© N O oA W N =

w N = o ©

15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32

33
34

Multi-Modal Observational Data For Weather
Forecasting

Anonymous Author(s)
Affiliation
Address

email

Abstract

Existing Al weather forecasting systems have made strong progress in the last
few years, but focus on predicting re-analysis targets (e.g., ERAS). Al forecasting
systems share the same shortcomings of the re-analysis process including high com-
putation cost, known non-physical artifacts, and oversampling in particular regions
of the globe. In order to facilitate the development of end-to-end weather forecast-
ing methods which bypass the need for re-analysis at operation time, we propose
constructing a dataset of multi-modal weather observations containing weather
stations measurements, microwave and infrared sounder results, and geospatial
imagery. This dataset would help extend the results from other domains (e.g.,
computer vision, natural language) to weather forecasting by leveraging state-of-
the-art multi-modal techniques, advancing both ML and weather forecasting. New
methods enabled by this dataset will help reduce the train-serve discrepancy, and
improve the operational usefulness of Al-driven weather forecasting.

1 Motivation

Modern state-of-the-art machine learning weather forecasting systems have demonstrated remarkable
progress, outperforming traditional numerical weather prediction systems [, 2| [3] 4} |5]. However,
these systems are trained to predict and are evaluated on gridded reanalysis (e..g, ERAS [6], MERRA-
2 [[7]) using data-assimilation, a technique to combine historical observations with physics-based
numerical methods [8]]. This couples the machine learning model to the assumptions and error
characteristics of data-assimilation methods and induces a strong train-serve mismatch. In operational
settings, individual weather stations and forecasters observe instrument-level readings and localized
observations, not gridded re-analysis data. Traditional numerical weather prediction systems consoli-
date observations with data assimilation from multiple locations to produce a gridded state of weather
dynamics, similar to re-analysis. This paradigm poses three unique challenges which motivates an
end-to-end ML weather forecasting system which bypass traditional data assimilation.

Physical artifacts. Re-analysis and regridded weather data, specifically ERAS, is known to have
artifacts and non-physical states, particularly for local phenomena and in the upper stratosphere and
mesosphere [9,[10]. Near-surface variables and localized phenomena (e.g., precipitation, wind speeds)
exhibit errors which can be pronounced for end-users. Near coastlines, ERA5 under-reports variance
in temperature as a result of the land-surface model which blends the influence of the land and
ocean. ERAS’s topography is not representative of the true topography, and causing deviations from
observational precipitation data, especially in the tropics and high topographic variability [11}[12]].

Oversampling in resource rich locations. Because re-analysis generates a new global forecast
state using observed quantities to correct for errors, locations with fewer observation instruments
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have worse forecasts. Despite low overall forecast errors, existing ML weather forecast systems
produce high errors in under-sampled locations, reflecting the data sampling discrepancy [2].

Online localized evaluation. Currently, generating localized predictions requires aggregating
instruments across the globe, performing data assimilation, and disseminating forecasts. This
workflow is computationally intensive, requiring large-scale CPU clusters, and is contingent upon
a central authority (e.g., European Centre for Medium-Range Weather Forecasts or the National
Oceanic and Atmospheric Administration). Enabling low-latency high fidelity forecasts necessitates
developing novel ML weather forecasting systems which learn end-to-end from observational data.

2 Data Sources

Building an end-to-end ML weather forecasting system is blocked by the lack of a standardized
ML-ready dataset of observational weather readings. Sensor and observation data represent a
wealth of unstructured data, a regime deep learning models have often found success in [13} 14}
15/ [16]. The heterogeneity which provides a rich source of data also poses a bottleneck due to
differences in modalities with varying sampling geometries, cadence, units, quality control, and
metadata. Surface stations (Integrated Surface Database ISD) report hourly variables at fixed sites
with non-uniform coverage [17]. Radiosondes (Integrated Global Radiosonde Archive) profile and
measure the atmosphere periodically [18]]. Passive microwave and infrared sounders (Advanced
Microwave Sounding Unit) provide brightness measurements along orbital paths [19} 20]. Geospatial
imagery (GOES Advanced Baseline Imager) provide frequent multi-spectral imagery [21]. Individual
observations are publicly available through government agencies, but there is no spatio-temporal
standardization nor are they available in a format for high-throughput ML training workloads.

Existing ML-ready datasets. To date, there is one notable public dataset aiming to tackle this gap.
Aardvark [22] introduces a dataset including station observations, satellite imagery, and sounder data.
The released dataset is coarse in both time and space, down-sampling hourly observational readings
into 1 day increments. Similarly, Aardvark down-samples in space to a 1 degree grid while many
operational forecasts use a 0.25 degree grid [23]]. Aardvarks’ dataset, though limited in resolution,
shows both the feasibility and necessity of a multi-modal observational dataset.

Technical Challenges. To demonstrate the challenge of curating this dataset, we examine the
Integrated Global Radiosonde Archive (IGRA) provided by NOAA [18]]. Each station’s data is stored
in plain text, and each station reports sounding data at different pressure levels and a different number
of levels based on the available operational instruments. IGRA stations may also provide sounding
data at heights without a pressure level reference, making it difficult to associate observed values
across stations. The lack of a uniform format, even within a single modality, has been a barrier to the
development of end-to-end ML forecast systems.

Compute and storage requirements. By its nature, observational data is readily available through
government entities. However, the primary storage and compute costs will be processing the data,
transforming into an ML-ready format, and distribution. The ISD in an uncompressed format, is over
600 GB [17] and growing daily. GOES-ABI is around 1GB per hour (unformatted > 1 TB). We
anticipate that the primary cost will be the storage requirements of different modalities and aim for a
final dataset size of < 3 TB. However, consolidating this final dataset will require more disk space
during processing, quality control, and standardization.

3 Acceleration Potential

The proposed dataset of a multi-modal observation-first weather corpus would accelerate the devel-
opment of end-to-end machine learning forecasting models by removing the standardization and
processing required to convert observational data into an ML-ready format. This removes the need for
researchers to perform error-prone data ingestion and standardization work. Multiple evaluation splits
will also facilitate robust evaluations which reflect operational environments and probes the model’s
generalization capability. This dataset will help spur methods that work directly on observation
streams, particularly relevant for near-surface variables and local hazardous weather conditions,
improving operational Al forecasts.
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