
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EXACT DISTRIBUTED STRUCTURE-LEARNING FOR
BAYESIAN NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning the structure of a Bayesian network is currently practical for only a limited
number of variables. Existing distributed learning approaches approximate the true
structure. We present an exact distributed structure-learning algorithm to find a
P-map for a set of random variables. First, by using conditional independence,
the variables are divided into sets X1, . . . ,XI such that for each Xi, the presence
and absence of edges that are adjacent with any interior node (a node that is not
in any other Xj , j ̸= i) can be correctly identified by learning the structure of Xi

separately without using the information of the variables other than Xi. Second,
constraint or score-based structure learners are employed to learn the P-map of Xi,
in a decentralized way. Finally, the separately learned structures are appended by
checking a conditional independence test on the boundary nodes (those that are in
at least two Xi’s). The result is proven to be a P-map. This approach allows for a
significant reduction in computation time, and opens the door for structure learning
for a “giant” number of variables.

1 INTRODUCTION

Bayesian networks constitute a primary subfield within the realm of probabilistic graphical models,
which serve as powerful tools for data modeling. These networks leverage directed acyclic graphs
(DAGs) to represent probabilistic relationships in datasets. The process of structure learning in
Bayesian networks involves the derivation of a DAG from empirical data (van den Boom et al., 2022).
Two primary methodologies for learning the DAG from data are the constraint-based and score-based
approaches (Kitson et al., 2021).

Constraint-based algorithms, such as PC algorithm (Spirtes et al., 2000), rely on the principles
of sufficiency, Markov condition, and faithfulness assumption. These algorithms are designed to
identify dependencies between variables without mediator variables. This is achieved by employing
conditional independence (CI) tests (Guo et al., 2020). Score-based algorithms adopt an optimization-
based strategy, wherein they define a likelihood function, often employing criteria like Bayesian
Information Criterion (BIC). Both approaches yield a class of graphs known as independence-
equivalent (I-equivalent) graphs, represented as partially Directed Acyclic Graphs (PDAGs) (Koller
& Friedman, 2009).

Performing CI tests across all variables or optimizing the likelihood function over all potential
graphs leads to computational challenges, often resulting in a computational explosion (Spirtes et al.,
2000). This problem represents a significant challenge and limitation, particularly when dealing
with a substantial number of variables (Peters et al., 2017; Ramsey et al., 2017). Several techniques
have been developed to reduce the runtime, by for example, first running some fast conditional
independence tests to quickly eliminate many edges in constraint-based algorithms (Giudice et al.,
2022), limiting the conditioning set in the CI tests, (Sondhi & Shojaie, 2019), finding an order on
the variables (Chen et al., 2019b;a) and (Gao et al., 2020), and parallelizing the CI tests (Zarebavani
et al., 2019; Shahbazinia et al., 2023; Le et al., 2016).

Nevertheless, regardless of how much the speed of the structure learning algorithms are improved,
their application will be limited to a small number of variables in practice. Score-based algorithms
require an exhaustive search over the space of all DAGs, which is of size O(2n2

). Loading these
many edges or DAGs on a single computing machine becomes readily infeasible for large values of n,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

despite the many optimizations on reducing the order. As a result, existing computational resources
are incapable to perform exact structure-learning on a “large” number of variables (Franzin et al.,
2017), unless approximation techniques are used. Constraint-based algorithms, such as PC, start or
interact with a fully connected network, which hasO(n2) edges for n variables. This is more feasible
to load on a single machine, however, the complexity of the algorithm itself is O(np+2), where p is
the maximum number of parents of a variable in the “true” DAG (Koller & Friedman, 2009).

Reducing the structure-learning problem to several sub-problems that can be learned separately can
be the key to solve this issue. An approximation distributed structure-learning approach was proposed
in (Gu & Zhou, 2020), where the variables are partitioned into clusters that are learned in a distributed
way and then appended to obtain the final DAG. Nevertheless, the result is an estimation of the true
DAG and under the assumption of Gaussian-distributed variables.

The partitioning of variables is the main part of this approach. In many represented approaches, the
resulting network by distributed learning is an approximation of a network that is obtained from
centralized learning (Talvitie et al., 2019; Scanagatta et al., 2015). Additionally, in some other
approaches (Xie et al., 2006) and (Liu et al., 2017), partitioning is performed using expert knowledge
and requires conditional independence tests with high-order conditioning variables that cannot be
used in many practical problems. (Zhang et al., 2020) proposed an optimization-based approach
for partitioning using lower conditioning variables; however, the number of conditioning variables
cannot be controlled.

We develop an exact distributed structure-learning algorithm that obtains the true P-map for a given
set of random variables in three steps. First, the algorithm performs a reduction on the set of variables,
by dividing them into sets X1, . . . ,XI . Each set Xi has a boundary bd(Xi) that is the subset of nodes
shared with other Xj , i.e., ∪j ̸=iXi ∩ Xj , and an interior X o

i which is the remainder, i.e., Xi \ bd(Xi).
The reduction is such that the P-map confined to each set Xi is a conditional P-map for the marginal
distribution of the variables in Xi; namely, the presence and absence of all edges that are adjacent
with the interior nodes of Xi are correctly learned by performing a structure-learner to find the P-map
of Xi. Roughly speaking, the “interior edges” of each set Xi can be learned separately, without the
information about the nodes in the other Xj’s. This naturally leads to the second step, where separate
structure-learners, either constraint or score-based, are deployed to learn the local P-map structure
of every Xi. Finally, the local P-maps are concatenated to obtain the global P-map by performing a
distributed PC-like algorithm on all boundary nodes. We prove that the resulting DAG is a P-map.

2 BACKGROUND

Consider a set of random variables X = {X1, . . . , Xn} with joint probability distribution P . Let
I(P) denote the set of all conditional independencies implied by the distribution P , i.e., I(P) =
{(X1 ⊥ X2 | X3) : X1,X2,X3 ⊆ X}. Let G be a DAG with node set X . The DAG induces
conditional independencies between the nodes using the notion of d-separation defined below. A
collider in G is a triple of nodes X1 → X2 ← X3, where two of them are linked to the third. The
collider is an immorality if the ending nodes X1 and X3 are not adjacent (connected). Three nodes
are a non-collider if they do not form a collider.
Definition 2.1 (d-separation). (Koller & Friedman, 2009) Consider the DAG G with node set X . A
trail (path) T between two nodes X1 and X2 in X is active relative to a set of nodes Z if (i) every
non-collider on T is not a member of Z , and (ii) every collider on T is an ancestor of some member
of Z . Otherwise, the trail is said to be blocked by Z . The node subsets X1 and X2 are d-separated
given the subset Z , denoted d-sepG(X1,X2 | Z), if there is no active trail between any node X1 ∈ X1

and any node X2 ∈ X2 given Z .

The set of all d-separations in G is denoted by I(G). We assume that for the distribution P , there
exists a DAG G that satisfies both of the following well-known conditions: (i) Markovness, that is,
I(G) ⊆ I(P), and (ii faithfulness, that is I(P) ⊆ I(G). This results in I(P) = I(G); namely, all
conditional independencies in P are captured by the d-separations in G and vice versa. DAG G is
called a P-map (perfect map) for P . The problem is to find P-map G for distribution P . This problem
is known as structure learning. There can be more than one P-map for a distribution P , e.g., two
DAGs G1 and G2 where I(G1) = I(G2) = I(P). P-maps of the same distribution have the same
skeleton and immoralities (Koller & Friedman, 2009). Consequently, the set of all P-maps for a
distribution P is represented by a partially DAG (PDAG) that is a graph over nodes X where two

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

nodes are adjacent, if they are adjacent in all of the P-maps and the connected edge is directed if all
of the P-maps have the same direction, otherwise the edge is undirected. This PDAG is called the
P-map class PDAG for P . The structure learning problem is often reduced to finding the P-map class
PDAG for P .
Problem 1 (Structure learning). Consider the set of random variables X with distribution P that
admits a P-map. Find the P-map class PDAG for P .

Several constraint-based algorithms, such as Peter-Clark (PC) (Spirtes et al., 2000), and score-based
algorithms with a consistent score, such as BIC, that perform an exhaustive search over the DAG
space, are shown to solve Problem 1. We call an algorithm that solves Problem 1, a P-map learner
(Koller & Friedman, 2009). Problem 1 is NP-hard and cannot be practically solved for a large number
of variables n (Koller & Friedman, 2009).

3 DISTRIBUTED STRUCTURE LEARNING

3.1 THE IDEA

Our goal is to solve Problem 1 in a distributed manner as explained intuitively below.
Example 1. The DAG in figure 1 (a), denoted by G, is a P-map for the joint distribution of random
variables X1, . . . , X5. Instead of learning the whole DAG at once, one can learn separately the P-map
class PDAG of each of the sub-DAGs forX1 = {X1, X2, X3}, X2 = {X4, X3}, andX3 = {X5, X3}
(figure 1 (b)), and then concatenate (and orient) them to obtain P-map G (figure 1 (c)). The reason is
that each of the three subsets are d-separated, and hence, independent, from one another given their
shared variable X3, i.e.,

X1, X2 ⊥ X4 | X3, X1, X2 ⊥ X5 | X3, X4 ⊥ X5 | X3.

Thus, when learning the structure of say the subset {X1, X2, X3}, there is no active path between
any of X1 and X2 to the other nodes (excluding X3). This ensures two points. First, X1 and X2 are
not connected by a path outside of {X1, X2, X3}; that is, all of their dependencies are captured by
this set. Hence, a structure learner can correctly learn the structure between these nodes without
using the information from the other nodes X4 and X5. Second, when concatenating the graphs, no
additional link between the subsets are needed. This idea does not apply to the partitioning subsets
{X1, X4} and {X2, X3, X5}, because X1 and X4 do depend on {X2, X3, X5}:

{X1, X4} ̸⊥ {X2, X3, X5}.

Nodes X1 and X4 are related by a path outside of {X1, X4}, e.g., X1 → X3 → X4. Hence, when
learning the structure of {X1, X4}, the structure learner will incorrectly make X1 and X4 adjacent,
because they are dependent. Similarly, subsets {X1, X3, X4} and {X2, X3, X5} would not work
either. Because although the P-map of each subset can be learned correctly, the concatenation would
require an additional link between X1 and X2 to recover G.

Figure 1: (a) A P-map for {X1, . . . , X5}. (b) Three subsets that can be learned separately.

In what follows, we define mathematically the reduction approach taken in Example 1. For Y ⊆ X , let
P [Y] denote the marginal probability distribution of variables Y , and G[Y] denote that sub-graph of

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

G limited to nodes Y and their connecting edges. The goal is to solve Problem 1 by an algorithm that
is distributed over the nodes, that is, to divide nodes X into possibly overlapping subsets X1, . . . ,XI ,
so that every sub-graph G[Xi], i = 1, . . . , I , of the P-map class PDAG G for P can be learned
separately without using the information of the other nodes Xj , j ̸= i, and at the end to concatenate
the sub-graphs so that the resulting is a P-map class PDAG for P .

The key step in this approach is the division of the nodes. Define a cover of X as a family of distinct
nonempty subsets X1, . . . ,XI ⊆ X for some I ≥ 1 such that ∪Ii=1Xi = X . Define the boundary of
Xi, i = 1, . . . , I , by bd(Xi) = Xi ∩ (∪j ̸=iXj), and the interior of Xi by X o

i = Xi \ bd(Xi). The
union of all boundaries is called the separator, denotedW = ∪ibd(Xi). Correspondingly, the cover
{X1, . . . ,XI} for X is referred to as the cover separated byW . In Example 1, W = {X3}. The
union of arbitrary graphs G1, . . . ,GI , denoted ∪Ii=1Gi is a graph with the node and edge set equal to
the union of the nodes and edges of the graphs Gi, and an edge X − Y is directed from X to Y if it is
so in every Gi that includes this edge; otherwise, it is undirected.

Definition 3.1 (P-map reduction). Consider the set of random variables X with distribution P that
admits a P-map G. Let d ≥ 1 be an integer. A cover {X1, . . . ,XI}, I > 1, of X is a (capped-d)
P-map reduction if for all i = 1, . . . , I , (i) |Xi| ≤ d, (ii) G[Xi] is a P-map for P [Xi], and (iii) for all
j ̸= i, there is no edge between X o

i and X o
j in G.

Condition (ii) ensures that separate P-map learners can be used to learn the P-map class PDAG of
each of the subsets Xi. Namely, they can be learned in parallel and without communication, i.e.,
decentrally. Condition (i) restricts each subset Xi to include at most d variables. The value of d can
be chosen based on the computational capacity of the P-map learners. Once all G[Xi]’s are learned,
Condition (iii) ensures that their union will be a P-map for the complete distribution P , and hence,
solves Problem 1.

The cover in Example 1 is a P-map reduction (Remark A.2). Does a P-map reduction exist for every
DAG? The answer is negative. For example in Figure 2-a, every pair of nodes are connected by two
paths. Thus, to satisfy Condition (iii), every element of a P-map reduction must be of size at least
two. However, then at least one element of the cover violates Condition (ii). For example, G[X1],
which is the path X12 → X13 ← X1 → . . .→ X9, is not a P-map for P [X1] as that would require
X9 and X12 to be adjacent.

Figure 2: (a) The P-map G for variables X1, . . . , X13. (b) The cover consisting of X1 =
{X9, X10, X11, X12} and X2 = {X12, X13, X1, . . . , X9}, separated byW = {X9, X12}.

Nevertheless, once X9 and X12 are observed, the path connecting any of the nodes X13, X1, . . . , X8

to either of X10 and X11 is blocked. Namely, the interior of the cover element X1 becomes d-
separated given its boundary X9 and X12. Consequently, every d-separation in the sub-DAG confined
to X1, i.e., G[X1], either itself exists in I(P) or when it is additionally conditioned to the boundary
variables bd(X1). On the other hand, the partitioning of X into the cover elements does not cause
the loss of a d-separation in the resulting sub-DAGs, i.e., they all remain faithful. This motivates the
following definitions.

Definition 3.2 (Conditional P-map). Let X be a set of random variables with distribution P and
consider subset Z ⊆ X . DAG G defined over X is a conditional P-map for P given Z if (i) P is
faithful to G, and (ii) G is a conditional I-map for P ; that is, if d-sepG(X1,X2 | X3),X1,X2,X3 ⊆ X ,
then there exists Z0 ⊆ Z such that X1 ⊥ X2 | X3 ∪ Z0.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Definition 3.3 (Conditional P-map reduction). Consider the set of random variables X with distri-
bution P that admits a P-map G. Let d ≥ 1 be an integer. A cover {X1, . . . ,XI}, I > 1, of X is a
(capped-d) conditional P-map reduction if for all i = 1, . . . , I , (i) |Xi| ≤ d, (ii) G[Xi] is a conditional
P-map for P [Xi] given bd(Xi), and (iii) for all j ̸= i, there is no edge between X o

i and X o
j in G.

According to Condition (ii) in Definition 3.3, every conditional independence in I(P [Xi]) is included
in I(G[Xi]). This ensures that constraint-based algorithms, such as PC, will not incorrectly eliminate
an edge when learning the structure of Xi. On the other hand, every d-separation in I(G[Xi]) exists
in I(P [Xi]) either itself or when some of the boundary nodes bd(Xi) are additionally observed
(see Remark A.3 in the Appendix for why the second case does not always hold). This ensures
that PC can correctly identify the edges that do not exist between two interior nodes or an interior
node and a boundary node in G[X o

i]. Therefore, the P-map structure of the interiors X o
i and their

connections to the boundary nodes bd(Xi) can be learned in a decentralized way. Although the
intra and inter connections of the boundaries bd(Xi) cannot be learned decentrally and generally
requires information from the all of the elements. Moreover, Condition (iii) ensures that no appending
between the interiors is required to obtain the P-map for X . In the following subsection, we explain
how to learn the conditional P-maps and the structure of the boundaries of conditional P-map cover,
yet we will first focus on finding the cover.

Problem 2. Given integer d ≥ 0 and set of random variables X with distribution P that admits a
P-map, find a capped-d conditional P-map reduction for X .

The idea in Example 1 and Figure 2 to solve Problem 2 was to divide the nodes into subsets that are
d-separated given their common nodes. More specifically, we need a separatorW and a partition of
the set X \W into some subsets C1, . . . , CI that are pairwise independent conditioned onW .

Definition 3.4 (Separated-by cover). Consider random variables X with distribution P and a subset
W ⊂ X . The cover for X separated byW is a collection of sets {W ∪ Ci}Ii=1, I ≥ 1, such that (i)
{C1, . . . , CI ,W} is a partition for X , (ii) Ci ⊥ Cj | W for all distinct i, j = 1, . . . , I , (iii) and I is
maximal.

To solve Problem 2, one can iteratively apply separators to the elements of a cover until they no longer
decompose. How to find the cover separated byW? Consider an order for variables X , represented by
vector X = [X1, . . . , Xn]

⊤. Vector XW is defined as X where the elements ofW are removed and
let [XW]i be the ith entry of XW . For subsetW ⊂ X , define the symmetric (n− |W|)× (n− |W|)
dependency matrix DW by DW(i, j) = 1 if [XW]i ̸⊥ [XW]j | W and otherwise DW(i, j) = 0 for
all i, j ∈ {1, . . . , n− |W|}, with DW(i, i) = 1 for all i. By using a permutation matrix P , we have
D̄W = PDWP−1 where D̄W is the block diagonal form of DW . Then each group of entries of the
transformed vector X̄W = PXW that correspond to a block of D̄W constitutes one of the desired
partitions, which combined withW form an element of the P-map reduction (see Example 1-revisited
in the appendix). Nevertheless, finding the permutation matrix can be computationally costly. An
alternative is to treat the dependency matrix as an adjacency matrix, defining an undirected graph and
find the connected components of this graph. This can be done in O(n2) (Cormen et al., 2001).

3.2 THE ALGORITHMS

We provide Algorithm 1 as the distributed learning algorithm to solve Problem 1. The algorithm
consists of three sub-algorithms: One that performs a conditional P-map reduction (solves Problem 2),
one that learns each of the elements of the reduction (interiors and between interiors and boundaries),
and finally, one to append the elements of the reduction (learning the boundaries).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1: Distributed structure learner
Input: Set of random variables X with joint probability distribution P that admit a P-map; the

maximum number of variables in each element of the cover, d; the maximum number of
separator variables, W

Output: A P-map G for P

1 {X1, . . . ,XI} ← Algorithm 2 (d,W);
// Alternatively, Algorithm 3 can be used.

2 for i = 1, · · · , I
3 Gi ← P-map learner(Xi)

4 Ḡ =
I⋃

i=1

Gi
5 for i = 1, · · · , I
6 G ← Boundary PC (Xi, Ḡ)

We provide Algorithms 2 and 3 for the first part, i.e., to solve Problem 2. Both are based on the idea
to iteratively find separators that would decompose the components of a conditional P-map reduction
of X into another reduction.

Algorithm 2 goes through the cover XI (initially set to {X}), picks the greatest component U ∈ XI ,
and checks if any subsetW ⊂ U separates the component into a cover of cardinality greater than one
(which is a conditional P-map reduction for U). If so, then the algorithm updates the cover XI by
replacing U with its cover and moves to the next greatest component in XI . This process continues
until either all components of the cover have a size less than d or none of the components can be
further reduced. The notation P(U) is the power set of the set U , i.e., the set of all subsets of U .

Algorithm 2: Parallel conditional P-map reduction finder CI based
Input: X = {X1, · · · , Xn}, d, W , and the number of processors Np.
Output: A conditional P-map reduction XI of X

1 XI ← {X};
2 w ← 0; // w:the size of the separator
3 K ← ∅
4 while maxU∈XI |U| > d and w ≤W do
5 X ′

I ← XI ; // X ′
I: potentially decomposable cover members

(w.r.t.w)
6 while X ′

I ̸= ∅ and maxU ′∈X ′
I
|U ′| > d do

7 U ← argmaxU ′∈X ′
I
|U ′|; // U: greatest cover member

8 forM⊂ P(U) \ K and |M| = Np and |W| = w forW ∈M
9 forW ∈M

10 {W ∪ CiW}
IW
i=1 ← the cover for U separated byW;

11 K ← K ∪M
12 if

∑
W∈M

IW > Np // the cover was a reduction

13 XI ← Cover finding for U by intersection method on {W ∪ CiW}
IW
i=1 if IW > 1;

// update the cover
14 XI ← XI \ {U}
15 X ′

I ← XI
16 Break;
17 X ′

I ← X ′
I \ {U}

18 w ← w + 1;

The other conditional P-map finder is Algorithm 3. The problem with Algorithm 2 is that it may run
too many CI tests. When searching for separators of size w of a cover element U with cardinality
u, all

(
u
w

)
subsets of U are checked for being a separator; next all

(
u

w+1

)
subsets are checked and

so on. However, in Algorithm 3, once a separator of size w is found, the algorithm searches for all
single nodes to be added to this separator, those are,

(
u−w
1

)
; next all

(
u−w
2

)
, and so on, until another

reduction happens. The problem with Algorithm 3 is that the number of conditioning variables in the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 3: Parallel Non-monotone conditional P-map reduction finder CI based
Input: X = {X1, · · · , Xn}, d, W , and the number of processors Np.
Output: A conditional P-map reduction XI of X

1 XI ← {X};
2 w ← 0; // w:the size of the separator
3 while w ≤W and maxU∈XI |U| > d do
4 X ′

I ← XI ; // X ′
I: potentially decomposable cover members

(w.r.t.w)
5 K ← ∅;
6 while X ′

I ̸= ∅ and maxU ′∈X ′
I
|U ′| > d do

7 U = argmaxU ′∈X ′
I
|U ′|; // U: greatest cover member

8 bd(U)←
⋃

U ′∈XI\{U}
U ∩ U ′

9 forM⊂ P(U \ (bd(U) ∪ K)) and |M| = Np and |W| = w forW ∈M
10 forW ∈M
11 XW ← {U}
12 {W ∪ bd(U) ∪ CiW∪bd(U)}

IW
i=1 ← the cover for U separated byW ∪ bd(U);

13 if IW > 1 // the cover was a reduction
14 for U ∈ bd(U)
15 for i = 1, · · · , IW
16 if U ̸⊥ CiW∪bd(U)|W ∪ bd(U) \ {U}
17 CiW ← {U} ∪ CiW∪bd(U)

18 if bd(U) \ ∪CiW ̸= ∅
19 XW ← {W ∪ (bd(U) \ ∪CiW)};
20 XW ← (XW \ {U}) ∪ {W ∪ CiW}

IW
i=1;

21 if
∑

W∈M
IW > Np // the cover was a reduction

22 XI ← Covering U by intersection method on XW if IW > 1; // update
the cover

23 XI ← XI \ {U}
24 X ′

I ← XI
25 w ← 1
26 Break;
27 else
28 K ← K ∪M
29 X ′

I ← X ′
I \ {U}

30 w ← w + 1;

CI tests grows quickly, because the separators are never removed from the conditioning part. Namely,
once a cover element is reduced into another cover by a separator of size w, the next reduction will
require a CI test with a conditioning of size at least w + 1 as both the previous separator and a new
separator of size one will be conditioned on. This does not happen in Algorithm 2; namely, once
a separator of size w is found, the CI test required for finding the next separator will have again w
conditioning variables, as the algorithm does not condition on the previously found separator. For the
same reason, Algorithm 3 may be unable to find a capped-d cover for small values of d.

After the cover finding process, a structural learning method is individually applied to each set of
covering variables, resulting in the discovery of the network structure for each subset of variables.
Let {X1, · · · ,XI} denote a covering of X that is derived from the algorithms 2 and 3. Each subset of
variables, Xi for i = 1, · · · , I , can be independently learned using either score-based or constraint-
based algorithms. This leads to the identification of the local structures, denoted as Gi for i = 1, · · · , I .
In Gi, the all edges between every two interior variables, and between a variable in the interior and
another in the boundary set equal to the edges of a P-map G for P . In the process of constructing the
comprehensive network structure, the local structures obtained in the prior stage must be concatenated
together. Each cover set shares a common variable set, denoted as bd(Xi), representing the observed

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

variables that correspond to specific nodes in the local networks. By learning the edges between the
boundary variables and assembling the local networks using these common nodes, the comprehensive
network structure for all variables is constructed.

Algorithm 4: The Boundary PC Algorithm

Input: The union of {Gi}Ii=1, cover sets {Xi}Ii=1 and joint probability distribution P
Output: A P-map Ḡ for P

1 Sep(X,Y) = ∅ for all X,Y ∈ bd(Xi);
2 for X ∈ bd(Xi)
3 for Y ∈ bd(Xi) ∩Adj(Ḡ, X)
4 U = (

⋃
X∈Xk,Y ̸∈Xk

bd(Xk)) ∪ (
⋃

Y ∈Xk,X ̸∈Xk
bd(Xk)) \ {X,Y }

5 if X ⊥ Y | U
6 Remove the edge X − Y from Ḡ;
7 Sep(X,Y)← U ;
8 For X − Z − Y that X,Y ∈ bd(Xi) are not adjacent in Ḡ, if Z ̸∈ Sep(X,Y) then orient

X − Z − Y as an immolarity X → Z ← Y .
9 Orient the other edges using the orientation rules in (Spirtes et al., 2000).

3.3 THE SUPPORTING THEORY

Proposition 3.5. Consider random variables X with distribution P . A cover XI = {X1, . . . ,XI}
satisfying

∀i, j ̸= i Xi ⊥ Xj | bd(Xi) (1)
is a conditional P-map reduction.
Proposition 3.6. Consider random variables X with distribution P that admits a P-map class PDAG
G. Assume that XI = {Xi}Ii=1 is a conditional P-map reduction for X , and consider an arbitrary
i ∈ {1, . . . , I}. Two nodes X1, X2 ∈ Xi where at least one of which is from X o

i are adjacent (resp.
non-adjacent) in G[Xi] if and only if they are adjacent (resp. non-adjacent) in the P-map class PDAG
of P [Xi]. Moreover, every triple of nodes X1, X2, Z ∈ Xi, where at least two of which are in X o

i ,
form an immorality in G if and only if they do so in the P-map class PDAG of P [Xi]. Finally, if a
triple of nodes X1, X2, Z ∈ Xi, where X1 ∈ X o

i , form an immorality X1 → Z ← X2 in the P-map
class PDAG of P [Xi], then the immorality also exists in G.
Lemma 3.7. The cover output by Algorithms 2 and 3 satisfies Condition equation 1.
Lemma 3.8. Consider random variables X with distribution P that admits a P-map class PDAG
G. Assume that XI = {Xi}Ii=1 is a conditional P-map reduction for X , and consider an arbitrary
J ⊆ {1, . . . , I}. Two nodes X1, X2 ∈ bd(Xj) for all j ∈ J , are non-adjacent in G if and only if they
are non-adjacent in a P-map class PDAG of P [Xj0] for at least a j0 ∈ J .
Lemma 3.9. Under Algorithms 2 and 3, every edge in Gi belongs to a cover component.
Theorem 3.10. Algorithm 1 outputs a P-map for P .

Proof. It suffices to prove that the output of the algorithm, say Ĝ, has the same skeleton and
immoralities as the P-map PDAG class for P , say G. In view of Lemma 3.7, Proposition 3.5,
Algorithm 1 outputs a cover XI = {Xi}Ii=1 that is a conditional P-map reduction. Hence, the interior
nodes of no two elements of the cover are adjacent in both Ĝ and G. On the other hand, Proposition
3.6 guarantees that all edges between every interior node of element Xi and another node in Xi are
correctly identified for every i. So it only remains to show that the algorithm also correctly identifies
the edges between the boundary nodes of every Xi. Denote by G′ the graph obtained by Algorithm
1, before executing (sub-)Algorithm 4. Assume that there is an edge between two boundary nodes
X,Y ∈ Xi in G′ that does not exist in G. Since the edge does not exist in the P-map G, there is some
U ∈ X such that X1 ⊥ X2 | U . In view of Lemma A.4, the set U can be chosen such that all nodes
in U are either adjacent with X1 or adjacent with X2 in G. Denote the nodes adjacent with X1 (resp.
X2) in G by N G

X1
(resp. N G

X2
). It follows from Lemma 3.9 that N G

Xi
= ∪Ij=1N

G[Xj]
Xi

for i = 1, 2.
Since G′ includes all of the edges in G, it follows that the the set U can be found by searching through

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

the union of the neighbors of X1 (resp. X2) in each Xj , which is what Algorithm 4 does. Hence,
the edge will be detected and eliminated from G′. Finally, Algorithm 1 does not delete an edge
that actually exists in G as the elimination of an edge in Algorithm 4 happens only if a conditional
independence holds between the variables.

Table 1: The results for cover finding algorithms. The notation I is the number of cover elements and
ℓmax is the cardinality of the greatest cover element.

DATASET # NODES d # CPUS ℓmax I # RUNTIME(ALG. 1) # RUNTIME (PC)

ASIA 8 6 20 6 3 0.87 1.16
SACHS 11 8 30 4 7 28.6 50
CHILD 20 15 30 14 7 14 127.2
INSURANCE 27 20 30 25 3 86.5 208
WATER 32 24 30 26 7 15.1 25.2
MILDEW 35 26 30 34 2 532 858
ALARM 37 27 30 30 5 48 84.4
BARLEY 48 36 30 47 2 929 1293
HAILFINDER 56 42 30 56 1 72257 90821
HEPAR2 70 52 30 51 17 632 1496
WIN95PTS 76 57 30 65 8 398 358

As with the immoralities, it follows from Proposition 3.6, that every immorality in G′ with at least
one interior node of some cover element Xi also exists in G. Now if the edges of an immorality in G′
with all three nodes being a boundary node of some cover element Xi are not eliminated in Ĝ, then
the immorality also exists in G. So all immoralities in G′ that also appear in Ĝ belong to G. On the
other hand, if an immorality emerges after executing Algorithm 4, i.e., it belongs to Ĝ but not G′,
then it should also belong to G, because Algorithm 4 is basically the PC algorithm that starts from
the graph G′ that is a superset G (and PC is known to correctly identify the immoralities). Therefore,
every immorality in Ĝ is included in G. Now we show that that every immorality in G is included in
Ĝ. In view of Lemma 3.9 every edge is on a cover element. Moreover, it is impossible to have three
boundary nodes X , Y , and Z forming a collider X → Z ← Y , and the three nodes do not belong
to the same cover element, because then the element including X and that including Y will not be
d-separated conditioned on Z. Hence, according to Proposition 3.6, we only need to show that the
immoralities in G with all three nodes belonging to the boundary of some element, or when exactly
one node is an interior and the other two are the boundary of the same element. The proof of the first
part is similar to the previous case (Algorithm 4 being basically the PC algorithm) and it checks the
existence of every boundary edge. For the second part, we have a node X ∈ X o

i for some i, and two
boundary nodes Y, Z ∈ bd(Xi), such that Y → X ← Z is an immorality in G. If the immorality
also exists in G′, there is nothing to prove. Otherwise, Y and Z are adjacent in G′, but the edge will
be eliminated by Algorithm 4 and then checked for such immorality. This completes the proof. □

4 EXPERIMENTS

We compared the performance of Algorithm 1 and PC on the datasets ASIA (Lauritzen & Spiegelhal-
ter, 1988), ALARM (Beinlich et al., 1989), INSURANCE (Binder et al., 1997), CHILD (Spiegelhalter
& Cowell, 1992), WATER (Jensen et al., 1989), HAILFINDER (Abramson et al., 1996), HEPAR2
(Andreassen et al., 1989). The number of samples for all datasets is 10,000. The computations
were performed on a system with 2 xAMD Rome 7532@ 2.4GHz 256M cache. Algorithm 3 was
employed as a sub-algorithm within Algorithm 1, while the PC algorithm was used for the local
structure learners. The value of d was set to 0.75 times the number of variables, and W was set to 1.
The runtime for both Algorithm 1 and the PC algorithm is reported in Table 1. The number of CPUs
was set to 30 for all datasets, except for ASIA, where fewer CPUs were used due to the low number
of variables. According to the Wilcoxon signed-rank test, Algorithm 1 was significantly faster, up
to 2 times (p-value = 0.01) compared to the PC algorithm. Additionally, as shown in Table 2, the
structural Hamming distance indicates that the error is not significantly different between Algorithm
1 and the PC algorithm.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Structural Hamming Distance

DATASET ALG. 1 PC

ASIA 0 0
SACHS 0 0
CHILD 0 1
INSURANCE 15 14
WATER 37 36
MILDEW 10 11
ALARM 3 3
BARLEY 28 28
HAILFINDER 52 52
HEPAR2 57 64
WIN95PTS 42 41

5 CONCLUSION

We developed a distributed approach for structure learning applicable to both constraint-based and
score-based algorithms. The main concept is to identify a cover set for the set of variables using
conditional independence (CI) tests. Two key parameters, the upper bound of the cardinality of
cover elements d and the number of conditioning variables W play crucial roles in determining an
appropriate cover set. Reducing the value of d while increasing W can decrease the cardinality of
the greatest cover element and increase the number of cover elements. However, this adjustment
may lead to an increase in the number of CI tests, which in turn could raise the runtime of the cover-
finding algorithms. Algorithms 2 and 3 are executed in parallel across multiple CPUs. Consequently,
increasing the number of CPUs can help reduce runtime. Thus, it is essential to select the values of d,
W , and the number of CPUs carefully to ensure that the cardinality of the greatest cover element
remains small, enabling the runtime to be less than that of the standard version of the structure
learning algorithm.

One might argue that increasing the number of CPUs, only to reduce runtime by a factor of two,
might seem like an inefficient use of resources. However, it is important to recognize that in the
realm of parallel computation, particularly across nodes, alternatives for comparison are limited.
Existing methods either parallelize the CI tests for each edge, which still requires substantial memory
to load the entire graph, or they depend on expert knowledge to inform the process. Our approach
complements these by focusing on breaking the graph into manageable pieces, allowing any of these
methods to be applied efficiently to the cover elements. Furthermore, this process can now occur
in parallel across CPUs, which are generally more cost-effective and accessible than GPUs. This
flexibility not only broadens the applicability of our approach but also makes it feasible in a wider
range of computational environments.

The proposed approach results in exact distributed structure learning algorithms. Specifically, it has
been demonstrated that the output of Algorithm 1 yields the exact structure without any approximation
in cover finding, local structure learning, and the concatenation of local structures. In addition, unlike
other exact distributed algorithms (Xie et al., 2006) and (Liu et al., 2017), which rely on expert
knowledge and conditional independence tests with high-order conditioning variables, the proposed
approach utilizes only a low-order conditioning set bounded by W .

In summary, our distributed structure learning approach efficiently handles large Bayesian networks
by breaking the problem into smaller, manageable components, allowing for parallel execution on
multiple CPUs. This method achieves exact results without requiring expert knowledge or high-order
conditioning, offering a practical solution to the scalability issues in traditional algorithms. By
reducing memory demands and enabling flexible integration with existing techniques, our approach
enhances computational efficiency while preserving accuracy, making it a valuable tool for large-scale
structure learning across diverse domains. As computational demands continue to grow, this work
lays a strong foundation for the scalable and accurate learning of complex probabilistic models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Bruce Abramson, Joseph Brown, Ward Edwards, Allan Murphy, and Robert L. Winkler. Hailfinder:
A bayesian system for forecasting severe weather. International Journal of Forecasting, 12(1):
57–71, 1996.

Steen Andreassen, Finn V. Jensen, Stig K. Andersen, Bent Falck, Uffe Kjærulff, Mads Woldbye,
Aage R. Sørensen, Anders Rosenfalck, and Finn Jensen. Munin - an expert emg assistant. In
Alfred Struppler and Alfred Weindl (eds.), Computer-Aided Electromyography and Expert Systems,
chapter 21. Elsevier (North-Holland), 1989.

I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. The alarm monitoring system: A
case study with two probabilistic inference techniques for belief networks. In Proceedings of the
2nd European Conference on Artificial Intelligence in Medicine, pp. 247–256. Springer-Verlag,
1989.

Jason Binder, Daphne Koller, Stuart Russell, and Kenji Kanazawa. Adaptive probabilistic networks
with hidden variables. Machine Learning, 29(2-3):213–244, 1997.

Wei Chen, Mathias Drton, and Y.S. Wang. On causal discovery with an equal-variance assumption.
Biometrika, 106(4):973–980, 2019a.

Wei Chen, Mathias Drton, and Y.S. Wang. On causal discovery with an equal-variance assumption.
Biometrika, 106(4):973–980, 2019b.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms. MIT Press and McGraw-Hill, 2nd edition, 2001.

Alessandro Franzin, Francesco Sambo, and Barbara Di Camillo. bnstruct: an r package for bayesian
network structure learning in the presence of missing data. Bioinformatics, 33(8):1250–1252,
2017.

Ming Gao, Yajun Ding, and Bryon Aragam. A polynomial-time algorithm for learning nonparametric
causal graphs. Advances in Neural Information Processing Systems, 33:11599–11611, 2020.

Emanuele Giudice, Jack Kuipers, and Gianluca Moffa. The dual pc algorithm for structure learning.
In International Conference on Probabilistic Graphical Models, pp. 301–312. PMLR, 2022.

Jiahao Gu and Quan Zhou. Learning big gaussian bayesian networks: Partition, estimation and fusion.
Journal of Machine Learning Research, 21(1):6340–6370, 2020.

Ruocheng Guo, Liang Cheng, Jie Li, Peter R. Hahn, and Huan Liu. A survey of learning causality
with data: Problems and methods. ACM Computing Surveys (CSUR), 53(4):1–37, 2020.

Finn V. Jensen, Uffe Kjærulff, Kristian G. Olesen, and Jens Pedersen. Et forprojekt til et ekspertsystem
for drift af spildevandsrensning (an expert system for control of waste water treatment - a pilot
project). Technical report, 1989. Technical Report, In Danish.

Nathan K. Kitson, Anthony C. Constantinou, Zhen Guo, Yan Liu, and Khun Chobtham. A survey of
bayesian network structure learning. 2021.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: principles and techniques. MIT
Press, 2009.

Steffen Lauritzen and David Spiegelhalter. Local computation with probabilities on graphical
structures and their application to expert systems (with discussion). Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 50(2):157–224, 1988.

Tuan Dung Le, Tung Hoang, Jinyan Li, Lu Liu, Huan Liu, and Shu Hu. A fast pc algorithm for high
dimensional causal discovery with multi-core pcs. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 16(5):1483–1495, 2016.

Hui Liu et al. A new hybrid method for learning bayesian networks: Separation and reunion.
Knowledge-Based Systems, 121:185–197, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Judea Pearl. Causality. Cambridge University Press, 2009.

Jonas Peters, Dominik Janzing, and Bernhard Scholkopf. Elements of causal inference: foundations
and learning algorithms. The MIT Press, 2017.

Joseph Ramsey, Madelyn Glymour, Ruben Sanchez-Romero, and Clark Glymour. A million variables
and more: the fast greedy equivalence search algorithm for learning high-dimensional graphical
causal models, with an application to functional magnetic resonance images. International Journal
of Data Science and Analytics, 3:121–129, 2017.

Marco Scanagatta, Cassio P. de Campos, Giorgio Corani, and Marco Zaffalon. Learning bayesian
networks with thousands of variables. In Advances in Neural Information Processing Systems,
volume 28, 2015.

Ali Shahbazinia, Salman Salehkaleybar, and Mahdi Hashemi. Paralingam: Parallel causal structure
learning for linear non-gaussian acyclic models. Journal of Parallel and Distributed Computing,
176:114–127, 2023.

Aman Sondhi and Ali Shojaie. The reduced pc-algorithm: Improved causal structure learning in
large random networks. Journal of Machine Learning Research, 20(164):1–31, 2019.

David J. Spiegelhalter and Robert G. Cowell. Learning in probabilistic expert systems. In Jose M.
Bernardo, James O. Berger, A. Philip Dawid, and Adrian F. M. Smith (eds.), Bayesian Statistics 4,
pp. 447–466. Clarendon Press, Oxford, 1992.

Peter Spirtes, Clark N. Glymour, Richard Scheines, and David Heckerman. Causation, prediction,
and search. MIT Press, 2000.

Tuukka Talvitie, Roland Eggeling, and Mikko Koivisto. Learning bayesian networks with local
structure, mixed variables, and exact algorithms. International Journal of Approximate Reasoning,
115:69–95, 2019.

Wouter van den Boom, Maria De Iorio, and Alexandros Beskos. Bayesian learning of graph
substructures. Bayesian Analysis, 1(1):1–29, 2022.

Xianchao Xie, Zhi Geng, and Qiang Zhao. Decomposition of structural learning about directed
acyclic graphs. Artificial Intelligence, 170(4-5):422–439, 2006.

Bita Zarebavani, Farzaneh Jafarinejad, Mahdi Hashemi, and Salman Salehkaleybar. cupc: Cuda-based
parallel pc algorithm for causal structure learning on gpu. IEEE Transactions on Parallel and
Distributed Systems, 31(3):530–542, 2019.

Hao Zhang et al. Learning causal structures based on divide and conquer. IEEE Transactions on
Cybernetics, 52(5):3232–3243, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

The following definition is a reformulation of Definition 2 in terms of P-map class PDAGs.

Definition A.1. Consider integer d ≥ 0 and the set of random variables X with distribution P that
admits a P-map, and let G be the P-map class PDAG for P . A cover {X1, . . . ,XI} of X is a d-capped
P-map reduction if for every i = 1, . . . , I , (i) |Xi| ≤ d and (ii) the P-map class PDAG for P [Xi]
equals G[Xi], and (iii) the P-map class PDAG for P equals ∪Ii=1G[Xi].

Remark A.2. Let I(G)[Y] denote those conditional independencies in I(G) that are over nodes
Y , i.e., I(G)[Y] = {(X1 ⊥ X2 | X3) ∈ I(G) : X1,X2,X3 ⊆ Y}. In Example
1, the cover {{X1, X2, X3}, {X4, X3}, {X5,X3}} (figure 1 (b)) is a capped-d P-map reduc-
tion for {X1, . . . , X5} for any d ≥ 3. Conditions (i) and (iii) in Definition 3.1 are clearly
met. For Condition (ii), we show that the set of conditional independencies of each sub-
set in the cover, e.g., {X1, X2, X3}, matches the set of d-separations of the corresponding
sub-graph, i.e., I(P [X1, X2, X3]) = I(G[X1, X2, X3]). According to the d-separations in G,
I(G[X1, X2, X3]) = I(G[X4, X3]) = I(G[X5, X3]) = ∅. On the other hand, since G is a P-map
for P , I(P [X1, X2, X3]) = I(G)[X1, X2, X3] = ∅, I(P [X4, X3]) = I(G)[X4, X3] = ∅, and
I(P [X5, X3]) = I(G)[X5, X3] = ∅.
Remark A.3. In Figure A.3, every pair of Xi’s are d-separated given the union of the boundary nodes
W , so the Xi’s can be shown to be a conditional P-map reduction. Now the interior nodes X1 and
X3 in X2 are not d-separated given the boundary nodes {X2, X5, X12}. However, X1 and X3 are
d-separated in the sub-graph G[X2]. This is why enforcing the boundary nodes to be always observed
does not help to find the d-separations of the sub-graphs of the cover elements G[Xi] – it may be that
only the d-separation itself appears in I(P).

Figure 3: (a) The P-map G for variables X1, . . . , X15. (b) The cover consisting of X1 =
{X5, X15, X14, X2}, X2 = {X12, X13, X1, . . . , X5}, X3 = {X5, . . . , X9}, and X4 =
{X9, X10, X11, X12}.

Example 1 (revisited). LetW = {X3} and consider the vector X = [X1, X2, X3, X4, X5]
⊤. Then

X{X3} = [X1, X2, X4, X5]
⊤. The dependency matrix then equals

D̄{X3} = D{X3} =

 1 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1

which is already in a block-diagonal form. Hence, the P-map reduction consists of {X1, X2}∪{X3},
{X4} ∪ {X3}, and {X5} ∪ {X3}. Should, instead, the order X = [X1, X4, X2, X3, X5]

⊤ was
used, yielding X{X3} = [X1, X4, X2, X5]

⊤, then D̄{X3} would be obtained as above by using the
following permutation matrix applied to the dependency matrix D{X3}:

D{X3} =

 1 0 1 0
0 1 0 0
1 0 1 0
0 0 0 1

 , P =

 1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Algorithm 5: The PC Algorithm
Input: A Covering set Xi and their joint probability distribution P
Output: An undirected graph

1 Form the complete undirected graph Gi over nodes Xi;
2 Sep(X,Y) = ∅ for all X,Y ∈ Xi;
3 m = 0;
4 while maximum node degree in Gi is greater than m do
5 for X ∈ Xi

6 for Y ∈ Adj(Gi, X)
7 for U ⊆ Adj(Gi, X) \ {Y } and | U |= m
8 if X ⊥ Y | U
9 Remove the edge X − Y from Gi;

10 Sep(X,Y)← U ;
11 m = m+ 1;
12 Orient the edges using the orientation rules in (Spirtes et al., 2000).

Lemma A.4. (Based on (Pearl, 2009)) Consider random variables X with joint distribution P that
admits a P-map G. Vertices X and Y are not adjacent in G if and only if X ⊥ Y | U for U = PaX
(parents of X in G) or PaY (parents of Y in G).
Lemma A.5. (Based on (Koller & Friedman, 2009)) Let G be a P-map of a distribution P and assume
that X,Y and Z are a potential immorality, i.e., X and Y are not adjacent but both are adjacent
with Z. Then X,Y, Z form an immorality, i.e., X → Z ← Y if and only if X ̸⊥ Y | U for any set
U ∋ Z.
Lemma A.6. (Based on (Koller & Friedman, 2009)) Let G be a P-map of a distribution P, and assume
that there exists three nodes X,Y, Z, where X and Y are adjacent with Z but with themselves, and
the three do not form an immorality, i.e., X → Z ← Y is not in G. If U is such that X ⊥ Y | U , then
Z ∈ U .

Proof of Proposition 3.5 LetW = bd(Xi). Condition (iii) in Definition 3.3 follows the fact that
X o

i ⊥ X o
j | W and the fact that two nodes are not adjacent in a P-map should they be conditionally

independent. So it suffices to prove Condition (ii). It is straightforward to show that G[Xi] is faithful
to P [Xi] for every i = 1, . . . , I: the subgraph G[Xi] is obtained by removing some nodes and edges
from the P-map G, which does not add a new path between two nodes; so nodes without a connecting
path in G remains so in G[Xi]. Now we show that G[Xi] is a conditional I-map for P . Consider
the d-separation d-sepG[Xi](Y1,Y2 | Y3), where Y1,Y2,Y3 ⊆ Xi. LetWv ⊆ W denote the set of
separator nodes that form a collider with a node in Y1 and a node in Y2 or are a descendent node of
such a collider. DefineWn =W \Wv . We prove by contradiction that d-sepG(Y1,Y2 | Y3 ∪Wn),
where Y1,Y2,Y3 ⊆ Xi. Assume the contrary, implying that there is an active path T from a node
Y1 ∈ Y1 to a node Y2 ∈ Y2 when observingWn. Path T cannot include any of the nodesWn as
they would block the path. Also, since observingWn does not activate any collider, T must include
a node S ̸∈ Xi out of Xi. On the other hand, the separator drives the cover elements independent,
yielding Xi ⊥ S | W , meaning that the nodes inW block all paths such as T that leave Xi and have
two end nodes in Xi. Since T does not includeWn, it includes some of the nodes inWv. Namely,
path T leaves Xi from a node W1 ∈ Wv, reaches S and returns to Xi by another node W2 ∈ Wv.
Hence, for T to be active, its edge adjacent to W1 must be an outgoing edge and the same holds
for W2. However, then that part of path T with ends W1 and W2 that passes through S will have a
collider which blocks the whole path T , a contradiction, completing the proof. □

Proof of Proposition 3.6 In view of Lemma A.4, if X1 and X2 are adjacent in G[Xi], then they
are not independent conditioned on any subset of other values, including those in Xi. Hence, the
dependence also reveals in P [Xi], implying the existence of the link in the P-map class PDAG of
P [Xi]. If X1 and X2 are not adjacent in G[Xi], then they are independent conditioned on some subset
U ∈ X . On the other hand, X o

i ⊥ (X \ Xi) | bd(Xi), implying that bd(Xi) blocks all paths between
X o

i and nodes other than Xi. On the other hand, similar to the proof of Proposition 3.5 it can be
shown that the above independence also holds when we only condition on those boundary nodes
Wn that do not form a collider with X1 and X2 and are not a descendent node that would activate
such a collider, i.e., X o

i ⊥ (X \ Xi) | Wn. Thus, X1 ⊥ X2 | U yields X1 ⊥ X2 | (Xi ∩ U) ∪Wn as
those nodes of U that are out of Xi and have an active path to X1 or X2, their path can be blocked by

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

observingWn. Hence, there X1 and X2 become independent also by conditioning on nodes that are
only in Xi. Therefore, in view of Lemma A.4, they will not be adjacent in the P-map class PDAG of
P [Xi].

Now we prove the second part. Suppose that X1 and X2 form an immorality with another node
Z ∈ Xi in G[Xi], i.e., X1 → Z ← X2, and that at least two of X1 ,X2, and Z are in X o

i . Then X1

and X2 are not d-separated in G[Xi] given any U ⊆ Xi that contains Z. This implies that X1 and
X2 are not d-separated in G given any U ⊆ X that contains Z as adding more edges and vertices to
G[Xi] does not make an already active path inactive. Now due to G being a P-map class PDAG for
P , it holds that X1 ̸⊥ X2 | U for any U ⊆ X that contains Z. On the other hand, based on what
we proved earlier, X1 and X2 are connected to Z and are not adjacent with each other in the P-map
PDAG class of P [Xi]. Hence, in view of Lemma A.5, X1 and X2 form an immorality with Z in the
P-map. Now suppose that X1 and X2 are not adjacent, both connected to Z ∈ Xi, do not form an
immorality in G[Xi], and that again at least two of X1 ,X2, and Z are in X o

i . Clearly, the same holds
in G. In view of Lemma A.6, if X1 ⊥ X2 | U for some U ⊆ X , then Z ∈ U . Thus, if X1 ⊥ X2 | U
for some U ⊆ Xi, then Z ∈ U , meaning that the condition holds also in P [Xi], which completes the
proof according to Lemma A.5.

Now consider the triple X1, X2, and Z, where only one of them, say X1, is in X o
i and the other two

are in bd(X i). Consider the case where the three nodes form the immorality X1 → Z ← X2 in the
P-map PDAG class of P [Xi]. Then there exists a U ⊆ Xi not including Z, such that X1 ⊥ X2 | U ,
which implies that there is no active path between X1 and X2 that has a node out of Xi. We prove by
contradiction that X2 and Z are adjacent in G. Otherwise, there exists an active path T of length at
least two between X2 and Z regardless of whether any subset U ⊆ Xi is observed. Therefore, every
node in T is out of Xi. Let V ∈ T be the node in T that is adjacent to Z. The direction of the edge
between V and Z cannot be from Z to V , because then by observing both Z and the aforementioned
U , X1 and X2 will become d-separated, which is impossible. For the same reason, X1 is linked to Z.
Hence, X1, Z, and V form the collider X1 → Z ← V , implying that X1 ̸⊥ V | Z. This, however,
contradicts equation 1. Hence, X2 and Z are adjacent in G. Then the immorality X1 → Z ← X2

exists in G as well as otherwise, there cannot exist a U ⊆ Xi not including Z such that X1 ⊥ X2 | U ,
a contradiction. □

Proof of Lemma 3.7 We prove by induction on the cardinality k of the cover, where k = K1,K2
For both algorithms, the base case k = K1 > 1 holds trivially. Assume that the result holds for
k = m. Consider that iteration in the algorithms where the cover has cardinality m, denoted by
{X1, . . . ,Xm} and let element Xi be the next cover that will be reduced. According to equation 1,
Xi ⊥ Xj | bd(Xi). This implies that the boundary nodes of Xi, block every path that connect
the interior nodes of Xi to other elements of the cover. In Algorithm 2, Xi will be reduced to a
cover {W ∪ CiW}Ii=1 where CiW ⊥ C

j
W | W for all i ̸= j. Now consider an arbitrary Ci. Should

bd(Xi) ⊆ W , then CiW ⊥ Xj |W for all j. Otherwise, some of the nodes in bd(Xi) are in ∪j ̸=iCjW ,
and hence, are d-separated from CiW after observingW . In other words,W either directly or indirectly
blocks all the paths from CiW to Xj for every j ̸= i. This is because observingW does not activated
any collider that would in turn activate a path between Xi and Xj (every node in Xi that is adjacent
to another Xj is included in bd(Xi) as otherwise equation 1 is violated). This completes the proof
for Algorithm 2. The proof for Algorithm 3 is similar. □

15

	Introduction
	Background
	Distributed structure learning
	The idea
	The algorithms
	The supporting theory

	Experiments
	Conclusion
	Appendix

