608 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
 609 Desai, Tyler Lixuan Zhu, Samyak Parajuli, Mike Guo, Dawn Xiaodong Song, Jacob Steinhardt,
 610 and Justin Gilmer. The many faces of robustness: A critical analysis of out-of-distribution
 611 generalization. *2021 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 8320–
 612 8329, 2020. URL <https://api.semanticscholar.org/CorpusID:220250257>.

613

614 Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
 615 examples. *CVPR*, 2021.

616

617 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 6840–6851. Curran Associates, Inc., 2020a. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

618

619 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 620 *Neural Information Processing Systems*, 33:6840–6851, 2020b.

621

622 Wassily Hoeffding. Probability inequalities for sums of bounded random variables. *Journal of the*
 623 *American Statistical Association*, 58(301):13–30, 1963.

624

625 Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
 626 networks: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(9):
 627 5149–5169, 2021. doi: 10.1109/TPAMI.2021.3069109.

628

629 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 630 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International*
 631 *Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeeFYf9>.

632

633 HuggingFace. <https://huggingface.co/blog/lora-adapters-dynamic-loading>, 2023. Webpage.

634

635 Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
 636 Ser-Nam Lim. Visual prompt tuning. In *European Conference on Computer Vision (ECCV)*, 2022.

637

638 Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. How can we know what language
 639 models know?, 2020. URL <https://arxiv.org/abs/1911.12543>.

640

641 Muhammad Uzair khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shahbaz
 642 Khan. Maple: Multi-modal prompt learning. In *The IEEE/CVF Conference on Computer Vision*
 643 *and Pattern Recognition*, 2023.

644

645 Muhammad Uzair Khattak, Syed Talal Wasim, Muzammal Naseer, Salman Khan, Ming-Hsuan
 646 Yang, and Fahad Shahbaz Khan. Self-regulating prompts: Foundational model adaptation without
 647 forgetting. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*,
 pp. 15190–15200, October 2023.

648 Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In *2nd International*
 649 *Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings*, 2014.

650

651 Haoyang Li, Liang Wang, Chao Wang, Jing Jiang, Yan Peng, and Guodong Long. Dpc: Dual-prompt
 652 collaboration for tuning vision-language models. In *Proceedings of the IEEE/CVF Conference on*
 653 *Computer Vision and Pattern Recognition (CVPR)*, June 2025a. URL <https://arxiv.org/abs/2503.13443>. arXiv preprint arXiv:2503.13443.

654

655 Zheng Li, Yibing Song, Ming-Ming Cheng, Xiang Li, and Jian Yang. Advancing textual prompt
 656 learning with anchored attributes. In *Proceedings of the IEEE/CVF International Conference*
 657 *on Computer Vision (ICCV)*, 2025b. URL <https://iccv.thecvf.com/Conferences/2025/AcceptedPapers>. Accepted (Poster).

658

659 Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models
 660 on manifolds. In *International Conference on Learning Representations*, 2022a. URL <https://openreview.net/forum?id=P1KWVd2yBkY>.

661

662

663 Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional visual
 664 generation with composable diffusion models. In *Computer Vision–ECCV 2022: 17th European*
 665 *Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XVII*, pp. 423–439. Springer,
 666 2022b.

667

668 Nan Liu, Yilun Du, Shuang Li, Joshua B. Tenenbaum, and Antonio Torralba. Unsupervised composi-
 669 tional concepts discovery with text-to-image generative models. In *Proceedings of the IEEE/CVF*
 670 *International Conference on Computer Vision (ICCV)*, pp. 2085–2095, October 2023.

671

672 Michael Luo, Justin Wong, Brandon Trabucco, Yanping Huang, Joseph E. Gonzalez, Zhifeng Chen,
 673 Ruslan Salakhutdinov, and Ion Stoica. Stylus: Automatic adapter selection for diffusion models,
 674 2024.

675

676 Xiyang Luo, Michael Goebel, Elnaz Barshan, and Feng Yang. Leca: A learned approach for efficient
 677 cover-agnostic watermarking, 2022.

678

679 Colin McDiarmid. On the method of bounded differences. In Johannes Siemons (ed.), *Surveys in*
 680 *Combinatorics*, volume 141, pp. 148–188. Cambridge University Press, 1989.

681

682 Elvis Nava, Seijin Kobayashi, Yifei Yin, Robert K. Katzschmann, and Benjamin F Grawe. Meta-
 683 learning via classifier(-free) guidance. In *Sixth Workshop on Meta-Learning at the Conference on*
 684 *Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=fY5xpJszW2->.

685

686 William Peebles, Ilija Radosavovic, Tim Brooks, Alexei Efros, and Jitendra Malik. Learning to learn
 687 with generative models of neural network checkpoints. *arXiv preprint arXiv:2209.12892*, 2022.

688

689 A. Radford, J. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
 690 J. Clark, et al. Learning transferable visual models from natural language supervision. In
 691 *International conference on machine learning*, pp. 8748–8763, 2021.

692

693 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 694 models are unsupervised multitask learners. *OpenAI*, 2019.

695

696 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
 697 generalize to imagenet? In *International Conference on Machine Learning*, 2019. URL <https://api.semanticscholar.org/CorpusID:67855879>.

698

699 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 700 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Confer-
 701 ence on Computer Vision and Pattern Recognition*, pp. 10684–10695, 2022.

702

703 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 704 image segmentation. In *Medical Image Computing and Computer-Assisted Intervention–MICCAI*
 705 *2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III*
 706 *18*, pp. 234–241. Springer, 2015.

702 Shuvendu Roy and Ali Etemad. Consistency-guided prompt learning for vision-language models. In
 703 *ICLR*, 2024.

704

705 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 706 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. *CVPR*,
 707 2023.

708 Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. AutoPrompt:
 709 Eliciting knowledge from language models with automatically generated prompts. In *Empirical
 710 Methods in Natural Language Processing (EMNLP)*, 2020.

711 Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learn-
 712 ing. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 4077–
 713 4087. Curran Associates, Inc., 2017. URL <https://papers.nips.cc/paper/6996-prototypical-networks-for-few-shot-learning.pdf>.

714

715 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 716 learning using nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.), *Proceedings
 717 of the 32nd International Conference on Machine Learning*, volume 37 of *Proceedings of Machine
 718 Learning Research*, pp. 2256–2265, Lille, France, 07–09 Jul 2015. PMLR.

719

720 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 721 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint
 722 arXiv:2011.13456*, 2020.

723

724 Deepak Sridhar and Nuno Vasconcelos. Prompt sliders for fine-grained control, editing and erasing
 725 of concepts in diffusion models. In *In Proceedings of the IEEE/CVF European Conference on
 726 Computer Vision Workshops*, 2024.

727

728 Alexandre B. Tsybakov. *Introduction to Nonparametric Estimation*. Springer Series in Statistics.
 Springer, 2008.

729

730 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 731 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing
 732 systems*, 30, 2017.

733

734 Pascal Vincent. A connection between score matching and denoising autoencoders. *Neural Compu-
 735 tation*, 23(7):1661–1674, 2011.

736

737 Haohan Wang, Songwei Ge, Eric P. Xing, and Zachary Chase Lipton. Learning robust global
 738 representations by penalizing local predictive power. In *Neural Information Processing Systems*,
 739 2019. URL <https://api.semanticscholar.org/CorpusID:173188134>.

740

741 Zihao Wang, Lin Gui, Jeffrey Negrea, and Victor Veitch. Concept algebra for (score-based) text-
 742 controlled generative models. In *Thirty-seventh Conference on Neural Information Processing
 743 Systems*, 2023. URL <https://openreview.net/forum?id=SG1rCuwdsB>.

744

745 Tz-Ying Wu, Chih-Hui Ho, and Nuno Vasconcelos. ProTeCt: Prompt Tuning for Taxonomic Open
 746 Set Classification . In *2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition
 747 (CVPR)*, pp. 16531–16540, Los Alamitos, CA, USA, June 2024. IEEE Computer Society. doi:
 748 10.1109/CVPR52733.2024.01564. URL <https://doi.ieee.org/10.1109/CVPR52733.2024.01564>.

749

750 Lingxiao Yang, Ruyuan Zhang, Yanchen Wang, and Xiaohua Xie. Mma: Multi-modal adapter for
 751 vision-language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 752 Pattern Recognition (CVPR)*, pp. 23826–23837. IEEE/CVF, 2024.

753

754 Ge Yuan, Xiaodong Cun, Yong Zhang, Maomao Li, Chenyang Qi, Xintao Wang, Ying Shan,
 755 and Huicheng Zheng. Inserting anybody in diffusion models via celeb basis. *arXiv preprint
 756 arXiv:2306.00926*, 2023.

757

758 Baoquan Zhang, Chuyao Luo, Demin Yu, Huiwei Lin, Xutao Li, Yunming Ye, and Bowen Zhang.
 759 Metadiff: Meta-learning with conditional diffusion for few-shot learning, 2024. URL <https://arxiv.org/abs/2307.16424>.

756 Lvmi Zhang and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models.
757 *ICCV*, 2023.

758 Andrey Zhmoginov, Mark Sandler, and Max Vladymyrov. Hypertransformer: Model generation for
759 supervised and semi-supervised few-shot learning. In *International Conference on Machine Learn-*
760 *ing*, 2022. URL <https://api.semanticscholar.org/CorpusID:245877593>.

761 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
762 vision-language models. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*
(CVPR), 2022a.

763 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
764 language models. *International Journal of Computer Vision (IJCV)*, 2022b.

765 Tingrui Zhou. <https://github.com/p1atdev/leco>, 2023. Github.

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 **A APPENDIX**
811812 **A.1 THEORETICAL ANALYSIS**
813

814 Let \mathcal{C} denote a distribution over tasks or concepts $c \sim \mathcal{C}$. For each concept c , we assume a textual
815 description $y(c)$ (e.g., “a personalization prompt for Jennifer Aniston”), a downstream task with loss
816 $\mathcal{L}_{\text{task}}(S; c)$ that evaluates the performance of a candidate prompt S in prompt space \mathcal{P} when applied
817 to a frozen foundation model F , and a repository \mathcal{R} of exemplar prompts $S(c)$ obtained from existing
818 prompt-learning techniques.

819 Our objective in this section is to bound the *expected downstream loss* when sampling prompts from
820 the pretrained generator:

$$821 \quad 822 \quad \mathcal{J}_{\text{pre}}(\theta) := \mathbb{E}_{c \sim \mathcal{C}} \left[\mathbb{E}_{S \sim p_{\theta}(\cdot | y(c))} [\mathcal{L}_{\text{task}}(S; c)] \right].$$

824 **High-level intuition.** When the trained diffusion model $p_{\theta}(\cdot | y)$ closely matches the repository/data
825 distribution $p_{\text{data}}(\cdot | y)$ in distributional distance, the expected task loss under p_{θ} is close to the
826 expected *repository* task loss under p_{data} . If the repository was constructed to contain useful prompts
827 for downstream tasks (i.e., p_{data} has low expected task loss), then a small distributional discrepancy
828 implies low expected task loss for p_{θ} as well. We make this statement precise with the following
829 bounds.

830 **A.1.1 DISTRIBUTIONAL DISCREPANCY BOUND**
831

832 We begin with a straightforward decomposition and use standard total-variation and Pinsker inequalities
833 (Cover & Thomas, 2006; Tsybakov, 2008).

834 **Proposition 1** (Distributional discrepancy bound). *Let $p_{\text{data}}(\cdot | y)$ and $p_{\theta}(\cdot | y)$ be two distributions
835 on prompt space \mathcal{P} for a fixed condition y . Assume the task loss $\mathcal{L}_{\text{task}}(S)$ is bounded in $[0, L_{\max}]$.
836 Then*

$$837 \quad 838 \quad \left| \mathbb{E}_{S \sim p_{\theta}} [\mathcal{L}_{\text{task}}(S)] - \mathbb{E}_{S \sim p_{\text{data}}} [\mathcal{L}_{\text{task}}(S)] \right| \leq 2L_{\max} \text{TV}(p_{\theta}, p_{\text{data}}), \quad (6)$$

839 and by Pinsker’s inequality,

$$840 \quad 841 \quad \text{TV}(p_{\theta}, p_{\text{data}}) \leq \sqrt{\frac{1}{2} \text{KL}(p_{\text{data}} \| p_{\theta})}. \quad (7)$$

842 Consequently,

$$843 \quad 844 \quad \mathbb{E}_{S \sim p_{\theta}} [\mathcal{L}_{\text{task}}(S)] \leq \mathbb{E}_{S \sim p_{\text{data}}} [\mathcal{L}_{\text{task}}(S)] + L_{\max} \sqrt{2 \text{KL}(p_{\text{data}} \| p_{\theta})}. \quad (8)$$

845 *Proof.* Let $\ell(S) = \mathcal{L}_{\text{task}}(S)$ and denote $\Delta := \mathbb{E}_{p_{\theta}} [\ell] - \mathbb{E}_{p_{\text{data}}} [\ell]$. By the definition of total variation
846 (and the fact that $0 \leq \ell \leq L_{\max}$),

$$847 \quad 848 \quad |\Delta| = \left| \int \ell(S) (p_{\theta} - p_{\text{data}})(dS) \right| \leq \int |\ell(S)| |p_{\theta} - p_{\text{data}}|(dS) \leq L_{\max} \int |p_{\theta} - p_{\text{data}}|(dS).$$

849 By definition $\text{TV}(p_{\theta}, p_{\text{data}}) = \frac{1}{2} \int |p_{\theta} - p_{\text{data}}|$, hence equation 6 holds.

850 Pinsker’s inequality (see e.g. (Cover & Thomas, 2006)) gives equation 7. Combining the two
851 inequalities yields equation 8. \square

852 **Remarks.** Inequality equation 8 reduces expected downstream loss under the model to two terms:
853 the expected loss of the repository distribution (which is a function of data collection quality) and the
854 KL divergence between the dataset distribution and the pretrained generator. The latter is controlled
855 by how well the denoiser is trained (see next subsection).

856 **A.1.2 RELATING DENOISING LOSS TO MODEL-DATA KL**
857

858 We now recall a standard link between the denoising objective used in DDPMs and a divergence
859 between the model and data distributions (see, e.g., (Vincent, 2011; Song et al., 2020)). Under
860 standard DDPM assumptions and appropriate variance schedule, minimizing the simplified denoising

loss equation 2 is equivalent (up to constants and time discretization effects) to score matching / denoising score-matching which estimates the score function $\nabla_x \log p_{\text{data}}(x)$. A well-trained denoiser implies an accurate score estimator, which in turn implies a small KL divergence between the model and data distributions in x_0 -space (the space of clean prompts). Formally, one can show:

Lemma 1 (Denoising loss controls KL (informal)). *Under the standard DDPM/score-matching correspondence and mild regularity conditions, if the denoising risk satisfies*

$$\mathcal{L}_{\text{denoise}}(\theta) \leq \varepsilon,$$

then the KL divergence between $p_{\text{data}}(x_0 | y)$ and $p_{\theta}(x_0 | y)$ admits the bound

$$\text{KL}(p_{\text{data}}(\cdot | y) \| p_{\theta}(\cdot | y)) \leq C \varepsilon + o(1),$$

where $C > 0$ is a constant that depends on the variance schedule, the discretization, and model parametrization; the $o(1)$ term vanishes as the diffusion discretization becomes finer.

Remarks. The lemma is qualitative: precise constants follow from score-matching and likelihood bounds in the DDPM literature (e.g., (Ho et al., 2020b; Song et al., 2020)). The key message is that a small denoising loss implies a small divergence between the learned and data distributions.

Combining Lemma 1 with Proposition 1 yields a bound of the form

$$\mathbb{E}_{S \sim p_{\theta}}[\mathcal{L}_{\text{task}}(S)] \leq \mathbb{E}_{S \sim p_{\text{data}}}[\mathcal{L}_{\text{task}}(S)] + L_{\max} \sqrt{2C\varepsilon} + o(1).$$

A.1.3 CONCENTRATION FROM FINITE REPOSITORY

So far we have related the model expectation to the (population) data distribution. In practice we only train on finite \mathcal{R} with n samples per condition y . Let \hat{p}_{data} denote the empirical distribution formed by the repository. By Hoeffding's inequality (or McDiarmid) (Hoeffding, 1963; McDiarmid, 1989), with probability at least $1 - \delta$ over the draw of the repository,

$$\left| \mathbb{E}_{S \sim \hat{p}_{\text{data}}}[\mathcal{L}_{\text{task}}(S)] - \mathbb{E}_{S \sim p_{\text{data}}}[\mathcal{L}_{\text{task}}(S)] \right| \leq L_{\max} \sqrt{\frac{\log(2/\delta)}{2n}}. \quad (9)$$

A.1.4 DMP PERFORMANCE GUARANTEE

Combining the above pieces yields the following performance guarantee for DMP.

Proposition 2 (DMP performance guarantee). *Assume the denoising loss satisfies $\mathcal{L}_{\text{denoise}}(\theta) \leq \varepsilon$ and the repository contains n i.i.d. prompts for the condition y . Then with probability at least $1 - \delta$ over the repository sample,*

$$\begin{aligned} \mathbb{E}_{S \sim p_{\theta}(\cdot | y)}[\mathcal{L}_{\text{task}}(S)] &\leq \mathbb{E}_{S \sim \hat{p}_{\text{data}}(\cdot | y)}[\mathcal{L}_{\text{task}}(S)] \\ &\quad + L_{\max} \sqrt{2C\varepsilon} + L_{\max} \sqrt{\frac{\log(2/\delta)}{2n}} + o(1), \end{aligned} \quad (10)$$

where C is the constant from Lemma 1 and the $o(1)$ term accounts for discretization error in the diffusion approximation.

Proof. Start from Proposition 1 applied to p_{θ} and p_{data} :

$$\mathbb{E}_{p_{\theta}}[\ell] \leq \mathbb{E}_{p_{\text{data}}}[\ell] + 2L_{\max} \sqrt{\frac{1}{2} \text{KL}(p_{\text{data}} \| p_{\theta})}.$$

Apply Lemma 1 to bound the KL by $C\varepsilon + o(1)$; hence

$$\mathbb{E}_{p_{\theta}}[\ell] \leq \mathbb{E}_{p_{\text{data}}}[\ell] + L_{\max} \sqrt{2C\varepsilon} + o(1).$$

Now replace the population expectation $\mathbb{E}_{p_{\text{data}}}[\ell]$ by the empirical expectation $\mathbb{E}_{\hat{p}_{\text{data}}}[\ell]$ and apply Proposition 9 (Hoeffding) which with probability at least $1 - \delta$ yields the stated sampling error term $L_{\max} \sqrt{\frac{\log(2/\delta)}{2n}}$. Combining these terms gives equation 10. \square

Interpretation. Bound equation 10 decomposes the expected task loss under the pretrained generator into (i) the empirical repository loss (quality of collected prompts), (ii) an approximation term controlled by the denoising risk (how well DMP models the repository), and (iii) a sampling term that vanishes as the repository size n grows.

918
919
920
921
922
Table 9: **Conceptual differences between DMP and prior prompt learning methods.** Unlike prior works
923 that refine prompts using data for a specific task or example, DMP treats prompts as a *distribution* and trains
924 a diffusion meta-model that amortizes prompt generation across many tasks and repositories. DMP does not
925 require access to the original data used to train the prompts (L159–L161) and supports one-shot sampling,
926 composition, and negative prompting without per-task optimization.

Method	Task Data/ Loss Free	Supports Multiple Tasks	Learns across Tasks	Stores Prompts	Core Idea
Stylus / Retrieval-based					
	✓	✗	✓	✓	Searches large repositories; limited generalization.
Diffusion-based Methods					
Prompt Diffusion	✗	✗	✗	✓	Refines prompts for a specific task using data.
Diff-Prompt	✗	✗	✗	✓	Mask-supervised diffusion for a single task.
Neural Network Diffusion	✗	✗	✗	✗	Diffusion to generate model weights for a particular task/dataset (weight-generation).
Conditional LoRA Param Gen.	✗	✓	✓	✗	Diffusion/hypernetwork that generates LoRA adapters conditioned on task (Cond P-Diff / CondLoRA).
DiffLoRA	✗	✓	✓	✗	Diffusion model predicts personalized low-rank (LoRA) weights at inference (zero-shot personalization).
Prompt Learning Methods					
Hierarchical Variational TTP	✗	✗	✗	✓	Test-time variational prompt generator relying on task-specific data features.
Language-Aware Soft Prompting (LASP)	✗	✗	✗	✓	Text-conditioned optimization for soft prompts, task-specific.
Consistency-guided PL (CoPrompt)	✗	✗	✗	✓	Consistency loss improves prompt robustness; task-specific.
PromptKD	✗	✗	✗	✓	Distills prompts from teacher to student in unsupervised setting; task-specific.
Dual-Prompt Collaboration (DPC)	✗	✗	✗	✓	Dual-prompt collaboration requiring tuned prompt parameters; task-specific.
Bayesian Prompt Learning (BPL)	✗	✗	✗	✓	Bayesian uncertainty modeling over task-specific prompts.
Patch-Prompt Aligned Bayesian Prompt Tuning	✗	✗	✗	✓	Bayesian hierarchical prompt generation (label-specific stochastic prompts); per-task tuning.
Meta-Learning Methods					
Prompt Learning via Meta-Regularization (ProMetaR)	✗	✓	✓	✓	Meta-regularization to improve prompt generalization across tasks; requires training data.
Gradient-Regulated Meta-Prompt (GRAM)	✗	✓	✓	✓	Meta-learned prompt init + gradient regulator for few-shot cross-domain generalization.
AWT (Augment, Weight, Transport)	✗	✓	✗	✗	Augment inputs, dynamically weight them, and use optimal transport to adapt VLMs without extra training.
PRewrite (Prompt Rewriting w/ RL)	✗	✓	✗	✓	LLM-based prompt rewriter trained with RL to improve downstream task performance.
DMP (Ours)	✓	✓	✓	✗	Learns a prompt distribution; one-shot sampling, composition, negative prompts.

A.2 RELATION TO PRIOR METHODS

953 Table 9 illustrates how DMP differs from prior prompt-learning approaches across key axes such as
954 requiring task-specific data or loss, supporting multiple tasks in a zero-shot manner, learning across
955 multiple tasks and the need for storage of prompts. Classical prompt learning techniques are *task*
956 and *model specific*, and require *task specific data and losses*. DMP instead learns the distribution of
957 prompts from a prompt repository (produced by these prompt learning techniques). It can then be
958 used to sample prompts for *many tasks*. Note that *DMP is not task specific and does not require task*
959 *specific losses or data, just a prompt repository*. This makes DMP as a general prompt generator, free
960 from the data and optimization constraints that characterize prior prompt-learning techniques. We
961 show that, in many cases, DMP sampled prompts even outperform prompt learning prompts. For
962 example, the classification results of Table 11 shows that DMP outperforms the base method on the
963 unseen classes of the very same dataset, despite never accessing a single image.

A.3 DMP FOR CLASSIFICATION

966
967 **Generalization to Novel Tasks.** We assessed the compositionality of DMP in Table 8, motivated
968 by our hypothesis that conditioning on class label names naturally facilitates compositional general-
969 ization. We evaluated this for CoOp prompts where we showed that DMPCoOp achieved consistent
970 and often large gains as noted below:

971 All split: +4.3% average improvement, with top combination pairs showing very large gains (e.g.,
972 EuroSAT & OxfordFlowers: 35.5 to 61.2, +25.7).

Table 10: Comparison of TAC vs DMPTAC across All, Base, and New splits for 55 dataset combination pairs.

Split	Avg TAC (%)	Avg DMPTAC (%)	Avg Gain (%)	Top-3 Pairs: TAC → DMPTAC, Gain		
All	63.2	63.3	0.1	OxfordFlowers&OxfordPets	78.4	→80.2 (g=1.8)
				ImageNet&OxfordFlowers	51.4	→53.1 (g=1.7)
				OxfordFlowers&SUN397	48.2	→49.9 (g=1.7)
Base	69.6	69.8	0.2	OxfordFlowers&OxfordPets	85.0	→88.0 (g=3.0)
				FGVCAircraft&SUN397	54.6	→56.7 (g=2.1)
				SUN397&StanfordCars	65.1	→66.8 (g=1.7)
New	69.7	70.2	0.4	OxfordFlowers&OxfordPets	79.6	→82.6 (g=3.0)
				OxfordFlowers&SUN397	57.9	→60.2 (g=2.3)
				EuroSAT&FGVCAircraft	51.1	→53.3 (g=2.2)

Base split: +4.7% average improvement (e.g., ImageNet & Flowers: 32.6 to 70.0, +37.4).

New split: +3.3% average improvement (e.g., Pets & SUN397: 47.6 to 69.7, +22.1).

We now extend this evaluation to TAC prompts. Table 10 shows the results of this experiment. For TAC-based models, as noted in the paper, it includes deeper prompt components such as projection and head matrices, which DMP does not model as DMP only synthesizes the shallow text prompts. Despite this structural limitation, DMPTAC still achieves positive improvements (e.g., +0.4% average in new split for 55 dataset combination pairs) and large gains on individual pairs (e.g., Flowers & Pets with +3.0% gain).

This demonstrates that even under simple, synthetic identifiers, DMP enhances generalization and maintains strong performance in multi-dataset settings.

Base to New generalization. Figure 9 shows the zoomed version of the DMP framework for ease of viewing. Table 11 shows the complete results of DMPClass for CoOp, CoCoOp, CoPrompt, Maple,

Figure 9: **(Zoomed Version Left:** Diffusion Meta-Prompt framework for Text-to-Prompt synthesis. **Right:** Prompt Variation synthesis conditioned on learned Textual Inversion Prompts.

and TAC methods over the baselines across 11 datasets for Base-to-novel class generalization setting. The reported results are the average over three seed runs. **DMP consistently improves average accuracy across three independent random seeds on both all and novel classes**, outperforming existing prompt learning methods. Specifically, DMP yields gains of **+1.3% (All) and +3.0% (New)** over CoOp, **+0.6%/+0.8%** over CoPrompt, **+0.1%/+1.5%** over CoCoOp, **+0.4%/+0.8%** over MaPLe, and **+0.4%/+0.4%** over TAC. Importantly, these improvements are achieved while tuning only the text prompts, leaving projection matrices and model weights fixed.

The benefits of DMP are especially pronounced on datasets underrepresented in CLIP pretraining, where adaptation is more challenging. On **EuroSAT**, DMP achieves relative gains of **+7.5%/ $+2.8\%$ / $+1.0\%$ / $+5.1\%$ / $+1.3\%$** over CoOp, CoPrompt, CoCoOp, MaPLe, and TAC, respectively. On **DTD**, the improvements are **+4.0%/ $+4.5\%$ / $+3.7\%$ / $+1.1\%$ / $+0.9\%$** , and on **FGVC**, they are **+4.5%/ $+0.8\%$ / $+1.9\%$ / $+0.9\%$ / $+0.4\%$** . These results highlight that DMP not only delivers consistent gains across methods and datasets but also shows **stronger generalization on novel and less common domains**, demonstrating its superiority as a prompt learning approach.

Figure 11 and Figure 12 show the zoomed version (for ease of viewing) of cross-dataset and cross-task generalization results of DMPCoOp prompts over the baseline CoOp prompts, respectively.

Table 11: Base2new generalization per dataset: performance for All, Base, and New classes, and HM (Harmonic Mean). The results reported are the average over three seed runs. * denotes our implementation as the code is not publicly available.

Method	(a) Average				(b) ImageNet				(c) Caltech101				(d) OxfordPets			
	All	Base	New	HM	All	Base	New	HM	All	Base	New	HM	All	Base	New	HM
VAE (Kingma & Welling, 2014)	58.6	62.7	68.3	65.0	57.0	64.1	57.8	60.8	89.1	91.7	94.3	92.9	90.1	92.0	97.1	94.5
Top-1 Retrieval (Luo et al., 2024)	67.5	80.7	72.8	76.5	50.5	78.4	47.9	59.5	37.3	76.9	46.4	57.9	69.9	85.8	66.8	75.1
Transformer (Vaswani et al., 2017)	68.3	82.3	69.4	75.3	68.1	76.4	66.8	71.3	94.8	98.2	94.8	96.5	89.9	94.6	95.4	95.0
GPT-2 (Radford et al., 2019)	68.1	81.8	69.1	74.9	68.0	76.2	66.8	71.2	94.8	98.3	95.0	96.6	90.1	94.7	95.9	95.3
Prompt Diffusion* (Du et al., 2024)	67.0	69.9	73.0	71.4	54.7	60.6	56.4	58.4	91.3	94.4	93.2	93.8	92.3	94.3	97.5	95.9
CoOp (Zhou et al., 2022b)	68.8	82.3	70.4	75.9	68.5	76.5	67.2	71.5	94.8	98.3	95.0	96.6	90.1	94.7	95.9	95.3
DMPCoOp	70.1	80.3	73.4	76.5	68.7	75.4	68.8	72.0	94.8	98.3	95.3	96.8	91.7	95.4	97.3	96.3
Δ	+1.3	-2.0	+3.0	+0.6	+0.2	-1.1	+1.6	+0.5	0.0	0.0	+0.3	+0.2	+1.6	+0.7	+1.4	+1.0
CoCoOp (Zhou et al., 2022a)	70.1	80.7	72.5	76.0	69.9	75.8	70.8	73.2	93.7	97.8	93.2	95.4	91.2	95.1	97.6	96.3
DMPCoCoOp	70.2	79.5	74.0	76.4	70.1	75.8	71.2	73.4	93.8	97.7	93.7	95.7	92.1	95.0	97.8	96.4
Δ	+0.1	-1.2	+1.5	+0.4	+0.2	0.0	+0.4	+0.2	+0.1	-0.1	+0.5	+0.3	+0.9	-0.1	+0.2	+0.1
CoPrompt (Roy & Etemad, 2024)	72.3	83.1	74.6	78.3	70.7	76.7	71.4	73.9	95.8	98.7	95.3	97.0	91.1	95.3	97.0	96.1
DMPCoPrompt	72.9	82.5	75.4	78.5	70.7	76.6	71.5	73.9	95.7	98.7	95.4	97.0	91.6	95.2	97.2	96.2
Δ	+0.6	-0.6	+0.8	+0.2	0.0	-0.1	+0.1	0.0	-0.1	0.0	+0.1	0.0	+0.5	-0.1	+0.2	+0.1
Maple (khattak et al., 2023)	72.0	82.2	75.1	78.2	70.2	76.7	70.5	73.5	94.5	98.0	94.3	96.1	92.3	95.4	97.8	96.6
DMMPMaple	72.4	82.0	75.9	78.6	70.3	76.8	70.6	73.6	94.8	98.0	95.5	96.7	92.3	95.4	97.6	96.5
Δ	+0.4	-0.2	+0.8	+0.4	+0.1	+0.1	+0.1	+0.1	+0.3	0.0	+1.2	+0.6	0.0	0.0	-0.2	-0.1
TAC (Hao et al., 2025)	74.6	85.2	77.1	80.8	71.3	78.5	71.0	74.6	95.2	98.6	95.0	96.7	93.1	96.0	98.0	97.0
DMPTAC	75.0	85.1	77.5	80.9	71.4	78.5	71.2	74.6	95.2	98.6	95.0	96.8	93.1	95.9	98.2	97.0
Δ	+0.4	-0.1	+0.4	+0.1	+0.1	0.0	+0.2	0.0	0.0	0.0	0.0	+0.1	0.0	-0.1	+0.2	0.0
	(e) StanfordCars				(f) Flowers102				(g) Food101				(h) FGVC Aircraft			
Method	All	Base	New	HM	All	Base	New	HM	All	Base	New	HM	All	Base	New	HM
CoOp (Zhou et al., 2022b)	68.7	76.7	68.2	72.2	74.5	96.7	68.3	80.1	84.9	90.0	89.9	89.9	25.1	36.9	27.1	31.2
DMPCoOp	69.3	74.5	72.0	73.2	75.6	93.4	72.2	81.4	86.4	89.6	89.9	89.7	26.3	35.7	31.6	33.5
Δ	+0.6	-2.2	+3.8	+1.0	+1.1	-3.3	+3.9	+1.3	+1.5	-0.4	0.0	-0.2	+1.2	-1.2	+4.5	+2.3
CoCoOp (Zhou et al., 2022a)	68.9	71.2	73.2	72.2	74.4	94.7	70.1	80.6	85.8	90.6	91.3	90.9	26.0	35.5	32.1	33.7
DMPCoCoOp	68.6	69.9	74.4	72.1	74.6	90.6	72.8	80.8	86.6	90.7	91.5	91.1	25.9	32.6	34.0	33.2
Δ	-0.3	-1.3	+1.2	-0.1	+0.2	-4.1	+2.7	+0.2	+0.8	+0.1	+0.2	+0.2	-0.1	-2.9	+1.9	-0.5
CoPrompt (Roy & Etemad, 2024)	68.3	74.0	71.0	72.5	81.4	96.5	75.8	84.9	86.5	90.3	91.6	90.9	28.9	37.5	35.5	36.4
DMPCoPrompt	68.3	73.9	71.1	72.5	81.5	96.0	76.2	85.0	86.6	90.3	91.7	91.0	28.9	36.3	36.3	36.3
Δ	0.0	-0.1	+0.1	0.0	+0.1	-0.5	+0.4	+0.1	+0.1	0.0	+0.1	+0.1	0.0	-1.2	+0.8	-0.1
Maple (khattak et al., 2023)	69.8	72.9	74.0	73.4	76.9	95.9	72.3	82.5	86.9	90.7	92.1	91.4	28.4	37.5	35.5	36.4
DMMPMaple	69.7	72.7	74.1	73.4	77.5	95.5	73.1	82.8	87.1	90.8	92.1	91.5	28.8	37.0	36.4	36.7
Δ	-0.1	-0.2	+0.1	0.0	+0.6	-0.4	+0.8	+0.3	+0.2	+0.1	0.0	+0.1	+0.4	-0.5	+0.9	+0.3
TAC (Hao et al., 2025)	74.2	81.2	74.8	77.9	81.2	98.0	75.9	85.6	86.9	91.0	91.9	91.4	34.3	45.1	38.0	41.2
DMPTAC	74.2	81.0	74.9	77.8	81.4	98.0	76.1	85.7	86.9	90.9	91.9	91.4	34.2	45.3	38.4	41.5
Δ	0.0	-0.2	+0.1	-0.1	+0.2	0.0	+0.2	+0.1	0.0	-0.1	0.0	0.0	-0.1	+0.2	+0.4	+0.3
	(i) SUN397				(j) DTD				(k) EuroSAT				(l) UCF101			
Method	All	Base	New	HM	All	Base	New	HM	All	Base	New	HM	All	Base	New	HM
CoOp (Zhou et al., 2022b)	67.6	80.8	72.6	76.5	51.9	80.8	51.8	63.1	63.2	90.8	72.9	80.9	67.6	83.4	65.3	73.2
DMPCoOp	67.3	80.4	72.9	76.5	53.7	75.1	55.8	64.0	65.9	85.6	80.7	83.1	71.7	79.6	70.7	74.9
Δ	-0.3	-0.4	+0.3	0.0	+1.8	-5.7	+4.0	+0.9	+2.7	-5.2	+7.8	+2.2	+4.1	-3.8	+5.4	+1.7
CoCoOp (Zhou et al., 2022a)	69.8	79.7	76.6	78.1	52.3	77.5	54.8	64.2	66.0	87.9	65.6	74.9	72.7	82.2	72.1	76.8
DMPCoCoOp	69.5	78.4	77.5	78.0	52.9	75.8	58.5	66.0	65.8	87.2	66.6	75.4	72.5	80.6	76.0	78.2
Δ	-0.3	-1.3	+0.9	-0.1	+0.6	-1.7	+3.7	+1.8	-0.2	-0.7	+1.0	+0.5	-0.2	-1.6	+3.9	+1.4
CoPrompt (Roy & Etemad, 2024)	72.5	82.3	79.6	80.9	56.3	82.1	57.6	67.6	67.1	94.3	66.8	78.0	76.5	86.8	78.7	82.5
DMPCoPrompt	72.6	82.2	79.8	81.0	57.4	80.5	62.1	70.1	70.7	91.1	69.6	78.6	76.5	86.4	78.8	82.4
Δ	+0.1	-0.1	+0.2	+0.1	+1.1	-1.6	+4.5	+2.5	+3.6	-3.2	+2.8	+0.6	0.0	-0.4	+0.1	-0.1
Maple (khattak et al., 2023)	71.2	80.8	78.7	79.7	55.8	80.2	59.2	68.1	72.2	93.7	72.9	81.9	73.8	82.9	78.6	80.7
DMMPMaple	70.9	80.2	78.7	79.4	55.9	79.2	60.3	68.4	74.4	93.1	78.0	84.9	73.6	82.9	78.4	80.6
Δ	-0.3	-0.6	0.0	-0.3	+0.1	-1.0	+1.1	+0.3	+2.2	-0.6	+5.1	+3.0	-0.2	0.0	-0.2	-0.1
TAC (Hao et al., 2025)	73.1	83.6	79.7	81.6	59.1	83.6	62.7	71.6	76.4	94.3	80.2	86.6	78.2	87.2	81.1	84.1
DMPTAC	73.1	83.6	79.9	81.7	59.3	83.3	63.6	72.1	76.7	93.9	81.5	87.2	78.2	87.2	81.4	84.2
Δ	0.0	0.0	+0.2	+0.1	+0.2	-0.3	+0.9	+0.5	+0.3	-0.4	+1.3	+0.6	0.0	0.0	+0.3	+0.1

Table 12 shows the full results of cross-task generalization experiment described in section 4.1. We note that DMPCoOp obtains higher accuracies consistently across both the Mean Treecut Accuracy and Hierarchical Consistency Accuracy metrics on all the datasets considered. Notably, DMPCoOp

Figure 10: **t-SNE visualizations of prompt embeddings.** Each figure shows real prompts (blue) and DMP-generated prompts (orange) with different noise seeds for different datasets: (a) SUN397, (b) FGVC-Aircraft, (c) Oxford Flowers, (d) Stanford Cars. Generated prompts broadly overlap with the real prompt manifolds while exhibiting greater spread, demonstrating both fidelity and diversity across domains.

obtains **+11.4%** and **+5%** improvement on SUN dataset for MTA and HCA respectively. This shows that DMPCoOp prompts are more robust and generalize well beyond the task on which it was trained.

We further provide the results of cross-dataset generalization for TAC model in Table 15, cross-domain experiments in Table 16, and cross-task generalization in Table 17. The gains over baseline TAC are larger for cross-task generalization where DMPTAC prompts obtains **+10% on SUN and +9% on Imagenet-Sketch** datasets for hierarchical classification.

t-SNE visualization. To assess the fidelity and diversity of prompts synthesized by the DMP framework, we conducted an embedding space analysis comparing real prompts from the repository \mathcal{R} with DMP-generated prompts sampled using different random noise seeds. Figure 10 presents a two-dimensional t-SNE projection of both sets of embeddings, with real prompts in blue and generated prompts in orange for SUN397, FGVC, Oxford Flowers and Stanford Cars datasets respectively from left to right.

The visualization reveals that generated prompts broadly overlap with the real prompt manifold, while also exhibiting a greater spread, indicative of higher variability. This suggests that the model captures the underlying structure of prompt space without resorting to memorization, while also producing novel variations.

To quantify these observations, we computed the fraction of a prompt’s 5 nearest neighbors (in embedding space) that share the same class label between real and generated prompts across 11 datasets. On average, 70.7% of generated prompts share the same nearest-neighbor labels as their real counterparts, showing strong semantic alignment between real and generated embeddings while ensuring diversity.

Table 12: Cross-task generalization per dataset: performance for Mean Treecut Accuracy (MTA) (Wu et al., 2024), and Hierarchical Consistency Accuracy (HCA) (Wu et al., 2024).

Method	ImageNet		-V2		-S		-R		-A		SUN397	
	MTA	HCA	MTA	HCA	MTA	HCA	MTA	HCA	MTA	HCA	MTA	HCA
CoOp	40.7	0.8	38.9	0.8	34.4	0.5	57.7	9.9	43.8	4.1	19.0	31.3
DMPCoOp	47.4	2.6	45.0	2.1	40.2	2.0	57.3	18.7	55.5	5.5	30.4	36.3
Δ	+6.7	+1.8	+6.1	+1.3	+5.8	+1.5	-0.4	+8.8	+11.7	+1.3	+11.4	+5.0

Impact of Classifier-Free Guidance (CFG) scales. The performance of DMP with different guidance values is shown in Table 13. The trends show that the average accuracy across all datasets decreases with increasing guidance scales.

Table 13: Comparison with different classifier free guidance scales. Base2new generalization per dataset: performance for All, Base, and New classes, and HM (Harmonic Mean).

Method	(a) Average (scale 4.5)				(b) Average (scale 5.5)				(c) Average (scale 6.5)				(d) Average (scale 7.5)			
	All	Base	New	HM												
DMPCoOp	70.1	80.3	73.4	76.5	69.6	80.3	70.6	76.3	69.6	79.3	70.4	75.0	68.1	79.4	70.1	75.0

Variational Autoencoder Reconstruction. Table 14 shows the reconstruction accuracy of the CoOp prompts for the trained Variational Autoencoder (VAE) across different datasets. The autoencoder reconstructs the prompts almost perfectly with only 0.1% difference on average across all the datasets.

1134 Table 14: Quantitative results of VAE reconstruction: Comparison against CoOp prompts across various datasets.
 1135 The VAE reconstructs the CoOp prompts baseline almost perfectly with only 0.1% difference on average.

Model	ImageNet	Oxford flowers	Oxford pets	Stanford cars	Caltech 101	Food101	FGVC Aircraft	SUN397	DTD	EuroSAT	UCF101	Average
CoOp	68.5	72.6	90.1	68.7	94.8	84.9	25.1	67.6	51.9	58.9	66.2	68.1
Autoencoder	68.5	72.0	89.6	68.6	94.6	85.1	25.0	67.0	52.0	59.5	66.1	68.0
Δ	0.0	-0.6	-0.5	-0.1	-0.2	+0.2	-0.1	-0.6	+0.1	+0.6	-0.1	-0.1

1142 Table 15: Ablation study on Cross-dataset generalization of DMPTAC Imagenet prompts

Model	ImageNet	Oxford flowers	Oxford pets	Stanford cars	Caltech 101	Food101	FGVC Aircraft	SUN397	DTD	EuroSAT	UCF101	Average
TAC	71.3	70.2	90.6	63.9	94.2	84.5	23.9	66.9	45.1	43.0	66.5	65.4
DMPTAC	71.4	71.0	91.0	63.8	94.0	84.7	24.6	67.0	45.8	44.4	66.8	65.9
Δ	+0.1	+0.8	+0.4	-0.1	-0.2	+0.2	+0.7	+0.1	+0.7	+1.4	+0.3	+0.5

1150 A.4 DMP FOR SLIDERS

1151 Figure 15 shows additional qualitative results of slider prompts generated by DMP for the attributes
 1152 "long hair" and "chubby".

1153 Figure 16 presents a qualitative comparison of images generated by Concept Sliders (using the author-
 1154 provided models), Prompt Sliders, and DMP. The results show that Concept Sliders struggle to induce
 1155 the intended attributes, even at higher scales, due to their sensitivity to training hyperparameters, which
 1156 requires careful tuning as noted in (Sridhar & Vasconcelos, 2024). We observe that DMP-generated
 1157 prompts produce images that are qualitatively similar to those from Prompt Sliders. However, the
 1158 original Prompt Sliders method has limitations in maintaining subject identity at higher scales, as
 1159 discussed in (Sridhar & Vasconcelos, 2024). In contrast, DMP—despite being trained with the Prompt
 1160 Sliders embeddings—demonstrates greater robustness, effectively preserving subject identity even at
 1161 relatively higher scales. These result corroborate the results observed in Table 2 of the paper.

1162 Figure 22 illustrates the results of pure negative prompts, where the sliders yield images with attributes
 1163 opposite to the specified concepts, such as shorter hair or a neutral (non-smiling) expression.

1165 A.5 DMP FOR VARIATIONS

1166 **Generalization.** Figure 17 shows images synthesized for the variation prompts generated by DMP-
 1167 Variation model, for a common seed. Note that the variation prompts are conditioned by the Textual
 1168 inversion embedding for the target concept, which is illustrated by a GT image in the figure. The
 1169 figure shows that DMPVariation produces successful variation prompts for general objects as diverse
 1170 as birds and statues *despite being trained only on CelebA-face identities*.

1172 **Qualitative Results.** Figure 18 shows additional qualitative results for variations generated by
 1173 DMPVariation model.

1174 Figure 19 shows the synthesized prompts that produce variations of a person, conditioned on the
 1175 textual inversion embedding of the person. Note that, while all images are synthesized with the same
 1176 SDXL seed, they exhibit a diversity of background scenes, hair patterns, clothing, etc. This is an
 1177 additional benefit of the natural prompt variability of DMP-based personalization: to increase the
 1178 diversity of the synthesized images.

1179 Figure 20 presents qualitative results comparing DMP and TI in generating personalized subject
 1180 images across diverse contexts. The variation prompts produced by DMP demonstrate greater
 1181 robustness and generalization, effectively adapting to different contexts while preserving subject
 1182 identity. In contrast, Textual Inversion tends to overfit to the subject, leading to poor generalization.

1183 Table 16: **Domain generalization accuracy (%)** Table 17: **Cross-task generalization per dataset: performance
 1184 for TAC prompts sampled on ImageNet.**

Method	Source		Target			Average
	ImageNet	-V2	-S	-A	-R	
TAC	71.3	64.6	48.3	48.6	76.6	61.9
DMPTAC	71.4	64.7	48.5	48.8	76.7	62.0

Method	ImageNet	-V2	-S	-R	-A	SUN397
TAC	71.3	34.1	28.3	5.5	36.5	30.0
DMPTAC	71.4	39.6	37.3	5.7	38.9	40.0
Δ	+0.1	+5.5	+9.0	+0.2	+2.4	+10.0

1188 Table 18: Ablation study on Cross-dataset generalization of DMPCoOp Imagenet prompts: Comparison of
 1189 classnames against dataset names as prompt inputs to the DMPCoOp model.

Model	Imagenet	Oxford flowers	Oxford pets	Stanford cars	Caltech 101	Food101	FGVC Aircraft	SUN397	DTD	EuroSAT	UCF101	Average
CoOp	68.5	66.5	88.5	61.9	92.7	84.8	15.2	60.7	40.9	46.9	65.3	62.9
DMPCoOp (Dataset Names)	68.3	65.2	88.0	63.4	92.7	83.9	16.8	62.6	41.0	46.3	66.6	63.2
Δ (Dataset)	-0.2	-1.3	-0.5	+1.5	0.0	-0.9	+1.6	+1.9	+0.1	-0.6	+1.3	+0.3
DMPCoOp (Class Names)	68.7	69.0	89.2	62.4	91.4	85.7	20.5	62.9	40.4	46.2	66.7	63.9
Δ (Class)	+0.2	+2.5	+0.7	+0.5	-1.3	+0.9	+5.3	+2.2	-0.5	-0.7	+1.4	+1.0

1198 Figure 11: **(Zoomed Version) Cross-dataset gener-1199 ation:** Comparison of DMPCoOp against CoOp prompts sampled for ImageNet. DMPCoOp general-1200 izes better than CoOp with a 1% average accuracy gain. baseline with a 5-12% average accuracy gain.

1201 For instance, it completely fails to generate correct images for the Buddha statue and succeeds in
 1202 only a single scenario for the duck and dog subjects. [Table 24 shows the detailed HPSv2 scores for](#)
 1203 [the results presented in Table 6 of the paper.](#)

1204 The observed generalization of DMP beyond its training domain can be explained by two comple-
 1205 mentary principles: (1) Latent Structure of Prompt Space. (2) Distributional Robustness of Diffusion
 1206 Models.

- 1207 1. Prompt embeddings encode semantic concepts in a continuous, compositional latent
 1208 space (Wang et al., 2023). Even though TI is trained on faces, the learned repository
 1209 \mathcal{R} spans a manifold of semantic representations that share structural similarities with other
 1210 concepts (e.g., animal attributes, artistic styles). Diffusion in this space does not memorize
 1211 individual prompts but learns a generative prior over semantic transformations, enabling
 1212 extrapolation to novel concepts.
- 1213 2. Diffusion models trained on corrupted versions of $S(c)$ implicitly learn a score function
 1214 that approximates the gradient of the log data distribution (Song et al., 2020). Since score
 1215 matching enforces local smoothness in high-dimensional space, the denoiser learns to
 1216 interpolate meaningfully between prompt embeddings, even outside the training distribution.
 1217 This mechanism explains why the model can adaptively synthesize coherent prompts for
 1218 unseen categories.

1219 Together, these mechanisms suggest that DMP does not merely replicate memorized prompts but
 1220 learns a domain-agnostic generative prior over prompt space, providing a rationale for its robust
 1221 generalization.

1222 **Identity Composition.** Figure 21 demonstrates additional results of combining two identities,
 1223 displayed on the left, using DMPMulti model to synthesize identity prompts with Eq. 8. The
 1224 synthesized identity clearly incorporates prominent features from both original faces, such as the
 1225 nose and chin, resulting in a cohesive blend of attributes.

1226 **Subject Composition.** Figure 23 illustrates the ability of DMPVariation to generate prompts for
 1227 combined concepts. In this examples, the prompts elicit the downstream model to produce images
 1228 that combine the two subjects displayed on the left. This is done by sampling subject prompts using
 1229 the DMPVariation model and Eq. (3). These are then fed to the SDXL model to produce the images
 1230 on the right, for increasing guidance scale η . The synthesized subject clearly incorporates prominent
 1231 features from both, such as the nose and chin, resulting in a cohesive blend of attributes.

1250
1251 Figure 13: **Prompt Sliders** images synthesized with sliders sampled by DMPSlider when prompted for age.
1252 The prompt used for the SD-XL model is *"A photo of a beautiful man"*.

1260
1261 Figure 14: **Prompt Sliders** images synthesized with sliders sampled by DMPSlider when prompted for smiling.
1262 The prompt used for the SD-XL model is *"A photo of a beautiful man"*.

1268
1269 Figure 15: **Qualitative results of DMPSlider prompts** depicting the concepts “long hair” and “chubby”. The
1270 prompts used for the SD-XL model for the images shown from left to right are as follows. *“A closeup photo of a*
1271 *person”*, *“Professional headshot of a person”*.

1272 **Interpreting Variation Prompts.** We computed the top-5 nearest-neighbor tokens in the CLIP vocabulary
1273 for the prompts sampled by DMPVariation model conditioned on a Textual Inversion embedding
1274 of a subject. For a random subject not in the training dataset, the TI prompt embedding returns
1275 `<w>karanjohar</w>`, `<w>conclude</w>`, `<w>leaked</w>`, `<w>prohibition</w>`,
1276 `<w>vijaysethu</w>`. The DMPVariation prompt returns `<w>karanjohar</w>`,
1277 `<w>pandoramusic</w>`, `episo`, `<w>leaked</w>`, `<w>refriger</w>`. It overlaps with
1278 two words out of five showing that the prompt is indeed a variation of the conditioned Textual
1279 Inversion prompt. Extending this analysis over 66 unseen identities, we found an average of **2.7**
1280 **common words in the top-5 and 5.6 in the top-10** nearest-neighbor tokens, demonstrating that the
1281 DMP model effectively generalizes while retaining some of the subject-specific characteristics.

1282 Table 19: **Prompts used for evaluating generalization.** Prompts were designed to explore style and concept
1283 variations of the subject `sk`s and borrowed from DreamBooth (Ruiz et al., 2023).

Prompts			
a <code>sk</code> s on the beach	<code>sk</code> s flower arrangement	<code>sk</code> s stained glass window	<code>sk</code> s as a witcher
A photo of two <code>sk</code> s on a boat	<code>sk</code> s Funko Pop	<code>sk</code> s latte art	A cubism painting of <code>sk</code> s person
Manga drawing of <code>sk</code> s	Pointillism painting of <code>sk</code> s	Ukiyo-e painting of <code>sk</code> s	A <code>sk</code> s as a knight in plate armor
<code>sk</code> s as a knight in plate	Banksy art of <code>sk</code> s	<code>sk</code> s piloting a fighter jet	Greek sculpture of <code>sk</code> s
Fauvism painting of <code>sk</code> s	Cave mural depicting <code>sk</code> s	<code>sk</code> s by Andy Warhol	<code>sk</code> s in the style of Archer
Colorful graffiti of <code>sk</code> s	<code>sk</code> s as Ziggy Stardust	<code>sk</code> s in a comic book	Watercolor painting of <code>sk</code> s
a sand sculpture of <code>sk</code> s	<code>sk</code> s in a Santa hat	<code>sk</code> s as a wizard	a photo of <code>sk</code> s

A.6 ABLATION STUDIES

A.6.1 ABLATION STUDY ON ALTERNATIVE METHODS FOR META-PROMPTING.

The first two rows of Table 11 show the ablation study of using Transformer and GPT-2 for modeling the distribution of CoOp prompts across the 11 datasets. We include the Transformer as a non-

Figure 16: **Qualitative comparison** of images synthesized with baseline prompt sliders and concept sliders against DMPSlider. The prompt used for the SD-XL model is "A photo of a girl" for the concept "curlyhair".

Figure 17: **Generalization of DMPVariations model.** Left: groundtruth images. Second: images generated by SD for the original TI prompts and the last two columns are the images for variation prompts sampled by DMP. See Fig. 18 for additional results.

generative baseline and GPT-2 as an autoregressive generative model. For the Transformer, we use a pretrained RoBERTa-Base model, which is finetuned using LoRA to predict prompt embeddings from text conditions. A linear layer is added on top of the final layer to produce output embeddings of the target dimension (2048 for CoOp/CoPrompt), and training is done with MSE loss. The table shows that transformer tends to overfit to the base classes as it is able to closely match the performance of the baseline CoOp on the base classes while under-performing on the novel classes leading to a decrease in the overall performance. For GPT-2, we discretize the continuous prompt embeddings by

Figure 18: **Additional Qualitative results of generalization of DMPVariation model.** Left: groundtruth images. Second: images generated by SD for the original TI prompts and the last two columns are the images for variation prompts sampled by DMP.

Figure 19: **DMP Variations of Textual Inversion (TI) Prompts:** The leftmost image is the real groundtruth, the second is generated by TI, and the rest are DMP variations (each image represents a new identity) conditioned on the TI embedding. All images are generated with a fixed seed to the stable diffusion model. The FaceID similarity to the groundtruth image is listed on top of each image.

identifying their top-5 nearest tokens in the CLIP embedding space. These tokens are then converted back to text and used to finetune a pretrained GPT-2 model with LoRA, trained to predict the top-5 tokens using standard cross-entropy loss. The model is conditioned on the same text inputs as used in the diffusion counterpart. Although each text condition has 40 associated prompts from different initializations (as described in Section 3.1), the resulting tokens after discretization are almost identical across seeds. This indicates that the variation captured in the continuous embedding space is lost during the discretization process-a known limitation, as discretization inherently reduces information. The table reflects this observation and shows that GPT-2 based modeling is inferior to diffusion since diffusion is much better for modeling continuous distribution of prompts. Moreover, unlike autoregressive methods, diffusion offers multiple benefits such as classifier-free guidance, negative prompting, inversion, editing and composition that are challenging or infeasible with models

Figure 20: **Qualitative results** of images generated from prompts synthesized by DMPVariation. Our Diffusion Meta-Prompts are more robust and less overfitted than the baseline textual inversion which fails to generalize.

Figure 21: **Identity composition:** images generated with DMPVariation model prompts (right) for increasing guidance scales from 9 to 10 for the composition of the two identities shown on the left.

like GPT-2. These results show that modeling the prompt distribution with diffusion is more effective and flexible than using autoregressive methods.

A.6.2 ABLATION ON THE NUMBER OF PROMPTS PER CONCEPT

We already include the ablation study when using only 20 prompts per concept for identity synthesis in Table 5 of the paper. Here, we include an additional ablation study on the number of prompts for classification tasks in Table 20. It shows that DMP works well even with as few as 5 or 10 prompts per task/concept. For 5 prompts per class, DMPCoOp obtains +1.2% gain on new classes and it increases as n increases (+1.6/+2.5/+3.0 for $n = 10/20/40$ prompts respectively). The results are consistent with our theoretical guarantee discussed in Appendix A.1 where higher n corresponds to lower downstream risk and better generalization.

A.6.3 ABLATION ON THE TEXT INPUTS TO DMPCoOP MODEL

We conducted an ablation study using the dataset names as the prompt or text condition to the DMPCoOp model instead of the classnames. Table 18 shows that the performance of the model using dataset names is better than the baseline CoOp prompts by 0.3% on average while it is 0.7% lower as compared to the model using classnames. This shows that using class-specific names generates prompts with robust generalization than just using a single dataset name as the text condition.

A.6.4 ABLATION ON THE QUALITY OF TRAINING DATA

To investigate this, we assessed the impact of the quality of training data by training DMP with noisy prompts. We apply additive Gaussian noise (n_i) with a standard deviation of $\sigma = 0.01$ to the i^{th}

Figure 22: **Negative Prompt Sliders** images synthesized with sliders sampled by DMPSlider when negatively prompted for different concepts. The prompt used for the SD-XL model is "A photo of a girl".

Figure 23: **Subject composition:** images generated with DMPVariation model prompts (right) for the composition of the two identities shown on the left with the guidance scale denoted at the top. See Fig. 21 for additional results at finer scale.

Table 20: **Ablation study with different number of prompts per concept.** Base2new generalization per dataset: performance for All, Base, and New classes, and HM (Harmonic Mean). The results reported are the average over three seed runs.

Method	(a) Average				(b) ImageNet				(c) Caltech101				(d) OxfordPets			
	All	Base	New	HM	All	Base	New	HM	All	Base	New	HM	All	Base	New	HM
CoOp	68.8	82.3	70.4	75.9	68.5	76.5	67.2	71.5	94.8	98.3	95.0	96.6	90.1	94.7	95.9	95.3
DMPCoOp	70.1	80.3	73.4	76.5	68.7	75.4	68.8	72.0	94.8	98.3	95.3	96.8	91.7	95.4	97.3	96.3
DMPCoOp (5 prompts)	69.1	81.4	71.6	75.9	68.9	76.6	68.0	72.0	94.8	97.9	95.2	96.5	91.1	95.4	97.1	96.2
DMPCoOp (10 prompts)	69.3	81.8	72.0	76.3	69.0	76.6	68.5	72.3	94.5	98.2	95.2	96.7	92.9	96.0	97.5	96.7
DMPCoOp (20 prompts)	69.1	81.2	72.9	76.6	69.3	76.4	68.8	72.4	94.3	98.2	95.1	96.6	93.0	96.0	97.5	96.7
Method	(e) StanfordCars				(f) Flowers102				(g) Food101				(h) FGVC Aircraft			
	All	Base	New	HM	All	Base	New	HM	All	Base	New	HM	All	Base	New	HM
CoOp	68.7	76.7	68.2	72.2	74.5	96.7	68.3	80.1	84.9	90.0	89.9	89.9	25.1	36.9	27.1	31.2
DMPCoOp	69.3	74.5	72.0	73.2	75.6	93.4	72.2	81.4	86.4	89.6	89.9	89.7	26.3	35.7	31.6	33.5
DMPCoOp (5 prompts)	68.8	75.2	70.8	72.9	74.5	96.0	71.1	81.7	84.5	89.5	89.1	89.3	27.9	37.5	33.3	35.3
DMPCoOp (10 prompts)	68.5	75.8	69.9	72.7	73.7	95.7	69.8	80.7	85.5	89.8	91.2	90.5	27.8	37.0	32.0	34.3
DMPCoOp (20 prompts)	68.7	75.0	70.8	72.8	75.9	96.4	72.1	82.5	85.4	90.0	91.1	90.5	27.9	37.3	31.6	34.2
Method	(i) SUN397				(j) DTD				(k) EuroSAT				(l) UCF101			
	All	Base	New	HM	All	Base	New	HM	All	Base	New	HM	All	Base	New	HM
CoOp	67.6	80.8	72.6	76.5	51.9	80.8	51.8	63.1	63.2	90.8	72.9	80.9	67.6	83.4	65.3	73.2
DMPCoOp	67.3	80.4	72.9	76.5	53.7	75.1	55.8	64.0	65.9	85.6	80.7	83.1	71.7	79.6	70.7	74.9
DMPCoOp (5 prompts)	66.8	79.8	71.7	75.5	52.1	76.4	54.3	63.5	59.1	85.7	67.2	75.3	71.1	85.6	69.6	76.8
DMPCoOp (10 prompts)	67.6	80.3	73.4	76.7	52.1	75.6	53.4	62.6	60.1	89.0	71.7	79.4	70.7	85.3	69.2	76.4
DMPCoOp (20 prompts)	67.6	80.4	73.3	76.7	51.4	75.6	54.1	63.1	54.6	84.8	74.4	79.3	71.8	82.9	72.6	77.4

prompt $S(c)_i$ as

$$S(c)_i = (1 - \sigma)S(c)_i + \sigma n_i.$$

The noisy prompt is applied to $x\%$ of the training dataset, where $x \in \{10, 40\}$.

Table 21 summarizes the experiment where random noise is added to the prompts in the training repository. Meta-prompting is observed to be robust to noise levels ranging from 10% to 40% of the training prompts. DMPCoOp trained with 10% noisy prompts still obtains +1.9% improvement over the baseline. Further, the average H.M for the DMP model with 10% noisy prompts is slightly better (76.7 vs 76.5 for DMPCoOp) than the DMPCoOp model trained on clean prompts suggesting that a small amount of noise can also help with generalization. This is similar to image diffusion models, which are also known to be robust to noise added during training.

A.7 ABLATION ON DMPMULTI

We trained separate DMP models for identity synthesis and slider synthesis to compare their performance with the DMPMulti model, which was trained to generate both prompt types simultaneously. Table 22 presents the results of the DMPSlider model, trained solely for slider prompt generation. Table 23 presents the results of the DMPIdentity model, trained solely for identity prompt generation. The results indicate that its performance is comparable to that of the DMPMulti model, demonstrating that multi-task training in DMPMulti does not compromise its effectiveness.

A.7.1 ABLATION ON IDENTITY COMPOSITION WITH TEXTUAL INVERSION

For identity composition, we perform an ablation study using Stable Diffusion with Equation 3, generating new identities by combining prompts such as "a photo of id-1" and "a photo of id-2." Figure 24 illustrates the results of this process using Textual Inversion prompts with the Stable Diffusion v1.5 model. The generated images are often noisy, distorted, and tend to replicate the

1512 Table 21: Base2new generalization per dataset: performance for All, Base, and New classes, and HM (Harmonic
 1513 Mean). The results reported are the average over three seed runs.

Method	(a) Average				(b) ImageNet				(c) Caltech101				(d) OxfordPets			
	All	Base	New	HM	All	Base	New	HM	All	Base	New	HM	All	Base	New	HM
CoOp (Zhou et al., 2022b)	68.8	82.3	70.4	75.9	68.5	76.5	67.2	71.5	94.8	98.3	95.0	96.6	90.1	94.7	95.9	95.3
DMPCoOp	70.1	80.3	73.4	76.5	68.7	75.4	68.8	72.0	94.8	98.3	95.3	96.8	91.7	95.4	97.3	96.3
DMPCoOp (10% noise)	69.6	81.7	72.3	76.7	69.2	76.5	69.0	72.6	94.0	98.1	94.2	96.1	91.5	95.0	96.9	95.9
DMPCoOp (40% noise)	68.9	81.2	70.3	75.0	68.5	76.6	67.3	71.6	94.1	97.9	95.2	96.5	92.8	95.7	97.9	96.8
Method	(e) StanfordCars				(f) Flowers102				(g) Food101				(h) FGVC Aircraft			
	All	Base	New	HM	All	Base	New	HM	All	Base	New	HM	All	Base	New	HM
CoOp (Zhou et al., 2022b)	68.7	76.7	68.2	72.2	74.5	96.7	68.3	80.1	84.9	90.0	89.9	89.9	25.1	36.9	27.1	31.2
DMPCoOp	69.3	74.5	72.0	73.2	75.6	93.4	72.2	81.4	86.4	89.6	89.9	89.7	26.3	35.7	31.6	33.5
DMPCoOp (10% noise)	69.1	76.7	69.4	72.9	77.1	96.4	72.8	83.0	85.6	89.9	91.1	90.5	27.7	37.6	33.8	35.6
DMPCoOp (40% noise)	68.3	76.6	69.1	72.7	79.4	95.9	75.0	84.2	84.6	89.4	90.3	89.8	26.4	36.6	32.8	34.6
Method	(i) SUN397				(j) DTD				(k) EuroSAT				(l) UCF101			
	All	Base	New	HM	All	Base	New	HM	All	Base	New	HM	All	Base	New	HM
CoOp (Zhou et al., 2022b)	67.6	80.8	72.6	76.5	51.9	80.8	51.8	63.1	63.2	90.8	72.9	80.9	67.6	83.4	65.3	73.2
DMPCoOp	67.3	80.4	72.9	76.5	53.7	75.1	55.8	64.0	65.9	85.6	80.7	83.1	71.7	79.6	70.7	74.9
DMPCoOp (10% noise)	66.2	80.7	70.5	75.3	53.5	79.9	51.9	62.9	59.3	84.5	71.6	77.5	72.5	83.0	74.0	78.2
DMPCoOp (40% noise)	65.9	79.7	69.8	74.4	49.8	78.4	48.6	60.0	59.6	84.0	62.8	71.9	68.4	82.3	64.1	72.1

1530 Table 22: Comparison of slider prompts Table 23: Comparison of separately trained DMP (DMPI-
 1531 generated by a separate DMP (DMPSlider) identity) with Textual Inversion and DMPPMulti for identity
 1532 against DMPPMulti.

Method	CLIP-s \uparrow	LPIPS \downarrow	Method (SD-RV)	Face-ID \uparrow	DINO \downarrow	CLIP-I \downarrow	CLIP-T \uparrow
Prompt Slider	30.00	0.219	Textual Inversion	0.428	0.627	0.696	0.244
DMPPMulti	29.86	0.126	DMPPMulti	0.434	0.558	0.653	0.245
DMPSlider (separate)	29.88	0.121	DMPIIdentity (separate)	0.435	0.550	0.659	0.246

1533 input identities rather than effectively merging their attributes. Additionally, running a full forward
 1534 diffusion process with multiple identities doubles the inference time from 4 to 8 seconds per image.
 1535 In contrast, our DMPPMulti achieves high-quality identity compositions in approximately 5 seconds,
 1536 introducing only a 1-second overhead compared to standard Stable Diffusion.

A.8 DMP FOR PERSONALIZATION

1544 The DMPVariation model enables the generation of prompt variations conditioned on a given Textual
 1545 Inversion prompt, making it possible to train a text-to-prompt meta-diffusion model as a replacement
 1546 for personalization prompt repositories. [Users only require access to existing prompt repositories, as](#)
 1547 [the DMPVariation model can directly generate the necessary intermediate embeddings. We choose](#)
 1548 [the top-k embeddings generated from the DMPVariation model based on the cosine similarity with](#)
 1549 [the available TI prompts.](#) These embeddings can serve as training data for generating personalized
 1550 prompts based on textual input. Once trained, this approach eliminates the need to search and retrieve
 1551 prompts from a database, allowing for on-the-fly prompt generation.

1552 Figure 25 presents a comparison of the images generated by DMPPMulti model for the identity labeled
 1553 "id-38" and "id-96" respectively. The figure presents three classes of images: groundtruth on the left,
 1554 synthesized by SD prompted by the original TI prompts in the first and third row of the right side, and
 1555 synthesized by SD prompted by the DMPPMulti model, itself prompted for "identity-c." The images
 1556 synthesized using DMPPMulti model have quality comparable to those synthesized with TI prompts.

1557 **Negative Text Guidance.** Figure 26 illustrates the effect of negative prompting by displaying images
 1558 synthesized when DMPPMulti model is prompted with identity-21 (leftmost) as positive and identity-
 1559 24 (second from left) as negative prompt. The generated identity exhibits contrasting characteristics,
 1560 such as fuller cheeks, smaller eyes, and a broader nose—features to those of the negative identity
 1561 (id-24).

1562 **Novel Identities.** Figure 27 shows additional qualitative results of novel identities sampled by DMP
 1563 and their closest training images.

1564 **Identity Prompt Diffusion.** Figure 28 presents the qualitative results of various identities sampled by
 1565 DMPPMulti model. The figure contains the groundtruth on the left, and synthesized by SD prompted

Figure 24: **Ablation study on Identity composition with Textual Inversion:** images generated with TI prompts by composing the Stable Diffusion outputs for the composition of the two identities shown on the left for each row. TI composition produces distorted identities or repeats the same identities.

by the DMPMulti, itself prompted for “identity-c” on the right. The images synthesized using both models reflect the original identities in the groundtruth images.

Identity Composition. Figure 29 demonstrates additional results of combining two identities, displayed on the left, using DMPMulti to synthesize identity prompts with (3). The synthesized identity clearly incorporates prominent features from both original faces, such as the nose and chin, resulting in a cohesive blend of attributes.

Figure 30 shows the results of identity composition using SDv1.5 checkpoint that uses the same CLIP text encoder as SD-Realistic Vision checkpoint. It shows that DMP performs effectively without requiring retraining for this version. Since DMP was trained in CLIP text space, it generalizes to all models sharing the CLIP text encoder, eliminating the need for retraining on specific model versions.

Interpolation. Figure 31 shows the qualitative results of interpolating between two faces using the DMPMulti model with classifier-free guidance scale between 0 to 5. The results show that DMPMulti enables fine-grained interpolation by simply manipulating the guidance scale.

A.9 LIMITATIONS AND FUTURE WORK

While the DMP framework unifies and improves prompt generation and generalization, simplifying deployment, the effectiveness of DMP is fundamentally constrained by the quality and expressiveness of the underlying prompt learning method used to construct the training repository. Second, DMP inherits the limitations of text prompts such as lack of fine-grained control and does not support parameter-efficient fine-tuning techniques that rely on large adapter weights, such as LoRA.

Future research directions can address these limitations by exploring joint training of the meta-model and the downstream foundation models, potentially overcoming the performance ceiling imposed by existing prompt learning techniques. Other directions for future work can explore ways for distilling LoRA (Hu et al., 2022) adapters into prompts and the design of a Meta-LoRA model, which synthesizes weight matrices instead of prompts (a more complex problem due to the large parameter cardinality of LoRA weights).

A.10 IMPLEMENTATION DETAILS

In this section, we describe the evaluation setup followed in our experiments and the rationale behind choosing the setup. We then describe the hyperparameter settings used to train all DMP models and finally the prompt format used in DMPMulti (DMPSlider) model.

Evaluation Setup. For downstream model, we use stable diffusion (Rombach et al., 2022) Realistic-Vision-v4 checkpoint using classifier-free guidance with a scale of 4.5 and 30 DDIM steps for the image synthesis. For SD-XL (HuggingFace, 2023) model, we use a scale of 7.5 with 20 DDIM steps. Note that, because DMP prompts are introduced in the CLIP text encoder, they

Figure 25: **Qualitative comparison** of image synthesis with TI and DMPMulti prompts. Left: groundtruth images for Identity-38 and Identity-96 in the training set. Right: images synthesized by SD for the original TI prompts (first and third row) and prompts sampled from the DMPVariation meta-diffusion model (second and fourth row):

Figure 26: **Negative prompting** samples from the SD model when prompted by the DMPMulti, itself prompted with id-21 (leftmost) as positive and id-24 (second from left) as negative prompt. The generated identity has features opposing to id-24 (chubby cheeks, small eyes, wide nose, etc.)

can be interchangeably used with any diffusion model using this encoder. Our choice of downstream diffusion model follows the original prompting methods.

For models other than CoOp, additional weights or head layers are optimized to prompt the deeper layers of the CLIP encoders. Due to the large number of parameters associated with these weights, it is infeasible to train a diffusion model to synthesize these parameters. For example, the projection matrices of MaPLe have 3.55 million parameters while CoPrompt and TAC have 4.65 million parameters each. This is much larger than even the images produced by Stable diffusion (65536 parameter latent). In contrast, all text prompts have only 2048 or fewer parameters (only 256 parameters in the latent space). So, we only synthesize the text prompts attached to the input of CLIP

Figure 27: **Additional Qualitative results:** Nearest neighbors in the training set shown on the left for novel ids sampled by DMPMulti model to the right.

model with DMP. During inference, we replace the learned textual prompt from the baseline method with the prompt sampled with DMP while keeping the other weights of the baseline method fixed. As followed in prompt learning literature, we pick three random seeds and report the average results. We note that different initialization seeds result in minor performance differences which explains the performance difference from the original paper reported results.

Baseline Prompt Learning Methods. This section provides a consolidated description of all baseline prompt-learning methods and CLIP variants used in our experiments. For every method, we specify the original paper, the core algorithmic idea, the training protocol we follow, and any deviations from the original implementation. All hyperparameters, dataset splits, and CLIP backbone choices were selected to match the official implementations as closely as possible unless otherwise noted.

CoOp (Context Optimization)

We follow CoOp (Zhou et al., 2022b), which introduces learnable context tokens while keeping CLIP frozen. The method optimizes a fixed set of soft prompt vectors shared across all classes. We use the officially released configuration for few-shot learning and adopt the same CLIP backbone settings. No architectural modifications are made relative to the original paper.

CoCoOp (Conditional Context Optimization)

For CoCoOp, we follow (Zhou et al., 2022a), who extend CoOp by generating input-conditioned prompts via a lightweight meta-network. We use the authors' recommended few-shot protocol, including the same data augmentation settings and meta-network structure. The dynamic prompt generator is kept unchanged, and we adhere to the Base/New class evaluation protocol described in the original paper.

CoPrompt (Consistency-Guided Prompt Tuning)

CoPrompt (Roy & Etemad, 2024) adds a consistency regularizer and auxiliary perturbation mechanism to stabilize few-shot prompt learning. We follow the official implementation by applying the published

Figure 28: **Qualitative results** of image synthesis with DMPMulti prompts. Left: groundtruth images. Right: images synthesized by SD with prompts sampled from the DMPMulti model.

regularization objectives, prompt-tuning strategy, and model initialization. All perturbation and consistency components are used as defined in the original work.

1795 Figure 29: **DMPMulti composition:** images generated with DMPMulti model prompts (right) for the composition of the two identities shown on the left.
1796

1810 Figure 30: **DMPMulti composition with SDv1.5 model:** Prompts synthesized by DMP generalize well to
1811 different downstream models sharing the same CLIP text encoder without any re-training.
1812

MaPLe (Multimodal Prompt Learning)

1813 MaPLe (khattak et al., 2023) introduces multimodal prompts applied to both the vision and text
1814 encoders, along with stage-wise prompt tokens in the vision transformer. We follow the standard
1815 MaPLe training recipe: multimodal prompts, stage-wise insertion points, and the default initialization
1816 scheme. The architecture is used without modification, and we adopt the dataset-specific training
1817 settings recommended by the authors.

TAC (Task-Aware Prompting / Task-Aware Pre-Context)

1818 For TAC, we follow Hao et al. (2025), who generate pre-context vectors by clustering class embeddings
1819 to encode task structure before learning the final prompts. We implement this clustering-based
1820 pre-context exactly as described and follow the same shot counts, training loops, and evaluation
1821 protocol. We make no changes to the prompt-learning architecture.
1822

CLIP Variants and Training Protocol

1823 Across all baselines, we use the same CLIP backbones (e.g., ViT-B/32 or ViT-B/16) to ensure
1824 comparability. CLIP weights are frozen in all settings, consistent with the original prompt-learning
1825 papers. For each method, we match the authors’ training configuration—optimizer type, learning-rate
1826 schedule, number of iterations/epochs, and batch size—based on their official releases. Where
1827 multiple public implementations exist, we default to the authors’ reference repository.
1828

A.10.1 HYPERPARAMETER SETTINGS

1829 Table 25 summarizes the detailed hyperparameter settings of the DMP models trained from scratch
1830 reported in the main paper.
1831

1841 Figure 31: **Interpolating** between two faces using DMPMulti with concept composition.1842 Table 25: Hyperparameter Settings for the DMP models trained across three different tasks namely personaliza-
1843 tion, concepts and classification.

	DMPVariation	DMPMulti	DMPCoOp	Autoencoder
z -shape	-	-	16×8	16×8
x -shape	768×1	768×1	2048×1	2048×1
$ Z $	-	-	128	128
$ X $	768	768	2048	768
Diffusion steps	1000	1000	1000	1000
Optimizer	AdamW	AdamW	AdamW	AdamW
Noise Schedule	linear	linear	linear	linear
Nparams	33M	33M	33M	1M
Channels	128	128	128	128
Depth	1	1	1	1
Channel Multiplier	1,2,2,2	1,2,2,2	1,2,2,2	1,1,1,1,2,2,2,2
Attention resolutions	16, 8, 4	16, 8, 4	16, 8, 4	-
Head Channels	8	8	8	8
Batch Size	320	320	256	128
Iterations	100k	100k	100k	100k
Learning Rate	$1e-6$	$1e-6$	$2.0e-7$	$4.5e-6$

1856

A.10.2 EVALUATION PROMPTS FOR DMPSLIDER

1857 The example format of the prompts used for evaluation is shown below for the concept "Age",
1859

- 1860 • A portrait of a woman with a warm smile, {}
- 1861 • A person's face, {}
- 1862 • A man sitting on a park bench, reminiscing about his youth, {}
- 1863 • A couple of friends enjoying a picnic together, {}
- 1864 • A photo of a person, {}
- 1865
- 1866

1867 **The full list of prompts used for evaluation will be made public along with the code and trained
1868 models.**1870

A.10.3 CODE AND TRAINED MODELS

1872 **Code is attached in the supplementary material. Code and trained models will be released
1873 publicly upon acceptance of the paper.**1875

A.11 BACKGROUND

1877 Here, we discuss the background on prompt tuning approaches used in CoOp/CoPrompt (Roy &
1878 Etemad, 2024) methods. We learn these CoOp/CoPrompt prompts to train the DMPCoOp/CoPrompt
1879 model, which unifies the synthesis of prompts for multiple downstream classifiers. **Prompt Tuning**.
1880 Foundation visual-language models like CLIP (Radford et al., 2021) are trained with contrastive
1881 learning and a large dataset of image-text pairs to align image-text representations in a shared
1882 semantic space, created by an image f_I and a text g_T encoder. After pre-training, open-set zero-shot
1883 image recognition is implemented by specifying class names with a pre-defined prompt template (e.g.
1884 $T_i =$, "a photo of a [CLASS] $_i$ ") and determining the class i whose text feature $g_T(T_i)$ has maximum
1885 cosine similarity with image feature $f_I(I)$. While powerful, this zero-shot classifier implementation
1886 frequently fails to match the performance of classifiers trained for specific class sets.1887 Prompt-tuning methods bridge this gap by learning soft-prompts from a few samples, to improve
1888 the performance of the foundation model. CoOp (Zhou et al., 2022b) introduces and refines a
1889 set of M continuous context vectors $V = \{v_1, v_2, \dots, v_M\}$ as the learnable prompt. The prompt
 $T_i = \{v_1, v_2, \dots, v_M, c_i\}$ concatenates these vectors and the class token embedding c_i . CoOp learns

Figure 32: **Qualitative results of generating novel identities during inference** using random identity conditioning with DMPMulti model. The prompt used for the Stable Diffusion Realistic Vision model is "A photo of a id- x " where x is the id not present in the training set. The identities do not overfit (**mean face ID similarity of 0.0102 across training images**). Note that all the images use a fixed seed to the diffusion model.

the static context vectors V by minimizing the negative log-likelihood of the correct class token

$$L_{CE}(V) = - \sum_i y_i \log p(T_i | I), \quad (11)$$

where y_i is the one-hot ground-truth label for class i . Since the foundation model parameters are frozen, the learnable prompt V can be efficiently optimized with few training samples.

A.12 BROADER IMPACT

We introduce a new meta-learning framework for generating prompts for foundation models. While it offers the benefits of storage and runtime efficiency, it uses existing pretrained models which are shown to contain harmful biases that maybe elicited by the prompts, it can also be potentially misused to propagate harmful, unlawful or unethical information with the personalization of celebrities. Since, the framework is meta-learning, any harmful prompts can be identified before the image generation step where the embeddings can be inspected with nearest neighbor tokens in the text space. Additionally, recent advancements in image watermarking (Luo et al., 2022) can help to identify generated image contents to protect against these risks.

A.13 LLM USAGE

LLM was used to polish the writing (e.g., clarity, grammar). It was not used in any other stage.

	Concept	DMP	TI	Delta
1944				
1945	ettblackteapot	0.2905	0.2778	+0.0127
1946	dico	0.2837	0.2700	+0.0137
1947	goku	0.2830	0.2800	+0.0030
1948	degodsheavy	0.2827	0.2754	+0.0073
1949	spider-gwen	0.2825	0.2810	+0.0015
1950	johnny-silverhand	0.2812	0.2760	+0.0052
1951	blue-haired-boy	0.2812	0.2800	+0.0012
1952	bullybear	0.2798	0.2683	+0.0115
1953	black-waifu	0.2790	0.2715	+0.0075
1954	a-female-hero-from-the-legend-of-mir	0.2788	0.2710	+0.0078
1955	freddy-fazbear	0.2786	0.2750	+0.0036
1956	ldrs	0.2783	0.2642	+0.0141
1957	chonkfrog	0.2778	0.2756	+0.0022
1958	concept-art	0.2770	0.2715	+0.0055
1959	degoods	0.2769	0.2686	+0.0083
1960	hanfu-anime-style	0.2766	0.2703	+0.0063
1961	joemad	0.2764	0.2673	+0.0091
1962	dog	0.2761	0.2780	-0.0019
1963	stuffed-penguin-toy	0.2760	0.2756	+0.0004
1964	fox-purple	0.2760	0.2734	+0.0026
1965	colossus	0.2756	0.2634	+0.0122
1966	chungus-poodl-pet	0.2754	0.2637	+0.0117
1967	anya-forger	0.2754	0.2737	+0.0017
1968	furrpopasthetic	0.2751	0.2737	+0.0014
1969	bob-dobbs	0.2751	0.2664	+0.0087
1970	eddie	0.2751	0.2607	+0.0144
1971	arthur1	0.2750	0.2666	+0.0084
1972	dragonborn	0.2750	0.2556	+0.0194
1973	kay	0.2747	0.2605	+0.0142
1974	tesla-bot	0.2747	0.2634	+0.0113
1975	borderlands	0.2747	0.2637	+0.0110
1976	lavko	0.2744	0.2588	+0.0156
1977	gim	0.2740	0.2659	+0.0081
1978	hubris-oshri	0.2740	0.2659	+0.0081
1979	tubby	0.2737	0.2673	+0.0064
1980	finn-token	0.2737	0.2734	+0.0003
1981	moxxi	0.2730	0.2722	+0.0008
1982	altvent	0.2730	0.2676	+0.0054
1983	omlettehaai	0.2730	0.2600	+0.0130
1984	jos-de-kat	0.2730	0.2651	+0.0079
1985	lob-style	0.2730	0.2573	+0.0157
1986	crinos-form-garou	0.2727	0.2693	+0.0034
1987	blue-zombie	0.2727	0.2693	+0.0034
1988	cgdonny1	0.2725	0.2610	+0.0115
1989	amogus	0.2725	0.2551	+0.0174
1990	lucky-luke	0.2725	0.2751	-0.0026
1991	captain-haddock	0.2725	0.2725	+0.0000
1992	manga-nov-23	0.2725	0.2551	+0.0174
1993	button-eyes	0.2722	0.2683	+0.0039
1994	bruma	0.2722	0.2632	+0.0090
1995	ouroboros	0.2720	0.2734	-0.0014
1996	fursona	0.2720	0.2646	+0.0074
1997	kanovt	0.2720	0.2522	+0.0198
1998	doc	0.2717	0.2693	+0.0024
1999	warhammer-40k-drawing-style	0.2715	0.2727	-0.0012
2000	nard-style	0.2715	0.2698	+0.0017
2001	baluchitherian	0.2715	0.2617	+0.0098
2002	insidewhale	0.2715	0.2630	+0.0085
2003	irasutoya	0.2715	0.2598	+0.0117
2004	devonm	0.2712	0.2617	+0.0095
2005	edgerunners-style-v2	0.2712	0.2660	+0.0052
2006	nixe	0.2710	0.2660	+0.0050
2007	shek-9-12-opening	0.2710	0.2708	+0.0002
2008	lob-character	0.2710	0.2656	+0.0054
2009	ldr	0.2710	0.2666	+0.0044
2010	malika-favre-art-style	0.2710	0.2632	+0.0078
2011	drive-scorpion-jacket	0.2710	0.2686	+0.0024
2012	apulian-rooster-v0-1	0.2710	0.2351	+0.0359
2013	ffstyle	0.2708	0.2593	+0.0115
2014	alf	0.2708	0.2664	+0.0044
2015	wheelchair	0.2708	0.2730	-0.0022
2016	obama-self-2	0.2705	0.2705	+0.0000
2017	dog-chip	0.2703	0.2676	+0.0027
2018	cheburashka	0.2700	0.2705	-0.0005
2019	ihylc	0.2700	0.2580	+0.0120
2020	cat-toy	0.2695	0.2600	+0.0095
2021	Average	0.2731	0.2663	+0.0068

Table 24: HPSv2 comparison for 75 random concepts where each concept is evaluated for 6 different prompts.