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ABSTRACT

Learning the structure of a Bayesian network is currently practical for only a limited
number of variables. Existing distributed learning approaches approximate the true
structure. We present an exact distributed structure-learning algorithm to find a
P-map for a set of random variables. First, by using conditional independence,
the variables are divided into sets X, ..., X7 such that for each &7, the presence
and absence of edges that are adjacent with any interior node (a node that is not
in any other &, j # %) can be correctly identified by learning the structure of A;
separately without using the information of the variables other than &;. Second,
constraint or score-based structure learners are employed to learn the P-map of X},
in a decentralized way. Finally, the separately learned structures are appended by
checking a conditional independence test on the boundary nodes (those that are in
at least two X;’s). The result is proven to be a P-map. This approach allows for a
significant reduction in computation time, and opens the door for structure learning
for a “giant” number of variables.

1 INTRODUCTION

Bayesian networks constitute a primary subfield within the realm of probabilistic graphical models,
which serve as powerful tools for data modeling. These networks leverage directed acyclic graphs
(DAGs) to represent probabilistic relationships in datasets. The process of structure learning in
Bayesian networks involves the derivation of a DAG from empirical data (van den Boom et al., [2022).
Two primary methodologies for learning the DAG from data are the constraint-based and score-based
approaches (Kitson et al., 2021).

Constraint-based algorithms, such as PC algorithm (Spirtes et al., [2000), rely on the principles
of sufficiency, Markov condition, and faithfulness assumption. These algorithms are designed to
identify dependencies between variables without mediator variables. This is achieved by employing
conditional independence (CI) tests (Guo et al.|[2020). Score-based algorithms adopt an optimization-
based strategy, wherein they define a likelihood function, often employing criteria like Bayesian
Information Criterion (BIC). Both approaches yield a class of graphs known as independence-
equivalent (I-equivalent) graphs, represented as partially Directed Acyclic Graphs (PDAGs) (Koller
& Friedman, [2009)).

Performing CI tests across all variables or optimizing the likelihood function over all potential
graphs leads to computational challenges, often resulting in a computational explosion (Spirtes et al.|
2000). This problem represents a significant challenge and limitation, particularly when dealing
with a substantial number of variables (Peters et al.,2017; |[Ramsey et al.|[2017). Several techniques
have been developed to reduce the runtime, by for example, first running some fast conditional
independence tests to quickly eliminate many edges in constraint-based algorithms (Giudice et al.,
2022)), limiting the conditioning set in the CI tests, (Sondhi & Shojaie, 2019), finding an order on
the variables (Chen et al.l 2019bja)) and (Gao et al.,|2020), and parallelizing the CI tests (Zarebavani
et al., |2019; Shahbazinia et al., 2023} [Le et al.,[2016).

Nevertheless, regardless of how much the speed of the structure learning algorithms are improved,
their application will be limited to a small number of variables in practice. Score-based algorithms
require an exhaustive search over the space of all DAGs, which is of size (’)(2”2). Loading these
many edges or DAGs on a single computing machine becomes readily infeasible for large values of n,
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despite the many optimizations on reducing the order. As a result, existing computational resources
are incapable to perform exact structure-learning on a “large” number of variables (Franzin et al.,
2017), unless approximation techniques are used. Constraint-based algorithms, such as PC, start or
interact with a fully connected network, which has O(n?) edges for n variables. This is more feasible
to load on a single machine, however, the complexity of the algorithm itself is O(n?*2), where p is
the maximum number of parents of a variable in the “true” DAG (Koller & Friedman, [2009).

Reducing the structure-learning problem to several sub-problems that can be learned separately can
be the key to solve this issue. An approximation distributed structure-learning approach was proposed
in (Gu & Zhou, 2020), where the variables are partitioned into clusters that are learned in a distributed
way and then appended to obtain the final DAG. Nevertheless, the result is an estimation of the true
DAG and under the assumption of Gaussian-distributed variables.

The partitioning of variables is the main part of this approach. In many represented approaches, the
resulting network by distributed learning is an approximation of a network that is obtained from
centralized learning (Talvitie et al., 2019j |Scanagatta et al., |2015). Additionally, in some other
approaches (Xie et al.,[2006) and (Liu et al.l 2017), partitioning is performed using expert knowledge
and requires conditional independence tests with high-order conditioning variables that cannot be
used in many practical problems. (Zhang et al.| 2020) proposed an optimization-based approach
for partitioning using lower conditioning variables; however, the number of conditioning variables
cannot be controlled.

We develop an exact distributed structure-learning algorithm that obtains the true P-map for a given
set of random variables in three steps. First, the algorithm performs a reduction on the set of variables,
by dividing them into sets X7, ..., X7. Each set X; has a boundary bd(X;) that is the subset of nodes
shared with other X}, i.e., Ujx;X; N X}, and an interior X which is the remainder, i.e., X; \ bd(X;).
The reduction is such that the P-map confined to each set X; is a conditional P-map for the marginal
distribution of the variables in X;; namely, the presence and absence of all edges that are adjacent
with the interior nodes of X are correctly learned by performing a structure-learner to find the P-map
of X;. Roughly speaking, the “interior edges” of each set X; can be learned separately, without the
information about the nodes in the other A’;’s. This naturally leads to the second step, where separate
structure-learners, either constraint or score-based, are deployed to learn the local P-map structure
of every &;. Finally, the local P-maps are concatenated to obtain the global P-map by performing a
distributed PC-like algorithm on all boundary nodes. We prove that the resulting DAG is a P-map.

2 BACKGROUND

Consider a set of random variables X = {X1,..., X,,} with joint probability distribution P. Let
Z(P) denote the set of all conditional independencies implied by the distribution P, i.e., Z(P) =
{(X L Xy | X3) : Xy, s, A5 C X} Let G be a DAG with node set X. The DAG induces
conditional independencies between the nodes using the notion of d-separation defined below. A
collider in G is a triple of nodes X; — X5 < X3, where two of them are linked to the third. The
collider is an immorality if the ending nodes X; and X3 are not adjacent (connected). Three nodes
are a non-collider if they do not form a collider.

Definition 2.1 (d-separation). (Koller & Friedmanl 2009) Consider the DAG G with node set X'. A
trail (path) 7 between two nodes X; and X5 in X is active relative to a set of nodes Z if (i) every
non-collider on 7 is not a member of Z, and (ii) every collider on 7 is an ancestor of some member
of Z. Otherwise, the trail is said to be blocked by Z. The node subsets X7 and X are d-separated
given the subset Z, denoted d-sepg (X1, Xz | Z), if there is no active trail between any node X; € X
and any node X5 € &5 given Z.

The set of all d-separations in G is denoted by Z(G). We assume that for the distribution P, there
exists a DAG G that satisfies both of the following well-known conditions: (i) Markovness, that is,
Z(G) C Z(P), and (ii faithfulness, that is Z(P) C Z(G). This results in Z(P) = Z(G); namely, all
conditional independencies in P are captured by the d-separations in G and vice versa. DAG G is
called a P-map (perfect map) for P. The problem is to find P-map G for distribution P. This problem
is known as structure learning. There can be more than one P-map for a distribution P, e.g., two
DAGs G; and Gy where Z(G1) = Z(G2) = Z(P). P-maps of the same distribution have the same
skeleton and immoralities (Koller & Friedmanl [2009). Consequently, the set of all P-maps for a
distribution P is represented by a partially DAG (PDAG) that is a graph over nodes X where two
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nodes are adjacent, if they are adjacent in all of the P-maps and the connected edge is directed if all
of the P-maps have the same direction, otherwise the edge is undirected. This PDAG is called the
P-map class PDAG for P. The structure learning problem is often reduced to finding the P-map class
PDAG for P.

Problem 1 (Structure learning). Consider the set of random variables X’ with distribution P that
admits a P-map. Find the P-map class PDAG for P.

Several constraint-based algorithms, such as Peter-Clark (PC) (Spirtes et al., [2000), and score-based
algorithms with a consistent score, such as BIC, that perform an exhaustive search over the DAG
space, are shown to solve Problem[I] We call an algorithm that solves Problem (T} a P-map learner
(Koller & Friedman| [2009). Problem [I]is NP-hard and cannot be practically solved for a large number
of variables n (Koller & Friedman), [2009).

3 DISTRIBUTED STRUCTURE LEARNING

3.1 THE IDEA

Our goal is to solve Problem I]in a distributed manner as explained intuitively below.

Example 1. The DAG in figure[l|(a), denoted by G, is a P-map for the joint distribution of random
variables X1, . .., Xs. Instead of learning the whole DAG at once, one can learn separately the P-map
class PDAG of each of the sub-DAGs for X1 = { X1, X2, X3}, Xo = {X4, X3}, and X5 = { X5, X3}
(ﬁgure (b)), and then concatenate (and orient) them to obtain P-map G ( ﬁgure( c)). The reason is
that each of the three subsets are d-separated, and hence, independent, from one another given their
shared variable X3, i.e.,

X1, X, L Xy | X3, X1,X2 L X5 | X3, X4 L Xs|Xs.

Thus, when learning the structure of say the subset { X1, Xo, X3}, there is no active path between
any of X1 and X5 to the other nodes (excluding X3). This ensures two points. First, X1 and X5 are
not connected by a path outside of { X1, Xo, X3}, that is, all of their dependencies are captured by
this set. Hence, a structure learner can correctly learn the structure between these nodes without
using the information from the other nodes X4 and Xs. Second, when concatenating the graphs, no
additional link between the subsets are needed. This idea does not apply to the partitioning subsets
{X1, X4} and { X5, X3, X5}, because X1 and X4 do depend on {Xs, X5, X5}:

{X1, X4} £ { X2, X3, X5}

Nodes X1 and X4 are related by a path outside of { X1, X4}, e.g., X1 — X3 — X4. Hence, when
learning the structure of { X1, X4}, the structure learner will incorrectly make X, and X4 adjacent,
because they are dependent. Similarly, subsets {X1, X3, X4} and {X2, X3, X5} would not work
either. Because although the P-map of each subset can be learned correctly, the concatenation would
require an additional link between X1 and X5 to recover G.

(a) (c) X3

Figure 1: (a) A P-map for { X1, ..., X5}. (b) Three subsets that can be learned separately.

In what follows, we define mathematically the reduction approach taken in Examplem ForY C X, let
P[Y)] denote the marginal probability distribution of variables ), and G[] denote that sub-graph of
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G limited to nodes ) and their connecting edges. The goal is to solve Problem [I|by an algorithm that
is distributed over the nodes, that is, to divide nodes X into possibly overlapping subsets X7, ..., &7,
so that every sub-graph G[X;], i = 1,...,1, of the P-map class PDAG G for P can be learned
separately without using the information of the other nodes X, j # 4, and at the end to concatenate
the sub-graphs so that the resulting is a P-map class PDAG for P.

The key step in this approach is the division of the nodes. Define a cover of X as a family of distinct
nonempty subsets 7, ..., X; C X for some I > 1 such that U!_, X; = X. Define the boundary of
Xi,i=1,...,1, bybd( i) = X N (Uj2iA;), and the mterzorofX by X? = X; \ bd(&;). The
union of all boundaries is called the separator, denoted W = U;bd(Xj). Correspondlngly, the cover
{Xy1,..., X} for X is referred to as the cover separated by W. In Example[l]] W = {X3}. The
union of arbltrary graphs Gy, ..., Gy, denoted UZ_, G; is a graph with the node and edge set equal to
the union of the nodes and edges of the graphs G;, and an edge X — Y is directed from X to Y if it is
so in every G; that includes this edge; otherwise, it is undirected.

Definition 3.1 (P-map reduction). Consider the set of random variables X with distribution P that
admits a P-map G. Let d > 1 be an integer. A cover {X1,..., X7}, I > 1, of X is a (capped-d)
P-map reduction if foralli = 1,...,1, (i) \X | <d, (ii) G[X;] is a P-map for P[X;], and (iii) for all
J # i, there is no edge between X and X %inG.

Condition (ii) ensures that separate P-map learners can be used to learn the P-map class PDAG of
each of the subsets X;. Namely, they can be learned in parallel and without communication, i.e.,
decentrally. Condition (i) restricts each subset X; to include at most d variables. The value of d can
be chosen based on the computational capacity of the P-map learners. Once all G[X;]’s are learned,
Condition (iii) ensures that their union will be a P-map for the complete distribution P, and hence,
solves Problem

The cover in Example|[T]is a P-map reduction (Remark[A.2)). Does a P-map reduction exist for every
DAG? The answer is negative. For example in Figure 2}a, every pair of nodes are connected by two
paths. Thus, to satisfy Condition (iii), every element of a P-map reduction must be of size at least
two. However, then at least one element of the cover violates Condition (ii). For example, G[X}],
which is the path X12 — X33 < X7 — ... = X, is not a P-map for P[X}] as that would require
X9 and X5 to be adjacent.

o8- B—B-B-@ @@@@oa@
;’ &
®
@@]

(b) T,

Figure 2: (a) The P-map G for variables Xi,...,X335. (b) The cover consisting of X; =
{Xg,Xl(),Xll,Xlg} and XQ = {Xlg,Xlg,Xl, e 7)(9}, separated by W = {Xg, X12}.

Nevertheless, once Xg and X5 are observed, the path connecting any of the nodes Xi3, Xi,..., X3
to either of X;9 and X, is blocked. Namely, the interior of the cover element &} becomes d-
separated given its boundary Xg and X;-. Consequently, every d-separation in the sub-DAG confined
to Xy, i.e., G[X}], either itself exists in Z(P) or when it is additionally conditioned to the boundary
variables bd(X7). On the other hand, the partitioning of X" into the cover elements does not cause
the loss of a d-separation in the resulting sub-DAGs, i.e., they all remain faithful. This motivates the
following definitions.

Definition 3.2 (Conditional P-map). Let X be a set of random variables with distribution P and
consider subset Z C X. DAG G defined over X is a conditional P-map for P given Z if (i) P is
faithful to G, and (ii) G is a conditional I-map for P; that is, if d-sepg (X1, Xz | X3), X1, Xy, X3 C X,
then there exists Zy C Z such that X} 1 X5 | X3 U Z,.
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Definition 3.3 (Conditional P-map reduction). Consider the set of random variables X with distri-
bution P that admits a P-map G. Let d > 1 be an integer. A cover {Xy,..., X7}, I > 1,0of Xisa
(capped-d) conditional P-map reduction ifforalli = 1,..., I, (i) |X;| < d, (ii) G| X;] is a conditional
P-map for P[X;] given bd(A;), and (iii) for all j # i, there is no edge between XY and X7 in G.

According to Condition (ii) in Definition[3.3] every conditional independence in Z(P[X;]) is included
in Z(G[X;]). This ensures that constraint-based algorithms, such as PC, will not incorrectly eliminate
an edge when learning the structure of X;. On the other hand, every d-separation in Z(G[X;]) exists
in Z(P[X;]) either itself or when some of the boundary nodes bd(X;) are additionally observed
(see Remark [A.3]in the Appendix for why the second case does not always hold). This ensures
that PC can correctly identify the edges that do not exist between two interior nodes or an interior
node and a boundary node in G[X?]. Therefore, the P-map structure of the interiors X and their
connections to the boundary nodes bd(X;) can be learned in a decentralized way. Although the
intra and inter connections of the boundaries bd(X;) cannot be learned decentrally and generally
requires information from the all of the elements. Moreover, Condition (iii) ensures that no appending
between the interiors is required to obtain the P-map for &". In the following subsection, we explain
how to learn the conditional P-maps and the structure of the boundaries of conditional P-map cover,
yet we will first focus on finding the cover.

Problem 2. Given integer d > 0 and set of random variables X with distribution P that admits a
P-map, find a capped-d conditional P-map reduction for X"

The idea in Example[I]and Figure 2]to solve Problem 2] was to divide the nodes into subsets that are
d-separated given their common nodes. More specifically, we need a separator WV and a partition of
the set X’ \ W into some subsets Cy, . . ., C that are pairwise independent conditioned on W.

Definition 3.4 (Separated-by cover). Consider random variables X with distribution P and a subset
W C X. The cover for X separated by W is a collection of sets {W U C;}!_,, I > 1, such that (i)
{C1,...,Cr, W} is a partition for X, (ii) C; L C; | W for all distinct 4, j = 1,..., 1, (iii) and I is
maximal.

To solve Problem[2] one can iteratively apply separators to the elements of a cover until they no longer
decompose. How to find the cover separated by ¥V? Consider an order for variables X, represented by
vector X = [Xq,..., Xn]T. Vector Xy is defined as X where the elements of VV are removed and
let [Xyy]; be the i™ entry of Xyy. For subset W C X, define the symmetric (n — [W|) x (n — |[W|)
dependency matrix Dyy by Dyy (i, j) = 1if [Xy]; £ [Xw]; | W and otherwise Dy (i, j) = 0 for
alli,j € {1,...,n — [W|}, with Dyy(4,4) = 1 for all . By using a permutation matrix P, we have
Dyy = PDyy P! where D)y is the block diagonal form of Dyy. Then each group of entries of the
transformed vector Xy = P X,y that correspond to a block of Dy, constitutes one of the desired
partitions, which combined with V' form an element of the P-map reduction (see Example[T}revisited
in the appendix). Nevertheless, finding the permutation matrix can be computationally costly. An
alternative is to treat the dependency matrix as an adjacency matrix, defining an undirected graph and
find the connected components of this graph. This can be done in O(n?) (Cormen et al., 2001).

3.2 THE ALGORITHMS

We provide Algorithm |1 as the distributed learning algorithm to solve Problem|l} The algorithm
consists of three sub-algorithms: One that performs a conditional P-map reduction (solves Problem[2),
one that learns each of the elements of the reduction (interiors and between interiors and boundaries),
and finally, one to append the elements of the reduction (learning the boundaries).
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Algorithm 1: Distributed structure learner

Input: Set of random variables &’ with joint probability distribution P that admit a P-map; the
maximum number of variables in each element of the cover, d; the maximum number of
separator variables, W

Output: A P-map G for P

{X,..., X} Algorithm (d,W);
// Alternatively, Algorithm can be used.

fori=1,---,1
‘ G; < P-map learner(X;)
~ I
G=U G
i=1
for’izl,"'7l

‘ G < Boundary PC (&7, G

We provide Algorithms [2] and [3|for the first part, i.e., to solve Problem[2] Both are based on the idea
to iteratively find separators that would decompose the components of a conditional P-map reduction
of X into another reduction.

Algorithm goes through the cover Xz (initially set to {X'}), picks the greatest component U € X7,
and checks if any subset W C U separates the component into a cover of cardinality greater than one
(which is a conditional P-map reduction for Uf). If so, then the algorithm updates the cover X7 by
replacing U with its cover and moves to the next greatest component in Xz. This process continues
until either all components of the cover have a size less than d or none of the components can be
further reduced. The notation P(I/) is the power set of the set U, i.e., the set of all subsets of /.

Algorithm 2: Parallel conditional P-map reduction finder CI based

Input: X = {X;,---,X,}, d, W, and the number of processors N,,.
Output: A conditional P-map reduction X7 of X

XI < {X},
w < 0; // w:the size of the separator
K<+ 0
while maxy/c v, |U| > d and w < W do
Xr <+ X7, // Xf: potentially decomposable cover members

(w.r.t.w)
while X7 # () and maxyex; |U'| > d do

U < argmaxycx; [U']; // U: greatest cover member
for M C P(U)\ K and |M| = Ny and |W| = w for W € M
for W e M
| (WU}, « the cover for U separated by W;
K+ KuM
if > Iw>N, // the cover was a reduction
WeM

Xz < Cover finding for U by intersection method on {W U C,, } 12, if Iy > 1;
// update the cover

XI — XI \ {U}

Xé «— X1

Break;

X7« X2\ {u}

w—w+1;

The other conditional P-map finder is Algorithm 3] The problem with Algorithm [2]is that it may run
too many CI tests. When searching for separators of size w of a cover element ¢/ with cardinality
u, all (:f}) subsets of U are checked for being a separator; next all (wil) subsets are checked and
so on. However, in Algorithm 3] once a separator of size w is found, the algorithm searches for all
single nodes to be added to this separator, those are, (*7"); nextall (*3"), and so on, until another
reduction happens. The problem with Algorithm [3]is that the number of conditioning variables in the
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Algorithm 3: Parallel Non-monotone conditional P-map reduction finder CI based

Input: X = {X;,---,X,}, d, W, and the number of processors IN,,.
Output: A conditional P-map reduction X7 of X

XI < {X},
w <+ 0; // w:the size of the separator
while w < W and maxycx, |U| > d do
Xr +— Xz, // Xj: potentially decomposable cover members
(w.r.t.w)
K« 0;

while X7 # () and maxye x; |{U'| > d do
U = argmaxycx; |U'|; // U: greatest cover member
bd(U) + U untd

U exs\{U}
for M C P(U\ (bd(U) UK)) and |IM| = Ny and |W| = w for W € M
for W e M

Xw « {U}

{WubdU)u Cwi/vubd(u)}f:l « the cover for U separated by W U bd(U);

if Ly > 1 // the cover was a reduction

for U € bd(U)
fori=1,--- Iy

iU L ChypanWV UbAU) \ {U}
‘ Cul/v_ U UChpawy
if bd(U) \ UC3,, # 0
| B = YU (bdU) \ Uy}
Xy ¢ (2w \ {U}) U{WUC 12y
if > Iy >N, // the cover was a reduction

Wem
X7 < Covering U by intersection method on Xyy if Iyy > 1; // update

the cover
XI — XI \ {U}
Xé «— X1
w4+ 1
Break;

else
| K« KuM

Xz < X\ {u}
w4 w+ 1;

CI tests grows quickly, because the separators are never removed from the conditioning part. Namely,
once a cover element is reduced into another cover by a separator of size w, the next reduction will
require a CI test with a conditioning of size at least w + 1 as both the previous separator and a new
separator of size one will be conditioned on. This does not happen in Algorithm [2} namely, once
a separator of size w is found, the CI test required for finding the next separator will have again w
conditioning variables, as the algorithm does not condition on the previously found separator. For the
same reason, Algorithm [3|may be unable to find a capped-d cover for small values of d.

After the cover finding process, a structural learning method is individually applied to each set of
covering variables, resulting in the discovery of the network structure for each subset of variables.
Let {Xy,- -, Xs} denote a covering of X that is derived from the algorithmsand Each subset of
variables, X; fori = 1, --- | I, can be independently learned using either score-based or constraint-
based algorithms. This leads to the identification of the local structures, denoted as G; fori = 1,--- | I.
In G;, the all edges between every two interior variables, and between a variable in the interior and
another in the boundary set equal to the edges of a P-map G for P. In the process of constructing the
comprehensive network structure, the local structures obtained in the prior stage must be concatenated
together. Each cover set shares a common variable set, denoted as bd(X;), representing the observed
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variables that correspond to specific nodes in the local networks. By learning the edges between the
boundary variables and assembling the local networks using these common nodes, the comprehensive
network structure for all variables is constructed.

Algorithm 4: The Boundary PC Algorithm

Input: The union of {G;}!_,, cover sets {X;}/_; and joint probability distribution P
Output: A P-map G for P

1 Sep(X,Y) =@ forall X,Y € bd(X,);

2 for X € bd(X)) -

3 for Y € bd(X;) N Adj(G, X)

4 U= (Uxex,ﬁygxk bd (X)) U (Uyexk,xgxk bd (X)) \ {Xa Y}

s ifX LY |U

6 Remove the edge X — Y from G;

7 Sep(X,Y) «+ U,

s For X — Z — Y that X, Y € bd(X;) are not adjacent in G, if Z ¢ Sep(X,Y) then orient

X —Z —Y asan immolarity X — Z < Y.
9 Orient the other edges using the orientation rules in (Spirtes et al., 2000).

3.3 THE SUPPORTING THEORY

Proposition 3.5. Consider random variables X with distribution P. A cover X1 = {X},..., X1}
satisfying

Vi, j # 1 X L X | bd(X;) (1)
is a conditional P-map reduction.

Proposition 3.6. Consider random variables X with distribution P that admits a P-map class PDAG
G. Assume that X1 = {X;}_, is a conditional P-map reduction for X, and consider an arbitrary
i€ {1,...,I}. Two nodes X1, Xo € X; where at least one of which is from X? are adjacent (resp.
non-adjacent) in G[X;] if and only if they are adjacent (resp. non-adjacent) in the P-map class PDAG
of P|X;]. Moreover; every triple of nodes X1, X2, Z € X;, where at least two of which are in X2,
Sform an immorality in G if and only if they do so in the P-map class PDAG of P[X;]. Finally, if a
triple of nodes X1, X2, Z € X;, where X1 € X2, form an immorality X1 — Z < X5 in the P-map
class PDAG of P[X;), then the immorality also exists in G.

Lemma 3.7. The cover output by Algorithms 2| and 3] satisfies Condition equation([l)

Lemma 3.8. Consider random variables X with distribution P that admits a P-map class PDAG
G. Assume that X7 = {X;}!_, is a conditional P-map reduction for X, and consider an arbitrary
JC{1,...,I}. Twonodes X1, X € bd(Xj) forall j € J, are non-adjacent in G if and only if they
are non-adjacent in a P-map class PDAG of P[X},] for at least a j, € J.

Lemma 3.9. Under Algorithms[2]and[3} every edge in G; belongs to a cover component.
Theorem 3.10. Algorithm[I|outputs a P-map for P.

Proof. Tt suffices to prove that the output of the algorithm, say G, has the same skeleton and
immoralities as the P-map PDAG class for P, say G. In view of Lemma Proposition
Algorithmoutputs acover X7 = {X;}._, that is a conditional P-map reduction. Hence, the interior

nodes of no two elements of the cover are adjacent in both G and G. On the other hand, Proposition
[3.6 guarantees that all edges between every interior node of element X; and another node in X; are
correctly identified for every ¢. So it only remains to show that the algorithm also correctly identifies
the edges between the boundary nodes of every X;. Denote by G’ the graph obtained by Algorithm
[1] before executing (sub-)Algorithm A Assume that there is an edge between two boundary nodes
X,Y € X; in G’ that does not exist in G. Since the edge does not exist in the P-map G, there is some
U € X such that X; L X5 | U. In view of Lemma the set 4 can be chosen such that all nodes
in U are either adjacent with X or adjacent with X5 in G. Denote the nodes adjacent with X (resp.

X)in G by N§ (resp. N¥). It follows from Lemmathat N{ = Uﬁlegngj] fori = 1,2.
Since G’ includes all of the edges in G, it follows that the the set I/ can be found by searching through



Under review as a conference paper at ICLR 2025

the union of the neighbors of X (resp. X») in each X;, which is what Algorithm 4] does. Hence,
the edge will be detected and eliminated from G’. Finally, Algorithm [1| does not delete an edge
that actually exists in G as the elimination of an edge in Algorithm [ happens only if a conditional
independence holds between the variables.

Table 1: The results for cover finding algorithms. The notation I is the number of cover elements and
Lmae 1s the cardinality of the greatest cover element.

DATASET # NODES d # CPUS  lpmae [ # RUNTIME(ALG.E]) # RUNTIME (PC)
ASIA 8 6 20 6 3 0.87 1.16
SACHS 11 8 30 4 7 28.6 50
CHILD 20 15 30 14 7 14 127.2
INSURANCE 27 20 30 25 3 86.5 208
WATER 32 24 30 26 7 15.1 25.2
MILDEW 35 26 30 34 2 532 858
ALARM 37 27 30 30 5 48 84.4
BARLEY 48 36 30 47 2 929 1293
HAILFINDER 56 42 30 56 1 72257 90821
HEPAR?2 70 52 30 51 17 632 1496
WIN9SPTS 76 57 30 65 8 398 358

As with the immoralities, it follows from Proposition that every immorality in G’ with at least
one interior node of some cover element X; also exists in G. Now if the edges of an immorality in G’
with all three nodes being a boundary node of some cover element &; are not eliminated in C; , then
the immorality also exists in G. So all immoralities in G’ that also appear in Q belong to G. On the
other hand, if an immorality emerges after executing Algorithm i.e., it belongs to G but not G/,
then it should also belong to G, because Algorithm [d]is basically the PC algorithm that starts from
the graph G’ that is a superset G (and PC is known to correctly identify the immoralities). Therefore,
every immorality in G is included in G. Now we show that that every immorality in G is included in
G. In view of Lemma every edge is on a cover element. Moreover, it is impossible to have three
boundary nodes X, Y, and Z forming a collider X — Z < Y, and the three nodes do not belong
to the same cover element, because then the element including X and that including Y will not be
d-separated conditioned on Z. Hence, according to Proposition[3.6] we only need to show that the
immoralities in G with all three nodes belonging to the boundary of some element, or when exactly
one node is an interior and the other two are the boundary of the same element. The proof of the first
part is similar to the previous case (Algorithm ] being basically the PC algorithm) and it checks the
existence of every boundary edge. For the second part, we have a node X € X for some ¢, and two
boundary nodes Y, Z € bd(X};), such that Y — X < Z is an immorality in G. If the immorality
also exists in G’, there is nothing to prove. Otherwise, Y and Z are adjacent in G’, but the edge will
be eliminated by Algorithm [d]and then checked for such immorality. This completes the proof. [J

4 EXPERIMENTS

We compared the performance of Algorithm[I]and PC on the datasets ASIA (Lauritzen & Spiegelhall
ter,|1988)), ALARM (Beinlich et al.||1989), INSURANCE (Binder et al.,|1997), CHILD (Spiegelhalter
& Cowell, [1992), WATER (Jensen et al., |1989), HAILFINDER (Abramson et al.,|1996), HEPAR2
(Andreassen et al., [1989). The number of samples for all datasets is 10,000. The computations
were performed on a system with 2 xAMD Rome 7532@ 2.4GHz 256M cache. Algorithm [3| was
employed as a sub-algorithm within Algorithm [T} while the PC algorithm was used for the local
structure learners. The value of d was set to 0.75 times the number of variables, and W was set to 1.
The runtime for both Algorithm|[I]and the PC algorithm is reported in Table [} The number of CPUs
was set to 30 for all datasets, except for ASIA, where fewer CPUs were used due to the low number
of variables. According to the Wilcoxon signed-rank test, Algorithm [I] was significantly faster, up
to 2 times (p-value = 0.01) compared to the PC algorithm. Additionally, as shown in Table[2] the
structural Hamming distance indicates that the error is not significantly different between Algorithm
and the PC algorithm.
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Table 2: Structural Hamming Distance

DATASET ALG. PC
ASIA 0 0
SACHS 0 0
CHILD 0 1
INSURANCE 15 14
WATER 37 36
MILDEW 10 11
ALARM 3 3
BARLEY 28 28
HAILFINDER 52 52
HEPAR2 57 64
WINI9SPTS 42 41

5 CONCLUSION

We developed a distributed approach for structure learning applicable to both constraint-based and
score-based algorithms. The main concept is to identify a cover set for the set of variables using
conditional independence (CI) tests. Two key parameters, the upper bound of the cardinality of
cover elements d and the number of conditioning variables W play crucial roles in determining an
appropriate cover set. Reducing the value of d while increasing W can decrease the cardinality of
the greatest cover element and increase the number of cover elements. However, this adjustment
may lead to an increase in the number of CI tests, which in turn could raise the runtime of the cover-
finding algorithms. Algorithms [2]and [3|are executed in parallel across multiple CPUs. Consequently,
increasing the number of CPUs can help reduce runtime. Thus, it is essential to select the values of d,
W, and the number of CPUs carefully to ensure that the cardinality of the greatest cover element
remains small, enabling the runtime to be less than that of the standard version of the structure
learning algorithm.

One might argue that increasing the number of CPUs, only to reduce runtime by a factor of two,
might seem like an inefficient use of resources. However, it is important to recognize that in the
realm of parallel computation, particularly across nodes, alternatives for comparison are limited.
Existing methods either parallelize the CI tests for each edge, which still requires substantial memory
to load the entire graph, or they depend on expert knowledge to inform the process. Our approach
complements these by focusing on breaking the graph into manageable pieces, allowing any of these
methods to be applied efficiently to the cover elements. Furthermore, this process can now occur
in parallel across CPUs, which are generally more cost-effective and accessible than GPUs. This
flexibility not only broadens the applicability of our approach but also makes it feasible in a wider
range of computational environments.

The proposed approach results in exact distributed structure learning algorithms. Specifically, it has
been demonstrated that the output of Algorithm|[T]yields the exact structure without any approximation
in cover finding, local structure learning, and the concatenation of local structures. In addition, unlike
other exact distributed algorithms (Xie et al., 2006) and (Liu et al., [2017)), which rely on expert
knowledge and conditional independence tests with high-order conditioning variables, the proposed
approach utilizes only a low-order conditioning set bounded by W.

In summary, our distributed structure learning approach efficiently handles large Bayesian networks
by breaking the problem into smaller, manageable components, allowing for parallel execution on
multiple CPUs. This method achieves exact results without requiring expert knowledge or high-order
conditioning, offering a practical solution to the scalability issues in traditional algorithms. By
reducing memory demands and enabling flexible integration with existing techniques, our approach
enhances computational efficiency while preserving accuracy, making it a valuable tool for large-scale
structure learning across diverse domains. As computational demands continue to grow, this work
lays a strong foundation for the scalable and accurate learning of complex probabilistic models.

10
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A APPENDIX

The following definition is a reformulation of Definition 2]in terms of P-map class PDAGs.

Definition A.1. Consider integer d > 0 and the set of random variables X with distribution P that
admits a P-map, and let G be the P-map class PDAG for P. A cover {X1, ..., X1} of X is a d-capped
P-map reduction if for every i = 1,...,1I, (i) |X;| < d and (u) the P-map class PDAG for P[X;]
equals G[X;], and (iii) the P-map class PDAG for P equals Ul_, G[X;].

Remark A.2. Let Z(G)[Y] denote those conditional independencies in Z(G) that are over nodes
Y, ie, ZO)Y] = {(X1 L X | As) € Z(G) : X1, X, X3 C YV} In Example
the cover {{X1, Xo, X3}, {X4, X5}, {X5, A5}} (figure I (b)) is a capped-d P-map reduc-
tion for {X;,..., X5} for any d > 3. Conditions (i) and (iii) in Definition n are clearly
met. For COIldlthIl (ii), we show that the set of conditional independencies of each sub-
set in the cover, e.g., {X1, X5, X3}, matches the set of d-separations of the corresponding
sub-graph, i.e., Z(P[X1, X2, X3]) = Z(G[X1, X2, X3]). According to the d- separations in G,
Z(G[ X1, X2, X3]) = Z(G[ X4, X3]) = Z(G[ X5, X3]) = 0. On the other hand, since G is a P-map
fOI' P, I(P[X17X2,X3]) = I(g)[Xl,XQ,Xg,] @ I( [X4,X3D = I(g)[X4,X3] = @ and
Z(P[X5, X3]) = Z(G)[ X5, X5] = 0.

Remark A.3. Tn Figure[A.3] every pair of X;’s are d-separated given the union of the boundary nodes
W, so the X;’s can be shown to be a conditional P-map reduction. Now the interior nodes X; and
X3 in X, are not d-separated given the boundary nodes { X2, X5, X12}. However, X; and X3 are
d-separated in the sub-graph G[X5]. This is why enforcing the boundary nodes to be always observed
does not help to find the d-separations of the sub-graphs of the cover elements G[X;] — it may be that
only the d-separation itself appears in Z(P).

Figure 3: (a) The P-map G for variables X;,...,X35. (b) The cover consisting of X}
{X5, X15, X14, Xo}, Ao = { X2, X103, X1,..., X5}, Az = {X5,...,Xo}, and X
{Xo, X10, X11, X12}.

Example 1 (revisited). Let W = { X3} and consider the vector X = [X1, X2, X3, X4, X5]". Then
X(x,) = [X1, X0, Xy, X5]T. The dependency matrix then equals

0
0
1
0

= O OO

11
_ 11
Dixsy =Dixsy = | o o

00

which is already in a block-diagonal form. Hence, the P-map reduction consists of { X1, Xo} Ung}
{X4} U{X3}, and {X5} U {X3}. Should, instead, the order X = [X1, X4, X2, X3, X5]" was
used, yielding X (x,, = [X1, X4, Xo, X5]T, then Dyx,, would be obtained as above by using the
Jollowing permutation matrix applied to the dependency matrix Dy x,y:

Dix,y = , P=

O = O
— o OO

0
0
1
0

— o oo

0
1
0
0

oSO O
O = O =
OO O
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Algorithm 5: The PC Algorithm

Input: A Covering set &X; and their joint probability distribution P
Output: An undirected graph

Form the complete undirected graph G; over nodes X;
Sep(X,Y) =0forall X,Y € X;;
m = 0;
while maximum node degree in G; is greater than m do
for X € X
for Y € Adj(G;, X)
for Y C Adj(G;, X)\{Y}and | U |=m
ifX LY |U
Remove the edge X — Y from G;;
‘ Sep(X,Y) «+ U,
m=m+1;

Orient the edges using the orientation rules in (Spirtes et al., | 2000).

Lemma A.4. (Based on (Pearl, | 2009)) Consider random variables X with joint distribution P that
admits a P-map G. Vertices X and Y are not adjacent in G if and only if X LY |U forU = Pax
(parents of X in G) or Pay (parents of Y in G).

Lemma A.5. (Based on (Koller & Friedman,|2009))) Let G be a P-map of a distribution P and assume
that X, Y and Z are a potential immorality, i.e., X and Y are not adjacent but both are adjacent
with Z. Then XY, Z form an immorality, i.e, X — Z < Y ifand only if X LY | U for any set
us_Zz.

Lemma A.6. (Based on (Koller & Friedman,|2009)) Let G be a P-map of a distribution P, and assume
that there exists three nodes X,Y, Z, where X and Y are adjacent with Z but with themselves, and
the three do not form an immorality, i.e., X — Z < Y isnotin G. IfU is such that X LY | U, then
Z eU.

Proof of Proposition 3.5|Let W = bd(X;). Condition (iii) in Definition [3.3|follows the fact that
AP LAY | W and the fact that two nodes are not adjacent in a P-map should they be conditionally
independent. So it suffices to prove Condition (ii). It is straightforward to show that G[X;] is faithful
to P[X;] forevery i = 1,...,I: the subgraph G[X;] is obtained by removing some nodes and edges
from the P-map G, which does not add a new path between two nodes; so nodes without a connecting
path in G remains so in G[X;]. Now we show that G[X;] is a conditional I-map for P. Consider
the d-separation d-sepgx,(V1, V2 | V3), where V1, Vs, Vs C &;. Let W, C W denote the set of
separator nodes that form a collider with a node in ); and a node in ) or are a descendent node of
such a collider. Define W,, = W \ W,,. We prove by contradiction that d-sepg V1, V2 | Vs UW,,),
where )1, Vs, Y3 C A&;. Assume the contrary, implying that there is an active path 7 from a node
Y1 € Y, toanode Ys € ), when observing W,,. Path 7 cannot include any of the nodes W,, as
they would block the path. Also, since observing W,, does not activate any collider, 7" must include
anode S ¢ A& out of &;. On the other hand, the separator drives the cover elements independent,
yielding X; 1 S | W, meaning that the nodes in W block all paths such as 7 that leave X; and have
two end nodes in X;. Since 7 does not include W,,, it includes some of the nodes in W,,. Namely,
path 7 leaves X; from a node W; € W,, reaches S and returns to X; by another node Wy € W,,.
Hence, for 7 to be active, its edge adjacent to /; must be an outgoing edge and the same holds
for W5. However, then that part of path 7 with ends W and W, that passes through S will have a
collider which blocks the whole path 7, a contradiction, completing the proof. ]

Proof of Proposition [3.6] In view of Lemma[A.4] if X; and X, are adjacent in G[;], then they
are not independent conditioned on any subset of other values, including those in X;. Hence, the
dependence also reveals in P[X;], implying the existence of the link in the P-map class PDAG of
P[X;]. If X and X5 are not adjacent in G[X;], then they are independent conditioned on some subset
U € X. On the other hand, X? L (X \ &;) | bd(&;), implying that bd(&;) blocks all paths between
Xy and nodes other than X;. On the other hand, similar to the proof of Proposition [3.5]it can be
shown that the above independence also holds when we only condition on those boundary nodes
W, that do not form a collider with X; and X5 and are not a descendent node that would activate
such a collider, i.e., X L (X \ X;) | W,,. Thus, X7 L Xo | U yields X7 L Xo | (X; NU)UW,, as
those nodes of ¢/ that are out of X; and have an active path to X; or Xo, their path can be blocked by
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observing W,,. Hence, there X; and X5 become independent also by conditioning on nodes that are
only in &;. Therefore, in view of Lemmal[A.4] they will not be adjacent in the P-map class PDAG of
Plx;].

Now we prove the second part. Suppose that X; and X5 form an immorality with another node
Z € X;in G[X;],i.e., X1 — Z < Xo, and that at least two of X; ,X», and Z are in X?. Then X,
and X are not d-separated in G[X;] given any & C X that contains Z. This implies that X; and
X5 are not d-separated in G given any &/ C X that contains Z as adding more edges and vertices to
G[X;] does not make an already active path inactive. Now due to G being a P-map class PDAG for
P, it holds that Xy / X5 | U for any Y C X that contains Z. On the other hand, based on what
we proved earlier, X; and X are connected to Z and are not adjacent with each other in the P-map
PDAG class of P[X;]. Hence, in view of Lemma X1 and X5 form an immorality with Z in the
P-map. Now suppose that X; and X5 are not adjacent, both connected to Z € X}, do not form an
immorality in G[X;], and that again at least two of X; ,X5, and Z are in X?. Clearly, the same holds
in G. In view of Lemmal[A.6] if X; L X | U for some U C X, then Z € Y. Thus, if X; L Xo | U
for some U C X, then Z € U, meaning that the condition holds also in P[X;], which completes the
proof according to Lemma[A.3]

Now consider the triple X1, X, and Z, where only one of them, say X, is in &} and the other two
are in bd(X'?). Consider the case where the three nodes form the immorality X; — Z < X, in the
P-map PDAG class of P[X;]. Then there exists al{ C X; not including Z, such that X; L X5 | U,
which implies that there is no active path between X; and X5 that has a node out of X;. We prove by
contradiction that X and Z are adjacent in G. Otherwise, there exists an active path 7 of length at
least two between X5 and Z regardless of whether any subset I C X is observed. Therefore, every
node in 7 is out of X;. Let V' € T be the node in 7 that is adjacent to Z. The direction of the edge
between V" and Z cannot be from Z to V, because then by observing both Z and the aforementioned
U, X1 and X5 will become d-separated, which is impossible. For the same reason, X; is linked to Z.
Hence, X, Z, and V form the collider X; — Z « V, implying that X; Y V | Z. This, however,
contradicts equation[I} Hence, X, and Z are adjacent in G. Then the immorality X, — Z < X,
exists in G as well as otherwise, there cannot exist a{ C X; not including Z such that X; 1 X5 | U,
a contradiction.

Proof of Lemma 3.7 We prove by induction on the cardinality k of the cover, where k = K7, K> . . ..
For both algorithms, the base case k = K; > 1 holds trivially. Assume that the result holds for
k = m. Consider that iteration in the algorithms where the cover has cardinality m, denoted by
{X1,..., Xy} and let element X; be the next cover that will be reduced. According to equation
X; L X | bd(X;). This implies that the boundary nodes of X;, block every path that connect
the interior nodes of X to other elements of the cover. In Algorithm @, X; will be reduced to a
cover {W U Cj,,}_, where Ci,, L Cj,, | W forall i # j. Now consider an arbitrary C;. Should
bd(X;) C W, then Cj,, L X;|W for all j. Otherwise, some of the nodes in bd(X;) are in U;.;C3,,,
and hence, are d-separated from Cj,, after observing W. In other words, W either directly or indirectly
blocks all the paths from C{)\, to X; for every j # 4. This is because observing JV does not activated
any collider that would in turn activate a path between &; and X; (every node in X; that is adjacent
to another X is included in bd(&;) as otherwise equationis violated). This completes the proof
for Algorithm[2} The proof for Algorithm [3]is similar.
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