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ABSTRACT

Parameter-efficient fine-tuning techniques, such as prompting, are now popular to
adapt foundation models to many tasks. In this paper, we introduce a diffusion-
based approach to model the distribution of learned foundation models prompts.
Specifically, we propose a Diffusion Meta-Prompt (DMP) model that generates
prompts conditioned on text or prompt embeddings, and can be used to prompt
both vision-language models and diffusion models for image synthesis. DMPs
have several advantages: improved generalization of learned prompts; memory and
runtime efficiency by eliminating the need to store and search over large reposi-
tories of prompts or LoORA weights; multiple applications ranging from open-set
classification, to personalization or attribute control of image synthesis; support for
operations like subject and concept composition, novel subject generation, nega-
tive prompting, and editing without explicit training. For open-set classification,
DMP improves base-to-new class generalization, achieving upto 3% average gain
across 11 datasets with gains as high as 7.8 %/5.4% on specific datasets such as
Eurosat/UCF101 respectively. DMP also enhances domain, cross-dataset and cross-
task generalization with ~6-12% improvement for hierarchical classification task.
For image synthesis tasks, DMP improves generalization and prompt compliance
by 1.4 points as measured by CLIP score and reduces storage requirements by
91% while improving runtime efficiency by 92% over retrieval methods.

1 INTRODUCTION

Foundation models (Rombach et al., 2022; Radford et al.,|2021)) generalize to diverse tasks due to their
large model sizes and large-scale training data. They can also be customized to specific downstream
tasks, using parameter efficient methods (Hu et al., |2022; Zhang & Agrawalal [2023)), such as prompt
learning (Zhou et al.,2022b). Learned prompts are small parameter vectors (or tokens) introduced at
the input or intermediate layers of the foundation model to improve its performance on specific tasks,
typically using few-shot learning. For visual-language models, prompts are commonly introduced
either in the visual (Jia et al., 2022)) or textual space (Zhou et al.| 2022a)) or both (Roy & Etemad,
2024} Hao et al.,|2025)), to improve performance on tasks like fine-grained classification (Helber et al.
2018)), enhance class discrimination (Zhou et al., 2022bga)), support taxonomic classification (Wu
et al.} [2024), overcome domains shifts (Ge et al., [2022), etc. For generative models, prompts are
frequently used to customize the foundation model (Gal et al.| 2022; |Ruiz et al.|[2023) to the synthesis
of images containing a specific concept, person, or object. Prompts can also be learned to control the
strength of fine-grained concepts or attributes (Sridhar & Vasconcelos} 2024), such as age, emotion,
or style, allowing users to enhance or diminish these concepts in the generated image. Finally, learned
prompts allow fine control over the editing of real images when combined with diffusion-based
inversion techniques, such as the LEDITS++ (Brack et al., 2023) method.

Despite their power as a tool for foundation model adaptation and customization, prompts have the
limitations and challenges summarized in the left of Figure|l| In open-set classification, learned
prompts typically do not generalize well beyond the base classes used for few-shot learning, and
requires separate tuning for each label set. Similarly, prompts for attributes such as age or smiling (see
Figure[5) have to be learned separately per entity or concept in image editing/generation tasks. This
is inefficient, as different applications may benefit from the same prompts or adaptation parameters.
One solution, also illustrated in the figure, is the creation of shared repositories, where practitioners
drop their prompts for common use. Such efforts are already happening. For example, Concept
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Sliders (Gandikota et al.,|2023b) have been quickly embraced by the diffusion model community,
with many content creators producing sliders covering thousands of attributes and uploading them to
sites like HuggingFace or Civitai (Civitai, [2023). However, these repositories are somewhat chaotic
and require regular maintenance and updates. As they grow to the thousands of entries, it becomes
cumbersome to know if a specific attribute is covered and how to find it in the repository. The task
is so complex that the design of algorithms to locate, download, and apply the needed prompts to a
foundation model has become a topic of research in itself (Luo et al.,|2024)). However, such prompt
retrieval methods (Luo et al., 2024) involve time-consuming search, have limited generalization,
require storing large prompt repositories in memory, and sophisticated methods to combine prompts.

In this paper, we propose to solve these problems by unifying prompt generation with a new family of
diffusion models, denoted Diffusion Meta-Prompting (DMP) models. These are generative models of
prompt distributions, capable of synthesizing prompts for downstream foundation models, conditioned
on a natural language description of the prompting task. As shown in the rightmost panel of Figure T}
DMPs eliminate the complexities of dealing with prompt repositories, offering better generalization
and compositionality with a minimal runtime overhead. For example, given a subject name (“Jennifer
Aniston”) and attributes (“hair” and “age”), a DMP can generate a set of prompts for a foundation
diffusion model like Stable Diffusion XL (SDXL) to produce the corresponding images.

We employ diffusion as the generative model since it offers better generalization than alternatives such
as autoregressive methods (Radford et al.,|2019). This is demonstrated in two ways. First, we show
that DMPs learn to produce a range of sophisticated prompt operations, such as concept composition,
novel subject generation, image inversion, editing and negative prompting without explicit training.
We also provide a simple theoretical guarantee on the performance of DMPs. Second, we show that
DMPs can learn multiple tasks, by showing that a single model can be trained to produce prompts for
both subject personalization and slider attributes. This replaces the combinatorial complexities of
searching separate prompt repositories for the two (and potentially more) tasks into a single DMP
model. DMPs are also shown applicable to a diversity of fundamentally different tasks, ranging from
image synthesis to open-set classification. For the latter, we show that learning the distribution of
prompts across datasets and label sets generalizes to unseen classes better than the standard approach
of individual prompt learning per dataset. The fact that this happens even though the DMP model is
trained on the individual prompts of the baseline approach shows that there is structure in prompt
space, which DMPs learn for improved generalization.

We leverage the DMP framework to develop diffusion models for open-set classification, personalized
concept generation with attribute control, and synthesis of images with subject variations, yielding
three fully automated prompting models: DMPClass, DMPMulti, and DMPVariation. Overall, the
paper makes the following key contributions

* We propose the DMP, a new family of diffusion models trained to synthesize foundation
model prompts. Beyond eliminating the need to maintain weight or prompt repositories
and simplifying large-scale deployments (~91% efficiency improvements), this approach
enhances model generalization and enables flexible prompt manipulations.

* We introduce the DMPClass model, which unifies the generation of prompts for open-set
classification with CLIP-style models. This is shown to outperform the baseline learned
prompts in various challenging generalization tasks: base-to-new classification (upto 3%),
domain generalization, and across levels of taxonomic classification (upto 12%).
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* We introduce the DMPMulti model to unify the generation of personalized subjects and
sliders for the control of many attributes in a single model. DMPMulti obtains high identity
fidelity and is also shown to support the generation of semantically negative concepts despite
not being trained on them. The ability of this model to learn prompts for multiple tasks
highlights the potential of DMPs to serve as foundation models for prompts.

* We introduce the DMPVariation model for generating novel variations of a given subject
and show that it offers better generalization to unseen subjects (+1.4 CLIP score), allows
composing multiple identities, and supports negative prompting without explicit training.

2 RELATED WORK

Foundation models. We focus on two classes of foundation models: vision-language representation
models (Radford et al., [2021) and text-to-image (T2I) generation models (Rombach et al.|, [2022]).
Contrastively trained vision-language models, such as CLIP, are widely used for open-set classifi-
cation, detection, and segmentation, with prompting techniques enabling adaptation to fine-grained
tasks (Zhou et al., |2022b). In T2I models, personalization methods like Textual Inversion (Gal
et al., 2022) and DreamBooth (Ruiz et al., [2023) allow generation of images of custom concepts
using only a few examples. Building on these, several methods address concept discovery in T2I
models (Dalva & Yanardag], 2024 [Liu et al.| [2023}; |Gandikota et al., 2023b; |Dravid et al.| [2024),
enabling fine-grained editing or removal of undesirable concepts (Gandikota et al., [2023a; [Zhoul
2023)). Prompt Sliders (Sridhar & Vasconcelos|, 2024) and (Baumann et al., 2024) learn concepts in
textual space, either globally or locally. In this work, we propose to unify the prompt learning for
foundation models by training a diffusion model to synthesize the prompts conditioned on natural
language across tasks.

Prompt tuning. Prompt learning, originally developed for language models (Shin et al.l 2020;
Jiang et al., [2020), applies a fixed or learnable function to input tokens to provide task-specific
instructions. In computer vision, prompts can be textual (Zhou et al.| [2022a)), visual (Jia et al.|
2022), or multi-modal (Khattak et al., 2023} |Yang et al., [2024; |L1 et al., 2025bza). Textual prompt
learning, pioneered by CoOp (Zhou et al., 2022b)) and CoCoOp (Zhou et al., [2022a), fine-tunes a
CLIP model (Radford et al.| 2021) for few-shot transfer by optimizing continuous prompt vectors
in the language branch. Visual prompt tuning (Jia et al., |2022) introduces task-specific learnable
prompts in the visual encoder while keeping the backbone fixed. Multi-modal prompt learning (Roy &
Etemad, [2024; [Hao et al.,|2025)) optimizes prompts in both vision and language encoders to improve
cross-modal alignment. However, unlike DMP, these methods have limited generalization and require
task-specific optimization.

Meta learning. Meta-learning, or learning to learn, enables efficient adaptation to new tasks
by leveraging past experience (Ha et al.| 2017 [Hospedales et al., 2021)). It has been applied to
learn loss functions (Bechtle et al.,[2021), task-specific initialization (Gong et al.l 2024), generate
weights (Peebles et al.,|[2022; [Zhmoginov et al.| 2022 Nava et al.| [2022; Zhang et al., 2024}, and
few-shot learning (Snell et al., | 2017). Inspired by this, we propose Diffusion Meta-Prompts (DMP) to
synthesize foundation model prompts conditioned on natural language for multiple tasks and concepts,
to address the generalization limitations of existing prompt learning approaches. Recently, (Du
et al.,|2024) proposed a diffusion model for refining CLIP prompts for classification. It is trained
on a specific example and classification task to improve CLIP prompts for that task. In contrast,
DMP is a generalist, trained to sample prompts across tasks and downstream functionalities. The two
approaches are complementary, as task-specific refinement from (Du et al., [2024) could be applied to
DMP-generated prompts. Unlike this prior task-specific method, we further demonstrate that DMP
generalizes across classes, models, and tasks, by introducing three new DMP variants.

3 DIFFUSION META-PROMPTING

We introduce the Diffusion-based Meta Prompting (DMP) framework for synthesizing prompts
conditioned on task descriptions. Let C denote a distribution over tasks or concepts ¢ ~ C. For each
concept ¢, we assume a textual description y(c), and a repository R of exemplar prompts S(c) € R?
obtained from existing prompt-learning techniques. The objective is to learn a conditional generator
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po(S | y), parameterized by a diffusion model for a downstream task with loss L, (.S; ¢), such that
prompts S € P (prompt space) drawn from it achieve low downstream risk.

Training. Figure 2] (left) illustrates the general implementation of the DMP framework. DMPs are
diffusion models (Sohl-Dickstein et al.l 2015; |Ho et al.| |2020al) that synthesize prompts by iteratively
denoising a noise seed. DMP training is based on a pair of forward and backward Markov chains.
Given a concept ¢, an associated prompt S(c) is retrieved from R and noised according to a forward
process that progressively adds Gaussian noise to 29 = S(c), according to

Ty = oywo + V1 — a6, (D

where ¢ is a timestep, &y := H.tg=1(1 — Bs), {B¢}E, is a variance schedule, ¢; ~ N(0,I) and N is a
Gaussian distribution. In the reverse process, a neural network €y recurrently denoises x; to recover
zo. This network is trained to predict noise €;, by minimizing the risk

Laenoise(0) = E¢ o |ll€r — 69($t,t)||2} . 2)

The process is repeated by sampling over concepts ¢ and associated prompts S(c). The network
€g(xy,t) is a U-Net (Ronneberger et al.,2015) with self and cross-attention layers (Vaswani et al.,
2017). The latter are conditioned by a text prompt y(c) that specifies the concept ¢, e.g. “a person-
alization prompt for Jennifer Anniston”, in the example of Figure[I] A text embedding 7y maps
y(c) into a conditioning vector 74 (y), where we omit the argument ¢ for brevity. The denoising
network is then represented as €g(x¢, 79(y), t). In our implementation, the DMP model is trained
with classifier-free guidance, where an empty text or null prompt is used 20% of the time, to allow
for better guidance during sampling. After training, a user simply specifies the text prompt y(c).

1—oy

The diffusion model samples a prompt S(c) with z;_; = \/% (xt - mﬁg(l‘t, T0(y), t)) + oy,

where zp ~ N(0,I) is a noise seed, and S(c) = x¢. From a meta-learning perspective, 6 are
meta-parameters amortizing the construction of prompts across tasks. Unlike per-task optimization,
DMP enables one-shot prompt synthesis by sampling from the learned generator.

Architecture. To implement the DMP model, we develop a 1D variant of the popular Stable Diffusion
model, where 2D operations are replaced by their 1D counterpart (e.g., 1D-conv). Since the size of
the prompt embeddings (d) is relatively small, we have found that, for most applications, the model
can operate directly in the space P of prompts S(c) € R?. However, for applications involving
unusually long prompts(d > 2048), we have also trained a variational autoencoder that maps prompts
from P into a space of lower dimensionality, for faster training and convergence. This is a 1D variant
of stable diffusion autoencoder with less than 1M parameters and a latent dimension of 128. See
appendix section for more details.

Concept Composition. By framing diffusion models as Energy Based Models, (Liu et al., 2022b))
showed that it is possible to compose multiple concepts by conjunction or negation. Given a diffusion
model €y (x4, t), n concepts are combined by implementing the denoising chain with

n

é(xy,t) = €g(x,t) + Zm (eo(ze, To(y(ci)), t) — €g(m, 1)), 3)

i=1

where 7; is a hyperparameter corresponding to a temperature scaling of concept ¢;. If the conditioning
is just empty text, this reduces to classifier-free guidance. The standard implementation of concept
composition is to run the downstream diffusion model n times (once per concept) and average noise
predictions with (3. This is significantly more complex than performing the concept composition
of (@) in the (much less complex) DMP, which enables the sampling of single prompts x; for the
downstream model that combine all concepts cq, . . ., ¢,. We show below that DMPs trained on the
individual concepts can sample combined prompts (Table[7} Figure 20).

Concept Negation. Negative prompting, is commonly used in image diffusion models to di-
rect image generation away from undesired semantic concepts, thus improving quality. Given
a diffusion model €p(x,t), the denoising chain is implemented with é(a¢,t) = eg(ay,t) +
1 (eo(xe, 70 (y(p)), t) — eg(xt, T9(y(n)),t)) , where n is the hyperparameter that controls the strength
of the negation, p is a positive concept and n a negative one. We show that, without specific training,
DMPs can sample single prompts x; for the downstream model that oppose concept p to concept n
or even purely negative prompts, by using an empty positive prompt p (see Figures [6][I9).
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Theoretical Guarantee. We provide a theoretical guarantee for the performance of DMP. The formal
statement is below, with assumptions and proof discussed in Appendix [A.T]

Proposition 1 (DMP performance guarantee). Assume the denoising loss satisfies Lgenoise(0) <
and the repository contains n i.i.d. prompts for the condition y. Then with probability at least 1 —
over the repository sample,

IE'Srvp@(~|y) [Etask(S)] < ESNﬁdata(-|y) [Etask(s)] + LmaxV2C € + Liax w + 0(1)
“

€
)

3.1 DMP FOR CLASSIFICATION

We train DMP models (DMPClass) for several state-of-the-art prompt tuning methods such as
CoOp (Zhou et al.,[2022b)), CoCoOp (Zhou et al.,[2022a)), MapLe (khattak et al.,[2023)),CoPrompt (Roy
& Etemad, |2024) and TAC (Hao et al.,[2025). These include both unimodal and multimodal methods.

Prompt Repository. To create a repository of classification prompts, we train the CLIP ViT-B/16
model following the respective papers. Given a classification problem, a prompt set is trained
for N epochs where N follows the original settings mentioned in the respective papers, using a
context vector of size K. We consider ImageNet and the standard 10 datasets used in the prompt
learning literature (Zhou et al.,|2022bga). We use 40 different initializations per dataset and save the
corresponding prompt embeddings to obtain the training tensor 7~ € R11X40xKxd

Training. Due to the large dimensionality of the prompt embeddings (K x d = 2048), the DMPClass
models are trained with an autoencoder. To obtain the text inputs, we concatenate the respective
dataset classnames into a text string, whose text embedding is used to condition the DMPClass model.
This setup allows us to flexibly mix and match class names across datasets to enable straightforward
compositionality (Table[7) without requiring handcrafted or semantically enriched descriptions. Since
the CLIP text encoder has a limit of 77 tokens per input (around 50 words), this string can be too
long for datasets with many classes (e.g. the 1,000 Imagenet classes). To overcome this, we consider
each class name independently, obtain the CLIP embedding for each resulting in C' embeddings for
C classes, which are then used to prompt DMPClass models.

3.2 DMP FOR SUBJECT VARIATION

DMPVariation synthesizes prompts learned via textual inversion (TT) (Gal et al.| 2022)) to generate
variations of a subject when conditioned on its TI prompt.

Prompt Repository. TI uses the diffusion loss to learn a text prompt S* for the downstream diffusion
model e (x4, 79(y), t), from a few example images (typically 3-5 per concept), while keeping the
model weights unchanged. This allows the model to synthesize images containing the concept. The
prompt is learned through the optimization

* . 2
S = argménEINS(m),y,ENN(O,l),t Het - Eg(l’t,Tg(y, S)7t)H2 5

where x; is an image, and y is any additional prompt text, such as “a photo of a". Both 7y and ¢y are
fixed during the optimization, which is performed by backpropagation.

To produce a prompt repository R, we split the CelebA dataset into unique identities using the
groundtruth labels, and use 3,000 of these as concepts ¢, for which we train personalized prompts .S(c)
with (5 using 1,000 steps of gradient descent. To obtain variations, we note that earlier optimization
steps do not fully encode face attributes, as compared to steps later in the optimization. We save the
prompts S(c) from 40 gradient steps (between 200 — 400 in intervals of 5), per identity. This produces
a repository R of 40 prompt variations per identity to obtain a training tensor 7~ € R3000x40xd,

Training. The DMP Variation model was trained directly in prompt space P, i.e. without autoen-
coder. Each personalized prompt produced by TI is used as conditional input to DMPVariation, by
concatenating it with the noise vector, as illustrated in Figure[2] During training, the model learns to
denoise the 40 different variations of the conditional prompt input. At inference, prompts that induce
variations of novel subjects can be sampled by simply conditioning on a new subject prompt. We
show that despite only training the model on prompts for faces from the CelebA dataset, the DMP
can synthesize variation prompts for very different concepts, e.g. cats/dogs or statues or different
styles (downloaded from the internet repositories). See Figure[14]and Figure[15]in Appendix
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3.3 MULTI-TASK DMP

We propose DMPMulti, a multi-task DMP model trained to synthesize prompts for personalized
subjects (Gal et al.| 2022)) and prompt sliders (Sridhar & Vasconcelos),2024). Both tasks are unified
within a single framework through the shared CLIP-ViT L/16 text encoder.

Prompt Slider Repository. Prompt Sliders is a technique to learn text prompts in the CLIP text
embedding space that allow control of particular attributes of a designated concept. Given a target
concept ¢;, a prompt slider S* is learned to encourage the distribution of images of ¢; to exhibit
more positive attributes ¢ and fewer negative attributes ¢~. This is implemented by replacing ¢;
with e,(a) = €f (¢, To(y(cr)), t) + an 3o e p(ef (e, To(y(c T, p)), 1) — €4 (x4, To(y(c™,p)), 1)) and
S by aS in (5)), where 7 is a guidance scale, «v a scaling parameter, and P a set of concepts that
the attribute manipulation should preserve (for example, race or gender). The positive ¢*, and
negative ¢~ attributes are sampled from a template predefined for concept c;. To create a slider
repository Rg, we trained prompt sliders for 20 different concepts using the SD-XL model and 3, 000
backpropagation steps. For each concept ¢, we save 40 prompts S(c) (from the last 200 steps in
intervals of 5) to obtain a training tensor 7~ € R20x40xd

Prompt Identity Repository. We use a random subset of 20 identities from the 3000 identities in
the DMPVariation prompt repository to create a prompt identity repository R; with each identity
containing 40 prompts obtained from the last 200 steps in intervals of 5 to obtain a training tensor
T € R2U xX40x d.

Training. The DMPMulti model was trained directly in prompt space P, i.e. without autoencoder,
using the full set of prompts from both repositories, i.e. R = Rg U R . For each slider concept ¢
(e.g., age, smiling etc.) we use the concept name as the text condition for DMPMulti. For identities,
we use “identity-c" as the text condition where ¢ = 1, ..., 20 is associated with each identity c in R.

Inference. At inference, DMPMulti can be conditioned with the slider concept name, to generate
prompt sliders, or with “identity-c" to generate identity prompts. Novel identities can be sampled by
specifying a new identity "identity-c" with ¢ > 20. Slider and identity prompts can then be fed to the
downstream model in isolation or together.

4 EXPERIMENTS

In this section, we discuss experimental results obtained with the three DMPs. For classification
prompts, we evaluate accuracy across 11 datasets and OOD-generalization on ImageNet dataset
variants: ImageNetV2 (Recht et al., [2019), ImageNet-Sketch (Wang et al., [2019), ImageNet-
Rendition (Hendrycks et al.,[2020)) and ImageNet-Adversarial (Hendrycks et al.l 2021)). For slider
concept prompts, evaluations are based on CLIP/LPIPS-score and for variation prompts, we compute
Face ID similarity to groundtruth using a VGGFace?2 (Cao et al., 2018) Inception ResNet model.

Implementation Details. We conduct all experiments on 24GB (NVIDIA-A10 or 3090-RTX) GPUs
using pytorch. DMP models are trained with the standard hyperparameters of (Rombach et al., [2022),
a learning rate of 1e~, and batch size of 320, for 2,000 epochs. This takes about a day to train on 4
GPUs for 3,000 identities. For classification prompts, the autoencoder is trained for 10, 000 epochs,
which takes about 10 hours. DMP uses 50 DDIM timesteps to sample one prompt which takes about
1 sec and it can be sped up with faster sampling methods (Liu et al., 2022a). The original CoOp
paper reports the full results only for a context length of 16. We use a context length of 4 (K = 4) as
suggested in CoCoOp. For fair comparisons, we use the codebase of respective methods and run all
our experiments under this setup. More details are in the appendix [A.9]

Storage and Runtime Efficiency. One of the benefits of the DMP framework is its high efficiency.
DMP eliminates the need to manage a repository of prompts and associated metadata, such as text
descriptions. This contrasts with methods like Stylus (Luo et al.,[2024), that automatically search,
retrieve, and compose LoRAs from a repository. Table [I| compares the storage and processing
requirements of DMP and Stylus, when used for the tasks that we consider in this work. DMP is
significantly more efficient, reducing storage needs by 91% and improving inference speed by 92%.
Further, Table 8] shows that DMP achieves better generalization than Stylus for classification, both on
new classes (73.4 vs. 72.8) and across all classes (70.1 vs. 67.5) over 11 datasets.
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Table 1: Memory and Table 2: Performance of Table 3: Domain generalization accuracy (%)
complexity requirements. different slider methods. for prompts learned on ImageNet.
Method ‘ Mem (GB) | ‘ Time (s) | Method ‘ CLIP-s 1 ‘ LPIPS| Source ‘ Target
K Method ImageNet -V2 -S -A -R Average
Stylus | 1.30 12.1 Concept Slider [28.90  |0.086
DMP [0.12 1 Prompt Slider [30.00  |0.219 CoOp 68.5  61.20 45.20 48.20 74.10 59.44
Gain 91%) 92%) DMPMulti 29.86 0.126 DMPCoOp  68.7  62.10 46.50 50.60 75.10 60.60

Table 4: Base-to-novel generalization: Accuracy of CLIP prompted classifier for All, Base, and New classes.
See Appendix Table E]for the full results. The results reported are the average over three seed runs.

[ (a) Avg (11 datasets) | (b) DTD I (c) EuroSAT I (d) UCF101
Method ~ All Base New HM | All Base New HM | All Base New HM | All Base New HM
CoOp (Zhou et al.| 2022b) 68.8 823 704 759|519 80.8 51.8 63.1 632 90.8 729 809 |67.6 834 653 732
DMPCoOp 70.1 803 734 76.5|53.7 75.1 55.8 64.0|65.9 85.6 80.7 83.1|71.7 79.6 70.7 74.9
A +1.3 -2.0 43.0 +0.6|+1.8 -57 +4.0 +09|+2.7 -52 +7.8 +22|+4.1 -38 +54 +1.7
CoCoOp (Zhou et al.||2022a) 70.1 80.7 72.5 76.0|52.3 77.5 548 64.2|66.0 87.9 65.6 749|727 822 72.1 76.8
DMPCoCoOp 702 79.5 740 764|529 758 58.5 66.0|65.8 872 66.6 75.4|72.5 80.6 76.0 78.2
A +0.1 -1.2 +1.5 +04|+0.6 -1.7 +3.7 +1.8|{-02 -0.7 +1.0 +05(-02 -1.6 +39 +14
CoPrompt (Roy & Etemad} 2024) | 72.3 83.1 74.6 78.3|56.3 82.1 57.6 67.6|67.1 943 66.8 78.0|76.5 86.8 78.7 82.5
DMPCoPrompt 729 825 754 785|574 805 62.1 70.1|70.7 91.1 69.6 78.6 |76.5 864 78.8 82.4
A +0.6 -0.6 +0.8 +0.2[+1.1 -1.6 +4.5 +25|+3.6 -3.2 +2.8 +0.6| 0.0 -04 +0.1 -0.1
Maple (khattak et al.|[2023) 72.0 822 75.1 782|558 80.2 592 68.1|722 93.7 729 819|73.8 829 78.6 80.7
DMPMaple 724 820 759 78.6|559 792 60.3 68.4|744 93.1 78.0 84.9|73.6 829 784 80.6
A +0.4 -0.2 +0.8 +04|[+0.1 -1.0 +I1.1 +03[+22 -0.6 +5.1 +3.0|-02 00 -02 -0.1
TAC (Hao et al.||2025) 746 852 77.1 80.8|59.1 83.6 62.7 71.6|764 94.3 80.2 86.6|78.2 87.2 8l.1 84.1
DMPTAC 75.0 85.1 77.5 80.9|59.3 833 63.6 72.1|76.7 939 81.5 87.2|78.2 87.2 814 84.2
A +0.4 -0.1 +04 +0.1[(+0.2 -0.3 +09 +0.5|+0.3 -04 +1.3 +0.6( 0.0 0.0 +0.3 +0.1

4.1 DMP FOR CLASSIFICATION

To evaluate DMP-based classification, we conducted Base2New generalization experiments using
five different state-of-the-art prompting methods, across 11 diverse datasets. To assess the ability to
generalize to unseen classes, only the first half of the classes were used to learn prompts and evaluated
for those classes (Base), the remaining classes (New) and all classes (All). Table E] summarizes
the performance of standard learned prompts and those synthesized by DMP. While DMP prompts
have slightly lower performance for the base classes, an expected outcome since they are inherently
bounded by the accuracy of the learned prompts used to train the DMP - they generalize better,
with an average accuracy gain ranging from +0.5-3.0% for unseen classes across all prompting
methods. In particular, for new classes, DMP outperforms the learned prompts on 11/11 datasets
for CoOp, CoCoOp, CoPrompt, and TAC methods while 9/11 datasets for MapLe. The table also
shows that on certain datasets, the gain can be as high as +7.8/5.4% on Eurosat/UCF101 respectively.
Note that for methods other than CoOp, DMP only synthesizes the text prompts attached to the
input of CLIP and do not generate the weight or projection matrices of the deeper prompts used
by those methods. The learned weights from the original prompting method is used together with
the synthesized prompts from DMP. Despite only modifying the shallow prompts, DMP obtains
+0.4-1.5% average accuracy improvement for these methods. These findings suggest that the original
learned prompts may be somewhat overfitted to the base classes, whereas DMP prompts induce a
classifier of stronger generalization. Over all classes (both seen and unseen) and datasets, DMP has
an accuracy gain of upto +1.3%. It can be concluded that meta-prompting with a diffusion model
outperforms the existing prompting techniques that are used to train it.

We conduct additional studies using DMPCoOp to evaluate generalization of DMP across tasks. First,
we consider domain generalization. Table [3]demonstrates the robustness of a DMP model trained on
ImageNet, by evaluating the performance of its prompts on four out-of-distribution (OOD) ImageNet
datasets. The DMPCoOp model consistently improves over CoOp across all four ImageNet variants,
with 1.16% average gain in classification accuracy. Figure 3] summarizes the gains of cross-dataset
generalization. Prompts learned on ImageNet are used for classification of the 10 other datasets
considered in Table d DMPCoOp outperforms the baseline CoOp prompts in 7/10 datasets, achieving
a significant overall average gain of 1%. The gains are quite large for datasets with less common
classes, such as “FGVC aircraft" (+5.3%), or involving very fine-grained classes, such as “Oxford
Flowers" (+2.5%), which are not likely to appear in ImageNet. Conversely, CoOp does slightly better
on datasets like Caltech101, whose classes have large overlap with ImageNet.

We next consider cross-task generalization in the more challenging task of taxonomic classifica-
tion (Wu et al.l 2024)), which tests the ability of the classifier to classify images with respect to
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Figure 3: Cross-dataset Figure 4: Cross-task
generalization across 10 datasets: generalization: Comparison of Figure 5: DMPMulti Prompt Sliders:
Gain of DMPCoOp over CoOp for DMPCoOp against CoOp prompts SD-XL images using DMPMulti prompt

ImageNet prompts. for hierarchical classification. sliders for "age’ and ’smiling’.
Table 5: Comparison of DMPMulti with baseline Table 6: Comparison of Table 7: Classification
Textual Inversion (TI) prompts for identity syn- DMPVariation with TI for accuracy on combined Cal-
thesis. variation synthesis. tech101+UCF101 datasets.
Method (SD-RV) Face-ID1 DINO | CLIP-I | CLIP-T 1 Method Face-ID CLIP-T  Method All Base New HM
. (SD-RV) 1 D + + B 1
Textual Inversion  0.428 0.627  0.696 0.244
Stylus (Top-1) 0.434 0.645  0.706 0.246 Textual Inversion 0.428  27.0 CoOp 715 789 77.1 78.0
DMPMulti 0.434 0.558  0.653 0.245 DMPVariation  0.299  28.4 DMPCoOp 72.6 80.5 78.7 79.6
DMPMulti(20) 0.429 0.595 0.599 0.285 A -0.13 +1.4 A +1.1 +1.6 +1.6 +1.6

different class subsets in a class hierarchy, using metrics of Mean Treecut Accuracy (MTA) over
25 treecuts and Hierarchical Consistency Accuracy (HCA). Figure ] summarizes the MTA gains of
DMPCoOp over CoOp on Imagenet variants and the SUN dataset. DMPCoOp prompts obtains a
significant 5.8-11.7% average improvement over CoOp, even though no prompts are ever trained for
hierarchical classification. These results align with the findings from the class, domain, and dataset
generalization experiments above, confirming that the DMP model learns to generate prompts that are
more robust than the original learned prompts on which it is trained. See Table [T2]for the full results.

We next assess the compositionality of DMP, motivated by our hypothesis that conditioning on class
label names naturally facilitates compositional generalization. We evaluate this by considering a
composite classification task over Caltech101 and UCF101 (200 total classes). The accuracy is
computed over all 200 classes from the two datasets using the images from both the test datasets.
Table[7] shows that DMPCoOp outperforms the CoOp baseline by +1.6% for Base, New classes and
+1.1% for All classes. This demonstrates that even under simple, synthetic identifiers, DMP enhances
generalization and maintains strong performance in multi-dataset settings.

Additional ablation studies on comparison with VAE, autoregressive methods (Table|8]), impact of
text conditions (Table[IT)) and noisy prompts (Table [I4) are discussed in Appendixlx_@fl

4.2 MULTITASK DMP

Sliders. Table [2] compares the performance of three slider approaches: the concept sliders
of (Gandikota et al.l [2023b), the baseline prompt sliders of (Sridhar & Vasconcelos| [2024)), and
those produced by DMPMulti. CLIP-scores are computed between the images synthesized by the
downstream SD-XL model, prompted with sliders for 20 attributes, and the attribute names. Both
CLIP and LPIPS scores are evaluated on a set of 100 custom prompts (see appendix [A.9.2] for details)
with 5 prompts per concept. Concept Sliders often fail to induce noticeable changes in the generated
images (Fig. [T3), resulting in strong LPIPS scores but weak CLIP scores. In contrast, DMPMulti
achieves a CLIP score similar to the Prompt Slider upper bound, and is more that 1 point better than
Concept Sliders. It also corrects a tendency of Prompt Sliders to produce exaggerated attributes,
which result in poor LPIPS scores. Overall, the sliders synthesized by DMPMulti achieve the best
balance, among the three approaches, between image quality and attribute manipulation. This is also
illustrated in Fig.[T3] Figure[5]shows qualitative results of images synthesized by manipulating the
strength of prompts (for attributes ‘smiling,” and ’age,”) generated by the DMPMulti model. See
appendix Fig.[T2]for more qualitative results.

Semantic Negative Sliders. Prompt Sliders are restricted to positive semantic directions due to
their training setup. In contrast, DMPMulti learns a unified text-conditioned prompt space that also
supports negative directions by setting the positive prompt to empty text and the negative prompt
to the target concept in (3). This enables attenuation of attributes even though DMPMulti is trained
only with positive concepts. Figure [6]demonstrates this capability; using LEDITS++ (Brack et al,
2023) inversion, a real image is initialized in SDXL and edited with DMPMulti’s negative prompts
for “age” and “smiling”. Compared to InstructPix2Pix and LEDITS++, DMPMulti achieves superior
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Figure 6: Editing real images to reduce age Figure 7: Generalization of DMP Variation model. Images
(top) and remove smiling (bottom) attribute generated using prompts synthesized by TI (top) and DMP-
from real images using LEDITS++ image inver- Variation (bottom) for various downstream model text prompts
sion and prompt sliders generated with a neg- (shown on top). DMPVariation prompts are more robust than
ative prompt using DMPMulti and compared TI prompts, which impair the ability of the downstream model
with InstructPix2Pix. to generalize. See Fig. Efor additional results.

edits, effectively capturing negative semantics such as the absence of “age” or “smiling”. Together,
Figures 5] and [ highlight DMPMulti’s ability to produce semantically consistent prompts for both
positive and negative concept directions.

Identities. Table[5]compares Identity prompts from DMPMulti with Stylus and Textual Inversion
across face recognition accuracy, image-to-image similarity, and prompt fidelity. DMPMulti achieves
higher identity scores, maintains prompt compliance comparable to TI/Stylus, and shows lower
similarity to training images, indicating stronger generalization. In contrast, TI tends to overfit,
consistent with prior findings 2023). The last row of Table[5]shows an ablation study
of using fewer samples (20 vs 40) per identity for training DMP. Notably, DMPMulti (20) achieves
similar identity fidelity and even higher prompt compliance (117%) than the 40-sample variant.

4.3 DMPVARIATION

Figure[7)presents qualitative results comparing DMPVariation and Textual Inversion (TI) in generating
personalized images across diverse contexts. In this example, the downstream model personalized
with prompts produced by TI or DMPVariation, is asked to generate a new image of the subject in a
different context, specified as a text prompt atop each image. The variation prompts produced by
DMPVariation demonstrate greater robustness and generalization, effectively adapting to different
contexts while preserving subject identity. This is unlike TI prompting, which tends to overfit to the
subject, leading to poor generalization across contexts. In result, it fails to generate suitable images
of the dog for all contexts other than “in front of a house". The figure shows that DMPVariation
produces successful variation prompts for general objects as diverse as dogs despite being trained
only on CelebA-face identities (See Fig. [T3] for other objects such as bird and statue). Fig. [[7]in
Appendix shows additional results where TI completely fails as opposed to DMPVariation.

To evaluate generalization, we compare DMP Variation prompts with learned TI prompts on CelebA
dataset using Face-ID and CLIP-Text similarity across 28 diverse prompts (Table[T3). As shown in
Table [f] DMPVariation achieves lower Face-ID similarity, indicating diverse yet identity-preserving
prompts, and improves CLIP-Text similarity by 1.4%, demonstrating better generalization to novel
prompts compared to TI embeddings.

See Appendix [A-8]for a discussion on the limitations of DMP and scope for future works.

5 CONCLUSION

In this work, we propose a diffusion meta-learning framework for synthesizing versatile and generaliz-
able prompts across classification, personalization, concept manipulation, and subject variation tasks.
Our DMP models demonstrate robust prompt generation that avoids overfitting and achieves strong
cross-dataset generalization, effective semantic manipulation, and high identity fidelity. DMPClass
shows superior accuracy across diverse tasks (upto 3/12%) and out-of-distribution datasets (+1.2%),
DMPMulti enables seamless negative prompt generation, and and DMPVariation synthesizes diverse
subject variations with a +1.4 increase in prompt compliance for generalization compared to the
baseline. These results affirm the potential of our diffusion based meta-prompting approach as a
powerful and adaptable tool for enhancing prompt quality and generalization in vision applications.
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REPRODUCIBILITY STATEMENT

We are committed to reproducibility of the results presented in the paper and have included all
necessary details including the algorithm experimental setup 4] hyperparameters[A.9|used for our
method. We will release the code and trained models publicly after acceptance of the paper for benefit
of the community and drive further research in this area.
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A APPENDIX

A.1 THEORETICAL ANALYSIS

Let C denote a distribution over tasks or concepts ¢ ~ C. For each concept ¢, we assume a textual
description y(c) (e.g., “a personalization prompt for Jennifer Aniston”), a downstream task with loss
Liask (S ¢) that evaluates the performance of a candidate prompt S in prompt space P when applied
to a frozen foundation model F', and a repository R of exemplar prompts S(c) obtained from existing
prompt-learning techniques.

Our objective in this section is to bound the expected downstream loss when sampling prompts from
the pretrained generator:

jpre(o) = ECNC |:]ES~p9(~\y(c)) [‘Ctask(s; C)]:| .

High-level intuition. When the trained diffusion model py(- | y) closely matches the repository/data
distribution pqata(- | ¥) in distributional distance, the expected task loss under py is close to the
expected repository task loss under pqat,- If the repository was constructed to contain useful prompts
for downstream tasks (i.e., pdata has low expected task loss), then a small distributional discrepancy
implies low expected task loss for py as well. We make this statement precise with the following
bounds.

A.1.1 DISTRIBUTIONAL DISCREPANCY BOUND

We begin with a straightforward decomposition and use standard total-variation and Pinsker inequali-
ties (Cover & Thomas} 2006; Tsybakovl, 2008).

Proposition 1 (Distributional discrepancy bound). Let paata(- | y) and po(- | y) be two distributions
on prompt space P for a fixed condition y. Assume the task loss Liask(S) is bounded in [0, Lax)-
Then

Eswpg [‘Ctask<s)} - IESdiMa [Etask(5>] ‘ < 2Lmax TV(}M’ pdata)a (6)
and by Pinsker’s inequality,
Tv(p(%pdata) < \/ %KL(pda‘ca”p0)~ (7)
Consequently,
ESNPG [LtaSk(S)] S ESdiata [L:ta,sk(s)] + Lmax V 2KL(pdata||p0)- (8)

Proof. Let £(S) = Lyask(S) and denote A := E,, [¢(] — E,, ... [¢]. By the definition of total variation
(and the fact that 0 < ¢ < Lyay),

IAl = ‘/E(S> (p9 _pdata)(ds)‘ S /M(S)‘ |p9 _pdata|(ds) S Lmax/|p9 _pdata|(ds)~

By definition TV (pg, pdata) = % | |pe — Pdatal, hence equation@holds.

Pinsker’s inequality (see e.g. (Cover & Thomas) [2006)) gives equation Combining the two
inequalities yields equation [§] O

Remarks. Inequality equation [§]reduces expected downstream loss under the model to two terms:
the expected loss of the repository distribution (which is a function of data collection quality) and the
KL divergence between the dataset distribution and the pretrained generator. The latter is controlled
by how well the denoiser is trained (see next subsection).

A.1.2 RELATING DENOISING LOSS TO MODEL-DATA KL

We now recall a standard link between the denoising objective used in DDPMs and a divergence
between the model and data distributions (see, e.g., (Vincent, 2011 [Song et al) 2020)). Under
standard DDPM assumptions and appropriate variance schedule, minimizing the simplified denoising
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loss equation [2]is equivalent (up to constants and time discretization effects) to score matching
/ denoising score-matching which estimates the score function V, 1og pgata(z). A well-trained
denoiser implies an accurate score estimator, which in turn implies a small KL divergence between
the model and data distributions in xg-space (the space of clean prompts). Formally, one can show:

Lemma 1 (Denoising loss controls KL (informal)). Under the standard DDPM/score-matching
correspondence and mild regularity conditions, if the denoising risk satisfies

Edenoise(e) S g,
then the KL divergence between paata(xo | y) and pe(xo | y) admits the bound
KL(pdata(' | y)HPG( | y)) < Ce+ 0(1)7
where C' > 0 is a constant that depends on the variance schedule, the discretization, and model

parametrization; the o(1) term vanishes as the diffusion discretization becomes finer.

Remarks. The lemma is qualitative: precise constants follow from score-matching and likelihood
bounds in the DDPM literature (e.g., (Ho et al.l 2020b} |Song et al.l [2020)). The key message is that a
small denoising loss implies a small divergence between the learned and data distributions.

Combining Lemma [I] with Proposition [I] yields a bound of the form
Esnpy [Ltask (S)] < Esapaaa[Ltask(S)] + LmaxV2C € + 0(1).

A.1.3 CONCENTRATION FROM FINITE REPOSITORY

So far we have related the model expectation to the (population) data distribution. In practice we only
train on finite R with n samples per condition y. Let Pgata denote the empirical distribution formed
by the repository. By Hoeffding’s inequality (or McDiarmid) (Hoeffding| |1963; McDiarmid, 1989),
with probability at least 1 — § over the draw of the repository,

B~ Ltast(S)] = Espane [Lrastc(9)]| < Lona/ 522 ©)

A.1.4 DMP PERFORMANCE GUARANTEE

Combining the above pieces yields the following performance guarantee for DMP.

Proposition 2 (DMP performance guarantee). Assume the denoising loss satisfies Lgenoise(0) <
and the repository contains n i.i.d. prompts for the condition y. Then with probability at least 1 —
over the repository sample,

Espo(1y) [Lrask (S)] < Esapyaea-ly) [Lrask(S)]
+ Lyaxv2Ce + Lmax\/@ + 0(1)a

where C'is the constant from Lemmal|l|and the o(1) term accounts for discretization error in the
diffusion approximation.

€
)

(10)

Proof. Start from Proposition E] applied to pg and pyata:

Epe [@ < Epdata[é] + 2L max \/ %KL(pda‘caHPG)-

Apply Lemma|[I]to bound the KL by Ce + o(1); hence

Epo[f] < Epyoiall] + Limax V2C € + 0(1).
Now replace the population expectation E, .. [¢] by the empirical expectation Ej,_,_[¢] and apply

'Pdata

Proposition [9] (Hoeffding) which with probability at least 1 — ¢ yields the stated sampling error term
Laxy/ %. Combining these terms gives equation O

Interpretation. Bound equation|[I0|decomposes the expected task loss under the pretrained generator
into (i) the empirical repository loss (quality of collected prompts), (ii) an approximation term
controlled by the denoising risk (how well DMP models the repository), and (iii) a sampling term
that vanishes as the repository size n grows.
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Figure [§]shows the zoomed version of the DMP framework for ease of viewing.

Prompt Embedding
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Variation Prompt
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S*(€) x-q

Prompt Variation
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Figure 8: (Zoomed Version) Left: Diffusion Meta-Prompt framework for Text-to-Prompt synthesis. Right:
Prompt Variation synthesis conditioned on learned Textual Inversion Prompts.

A.2 DMP FOR CLASSIFICATION

Table [8|shows the complete results of DMPClass for CoOp, CoCoOp, CoPrompt, Maple, and TAC
methods over the baselines across 11 datasets for Base-to-novel class generalization setting. The
reported results are the average over three seed runs. DMP consistently improves average accuracy
across three independent random seeds on both all and novel classes, outperforming existing
prompt learning methods. Specifically, DMP yields gains of +1.3% (All) and +3.0% (New) over
CoOp, +0.6%/+0.8% over CoPrompt, +0.1%/+1.5% over CoCoOp, +0.4%/+0.8% over MaPLe,
and +0.4%/+0.4% over TAC. Importantly, these improvements are achieved while tuning only the
text prompts, leaving projection matrices and model weights fixed.

The benefits of DMP are especially pronounced on datasets underrepresented in CLIP pretrain-
ing, where adaptation is more challenging. On EuroSAT, DMP achieves relative gains of
+7.5%/+2.8%/+1.0%/+5.1%/+1.3% over CoOp, CoPrompt, CoCoOp, MaPLe, and TAC, respec-
tively. On DTD, the improvements are +4.0 %/+4.5%/+3.7%/+1.1%/+0.9 %, and on FGVC, they
are +4.5%/+0.8%/41.9 %/+0.9 %/+0.4 % . These results highlight that DMP not only delivers consis-
tent gains across methods and datasets but also shows stronger generalization on novel and less
common domains, demonstrating its superiority as a prompt learning approach.

Figure[10]and Figure[IT|show the zoomed version (for ease of viewing) of cross-dataset and cross-task
generalization results of DMPCoOp prompts over the baseline CoOp prompts, respectively.

Table|12|shows the full results of cross-task generalization experiment described in section We
note that DMPCoOp obtains higher accuracies consistently across both the Mean Treecut Accuracy
and Hierarchical Consistency Accuracy metrics on all the datasets considered. Notably, DMPCoOp
obtains +11.4% and +5% improvement on SUN dataset for MTA and HCA respectively. This shows
that DMPCoOp prompts are more robust and generalize well beyond the task on which it was trained.

t-SNE visualization. To assess the fidelity and diversity of prompts synthesized by the DMP
framework, we conducted an embedding space analysis comparing real prompts from the repository
R with DMP-generated prompts sampled using different random noise seeds. Figure[9] presents a two-
dimensional t-SNE projection of both sets of embeddings, with real prompts in blue and generated
prompts in orange for SUN397, FGVC, Oxford Flowers and Stanford Cars datasets respectively from
left to right.

The visualization reveals that generated prompts broadly overlap with the real prompt manifold, while
also exhibiting a greater spread, indicative of higher variability. This suggests that the model captures
the underlying structure of prompt space without resorting to memorization, while also producing
novel variations.

To quantify these observations, we computed the fraction of a prompt’s 5 nearest neighbors (in
embedding space) that share the same class label between real and generated prompts across 11
datasets. On average, 70.7% of generated prompts share the same nearest-neighbor labels as their
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Table 8: Base2new generalization per dataset: performance for All, Base, and New classes, and HM (Harmonic
Mean). The results reported are the average over three seed runs. * denotes our implementation as the code is
not publicly available.

| (a) Average | (b) ImageNet |  (c)Caltech101 | (d) OxfordPets
Method | All Base New HM | All Base New HM | All Base New HM | All Base New HM

VAE (Kingma & Welling}2014]
Top-1 Retrieval (Luo et al.|[2024)

58.6 62.7 68.3 65.0(57.0 64.1 57.8 60.8[89.1 91.7 943 92.9(90.1 92.0 97.1 94.5
67.5 80.7 72.8 76.5|50.5 78.4 479 59.5|37.3 769 46.4 579|699 85.8 66.8 75.1

Transformer (Vaswani et al|2017) |68.3 82.3 69.4 75.3|68.1 76.4 668 713|94.8 982 94.8 96.5(89.9 94.6 95.4 95.0
GPT-2 (Radford et al 2019 68.1 81.8 69.1 74968.0 762 66.8 712|948 98.3 950 96.6|90.1 947 959 953

Prompt Diffusion 412024) [ 67.0 69.9 73.0 71.4|54.7 60.6 56.4 58.4|91.3 944 932 938|923 943 97.5 95.9

CoOp 2022b) 68.8 823 70.4 759|685 76.5 67.2 71.5|94.8 983 95.0 96.6]/90.1 94.7 959 95.3

DMPCoOp 70.1 803 73.4 76.5|68.7 754 68.8 72.094.8 98.3 953 96.8(91.7 954 97.3 96.3
A +1.3 -2.0 +3.0 +0.6({+0.2 -1.1 +1.6 +0.5] 0.0 0.0 +0.3 +0.2|+1.6 +0.7 +1.4 +1.0
CoCoOp (Zhou et al}} [2022a) 70.1 80.7 725 76.0|69.9 75.8 70.8 73.2|93.7 97.8 932 95.4|91.2 951 97.6 96.3
DMPCoCoOp 702 79.5 74.0 76.4(70.1 758 71.2 73.4(93.8 97.7 93.7 95.7|92.1 950 97.8 96.4
A +0.1 -1.2 +1.5 +04(+0.2 0.0 +0.4 +0.2|(+0.1 -0.1 +0.5 +0.3|+0.9 -0.1 +0.2 +0.1
CoPrompt (Roy & Etemad|[2024) |72.3 83.1 74.6 78.3|70.7 76.7 71.4 73.9]|95.8 98.7 953 97.0|91.1 953 97.0 96.1
DMPCoPrompt 729 825 175.4 78.5(70.7 76.6 71.5 73.9(95.7 98.7 954 97.0|91.6 952 97.2 96.2
A +0.6 0.6 +0.8 +02] 0.0 -0.1 +0.1 0.0 [-0.1 00 +0.1 0.0 |[+0.5 -0.1 +0.2 +0.1
Maple (khattak et al.}[2023) 72.0 822 75.1 782|702 76.7 70.5 73.5|94.5 98.0 94.3 96.1|92.3 954 97.8 96.6
DMPMaple 724 820 1759 78.6|70.3 76.8 70.6 73.6|94.8 98.0 95.5 96.7|92.3 954 97.6 96.5
A +0.4 02 +0.8 +0.4[+0.1 +0.1 +0.1 +0.1|+0.3 0.0 +1.2 +0.6/ 0.0 0.0 -0.2 -0.1
TAC2025 74.6 852 77.1 80.8|71.3 78.5 71.0 74.6|95.2 98.6 95.0 96.7|93.1 96.0 98.0 97.0
DMPTA 75.0 85.1 77.5 80.9|71.4 78.5 71.2 74.6(95.2 98.6 95.0 96.8(93.1 959 98.2 97.0
A +0.4 -0.1 +04 +0.1]+0.1 00 +02 0.0]00 00 00 +0.1|00 -0.1 +02 0.0

| (e)StanfordCars |  (f) Flowers102 | (g) Food101 | (h) FGVC Aircraft
Method | All Base New HM | All Base New HM | All Base New HM | All Base New HM
CoOp (Zhou et al.} [2022b) 68.7 76.7 682 72.2|74.5 96.7 68.3 80.1|84.9 90.0 89.9 89.9[25.1 36.9 27.1 312
DMPCoOp 69.3 745 72.0 73.2|75.6 93.4 722 81.4(86.4 89.6 89.9 89.7(26.3 357 31.6 33.5
A +0.6 2.2 +3.8 +1.0[+1.1 33 439 +13|+1.5 -04 00 -02[+12 -12 +45 423
CoCoOp (Zhou et al| 2022a) 68.9 712 732 72.2|744 947 70.1 80.6|85.8 90.6 91.3 90.9]26.0 355 32.1 33.7
DMPCoCoOp 68.6 69.9 74.4 72.1|74.6 90.6 72.8 80.8(86.6 90.7 91.5 91.1[259 32.6 34.0 332
A 03 -13 +12 -0.1[+02 -4.1 +2.7 +0.2|+0.8 +0.1 +0.2 +0.2]-0.1 -2.9 +1.9 -0.5
CoPrompt (Roy & Etemad|[2024) |68.3 74.0 71.0 72.5|81.4 96.5 75.8 84.9|86.5 90.3 91.6 90.9|28.9 37.5 35.5 36.4
DMPCoPrompt 68.3 739 71.1 72.5|81.5 96.0 76.2 85.0(86.6 90.3 91.7 91.0(28.9 363 36.3 36.3
A 0.0 -0.1 +0.1 0.0 [+0.1 -0.5 +0.4 +0.1[+0.1 0.0 +0.1 +0.1] 0.0 -1.2 +0.8 -0.1
Maple (khattak et al.} [2023) 69.8 729 740 73.4|76.9 959 723 825|869 90.7 92.1 91.4|284 37.5 355 364
DMPMaple 69.7 727 74.1 73.4(77.5 955 73.1 82.8(87.1 90.8 92.1 91.5(28.8 37.0 36.4 36.7
A 0.1 -02 +0.1 0.0 [+0.6 -04 +0.8 +0.3]|+0.2 +0.1 0.0 +0.1|+0.4 -0.5 +0.9 +0.3
TAC2025 74.2 81.2 74.8 77.9|81.2 98.0 759 85.6(86.9 91.0 91.9 91.4|34.3 451 38.0 412
DMPTA 742 81.0 749 77.8|81.4 98.0 76.1 85.7(86.9 90.9 91.9 91.4|34.2 453 38.4 41.5
A 0.0 -02 +0.1 -0.1[+02 00 +02 +0.1] 0.0 -0.1 0.0 0.0 |-0.1 +02 +04 +0.3

| (i) SUN397 | (j) DTD | (k) EuroSAT | (1) UCF101
Method ‘ All Base New HM‘ All Base New HM‘ All Base New HM‘ All Base New HM
CoOp (Zhou et al.} [2022b) 67.6 80.8 72.6 76.5|51.9 80.8 51.8 63.1]63.2 90.8 72.9 80.9|67.6 83.4 653 732
DMPCoOp 67.3 80.4 729 76.5|53.7 75.1 55.8 64.0(65.9 85.6 80.7 83.1|71.7 79.6 70.7 74.9
A 03 -04 +0.3 00 [+1.8 -57 +4.0 +0.9[+2.7 -52 +7.8 +22|+4.1 3.8 +54 +1.7
CoCoOp (Zhou et al} [2022a) 69.8 79.7 76.6 78.1|52.3 77.5 548 64.2|66.0 87.9 656 74.9|72.7 82.2 72.1 76.8
DMPCoCoOp 69.5 784 177.5 78.0|52.9 75.8 58.5 66.0|65.8 87.2 66.6 75.4|72.5 80.6 76.0 78.2
A 03 -1.3 409 -0.1[+0.6 -1.7 +3.7 +1.8[-02 -0.7 +1.0 +0.5[-02 -1.6 +3.9 +1.4
CoPrompt (Roy & Etemad|[2024) |72.5 82.3 79.6 80.9]56.3 82.1 57.6 67.6|67.1 94.3 66.8 78.0|76.5 86.8 78.7 82.5
DMPCoPrompt 72.6 822 79.8 81.0(57.4 80.5 62.1 70.1|70.7 91.1 69.6 78.6|76.5 86.4 78.8 82.4
A 0.1 -0.1 +0.2 +0.1[+1.1 -1.6 +4.5 +2.5|+3.6 -32 +2.8 +0.6/ 0.0 -0.4 +0.1 -0.1
Maple (khattak et al .} [2023) 712 80.8 787 79.7|55.8 80.2 59.2 68.1|72.2 93.7 72.9 81.9|73.8 82.9 78.6 80.7
DMPMaple 709 802 78.7 79.4(55.9 792 60.3 68.4(74.4 93.1 78.0 84.9|73.6 82.9 78.4 80.6
A 03 -06 0.0 -03[+0.1 -1.0 +1.1 +03[+22 -0.6 +5.1 +3.0[-02 00 -0.2 -0.1
TAC2025 73.1 83.6 79.7 81.6|59.1 83.6 62.7 71.6|76.4 94.3 80.2 86.6|78.2 87.2 81.1 84.1
DMPT2 73.1 83.6 79.9 81.7|59.3 833 63.6 72.1(76.7 939 81.5 87.2(78.2 87.2 81.4 84.2
A 0.0 0.0 +02 +0.1[+0.2 -03 +0.9 +0.5[+0.3 -04 +1.3 +0.6/ 0.0 0.0 +0.3 +0.1

real counterparts, showing strong semantic alignment between real and generated embeddings while
ensuring diversity.
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SUN397 Prompts FGVC Aircraft Prompts Oxford Flowers Prompts " Stanford Cars Prompts

Figure 9: t-SNE visualizations of prompt embeddings. Each figure shows real prompts (blue) and DMP-
generated prompts (orange) with different noise seeds for different datasets: (a) SUN397, (b) FGVC-Aircraft, (c)
Oxford Flowers, (d) Stanford Cars. Generated prompts broadly overlap with the real prompt manifolds while
exhibiting greater spread, demonstrating both fidelity and diversity across domains.

Impact of Classifier-Free Guidance (CFG) scales. The performance of DMP with different
guidance values is shown in Table[9] The trends show that the average accuracy across all datasets
decreases with increasing guidance scales.

Table 9: Comparison with different classifier free guidance scales. Base2new generalization per dataset:
performance for All, Base, and New classes, and HM (Harmonic Mean).
‘ (a) Average (scale 4.5) ‘ (b) Average (scale 5.5) ‘ (c) Average (scale 6.5) ‘ (d) Average (scale 7.5)

Method | AL Base New HM | AllL Base New HM | AllL Base New HM | All Base New HM
DMPCoOp ‘ 70.1 80.3 734 76.5 ‘ 69.6 80.3 70.6 76.3 ‘ 69.6 79.3 70.4 75.0 ‘ 68.1 794 70.1 75.0

Variational Autoencoder Reconstruction. Table [10|shows the reconstruction accuracy of the CoOp
prompts for the trained Variational Autoencoder (VAE) across different datasets. The autoencoder
reconstructs the prompts almost perfectly with only 0.1% difference on average across all the datasets.

Table 10: Quantitative results of VAE reconstruction: Comparison against CoOp prompts across various datasets.
The VAE reconstructs the CoOp prompts baseline almost perfectly with only 0.1% difference on average.

& &
N S ¢ & 9 &
N > &
& N > & 5 g F & 3 & &
& & & § $ S N g S Q> g
§ S & F 5 & & 5 £ § 8 &
Model S N S S S § IS 3 N S S #
CoOp 685 | 726 901 687 948 849 251 676 519 589 662 | 68.1
Autoencoder | 685 | 720 896 686 946 851 250 670 520 595 661 | 680
A 00 | 06 05 01 02 402 01 06 401  +06 -0 0.1

A.3 DMP FOR SLIDERS

Figure |12)shows additional qualitative results of slider prompts generated by DMP for the attributes
"long hair" and "chubby".

Figure[I3|presents a qualitative comparison of images generated by Concept Sliders (using the author-
provided models), Prompt Sliders, and DMP. The results show that Concept Sliders struggle to induce
the intended attributes, even at higher scales, due to their sensitivity to training hyperparameters, which
requires careful tuning as noted in (Sridhar & Vasconcelos},|2024)). We observe that DMP-generated
prompts produce images that are qualitatively similar to those from Prompt Sliders. However, the
original Prompt Sliders method has limitations in maintaining subject identity at higher scales, as
discussed in (Sridhar & Vasconcelos|[2024). In contrast, DMP—despite being trained with the Prompt
Sliders embeddings—demonstrates greater robustness, effectively preserving subject identity even at
relatively higher scales. These result corroborate the results observed in Table 2 of the paper.

Figure[I9)illustrates the results of pure negative prompts, where the sliders yield images with attributes
opposite to the specified concepts, such as shorter hair or a neutral (non-smiling) expression.

A.4 DMP FOR VARIATIONS

Generalization. Figure[T4]shows images synthesized for the variation prompts generated by DMP-
Variation model, for a common seed. Note that the variation prompts are conditioned by the Textual
inversion embedding for the target concept, which is illustrated by a GT image in the figure. The
figure shows that DMPVariation produces successful variation prompts for general objects as diverse
as birds and statues despite being trained only on CelebA-face identities.
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Table 11: Ablation study on Cross-dataset generalization of DMPCoOp Imagenet prompts: Comparison of
classnames against dataset names as prompt inputs to the DMPCoOp model.

& s F s é
N oy
gl & & F S s s 5 o8 s
& §F & & & 5§ S 2 & §F & &
§ F §F § §F & & § £ § &8
Model < N S < O & S & Q Iy S v
CoOp 68.5 66.5 88.5 61.9 92.7 84.8 15.2 60.7 40.9 46.9 65.3 62.9
DMPCoOp (Dataset Names) 68.3 65.2 88.0 63.4 92.7 83.9 16.8 62.6 41.0 46.3 66.6 63.2
A (Dataset) -0.2 -1.3 -0.5 +1.5 0.0 -0.9 +1.6 +1.9 +0.1 -0.6 +1.3 +0.3
DMPCoOp (Class Names) 68.7 69.0 892 624 914 857 205 629 404 462  66.7 63.9
A (Class) +0.2 +2.5 +0.7 +0.5 -1.3 +0.9 +5.3 +2.2 -0.5 -0.7 +1.4 +1.0
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Figure 10: (Zoomed Version) Cross-dataset gener-Figure 11: (Zoomed Version) Cross-task generaliza-
alization: Comparison of DMPCoOp against CoOp tion: Comparison against CoOp prompts across vari-
prompts sampled for ImageNet. DMPCoOp general-ous datasets. DMPCoOp generalizes better than CoOp
izes better than CoOp with a 1% average accuracy gain. baseline with a 5-12% average accuracy gain.

Qualitative Results. Figure [I3] shows additional qualitative results for variations generated by
DMP Variation model.

Figure [T6] shows the synthesized prompts that produce variations of a person, conditioned on the
textual inversion embedding of the person. Note that, while all images are synthesized with the same
SDXL seed, they exhibit a diversity of background scenes, hair patterns, clothing, etc. This is an
additional benefit of the natural prompt variability of DMP-based personalization: to increase the
diversity of the synthesized images.

Figure [T7) presents qualitative results comparing DMP and TI in generating personalized subject
images across diverse contexts. The variation prompts produced by DMP demonstrate greater
robustness and generalization, effectively adapting to different contexts while preserving subject
identity. In contrast, Textual Inversion tends to overfit to the subject, leading to poor generalization.
For instance, it completely fails to generate correct images for the Buddha statue and succeeds in
only a single scenario for the duck and dog subjects.

The observed generalization of DMP beyond its training domain can be explained by two comple-
mentary principles: (1) Latent Structure of Prompt Space. (2) Distributional Robustness of Diffusion
Models.

1. Prompt embeddings encode semantic concepts in a continuous, compositional latent
space (Wang et al.| 2023). Even though TI is trained on faces, the learned repository
‘R spans a manifold of semantic representations that share structural similarities with other
concepts (e.g., animal attributes, artistic styles). Diffusion in this space does not memorize
individual prompts but learns a generative prior over semantic transformations, enabling
extrapolation to novel concepts.

2. Diffusion models trained on corrupted versions of S(c¢) implicitly learn a score function
that approximates the gradient of the log data distribution (Song et al.,[2020). Since score
matching enforces local smoothness in high-dimensional space, the denoiser learns to
interpolate meaningfully between prompt embeddings, even outside the training distribution.
This mechanism explains why the model can adaptively synthesize coherent prompts for
unseen categories.

Together, these mechanisms suggest that DMP does not merely replicate memorized prompts but

learns a domain-agnostic generative prior over prompt space, providing a rationale for its robust
generalization.
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Table 12: Cross-task generalization per dataset: performance for Mean Treecut Accuracy (MTA) (Wu et al.|
[2024), and Hierarchical Consistency Accuracy (HCA) (Wu et al.}[2024). Top-performing results in blue.

[ ImageNet [ -V2 [ -S [ -R [ -A [ SUN397
Method MTA HCA | MTA HCA | MTA HCA | MTA HCA MTA HCA MTA HCA
CoOp 40.7 0.8 38.9 0.8 34.4 0.5 57.7 9.9 43.8 4.1 19.0 31.3
DMPCoOp 474 2.6 45.0 2.1 40.2 2.0 57.3 18.7 55.5 5.5 304 36.3
A +6.7 +1.8 +6.1 +1.3 +5.8 +1.5 -0.4 +8.8 +11.7 +1.3 +11.4 +5.0
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Figure 12: Qualitative results of DMPSlider prompts depicting the concepts “long hair" and “chubby". The

prompts used for the SD-XL model for the images shown from left to right are as follows. "A closeup photo of a
person", "Professional headshot of a person”.

Y.

Long hair Chubby

Identity Composition. Figure [I8] demonstrates additional results of combining two identities,
displayed on the left, using DMPMulti model to synthesize identity prompts with Eq. 8. The
synthesized identity clearly incorporates prominent features from both original faces, such as the
nose and chin, resulting in a cohesive blend of attributes.

Subject Composition. Figure 20]illustrates the ability of DMPVariation to generate prompts for
combined concepts. In this examples, the prompts elicit the downstream model to produce images
that combine the two subjects displayed on the left. This is done by sampling subject prompts using
the DMPVariation model and Eq. (3). These are then fed to the SDXL model to produce the images
on the right, for increasing guidance scale 7. The synthesized subject clearly incorporates prominent
features from both, such as the nose and chin, resulting in a cohesive blend of attributes.

Interpreting Variation Prompts. We computed the top-5 nearest-neighbor tokens in the CLIP vocab-
ulary for the prompts sampled by DMP Variation model conditioned on a Textual Inversion embedding
of a subject. For a random subject not in the training dataset, the TI prompt embedding returns
<w>karanjohar</w>, <w>conclude</w>, <w>leaked</w>, <w>prohibition</w>,
<w>vijaysethu</w>. The DMPVariation prompt returns <w>karanjohar</w>,
<w>pandoramusic</w>, episo, <w>leaked</w>, <w>refriger</w>. It overlaps with
two words out of five showing that the prompt is indeed a variation of the conditioned Textual
Inversion prompt. Extending this analysis over 66 unseen identities, we found an average of 2.7
common words in the top-5 and 5.6 in the top-10 nearest-neighbor tokens, demonstrating that the
DMP model effectively generalizes while retaining some of the subject-specific characteristics.

Table 13: Prompts used for evaluating generalization. Prompts were designed to explore style and concept
variations of the subject sk s and borrowed from DreamBooth (Ruiz et al.} 2023).

Prompts
a sks on the beach sks flower arrangement sks stained glass window  sks as a witcher
A photo of two sks on a boat  sks Funko Pop sks latte art A cubism painting of sks person
Manga drawing of sks Pointillism painting of sks  Ukiyo-e painting of sks A sks as a knight in plate armor
sks as a knight in plate Banksy art of sks sks piloting a fighter jet Greek sculpture of sks
Fauvism painting of sks Cave mural depicting sks  sks by Andy Warhol sks in the style of Archer
Colorful graffiti of sks sks as Ziggy Stardust sks in a comic book Watercolor painting of sks
a sand sculpture of sks sks in a Santa hat sks as a wizard a photo of sks

A.5 ABLATION STUDIES
A.5.1 ABLATION STUDY ON ALTERNATIVE METHODS FOR META-PROMPTING.

The first two rows of Table[§]show the ablation study of using Transformer and GPT-2 for modeling
the distribution of CoOp prompts across the 11 datasets. We include the Transformer as a non-
generative baseline and GPT-2 as an autoregressive generative model. For the Transformer, we use a
pretrained RoBERTa-Base model, which is finetuned using LoRA to predict prompt embeddings from
text conditions. A linear layer is added on top of the final layer to produce output embeddings of the
target dimension (2048 for CoOp/CoPrompt), and training is done with MSE loss. The table shows
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Concept Slider

Prompt Slider

DMP (Ours)

Curly hair

Figure 13: Qualitative comparison of images synthesized with baseline prompt sliders and concept sliders
against DMPSlider. The prompt used for the SD-XL model is "A photo of a girl" for the concept ”’curlyhair"'.

+—— DMPVariations ——m8M8@8@8@8™

GT Image

Figure 14: Generalization of DMPVariation model. Left: groundtruth images. Second: images generated by
SD for the original TI prompts and the last two columns are the images for variation prompts sampled by DMP.
See Fig. |§|f0r additional results.

that transformer tends to overfit to the base classes as it is able to closely match the performance
of the baseline CoOp on the base classes while under-performing on the novel classes leading to a
decrease in the overall performance. For GPT-2, we discretize the continuous prompt embeddings by
identifying their top-5 nearest tokens in the CLIP embedding space. These tokens are then converted
back to text and used to finetune a pretrained GPT-2 model with LoRA, trained to predict the top-5
tokens using standard cross-entropy loss. The model is conditioned on the same text inputs as
used in the diffusion counterpart. Although each text condition has 40 associated prompts from
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GT Image DMPVariations ———

Figure 15: Additional Qualitative results of generalization of DMPVariation model. Left: groundtruth
images. Second: images generated by SD for the original TI prompts and the last two columns are the images
for variation prompts sampled by DMP.

«— 0.30
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Figure 16: DMP Variations of Textual Inversion (TI) Prompts: The leftmost image is the real groundtruth,
the second is generated by TI, and the rest are DMP variations (each image represents a new identity) conditioned
on the TI embedding. All images are generated with a fixed seed to the stable diffusion model. The FaceID
similarity to the groundtruth image is listed on top of each image.

GT Image T1(0.41)

different initializations (as described in Section @, the resulting tokens after discretization are
almost identical across seeds. This indicates that the variation captured in the continuous embedding
space is lost during the discretization process-a known limitation, as discretization inherently reduces
information. The table reflects this observation and shows that GPT-2 based modeling is inferior to
diffusion since diffusion is much better for modeling continuous distribution of prompts. Moreover,
unlike autoregressive methods, diffusion offers multiple benefits such as classifier-free guidance,
negative prompting, inversion, editing and composition that are challenging or infeasible with models
like GPT-2. These results show that modeling the prompt distribution with diffusion is more effective
and flexible than using autoregressive methods.
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as a graffiti as a comic book as a pixar in front of a
A photo of §* as a drawing mural character character house

DMP (Ours)

DMP (Ours)

Figure 17: Qualitative results of images generated from prompts synthesized by DMPVariation. Our Diffusion
Meta-Prompts are more robust and less overfitted than the baseline textual inversion which fails to generalize.

Scale 9.0 Scale 9 1 Scale9.2 Scale9.3 Scale9.4 Scale9.5 Scale9.6 Scale9.7 Scale9.8 Scale9.9 Scale 10

17 &hdkd

Figure 18: Identity composition: images generated with DMPVariation model prompts (right) for increasing
guidance scales from 9 to 10 for the composition of the two identities shown on the left.

A.5.2 ABLATION ON THE TEXT INPUTS TO DMPC0OP MODEL

We conducted an ablation study using the dataset names as the prompt or text condition to the
DMPCoOp model instead of the classnames. Table[TT]shows that the performance of the model using
dataset names is better than the baseline CoOp prompts by 0.3% on average while it is 0.7% lower
as compared to the model using classnames. This shows that using class-specific names generates
prompts with robust generalization than just using a single dataset name as the text condition.

A.5.3 ABLATION ON THE QUALITY OF TRAINING DATA

To investigate this, we assessed the impact of the quality of training data by training DMP with noisy
prompts. We apply additive Gaussian noise (n;) with a standard deviation of o = 0.01 to the i
prompt S(c); as

S(e); =(1—=0)S(c); + on;.

The noisy prompt is applied to 2% of the training dataset, where = € {10, 40}.

Table [14] summarizes the experiment where random noise is added to the prompts in the training
repository. Meta-prompting is observed to be robust to noise levels ranging from 10% to 40% of the
training prompts. DMPCoOp trained with 10% noisy prompts still obtains +1.9% improvement over
the baseline. Further, the average H.M for the DMP model with 10% noisy prompts is slightly better
(76.7 vs 76.5 for DMPCoOp) than the DMPCoOp model trained on clean prompts suggesting that a
small amount of noise can also help with generalization. This is similar to image diffusion models,
which are also known to be robust to noise added during training.
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GT Images Scale: 1.0

Scale: 4.0 Scale: 7.0

"7 Y -
!
‘" long hair " smiling

Figure 19: Negative Prompt Sliders images Figure 20: Subject composition: images generated with
synthesized with sliders sampled by DMPSlider DMP Variation model prompts (right) for the composition of
when negatively prompted for different concepts. the two identities shown on the left with the guidance scale
The prompt used for the SD-XL model is "A photo ~ denoted at the top. See Fig. [I8]for additional results at finer
of a girl". scale.

Table 14: Base2new generalization per dataset: performance for All, Base, and New classes, and HM (Harmonic
Mean). The results reported are the average over three seed runs.

| (a) Average | (b) ImageNet |  (c) Caltech101 | (d) OxfordPets
Method ‘ All Base New HM‘ All Base New HM‘ All Base New HM‘ All Base New HM

CoOp 2022b) | 68.8 82.3 70.4 75.9|68.5 76.5 67.2 71.5|94.8 98.3 95.0 96.6/90.1 94.7 959 95.3

DMPCoOp 70.1 80.3 73.4 76.5|68.7 75.4 68.8 72.0|94.8 98.3 953 96.891.7 954 97.3 96.3
DMPCoOp (10% noise) |69.6 81.7 72.3 76.7|69.2 76.5 69.0 72.6|94.0 98.1 94.2 96.1|91.5 95.0 96.9 95.9
DMPCoOp (40% noise) |68.9 81.2 70.3 75.0|68.5 76.6 67.3 71.6|94.1 97.9 952 96.5|92.8 95.7 97.9 96.8

| (e)StanfordCars |  (f) Flowers102 | (g) Food101 | (h) FGVC Aircraft
Method | Al Base New HM | All Base New HM | All Base New HM | All Base New HM

CoOp (Zhou et al.|[2022b) | 68.7 76.7 682 72.2|74.5 96.7 683 80.1|84.9 90.0 89.9 89.9|25.1 36.9 27.1 31.2
DMPCoOp 69.3 745 72.0 73.2|75.6 93.4 722 81.4|86.4 89.6 89.9 89.7|26.3 35.7 31.6 33.5

DMPCoOp (10% noise) |69.1 76.7 69.4 72.9|77.1 96.4 72.8 83.0(85.6 89.9 91.1 90.5|27.7 37.6 33.8 35.6
DMPCoOp (40% noise) |68.3 76.6 69.1 72.7|79.4 959 75.0 84.2|84.6 89.4 90.3 89.8|26.4 36.6 32.8 34.6

‘ (i) SUN397 ‘ (j) DTD ‘ (k) EuroSAT ‘ (1) UCF101
Method ‘ All Base New HM‘ All Base New HM‘ All Base New HM‘ All Base New HM

CoOp (Zhou et al.|[2022b) | 67.6 80.8 72.6 76.5|51.9 80.8 51.8 63.1/63.2 90.8 729 80.9|67.6 83.4 653 732
67.3

DMPCoOp 80.4 729 76.5|53.7 75.1 55.8 64.0|65.9 85.6 80.7 83.1|71.7 79.6 70.7 74.9
DMPCoOp (10% noise) |66.2 80.7 70.5 75.3|53.5 79.9 51.9 62.9(59.3 84.5 71.6 77.5|72.5 83.0 74.0 78.2
DMPCoOp (40% noise) |65.9 79.7 69.8 74.4|49.8 78.4 48.6 60.0|59.6 84.0 62.8 71.9|68.4 82.3 64.1 72.1

—_

A.6 ABLATION ON DMPMULTI

We trained separate DMP models for identity synthesis and slider synthesis to compare their perfor-
mance with the DMPMulti model, which was trained to generate both prompt types simultaneously.
Table[15|presents the results of the DMPSlider model, trained solely for slider prompt generation.
Table I%presents the results of the DMPIdentity model, trained solely for identity prompt generation.
The results indicate that its performance is comparable to that of the DMPMulti model, demonstrating
that multi-task training in DMPMulti does not compromise its effectiveness.

A.6.1 ABLATION ON IDENTITY COMPOSITION WITH TEXTUAL INVERSION

For identity composition, we perform an ablation study using Stable Diffusion with Equation [3]
generating new identities by combining prompts such as "a photo of id-1" and "a photo of id-2."
Figure [21] illustrates the results of this process using Textual Inversion prompts with the Stable
Diffusion v1.5 model. The generated images are often noisy, distorted, and tend to replicate the
input identities rather than effectively merging their attributes. Additionally, running a full forward
diffusion process with multiple identities doubles the inference time from 4 to 8 seconds per image.
In contrast, our DMPMulti achieves high-quality identity compositions in approximately 5 seconds,
introducing only a 1-second overhead compared to standard Stable Diffusion.

A.7 DMP FOR PERSONALIZATION

The DMPVariation model enables the generation of prompt variations conditioned on a given Textual
Inversion prompt, making it possible to train a text-to-prompt meta-diffusion model as a replacement
for personalization prompt repositories. Users only require access to existing prompt repositories,
as the DMPVariation model can directly generate the necessary intermediate embeddings. These
embeddings can serve as training data for generating personalized prompts based on textual input.
Once trained, this approach eliminates the need to search and retrieve prompts from a database,
allowing for on-the-fly prompt generation.
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Table 15: Comparison of slider prompts Table 16: Comparison of separately trained DMP (DMPI-
generated by a separate DMP (DMPSlider) dentity) with Textual Inversion and DMPMulti for identity

against DMPMulti. synthesis.
Method | CLIP-s T | LPIPS), Method (SD-RV) Face-ID1 DINO | CLIP-I| CLIP-T 1
Prompt Slider 30.00 0.219 Textual Inversion 0.428 0.627 0.696 0.244
DMPMulti 29.86 0.126 DMPMulti 0.434 0.558 0.653 0.245
DMPSlider (separate) | 29.88 0.121 DMPIdentity (separate)  0.435 0.550 0.659 0.246
GT Images Composed Identity with Tl prompts

Figure 21: Ablation study on Identity composition with Textual Inversion: images generated with TI
prompts by composing the Stable Diffusion outputs for the composition of the two identities shown on the left
for each row. TI composition produces distorted identities or repeats the same identities.

Figure 22] presents a comparison of the images generated by DMPMulti model for the identity labeled
"id-38" and "id-96" respectively. The figure presents three classes of images: groundtruth on the left,
synthesized by SD prompted by the original TI prompts in the first and third row of the right side, and
synthesized by SD prompted by the DMPMulti model, itself prompted for“identity-c." The images
synthesized using DMPMulti model have quality comparable to those synthesized with TT prompts.

Negative Text Guidance. Figure 23|illustrates the effect of negative prompting by displaying images
synthesized when DMPMulti model is prompted with identity-21 (leftmost) as positive and identity-
24 (second from left) as negative prompt. The generated identity exhibits contrasting characteristics,
such as fuller cheeks, smaller eyes, and a broader nose—features to those of the negative identity
(id-24).

Novel Identities. Figure [24] shows additional qualitative results of novel identities sampled by DMP
and their closest training images.

Identity Prompt Diffusion. Figure 23] presents the qualitative results of various identities sampled by
DMPMulti model. The figure contains the groundtruth on the left, and synthesized by SD prompted
by the DMPMulti, itself prompted for“identity-c" on the right. The images synthesized using both
models reflect the original identities in the groundtruth images.

Identity Composition. Figure 26] demonstrates additional results of combining two identities,
displayed on the left, using DMPMulti to synthesize identity prompts with (3). The synthesized
identity clearly incorporates prominent features from both original faces, such as the nose and chin,
resulting in a cohesive blend of attributes.

Figure[27]shows the results of identity composition using SDv1.5 checkpoint that uses the same CLIP
text encoder as SD-Realistic Vision checkpoint. It shows that DMP performs effectively without
requiring retraining for this version. Since DMP was trained in CLIP text space, it generalizes to all
models sharing the CLIP text encoder, eliminating the need for retraining on specific model versions.

Interpolation. Figure 28] shows the qualitative results of interpolating between two faces using the
DMPMulti model with classifier-free guidance scale between 0 to 5. The results show that DMPMulti
enables fine-grained interpolation by simply manipulating the guidance scale.
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Figure 22: Qualitative comparison of image synthesis with TI and DMPMulti prompts. Left: groundtruth
images for Identity-38 and Identity-96 in the training set. Right: images synthesized by SD for the original TI
prompts (first and third row) and prompts sampled from the DMPVariation meta-diffusion model (second and
fourth row):

Positive Negative DMP-Negative Prompting (SD-RV)

Figure 23: Negative prompting samples from the SD model when prompted by the DMPMulti, itself prompted
with id-21 (leftmost) as positive and id-24 (second from left) as negative prompt. The generated identity has
features opposing to id-24 (chubby cheeks, small eyes, wide nose, etc.)

A.8 LIMITATIONS AND FUTURE WORK

While the DMP framework unifies and improves prompt generation and generalization, simplifying
deployment, the effectiveness of DMP is fundamentally constrained by the quality and expressiveness
of the underlying prompt learning method used to construct the training repository. Second, DMP
inherits the limitations of text prompts such as lack of fine-grained control and does not support
parameter-efficient fine-tuning techniques that rely on large adapter weights, such as LoRA.

Future research directions can address these limitations by exploring joint training of the meta-model
and the downstream foundation models, potentially overcoming the performance ceiling imposed
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Closest training image Novel id Closest training image Novel id

Figure 24: Additional Qualitative results: Nearest neighbors in the training set shown on the left for novel ids
sampled by DMPMulti model to the right.

by existing prompt learning techniques. Other directions for future work can explore ways for
distilling LoRA [2022) adapters into prompts and the design of a Meta-LoRA model, which
synthesizes weight matrices instead of prompts (a more complex problem due to the large parameter
cardinality of LoRA weights).

A.9 IMPLEMENTATION DETAILS

In this section, we decribe the evaluation setup followed in our experiments and the rationale behind
choosing the setup. We then describe the hyperparameter settings used to train all DMP models and
finally the prompt format used in DMPMulti (DMPSlider) model.

Evaluation Setup. For downstream model, we use stable diffusion (Rombach et al] [2022)
Realistic-Vision-v4 checkpoint using classifier-free guidance with a scale of 4.5 and 30
DDIM steps for the image synthesis. For SD-XL (HuggingFace}, 2023)) model, we use a scale of 7.5
with 20 DDIM steps. Note that, because DMP prompts are introduced in the CLIP text encoder, they
can be interchangeably used with any diffusion model using this encoder. Our choice of downstream
diffusion model follows the original prompting methods.

For models other than CoOp, additional weights or head layers are optimized to prompt the deeper
layers of the CLIP encoders. Due to the large number of parameters associated with these weights, it
is infeasible to train a diffusion model to synthesize these parameters. For example, the projection
matrices of MaPLe have 3.55 million parameters while CoPrompt and TAC have 4.65 million
parameters each. This is much larger than even the images produced by Stable diffusion (65536
parameter latent). In contrast, all text prompts have only 2048 or fewer parameters (only 256
parameters in the latent space). So, we only synthesize the text prompts attached to the input of CLIP
model with DMP. During inference, we replace the learned textual prompt from the baseline method
with the prompt sampled with DMP while keeping the other weights of the baseline method fixed. As
followed in prompt learning literature, we pick three random seeds and report the average results.
We note that different initialization seeds result in minor performance differences which explains the
performance difference from the original paper reported results.
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Figure 25: Qualitative results of image synthesis with DMPMulti prompts. Left: groundtruth images. Right:
images synthesized by SD with prompts sampled from the DMPMulti model.
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GT Images Composed Identity images with DMPMulti model

Figure 26: DMPMulti composition: images generated with DMPMulti model prompts (right) for the composi-
tion of the two identities shown on the left.

GT Images Composed Identity

Figure 27: DMPMulti composition with SDv1.5 model: Prompts synthesized by DMP generalize well to
different downstream models sharing the same CLIP text encoder without any re-training.

A.9.1 HYPERPARAMETER SETTINGS

Table[I7] summarizes the detailed hyperparameter settings of the DMP models trained from scratch
reported in the main paper.

A.9.2 EVALUATION PROMPTS FOR DMPSLIDER
The example format of the prompts used for evaluation is shown below for the concept "Age",

* A portrait of a woman with a warm smile, {}

* A person’s face, {}

* A man sitting on a park bench, reminiscing about his youth, {}
* A couple of friends enjoying a picnic together, {}

* A photo of a person, {}

The full list of prompts used for evaluation will be made public along with the code and trained
models.

A.9.3 CODE AND TRAINED MODELS

Code is attached in the supplementary material. Code and trained models will be released
publicly upon acceptance of the paper.

A.10 BACKGROUND

Here, we discuss the background on prompt tuning approaches used in CoOp/CoPrompt
2024) methods. We learn these CoOp/CoPrompt prompts to train the DMPCoOp/CoPrompt
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Figure 28: Interpolating between two faces using DMPMulti with concept composition.

Table 17: Hyperparameter Settings for the DMP models trained across three different tasks namely personaliza-
tion, concepts and classification.

DMPVariation | DMPMulti | DMPCoOp | Autoencoder

z-shape - - 16x8 16x 8
xz-shape 768 x 1 768 x 1 2048 x 1 2048 x 1
|1Z| - - 128 128

| X| 768 768 2048 768
Diffusion steps 1000 1000 1000 1000
Optimizer AdamW AdamW AdamW AdamW
Noise Schedule linear linear linear linear
Nparams 33M 33M 33M M
Channels 128 128 128 128
Depth 1 1 1 1
Channel Multiplier 1,222 1,2,2,2 1,222 1,1,1,1,2,2,2,2
Attention resolutions | 16, 8, 4 16, 8,4 16, 8,4 -

Head Channels 8 8 8 8

Batch Size 320 320 256 128
Iterations 100k 100k 100k 100k
Learning Rate le-6 le-6 2.0e-7 4.5e-6

model, which unifies the synthesis of prompts for multiple downstream classifiers. Prompt Tuning.
Foundation visual-language models like CLIP (Radford et all, [2021)) are trained with contrastive
learning and a large dataset of image-text pairs to align image-text representations in a shared
semantic space, created by an image f; and a text g7 encoder. After pre-training, open-set zero-shot
image recognition is implemented by specifying class names with a pre-defined prompt template (e.g.
T; =, “a photo of a [CLASS];”) and determining the class ¢ whose text feature g7 (7;) has maximum
cosine similarity with image feature f;(I). While powerful, this zero-shot classifier implementation
frequently fails to match the performance of classifiers trained for specific class sets.

Prompt-tuning methods bridge this gap by learning soft-prompts from a few samples, to improve
the performance of the foundation model. CoOp (Zhou et al [2022b)) introduces and refines a
set of M continuous context vectors V' = {vy,va,...,vp} as the learnable prompt. The prompt
T; = {v1,va,...,vn, ¢; } concatenates these vectors and the class token embedding ¢;. CoOp learns
the static context vectors V' by minimizing the negative log-likelihood of the correct class token

Lop(V) == yilogp(Ti|I), (1)

where y; is the one-hot ground-truth label for class 7. Since the foundation model parameters are
frozen, the learnable prompt V' can be efficiently optimized with few training samples.

A.11 BROADER IMPACT

We introduce a new meta-learning framework for generating prompts for foundation models. While
it offers the benefits of storage and runtime efficiency, it uses existing pretrained models which are
shown to contain harmful biases that maybe elicited by the prompts, it can also be potentially misused
to propagate harmful, unlawful or unethical information with the personalization of celebrities.
Since, the framework is meta-learning, any harmful prompts can be identified before the image
generation step where the embeddings can be inspected with nearest neighbor tokens in the text space.
Additionally, recent advancements in image watermarking [2022)) can help to identify
generated image contents to protect against these risks.

A.12 LLM USAGE

LLM was used to polish the writing (e.g., clarity, grammar). It was not used in any other stage.
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Figure 29: Qualitative results of generating novel identities during inference using random identity
conditioning with DMPMulti model. The prompt used for the Stable Diffusion Realistic Vision model is "A
photo of a id-x" where x is the id not present in the training set. The identities do not overfit (mean face ID
similarity of 0.0102 across training images). Note that all the images use a fixed seed to the diffusion model.
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