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Abstract

Existing AI weather forecasting systems have made strong progress in the last1

few years, but focus on predicting re-analysis targets (e.g., ERA5). AI forecasting2

systems share the same shortcomings of the re-analysis process including high com-3

putation cost, known non-physical artifacts, and oversampling in particular regions4

of the globe. In order to facilitate the development of end-to-end weather forecast-5

ing methods which bypass the need for re-analysis at operation time, we propose6

constructing a dataset of multi-modal weather observations containing weather7

stations measurements, microwave and infrared sounder results, and geospatial8

imagery. This dataset would help extend the results from other domains (e.g.,9

computer vision, natural language) to weather forecasting by leveraging state-of-10

the-art multi-modal techniques, advancing both ML and weather forecasting. New11

methods enabled by this dataset will help reduce the train-serve discrepancy, and12

improve the operational usefulness of AI-driven weather forecasting.13

1 Motivation14

Modern state-of-the-art machine learning weather forecasting systems have demonstrated remarkable15

progress, outperforming traditional numerical weather prediction systems [1, 2, 3, 4, 5]. However,16

these systems are trained to predict and are evaluated on gridded reanalysis (e..g, ERA5 [6], MERRA-17

2 [7]) using data-assimilation, a technique to combine historical observations with physics-based18

numerical methods [8]. This couples the machine learning model to the assumptions and error19

characteristics of data-assimilation methods and induces a strong train-serve mismatch. In operational20

settings, individual weather stations and forecasters observe instrument-level readings and localized21

observations, not gridded re-analysis data. Traditional numerical weather prediction systems consoli-22

date observations with data assimilation from multiple locations to produce a gridded state of weather23

dynamics, similar to re-analysis. This paradigm poses three unique challenges which motivates an24

end-to-end ML weather forecasting system which bypass traditional data assimilation.25

Physical artifacts. Re-analysis and regridded weather data, specifically ERA5, is known to have26

artifacts and non-physical states, particularly for local phenomena and in the upper stratosphere and27

mesosphere [9, 10]. Near-surface variables and localized phenomena (e.g., precipitation, wind speeds)28

exhibit errors which can be pronounced for end-users. Near coastlines, ERA5 under-reports variance29

in temperature as a result of the land-surface model which blends the influence of the land and30

ocean. ERA5’s topography is not representative of the true topography, and causing deviations from31

observational precipitation data, especially in the tropics and high topographic variability [11, 12].32

Oversampling in resource rich locations. Because re-analysis generates a new global forecast33

state using observed quantities to correct for errors, locations with fewer observation instruments34
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have worse forecasts. Despite low overall forecast errors, existing ML weather forecast systems35

produce high errors in under-sampled locations, reflecting the data sampling discrepancy [2].36

Online localized evaluation. Currently, generating localized predictions requires aggregating37

instruments across the globe, performing data assimilation, and disseminating forecasts. This38

workflow is computationally intensive, requiring large-scale CPU clusters, and is contingent upon39

a central authority (e.g., European Centre for Medium-Range Weather Forecasts or the National40

Oceanic and Atmospheric Administration). Enabling low-latency high fidelity forecasts necessitates41

developing novel ML weather forecasting systems which learn end-to-end from observational data.42

2 Data Sources43

Building an end-to-end ML weather forecasting system is blocked by the lack of a standardized44

ML-ready dataset of observational weather readings. Sensor and observation data represent a45

wealth of unstructured data, a regime deep learning models have often found success in [13, 14,46

15, 16]. The heterogeneity which provides a rich source of data also poses a bottleneck due to47

differences in modalities with varying sampling geometries, cadence, units, quality control, and48

metadata. Surface stations (Integrated Surface Database ISD) report hourly variables at fixed sites49

with non-uniform coverage [17]. Radiosondes (Integrated Global Radiosonde Archive) profile and50

measure the atmosphere periodically [18]. Passive microwave and infrared sounders (Advanced51

Microwave Sounding Unit) provide brightness measurements along orbital paths [19, 20]. Geospatial52

imagery (GOES Advanced Baseline Imager) provide frequent multi-spectral imagery [21]. Individual53

observations are publicly available through government agencies, but there is no spatio-temporal54

standardization nor are they available in a format for high-throughput ML training workloads.55

Existing ML-ready datasets. To date, there is one notable public dataset aiming to tackle this gap.56

Aardvark [22] introduces a dataset including station observations, satellite imagery, and sounder data.57

The released dataset is coarse in both time and space, down-sampling hourly observational readings58

into 1 day increments. Similarly, Aardvark down-samples in space to a 1 degree grid while many59

operational forecasts use a 0.25 degree grid [23]. Aardvarks’ dataset, though limited in resolution,60

shows both the feasibility and necessity of a multi-modal observational dataset.61

Technical Challenges. To demonstrate the challenge of curating this dataset, we examine the62

Integrated Global Radiosonde Archive (IGRA) provided by NOAA [18]. Each station’s data is stored63

in plain text, and each station reports sounding data at different pressure levels and a different number64

of levels based on the available operational instruments. IGRA stations may also provide sounding65

data at heights without a pressure level reference, making it difficult to associate observed values66

across stations. The lack of a uniform format, even within a single modality, has been a barrier to the67

development of end-to-end ML forecast systems.68

Compute and storage requirements. By its nature, observational data is readily available through69

government entities. However, the primary storage and compute costs will be processing the data,70

transforming into an ML-ready format, and distribution. The ISD in an uncompressed format, is over71

600 GB [17] and growing daily. GOES-ABI is around 1GB per hour (unformatted > 1 TB). We72

anticipate that the primary cost will be the storage requirements of different modalities and aim for a73

final dataset size of < 3 TB. However, consolidating this final dataset will require more disk space74

during processing, quality control, and standardization.75

3 Acceleration Potential76

The proposed dataset of a multi-modal observation-first weather corpus would accelerate the devel-77

opment of end-to-end machine learning forecasting models by removing the standardization and78

processing required to convert observational data into an ML-ready format. This removes the need for79

researchers to perform error-prone data ingestion and standardization work. Multiple evaluation splits80

will also facilitate robust evaluations which reflect operational environments and probes the model’s81

generalization capability. This dataset will help spur methods that work directly on observation82

streams, particularly relevant for near-surface variables and local hazardous weather conditions,83

improving operational AI forecasts.84
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