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Abstract
The practical deployment of learning-based au-
tonomous systems would greatly benefit from
tools that flexibly obtain safety guarantees in the
form of certificate functions from data. While
the geometrical properties of such certificate func-
tions are well understood, synthesizing them us-
ing machine learning techniques remains a chal-
lenge. To mitigate this issue, we propose a diffeo-
morphic function learning framework where prior
structural knowledge regarding the desired output
is encoded in a simple surrogate function, which
is subsequently augmented through an expressive,
topology-preserving state-space transformation.
We demonstrate our approach by learning Lya-
punov functions from real-world data and apply
the method to different attractor systems.

1. Introduction
With recent advances in robotics and machine learning, data-
driven autonomous systems are increasingly deployed in
safety-critical application scenarios such as autonomous
driving (Liu et al., 2024) or robotic rehabilitation (Ai et al.,
2023). While learning-based systems are particularly well-
suited for such complex and uncertain environments, a lim-
itation that inhibits their deployment is the lack of formal
safety and stability guarantees. A practical method to ascer-
tain the desired safety and stability properties of a dynamical
system is through the construction of certificate functions,
e.g., a Lyapunov function to show convergence to an equi-
librium point (Khalil, 2002). A major strength of these
approaches is the existence of converse theorems, i.e., if
the desired property holds, the certificate functions are guar-
anteed to exist (Teel et al., 2014; Liu, 2022) and they may
additionally be used for control synthesis (Sontag, 1989;
Tesfazgi et al., 2024).
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In general, certificate functions express the long-term
behavior of a system’s trajectory through invariant set
constraints. Thereby, the set of states to which the system
is bounded or converges to, is geometrically encoded in the
level sets of the certificate function. A candidate Lyapunov
function for instance, has to be positive definite with a
strictly decreasing time-derivative. While these conditions
can be resolved efficiently in simple settings, e.g., when the
dynamics are known analytically and the hypothesis space
is limited to sum-of-squares polynomials (Parrilo, 2000), no
constructive approach is known for general, nonlinear sys-
tems. Therefore, the need for expressive learning techniques
that construct certificate functions directly from data arises.

Recently, the deployment of neural networks (NNs) has been
proposed to learn Lyapunov functions from observations
(Richards et al., 2018; Ravanbakhsh & Sankaranarayanan,
2019; Chang et al., 2019; Manek & Kolter, 2019). How-
ever, even though NNs have the advantage of strong repre-
sentational capabilities, imposing the necessary constraints
efficiently is an open issue. Existing methods either induce
the Lyapunov conditions via soft-constraints (Chang et al.,
2019), only admitting empirical statements, or strictly by
extensively searching for counter-examples (Ravanbakhsh
& Sankaranarayanan, 2019), which is computationally de-
manding. A promising perspective has been to geometrically
constrain the output of the NN by using a suitable architec-
ture. However, while such constraints have been shown
to be beneficial in the context of partial differential equa-
tions (Raissi et al., 2019), when learning Lyapunov func-
tions the imposed output constraints are either not specific
enough, only guaranteeing positive definiteness (Richards
et al., 2018), or overly conservative (Manek & Kolter, 2019),
e.g., using input convex NNs (Amos et al., 2017).

In this work, we follow an alternative approach of encod-
ing structural knowledge and imposing desired geometric
properties on the inferred function by deploying invertible
models. In particular, instead of constraining the output of
a function approximator directly, we specify a simple base
function with desired geometric properties and subsequently
learn a topology-preserving, state-space transformations un-
der which the augmented base function adheres to the data,
thereby indirectly obtaining a Lyapunov function. While
the regularity preserving properties of smooth and bijective
maps, so called diffeomorphisms (Boumal, 2023), have been
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used in the context of imitation learning (Rana et al., 2020)
and control (Sun et al., 2023), their utilization for learning
certificate functions remains understudied. Beyond the certi-
fication of point attractors, we demonstrate the applicability
of the proposed approach for more general system classes
including multiple equilibria and limit cycles.

2. Preliminaries
Lyapunov stability theory. Consider an autonomous
system

ẋ = f(x), (1)

with continuous state x ∈ Rn and system dynamics
f : Rn → Rn. The problem of certifying stability is con-
cerned with analyzing the behavior of x(t) for t → ∞,
given some initial state x(t0) = x0. In order to formalize
this property, we introduce the following concept of stability.

Definition 2.1 ((Khalil, 2002)). A system (1) has an asymp-
totically stable equilibrium x∗ on the set X if

1. for all d > 0, there exist δ > 0, t0 ≥ 0 such that
∥x0−x∗∥<δ implies ∥x(t)−x∗∥<d, ∀t≥ t0.

2. limt→∞ ∥x(t)−x∗∥=0 for all x0 ∈ X .

If the conditions hold for all states, i.e., x0 ∈ Rn, the
equilibrium x∗ is globally asymptotically stable. Without
loss of generality, we assume x∗ = 0 from now on. A
practical method to ascertain the convergence property of a
system, without solving the underlying dynamics equations,
is by means of Lyapunov stability theory.

Theorem 2.2 (Lyapunov Stability Theorem, (Khalil, 2002)).
Let x∗ = 0 be an equilibrium point for (1) and X ⊂ Rn be
the domain of f : X 7→ Rn with x∗ ∈ X . Let V : X 7→ R
be a continuously differentiable function such that:

V (0) = 0 (2a)
V (x) > 0 ∀x ∈ X \ {0} (2b)

V̇ (x) = ∇⊺
xV (x)f(x) < 0 ∀x ∈ X \ {0} (2c)

Then, x∗ is locally asympt. stable in the sense of Def. 2.1.

Thus, finding a function V (·) that satisfies (2a)-(2c) is
sufficient to certify stability of f(·). Beyond asymptotic
stability, a dynamical system may also exhibit other types
of attractor landscapes, such as multiple equilibria, where
system trajectories converge to different states out of a set
X ∗ := {x ∈ Rn | f(x) = 0} depending on x0, or limit
cycles, which describe invariant sets X ◦ under the dynamics
f for some orbital period T . In order to extend the notion of
Lyapunov stability analysis to such systems, it is common
to introduce a Lyapunov-like function (Patrão, 2011;
Björnsson et al., 2015) that satisfies the conditions (2a)-(2c)
for the respective sets X ∗ or X ◦, instead of only {0}.

(a) Original states-
pace x

(b) Invertible map (c) Non-invertible
map

Figure 1. Transformations of a 2D space (a) by an invertible (b)
and a non-invertible mapping (c). Invertability requires that the
mapping for each point is unique, i.e., no crossings.

Diffeomorphism. A mapping ϕ : Rn 7→ Rn is bijective,
if it’s inverse ϕ−1 is guaranteed to exist. If the mapping
ϕ and its inverse ϕ−1 are further smooth, it is referred to
as a diffeomorphism (Boumal, 2023). We denote the set of
diffeomorphic maps with ϕ ∈ D. The requirement of ϕ be-
ing smooth allows the mapping between two differentiable
manifolds. Since a differentiable manifold is additionally
equipped with a differential structure (Lee, 2012), it gives
rise to the tangent space required to define gradients, which
are necessary for any gradient-based analysis framework,
such as Lyapunov stability analysis. Conveniently, diffeo-
morphic maps preserve the topology of objects, such as
functions or differential equations. Intuitively, two sets
U ⊂ Rn and W ⊂ Rn are topologically equivalent, if
a mapping between the two can be established, with the
map and its inverse being continuous (Lee, 2000). Figure 1
illustratively depicts the difference between a topology-
preserving and a non-topology-preserving transformation.

3. Diffeomorphic Lyapunov Functions
Directly searching for a Lyapunov function is difficult, since
constraints (2b) and (2c) need to hold for an uncountable,
infinite set of states. To overcome this, we propose to exploit
the topological-equivalence of Lyapunov functions (Grüne
et al., 1999) to reformulate the function approximation prob-
lem to an optimization over state-space transformations.

3.1. Lyapunov function hypothesis space

The primary challenge in synthesizing a Lyapunov function
is guaranteeing that the gradient ∇xV fulfills the descent
condition (2c). Typically, the dynamics f are not known
analytically. Thus, in our considered scenario we only have
access to trajectory samples {xi, ẋi}Ni=1. However, we may
still derive shape-constraints that any potential Lyapunov
function candidate has to adhere to locally, since

∇⊺
xV (x)f(x) < 0 =⇒∇xV (x) ̸= 0, ∀x ∈X \{0}. (3)
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Consequently, a positive definite function V with non-
vanishing gradient ∇xV (x) ̸= 0 is always a valid Lyapunov
function for some system. Therefore, a diffeomorphic trans-
formation that preserves these topological properties is guar-
anteed to generate an output that remains in the space of
Lyapunov functions, which we demonstrate in the following:
Proposition 3.1. Consider a smooth function V : Rn 7→ R
and let NV denote the number of unique gradient roots of V

NV = |SV |, with SV = {x|∇xV (x) = 0} (4)

where |S | denotes the cardinality of the set S . Next, let
ϕ : Rn 7→ Rn be an orientation-preserving diffeomorphism,
i.e., its Jacobian Jϕ ∈ Rn×n satisfies

det(Jϕ(x)) > 0 ∀x ∈ Rn. (5)

Then, the number of gradient roots remains unchanged by
the map ϕ and we have NV = NW , where W := V ◦ ϕ.

Proof. Due to (5), Jϕ is full rank ∀x ∈ Rn, and conse-
quently, the nullspace null(Jϕ(x)) only contains the triv-
ial solution (Strang, 2019). The same holds for the trans-
pose, since det(Jϕ(x)) = det(Jϕ(x)

⊤) > 0. Thus, the left
nullspace (Strang, 2019) also only contains the trivial solu-
tion. Applying the chain rule, the gradient of W yields

∇xW (x) =
∂

∂x
V (ϕ(x)) = Jϕ(x)

⊤∇xV (x). (6)

From (5) and (6), it trivially follows that |SV | = |SW |,
which concludes the proof.

Thus, it follows that candidate Lyapunov functions are
diffeomorphic to one another and consequently that any
Lyapunov functions can be transformed into a simple K∞
function under a change of coordinates, as proposed in
(Grüne et al., 1999). This can be seen intuitively in Figure 2.
For a single point attractor system, the time derivative of
a valid Lyapunov function V has to decrease along the
trajectories, thereby necessitating non-vanishing gradients
outside of the equilibrium (3). Therefore, each contour
line of any V is topologically equivalent to a sphere, hence,
admitting a diffeomorphic transformation to one another.

3.2. Reformulation as diffeomorphic learning problem

Based on the previous section, we search over the space of
Lyapunov functions by finding an appropriate diffeomorphic
transformation without the need to explicitly incorporate
shape constraints. The data-driven, diffeomorphic Lyapunov
learning problem is formalized as follows:
Definition 3.2. Given a dataset D = {xi, ẋi}Ni=1 generated
by an unknown stable system ẋ = f(x) with f(0) = 0 and
any initial Lyapunov-like function Vb with

Vb(x) > 0 ∧ ∇xVb(x) ̸= 0, ∀x ∈X \{0}, (7)

(a) V1 (b) V2 (c) V3

Figure 2. Contour plots for different Lyapunov function candidates
(V1, V2 and V3) for single attractor systems. Highlighted in red are
the contour lines for a specific value of V . Note that all three red
contour lines can be continuously deformed into each other.

find a diffeomorphism

ϕ∗ =argmin
ϕ∈D

l(Vϕ) (8a)

s.t. ∇⊺
xVϕ(xi)ẋi < 0 ∀i ∈ [1 . . . N ] (8b)

ϕ(0) = 0 (8c)

where Vϕ(x) = Vb ◦ ϕ(x) and l is a loss function of choice.

Intuitively, with (8) we reformulate the search for a Lya-
punov function, which is a functional optimization problem,
as a diffeomorphic optimization problem. First, a base func-
tion Vb is specified that adheres to the topological properties
of a Lyapunov candidate function (7). Then a diffeomor-
phism is found such that the function under the diffeomor-
phic transformation Vϕ satisfies the Lyapunov conditions
on the samples (8b). This is convenient, since the geomet-
ric properties of a Lyapunov function are well known, and
therefore, the surrogate function can be trivially specified,
e.g., to Vb(x) = x⊺x. The distinct advantage of encoding
geometric knowledge through a base function Vb becomes
even more apparent when considering more general system
classes with different attractor landscapes. Typical function
approximation approaches, do not readily extend to more
involved attractor landscapes, since the new Lyapunov-like
function requires different geometric constraints. On the
other hand, our proposed diffeomorphic learning framework
merely requires an appropriate base function Vb, that en-
codes the topology of the desired attractor landscapes.

4. Evaluation
To evaluate the diffeomorphic Lyapunov function, we apply
it to systems with different attractor landscapes. While many
diffeomorphism constructions rely on fixed dimension split-
ting to guarantee bijectivity and obtain an analytical inverse
(Dinh et al., 2016; Kingma & Dhariwal, 2018), the resulting
triangular Jacobian structure is less flexible, which can be
unfavorable in a constrained, data-driven setting. Therefore,
we deploy a diffeomorphism construction that admits a free-
form Jacobian (Chen et al., 2018; Behrmann et al., 2019)
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Figure 3. Diffeomorphically learned Lyapunov functions for 3 exemplary shapes from the LASA handwriting dataset. The demonstrated
trajectories are shown in black and the samples on which the conditions (8b) and (8c) are satisfied are shown in green

in the following evaluation. In particular, a custom kernel-
based approach inspired by a residual expansion structure
similar to (Perrin & Schlehuber-Caissier, 2016) is used.

Single Equilibrium System. For this evaluation we use
the LASA handwriting dataset (Khansari-Zadeh & Billard,
2011) which is a popular benchmark in the learning stable
dynamical system literature (Perrin & Schlehuber-Caissier,
2016; Rana et al., 2020; Zhang et al., 2023). Figure 3 shows
the result of applying the diffeomorphic learning approach to
3 exemplary shapes with an initial guess Vb(x) = 0.1x⊤x.
It can be seen that the proposed approach successfully learns
a diffeomorphism such that the transformed function Vϕ

constitutes a valid Lyapunov function for the trajectory data.

Two Attractor System. Additionally, we deploy the ap-
proach on a dynamical system with two stable equilibria and
one unstable equilibrium as depicted by the vector field in
Figure 4 (left). For the training data, the system is initialized
at 6 different positions and simulated to convergence. The
resulting Vϕ after applying the learned diffeomorphic trans-
formation is depicted in Figure 4 (bottom). It is apparent that
the identified diffeomorphic Lyapunov function is consistent
with all demonstrations included in the dataset and success-
fully identified the position of the two stable equilibria.

Limit Cycle System. Finally, we evaluate the proposed
approach by finding a Lyapunov-like function for a system
with a stable limit cycle. To this end, we consider the well-
known Van der Pol oscillator depicted in Figure 5 (left) with
the stable limit cycle highlighted in red. For training, we
sample 20 approximately equally spaced data points along
the limit cycle and simulate 4 trajectories starting in the
corners of the state space. The sampled data and the re-
sulting diffeomorphic function Vϕ are shown in Figure 5
(right). It can be seen that the zero gradient contour line of
Vϕ (marked in red) aligns well with the data sampled along
the limit cycle (blue dots). Additionally, the Lyapunov con-
straints are fulfilled along the trajectories sampled outside
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Figure 4. Diffeomorphically learned Lyapunov-like functions for a
system with multiple equilibria. (Left) Vector field of the dynami-
cal system in black and data samples in blue. (Bottom) Learned
diffeomorphic Lyapunov-like function.
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Figure 5. (Left) Vector field of the dynamical system with limit
cycle marked in red. (Right) Contour lines of the learned diffeo-
morphic Lyapunov-like function together with sampled data.

the limit cycle as indicated by the green data points.

5. Conclusion
In this work, we demonstrate the use of diffeomorphism
to learn Lyapunov functions from data. By selecting an
appropriate base function and optimizing over topology-
preserving maps, prior geometrical knowledge is encoded.
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We evaluate the approach on system with different attractor
landscapes including multiple equilibria and limit cycles.

References
Ai, Q., Liu, Z., Meng, W., Liu, Q., and Xie, S. Q. Machine

learning in robot-assisted upper limb rehabilitation: A
focused review. IEEE Transactions on Cognitive and
Developmental Systems, 15(4):2053–2063, 2023.

Amos, B., Xu, L., and Kolter, J. Z. Input convex neural
networks. In Proceedings of the 34th International Con-
ference on Machine Learning, pp. 146–155, 2017.

Behrmann, J., Grathwohl, W., Chen, R. T., Duvenaud, D.,
and Jacobsen, J.-H. Invertible residual networks. Proceed-
ings of the 36th International Conference on Machine
Learning, pp. 573–582, 2019.

Björnsson, J., Giesl, P., Hafstein, S. F., and Kellett, C. M.
Computation of lyapunov functions for systems with mul-
tiple local attractors. Discrete and Continuous Dynamical
Systems, 35, 2015.

Boumal, N. An introduction to optimization on smooth
manifolds. Cambridge University Press, 2023.

Chang, Y.-C., Roohi, N., and Gao, S. Neural lyapunov
control. In Advances in Neural Information Processing
Systems, 2019.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. Advances
in Neural Information Processing Systems, 31, 2018.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density es-
timation using real nvp. International Conference on
Learning Representations, 2016.
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