
FreqExit: Enabling Early-Exit Inference for Visual
Autoregressive Models via Frequency-Aware Guidance

Ying Li1 Chengfei Lv2 Huan Wang1∗
1Westlake University 2Alibaba Group

Original Var

Exit @ Layer 12

Exit @ Layer 10

1.63×Speedup

2.00×Speedup

1.00×Speedup

1.0 1.2 1.4 1.6 1.8 2.0
Speedup

2

3

4

5

6

7

8

9

FI
D

VAR-d20

CALM

CoDe

LayerSkip

FreqExit

VAR-d20

CALM

CoDe

LayerSkip

FreqExit

Figure 1: We introduce FreqExit, a dynamic inference strategy for next-scale visual autoregressive
generation with a proposed frequency-aware guidance, bridging the gap between step-wise generation
and early-exit-based acceleration. It achieves up to 2× speedup with negligible quality degradation,
offering a superior trade-off between efficiency and fidelity compared to prior baselines.

Abstract

Visual AutoRegressive (VAR) modeling employs a next-scale decoding paradigm
that progresses from coarse structures to fine details. While enhancing fidelity and
scalability, this approach challenges two fundamental assumptions of conventional
dynamic inference: semantic stability (intermediate outputs approximating final
results) and monotonic locality (smooth representation evolution across layers),
which renders existing dynamic inference methods ineffective for VAR models. To
address this challenge, we propose FreqExit, an integrated loss design that enables
dynamic inference in VAR without altering its architecture or compromising output
quality. FreqExit is based on a key insight: high-frequency details are crucial for
perceptual quality and tend to emerge only in later decoding stages. Leveraging
this insight, we design targeted mechanisms that guide the model to learn more
effectively through frequency-aware supervision. The proposed framework consists
of three components: (1) a curriculum-based supervision strategy with progressive
layer dropout and early exit loss; (2) a wavelet-domain high-frequency consis-
tency loss that aligns spectral content across different generation steps; and (3)
a lightweight self-supervised frequency-gated module that guides adaptive learn-
ing of both structural and detailed spectral components. On ImageNet 256×256,
FreqExit achieves up to 2× speedup with only minor degradation, and delivers
1.3× acceleration without perceptible quality loss. This enables runtime-adaptive
acceleration within a consistent design tailored for next-scale VAR, offering a favor-
able trade-off between efficiency and fidelity for practical and flexible deployment.
Code is available at https://github.com/NeuraLiying/FreqExit.

∗Corresponding author. Email: wanghuan@westlake.edu.cn

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/NeuraLiying/FreqExit

1 Introduction

Autoregressive models [1, 2, 3, 4, 5, 6, 7] have achieved widespread success, but their substantial
computational and memory demands during inference [8, 9] pose major obstacles to deployment
in resource-limited environments such as mobile and edge devices [10, 11]. To address this chal-
lenge, dynamic inference has emerged as a promising strategy for accelerating large models during
deployment, enabling the model to adjust its computational path based on the input [12, 13, 14]. This
flexibility allows the model to retain full capacity for complex inputs while reducing computation for
simpler ones, supporting a flexible trade-off between performance and efficiency. With the develop-
ment of visual autoregressive models such as LLama-gen [15] and VAR [16], their capacity to handle
complex vision tasks has attracted increasing attention, motivating efforts to accelerate inference
in this domain [17, 18, 19]. In particular, VAR has gained popularity for its next-scale prediction
paradigm, which replaces token-by-token generation with hierarchical token map decoding. This
generation paradigm has gained increasing popularity for its ability to improve inference efficiency
and scalability, while maintaining high-quality image synthesis. However, the application of dynamic
inference to VAR presents unique challenges. The decoding paradigm based on token maps in VAR
breaks the granularity assumptions behind token-level control methods such as speculative decod-
ing [14, 20]. In addition, our analysis (Sec. 3.1) shows that transformer layer representations remain
highly dynamic and non-redundant, which invalidates the assumptions of layer stability required by
early-exit [21, 22] and layer compression [23, 24] approaches designed for token-wise models.

To address this challenge, we perform an in-depth analysis of the VAR generation dynamics and
identify distinct frequencies domain variations throughout the decoding steps. This progressive shift
from low-frequency structures in the early steps to high-frequency details in later steps leads to
step-dependent feature semantics. These step-dependent frequency shifts and coarse-to-fine token
map generation patterns lead to unstable intermediate representations and limited predictability, which
undermine the effectiveness of conventional dynamic inference strategies. Based on these insights,
we propose FreqExit, a cohesive training framework that integrates three synergistic mechanisms
to support efficient and adaptive inference in VAR: (1) a curriculum-based supervision strategy that
progressively activates intermediate layer training, (2) a frequency-aware consistency loss that guides
high-frequency reconstruction at later steps, and (3) a frequency-gated self-reconstruction loss that
adaptively regularizes spectral learning during training. Together, these components robustly enhance
intermediate representations and enable efficient early exits without compromising generation quality.
Experimental results demonstrate the efficiency of our method. As shown in Figure 1, our method
achieves up to 2× acceleration with minor quality degradation, and delivers 1.3× speedup with no
perceptible loss—offering flexible trade-offs between efficiency and overall generation fidelity. Our
main contributions are summarized as follows:

• We propose an integrated training framework for accelerating dynamic inference in visual
autoregressive models, specifically tailored to the next-scale generation paradigm of VAR.

• We introduce two training-time components: a step-wise high-frequency consistency loss
and a lightweight frequency-gated self-reconstruction (FGSR) module, which improve
representation quality and accelerate training without incurring any inference-time overhead.

• Extensive experiments demonstrate that our method achieves up to 2× inference speedup
with negligible quality degradation. To the best of our knowledge, this is the first work to
enable early-exit-based dynamic inference in next-scale generation models like VAR.

2 Related Work

2.1 Dynamic Inference Methods

Dynamic inference refers to the ability of a model to adjust its computational pathway based on input,
allowing selective execution of layers, channels, or tokens to improve inference efficiency [25, 26, 27].
Compared to static compression methods, dynamic approaches offer better adaptability across inputs
of varying complexity. Early works have explored the depth of dynamic layers, channel width, and
routing mechanisms [13, 28, 29, 30]. More recent research extends this idea to transformer-based
architectures in both language and vision domains, where dynamic inference is used to adaptively
control the depth of decoding or the granularity of token-level computation [22, 23, 31, 32, 33].

2

Early Exiting As a representative form of dynamic inference, early exiting enables a model
to terminate inference at intermediate layers based on signals such as confidence or consis-
tency [21, 31, 34, 35]. Sample-level approaches determine the required depth based on overall
input complexity, typically by attaching lightweight classifiers [36, 37] or monitoring output consis-
tency across layers [34, 38]. At the token level, early exiting has been applied to both encoder and
decoder architectures. CALM [21] uses confidence-based classifiers and handles KV cache incon-
sistencies via hidden state reuse. BERxiT [39], BE3R [40], and EE-LLM [41] extend token-level
exits using learned classifiers. SkipDecode [31] improves batch-level efficiency by enforcing unified
and monotonic exits. Raposo et al. [23] introduce trainable routers for dynamic depth control. Layer-
Skip [22] eliminates explicit confidence estimation by unifying early-exit training with speculative
decoding. Recent efforts also extend early exit to token-wise visual generation, including MuE [35],
AdaNAT [42], and DeeR-VLA [33].

2.2 Inference Acceleration for Visual Generation

Autoregressive image generation has evolved from early raster-scan models [43, 44] to transformer-
based frameworks that sequentially generate discrete image tokens via VQVAE [45] or VQGAN [46].
Recent models such as LlamaGen [15] and MAR [47] achieve strong results in high-resolution and
multimodal generation [48, 49]. VAR [16] introduces a next-scale paradigm that outputs entire token
maps per step. This hierarchical design enhances scalability and has since inspired a wide range of
follow-up works spanning different modalities and tasks [50, 51, 52, 53, 54, 55].

Despite the rapid progress in visual autoregressive modeling, research on inference acceleration
remains at an early stage. Several approaches have been proposed to reduce decoding latency and
computational cost. Token-parallel acceleration methods such as speculative decoding [19, 20] aim
to predict multiple tokens simultaneously or restructure the inference schedule for faster generation.
However, these methods are fundamentally incompatible with next-scale generation models like
VAR, as the latter produce entire token maps per step instead of single-token outputs, undermining
the assumptions of token-level parallelism. CoDe [56] proposes a collaborative decoding strategy
to accelerate VAR by assigning large and small models to different scales. Nonetheless, it relies on
separately fine-tuned models with fixed inference paths, and its dependence on a large backbone
limits applicability in resource-constrained settings where a single lightweight model is preferred. To
address these limitations, we introduce a dynamic inference framework tailored for the hierarchical
next-scale generation paradigm, enabling efficient acceleration through early exits.

3 Method

3.1 Comprehensive Analysis of VAR Generation Dynamics

1 2 3 4 5 6 7 8 9 10
Generation Steps

0

500

1000

1500

2000

2500

3000

En
er

gy

Low Frequency Energy
High Frequency Energy
High/Low Ratio

0.0

0.2

0.4

0.6

0.8

1.0

H
ig

h/
Lo

w
 F

re
qu

en
cy

 R
at

io

(a) Frequency Growth

VAR-d16 VAR-d20 VAR-d24 VAR-d300

20

40

60

80

FI
D

 S
co

re

3.55

32.3

2.95

33.5

2.33

35.1

1.97

38.1

Full-resolution FID
High-frequency Distortion
Reduction (FID)

(b) ∆FID Breakdown

2 4 6 8 10 12 14 16 18 20
Layer

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e

si
m

ila
rit

y
w

ith
 p

re
vi

ou
s l

ay
er

Typical early-exit threshold (0.9)

(c) Layer Similarity
Figure 2: Comprehensive visualization of VAR generation dynamics. (a) Frequency component evolution across
steps in VAR-d20. (b) FID degradation caused by high-frequency removal. (c) Cosine similarity between token
maps from consecutive layers.

To enable dynamic acceleration tailored for next-scale generation, we analyze the generative behavior
of VAR [16] through discrete wavelet transform (DWT)-based frequency decomposition, a technique
shown effective in prior generative model studies [57, 58], to reveal its step-wise spectral characteris-
tics. Specifically, we decompose token maps at each generation step into low- and high-frequency
components, and study their evolution across steps and layers. We further compare model variants
(d16, d20, d24, d30) to assess how high-frequency removal affects generation quality. In parallel, we

3

conduct layer analysis by recording the output token map at each transformer block and computing
its cosine similarity with the previous layer, quantifying how representations shift throughout the
network. Fig. 2 illustrates three key findings that characterize the generative behavior of VAR.

Observation 1. Frequency progression across steps As shown in Fig. 2a, the first six steps
predominantly reconstruct low-frequency structures, while steps 7–10 introduce a sharp increase in
high-frequency content. This step-wise divergence reveals a two-stage generation process, where the
first steps establish the global structure and later steps refine fine-grained details, making it difficult
for the model to maintain consistent representations across stages.

Observation 2. High-frequency accuracy drives quality All models experience substantial
performance degradation when high-frequency details are removed, with the impact increasing with
model size—highlighting that deeper models primarily improve visual quality by modeling fine
details more precisely. This highlights the importance of high-frequency modeling for improving
early-layer exit capability, as generative quality relies heavily on accurate reconstruction of fine
textures rather than low-frequency structure alone.

Observation 3. No redundant layers We assess layer-wise changes using truncated inference and
cosine similarity between successive token maps (Fig. 2c). Similarity values remain consistently low
(ranging between 0.2–0.6), even at the final layers (e.g., between layer 19 and 20), suggesting that
each transformer block continues to modify the representation meaningfully. This contradicts the
layer stabilization assumption commonly adopted in early-exit strategies such as CALM [21], leaving
no obvious “safe” point for early termination.

3.2 Our Method

Motivation. Our analysis (Sec. 3.1) reveals that VAR follows a hierarchical next-scale decoding
paradigm, where generation gradually shifts from low-frequency structures to high-frequency details.
This results in step-wise frequency transitions and unstable inter-layer representations that hinder
reliable early-exit decisions. In contrast to conventional autoregressive models, intermediate outputs
in VAR are highly dynamic and lack semantic stability, as tokens are repeatedly refined across steps
rather than converging to fixed representations. Accurately modeling high-frequency components
therefore becomes essential for maintaining output quality during early termination.

To address these challenges, we propose an integrated training framework that restructures in-
termediate representations to support early exit without degrading output quality. It integrates:
(1) curriculum-based supervision to enhance shallow layers, (2) a frequency-aware consistency loss
to align multi-step predictions, and (3)a frequency-gated self-reconstruction (FGSR) module for
modeling cross-band dependencies. An overview of the proposed framework is illustrated in Fig. 3.

3.2.1 Curriculum-Based Early-Exit Supervision

We adopt a curriculum learning-based early-exit training framework that jointly supervises inter-
mediate layers to support efficient dynamic inference, shown in Fig. 3(a). It combines depth-aware
layer dropout with cross-entropy loss at each supervised layer, and further introduces a lightweight,
layer-adaptive distillation mechanism that adjusts supervision strength by depth.

Layer Dropout. To encourage shallow layers to learn stronger representations, we apply layer
dropout during training by randomly skipping layers with depth-dependent probabilities. Specifically,
deeper layers are dropped more frequently to promote early-layer expressiveness. The hidden state
update for layer ℓ at iteration t is:

xℓ+1,t = xℓ,t +M
(
pℓ,t

)
fℓ(xℓ,t), (1)

where M(p) is a Bernoulli mask, and the dropout probability pℓ,t increases with depth.

Early-Exit Loss. We apply an early-exit loss to intermediate layers, enabling dynamic inference
without modifying the architecture. Specifically, each transformer block is connected to a shared LM

4

VAR Layer 1

VAR Layer 𝑛

LM Head

…
…

Intermediate Layer Outputs

Ground Truth Teacher Logits

CE Loss

KD Loss

Early-Exit Loss

VAR Layer 𝑙

Layer Dropout

…

(a) Early-Exit Supervision

…

(b) Progressive High-Frequency Consistency Loss

VAR Model

Reshape

DWT

LL

LH

HL

HH

Frequency Gate

iDWT

FGSR Loss

Origin

Reconstructed

Diagonal

Projection

1×1 Conv

1×1 Conv

Wavelet Sub-Bands

Reconstruction

(c) Auxiliary Frequency-Gated Self-Reconstruction Loss

Low-Frequency stage Mixed generation stage

DWT

VAR Model

…

HF Loss

Figure 3: Overview of our proposed FreqExit framework. (a) Curriculum-Based Early-Exit
Supervision: integrates depth-aware layer dropout and adaptive early-exit loss with layer-specific
knowledge distillation, encouraging shallow layers to learn expressive features under a dynamic
supervision curriculum. (b) High-Frequency Consistency Loss: enforces step-wise spectral align-
ment between student and teacher predictions in the wavelet domain, stabilizing high-frequency
learning across generation steps without disrupting early training behavior. (c) Frequency-Gated
Self-Reconstruction Loss: provides an auxiliary loss branch with learnable sub-band gates that
modulate wavelet components and guide the model toward frequency-aware spectral reconstruction,
improving convergence and generation quality without affecting inference runtime.

head g and supervised by a cross-entropy loss:

LEE =

L−1∑
ℓ=0

ẽ(t, ℓ)JCE

(
g(xℓ+1,t), Y

)
, ẽ(t, ℓ) =

C(t, ℓ) e(ℓ)∑L−1
i=0 C(t, i) e(i)

. (2)

Here C(t, ℓ) is a binary curriculum gate that activates exits gradually, while e(ℓ) increases quadrati-
cally with depth to place more weight on later layers.

To improve learning at shallow exits, we introduce a layer-adaptive knowledge distillation loss that
provides softened teacher guidance with temperature annealing:

LKD =
1∑

ℓ∈S wℓ

∑
ℓ∈S

wℓ T
2
ℓ KL

(
qt/Tℓ

∥∥ q ℓ
s /Tℓ

)
, Tℓ = Tmax − (Tmax − Tmin)

ℓ

L
, (3)

where qt and q ℓ
s s denote the teacher (full VAR-d20) and layer-wise student logits, respectively, and

the temperature Tℓ decreases from 4.0 (shallow layers) to 1.0 (deep layers), providing softer targets to
stabilize shallow-layer training, where semantic information is limited. The early-exit loss combines
LEE and LKD, guiding intermediate exits under the curriculum schedule.

Curriculum Scheduling. To ensure stable training and effective supervision, we adopt a rotational
curriculum C(t, ℓ) that activates early-exit loss on a subset of layers at each iteration. Specifically, a
fixed number of layers are selected in a round-robin manner, allowing all layers to be periodically
updated while avoiding conflicting gradient signals between shallow and deep layers. This strategy

5

mitigates the dominance of gradients in deeper layers and promotes more balanced learning across
depths. Details of the curriculum schedule for C(t, ℓ) and S(t) are provided in Appendix A in the
supplementary material.

3.2.2 High-Frequency Consistency Loss

As shown in Fig. 3(b), we introduce a high-frequency consistency loss to guide intermediate rep-
resentations during training. While high-frequency components are essential in the later stages of
next-scale decoding (Sec.3.1), they are often underrepresented in earlier layers due to resolution
mismatch and immature semantics. Direct supervision at these stages may destabilize training. To
mitigate this, we propose a progressive loss that softly aligns student and teacher predictions in the
wavelet domain through step-wise and epoch-wise scheduling.

For each layer ℓ and generation step n with pn × pn patches, we reshape the token map into a spatial
grid and apply a 2D Haar DWT:{

Hn(ℓ), Ln(ℓ)
}
= DWT

(
reshape(xℓ,n)

)
, (4)

and extract the high-frequency bands Hs
n(ℓ) and Ht

n from student and teacher. To balance gradient
contributions across resolutions, we apply step-aware weights wn:

wn =

(
pn
pmax

)γ

, (5)

where γ is a tunable scaling factor. The total high-frequency consistency loss is defined as:

LHF =
1∑

n∈P wn

∑
ℓ∈S

∑
n∈P

wn

∥∥Hs
n(ℓ)−Ht

n

∥∥2
2
. (6)

To prevent premature constraints on insufficiently trained layers,LHF is initially disabled and gradually
activated as training progresses. A dynamic scaling mechanism adjusts its contribution based on the
moving average ratio between LHF and other losses, ensuring stability throughout.

3.2.3 Frequency-Gated Self-Reconstruction Loss

A lightweight Frequency-Gated Self-Reconstruction (FGSR) module is proposed to introduce a
residual training path with learnable gates over wavelet sub-bands, as shown in Fig. 3(c). Unlike
traditional auxiliary branches, FGSR provides interpretable frequency-aware supervision while
leaving the main architecture unchanged. Frequency-aware optimization during next-scale generation
is achieved by incorporating a learnable gating mechanism over wavelet sub-bands. Let rt denote the
token map at generation step t, and raux,t the auxiliary output reconstructed from gated frequency
components. The training objective is:

Ltotal = LCE(rt) + λ · ∥raux,t − rt∥22, (7)

where LCE is the main task loss and λ controls the strength of reconstruction guidance. Each sub-band
b ∈ {LL,LH,HL,HH} is modulated by a learnable gate γb as b′ = b · eγb . The gradient of Ltotal
w.r.t. γb comprises components from both the main loss and reconstruction loss. Under the assumption
rt = iDWT(· · · , b · eγb , · · ·), the regularizing term becomes:

∂∥raux,t − rt∥22
∂γb

= 2(γb − 1) · ∥b∥22, (8)

which pulls γb toward 1 unless overridden by task gradients. At convergence, the closed-form update
that balances task alignment and reconstruction stability is:

γb = 1 +
1

λ
·

〈
∂LCE
∂rt

, b
〉

∥b∥22
. (9)

Gates γb are enhanced when their frequency band b aligns with task gradients, guiding the model
from low-frequency structure to high-frequency detail over time. This behavior is realized through
the following frequency-gated reconstruction process.

6

FGSR operates on intermediate feature maps r ∈ RB×C×H×W , where C denotes the number of
channels. Each feature map is reshaped into a 2D spatial layout and decomposed via discrete wavelet
transform (DWT) into four frequency sub-bands. A learnable exponential gate γb is applied to each
sub-band, yielding the modulated band b′ = b · eγb . The gated sub-bands are concatenated and
projected through a shared linear transformation Wfgp ∈ RC×4C , then reconstructed via its transpose
and inverse DWT:

r̂ = iDWT
(
W⊤

fgpWfgp[LL
′, LH ′, HL′, HH ′]

)
. (10)

The frequency-gated reconstruction loss is defined over generation steps A and supervised layers S:

LFGSR =
1

|S|
∑
ℓ∈S

1

|A|
∑
i∈A

∥∥fFGSR(r
ℓ
i)− rℓi

∥∥2
2
+ λ · Lalign, (11)

where fFGSR denotes the reconstruction function, and λ balances the auxiliary loss. A projection
alignment regularizer is introduced to promote numerical stability and reversibility, where Sym(A) =
1
2 (A+A⊤) is the symmetrization operator, and Winv approximates W⊤

fgp:

Lalign =
∥∥Sym(W⊤

fgpWfgp − I)
∥∥2
F
+
∥∥Winv −W⊤

fgp

∥∥2
F
, (12)

FGSR serves as a lightweight, inference-free auxiliary branch designed to address the mismatch in
generation patterns across different stages. Early steps tend to produce low-frequency structures,
while later steps emphasize both low- and high-frequency details. This shift poses challenges for
joint training across different stages. FGSR resolves this by introducing frequency-gated supervision
that softly guides optimization without interfering with the main gradient flow. Specifically, when
the reconstruction loss remains small, the model maintains emphasis on low-frequency components.
As high-frequency details become important, the loss increases, prompting the gates to adaptively
adjust their influence—thereby signaling the model to refine its spectral representation. Through this
loss-driven feedback loop, FGSR enables stage-aware, spectrum-adaptive training that improves
convergence without modifying architecture. The specific implementation details and pseudocode of
FGSR can be found in Appendix A of the supplementary material.

Overall Training Objective. Following the integration of all supervision components, the final
training objective of FreqExit is formulated as:

Ltotal = λ1LEE + λ2LKD + λ3LHF + λ4LFGSR, (13)

where LEE and LKD jointly constitute the early-exit supervision loss, providing primary learning
signals for intermediate layers, while LHF and LFGSR form the frequency adaptation loss that enhances
spectral consistency and improves high-frequency reconstruction quality. The weighting coefficients
λi control the relative contribution of each component and are provided in Appendix C.

4 Experimental Results

4.1 Experimental Setup

Baseline Methods. We evaluate our method in comparison with several representative baselines.
CALM [21] is a training-free method that exits based on the softmax gap between top-1 and top-2
logits. As the default threshold of 0.9 rarely triggers exits under layer-wise dynamics of VAR, it
is lowered to 0.6 to enable meaningful comparison. LayerSkip [22] enables flexible truncation
via shared early-exit loss and layer dropout. Its layer-wise mechanism is adapted to VAR, without
speculative decoding, which is incompatible with scale-wise generation. CoDe [56] adopts a two-
model collaboration between a drafter and a refiner. In our setup, VAR-d20 and VAR-d16 are used
as the drafter and refiner, enabling step-wise refinement during inference. However, CoDe relies on
two independently trained models with fixed inference paths, whereas FreqExit enables adaptive
acceleration within a single model without architecture modification.

Implementation Details. All models are trained on ImageNet-1K [59]. CALM requires no training.
LayerSkip and CoDe are trained for 80 epochs using AdamW with a batch size of 1024. Our method
uses the same training setup as LayerSkip, with a learning rate of 1e-5 and no weight decay for 80
epochs. For CoDe, we evaluate both training-free and fine-tuned variants. In the fine-tuned setting,
the drafter (VAR-d20) is trained for 15 epochs (learning rate 1e-6, weight decay 0.08), and the refiner

7

Table 1: Comparison of inference efficiency and generation quality across methods. Param: active
parameters; Layers: average number of transformer layers used; Speedup: latency-based acceleration
relative to VAR-d20; Latency (s): per-image inference time; Thrpt (it/s): throughput, i.e., images
processed per second; GFLOPs: total floating-point operations; FID, IS: standard metrics for
generation quality; Prec.: Precision; Rec.: Recall.

Method Param Layers Speedup ↑ Latency ↓ Thrpt ↑ GFLOPs ↓ FID ↓ IS ↑ Prec. ↑ Rec. ↑

VAR-d20 600M 20 1.00× 0.265 3.80 1879 2.78 252 0.84 0.55

CALM 546M 18.2 1.05× 0.252 3.07 1779 8.20 249 0.68 0.60
CoDe (w/o training) 900M 18 1.18× 0.224 4.66 1440 9.35 251 0.79 0.52
CoDe (w/ training) 900M 18 – – – – 5.86 252 0.80 0.54

LayerSkip(a)

LayerSkip(b)

LayerSkip(c)

480M
420M
360M

16
14
12

1.27×
1.30×
1.63×

0.209
0.204
0.162

4.36
4.92
6.21

1664
1466
1448

3.25
3.99
4.78

253
251
250

0.80
0.78
0.76

0.58
0.57
0.60

FreqExit(a) (Ours)
FreqExit(b) (Ours)
FreqExit(c) (Ours)
FreqExit(d) (Ours)

480M
420M
360M
300M

16
14
12
10

1.27×
1.30×
1.63×
2.00×

0.209
0.204
0.162
0.130

4.36
4.92
6.21
7.72

1664
1466
1448
1341

2.72
2.90
3.16
3.58

252
250
251
251

0.81
0.78
0.71
0.73

0.55
0.57
0.57
0.56

Note. VAR generates images in 10 autoregressive steps. We evaluate four early exit configurations reflecting
different computation-accuracy trade-offs: (a): [16, ..., 16], (b): [16, 16, 16, 16, 16, 12, 12, 12, 12, 12],
(c): [12, ..., 12], (d): [10, ..., 10], where each vector indicates the number of transformer layers used at
each generation step.

(VAR-d16) is distilled for 65 epochs (learning rate 1e-5, no weight decay), following the original
CoDe setup. In practice, FreqExit does not require retraining VAR from scratch. We initialize from
the official VAR-d20 checkpoint (trained for 250 epochs on ImageNet-1K) and fine-tune for an
additional 80 epochs (∼30% cost) to enable early-exit capability. Detailed training configurations are
detailed in Appendix C of the supplementary material.

Evaluation Metrics. For each baseline method, we generate 50,000 images (50 per class) across
1,000 ImageNet-1K classes, using the same inference settings on a single RTX 4090 GPU. Efficiency
is evaluated by latency, FLOPs (measured using the Torch.profiler), throughput, memory usage,
active parameters, and transformer layers (Param and layers). Speedup is computed relative to
VAR-d20. Generation quality is assessed using four standard metrics: FID, IS, Precision, and Recall.

4.2 Main Results

On the ImageNet 256×256 benchmark, our FreqExit framework achieves up to 2.0× acceleration
with only minor quality degradation (FID increases from 2.78 to 3.58), and provides 1.3× speedup
with no perceptible loss in generation quality (FID = 2.72). These results are achieved under different
early-exit configurations, demonstrating the flexibility of the method to support run-time-adaptive
inference with a single model, allowing dynamic selection of exit strategies without retraining or
architectural changes. Compared to baseline methods including CALM, LayerSkip, and CoDe (see
Table 1), FreqExit consistently delivers better efficiency–quality trade-offs. It achieves lower latency,
fewer FLOPs, and higher throughput under comparable or improved fidelity. For example, at the most
aggressive setting, FreqExit reaches a throughput of 7.72 it/s, outperforming all baselines. When
compared to LayerSkip, our method shows clear advantages, especially at shallower configurations.
As the number of active layers decreases, FreqExit maintains better generation quality with lower
FID scores—highlighting its ability to preserve fidelity even under tight computational budgets.

Overall, these results confirm that FreqExit enables efficient, flexible, and high-quality autoregressive
generation. It effectively bridges the gap between next-scale decoding and practical dynamic inference,
offering a scalable solution for deployment under varying resource budgets.

4.3 Dynamic Inference Capability

To evaluate the dynamic inference capability of our method, we construct a series of early-exit
strategies with different layer configurations across the 10 autoregressive generation steps. Each

8

Table 2: Early exit strategies used in dynamic inference. Each vector indicates the number of
transformer layers used at each of the 10 generation steps.

Strategy Exit Layers at Steps Avg. Params Avg. Layers Max Batch Size FID ↓

Full [20, ..., 20] 600M 20.0 80 2.71
① [20,20,20,20,20,16,16,16,16,16] 540M 18.0 96 2.72
② [16, ..., 16] 480M 16.0 96 2.72
③ [16,16,16,16,16,12,12,12,12,12] 420M 12.0 120 2.90
④ [16, ..., 12] 360M 12.0 120 3.08
⑤ [16,12,12,12,12,10,10,10,10,10] 330M 12.0 128 3.27
⑥ [16,12,10, ..., 10] 300M 10.0 130 3.37

strategy generates 50,000 images on a single NVIDIA RTX 4090 GPU, and the results are summarized
in Table 2. Progressively reducing the average number of layers leads to substantial efficiency gains.
Compared to the full inference baseline, the most lightweight configuration uses only the first 10
layers per step, reducing active parameters by 50% and increasing the maximum batch size by 1.63×
(from 80 to 132). This comes with only a modest drop in quality, as FID increases by just 0.94.

We analyze these results from two perspectives: First, dynamic configurations significantly reduce
computation while preserving image quality. Strategies averaging 16 or more layers achieve FID
scores comparable to the full model, demonstrating that early exits can reduce cost without sacrificing
fidelity. The reduced memory usage also allows for larger batch sizes and improved throughput.
Second, this dynamic behavior aligns well with the autoregressive nature of VAR, where token counts
increase across steps. Early steps, with fewer tokens and lower-resolution representations, primarily
capture low-frequency structures and can benefit from deeper layers. In contrast, later steps are
more expensive due to larger token maps and can use shallower exits to control cost. This per-step
flexibility enables fine-grained, step-aware adjustment of inference depth, allowing the model to
adaptively balance quality and efficiency throughout the generation process.

4.4 Ablation Study

To evaluate the effectiveness of our proposed training enhancements, we conduct an ablation study
comparing models trained with and without the HF loss and FGSR modules. In this study, we track
the FID scores obtained under early exit at Layer 8 and Layer 12 across training epochs. The results,
presented in Table 3, show that models equipped with these modules consistently achieve lower FID
and converge more rapidly than their counterparts. The improvement is particularly pronounced when
exiting at shallower layers (e.g., Layer 8), where the FID decreases more sharply and stabilizes at an
earlier stage of training. These findings suggest that our method not only improves final performance,
but also accelerates representation learning, especially in the early layers. This can be attributed
to two key factors: (1) the HF loss provides explicit supervision in the frequency domain, helping
the model adapt to different frequency characteristics across generation steps; and (2) the FGSR
module delivers frequency-aware reconstruction signals that guide optimization toward step-specific
generation behaviors. Together, these components mitigate the mismatch between model capacity
and evolving generation patterns, enabling more efficient learning in shallow layers.

5 Conclusion

We present FreqExit, an integrated training framework that enables dynamic inference in next-scale
visual autoregressive models. By thoroughly analyzing the spectral and representational behavior of
VAR, we identified key obstacles to efficient early exit, such as frequency progression across steps
and unstable intermediate representations. FreqExit addresses these challenges through three targeted
modules: a curriculum-based early-exit supervision strategy, a progressive wavelet-based high-
frequency consistency loss, and a lightweight frequency-gated self-reconstruction module. Extensive
experiments on ImageNet 256×256 demonstrate that FreqExit achieves up to 1.3× speedup with no
perceptible quality degradation, and up to 2× acceleration with only minor or negligible losses.
This flexible trade-off highlights the adaptive nature of FreqExit, which can dynamically adjust

9

Table 3: Ablation study on training efficiency. FID values at intermediate layers (Layer 8 and Layer
12) across training epochs, comparing models with and without HF loss and FGSR. The proposed
modules lead to faster convergence and significantly lower FID, especially at shallower layers.

Epoch FID ↓ with exit at Layer 8 FID ↓ with exit at Layer 12
w/o HF+FGSR w/ HF+FGSR w/o HF+FGSR w/ HF+FGSR

40 22.73 13.20 6.87 4.59
48 20.53 12.54 5.52 4.86
56 19.40 11.74 5.31 4.36
64 18.52 10.90 5.21 3.92
72 18.78 10.51 5.25 3.48
80 17.38 10.02 4.78 3.26

computational depth to meet diverse efficiency requirements. Overall, FreqExit provides a practical
and generalizable solution for efficient early-exit acceleration in next-scale generation models.

Acknowledgements

This paper is supported by the Young Scientists Fund of the National Natural Science Founda-
tion of China (No. 62506305), Zhejiang Leading Innovative and Entrepreneur Team Introduction
Program (No. 2024R01007), Key Research and Development Program of Zhejiang Province (No.
2025C01026), and Scientific Research Project of Westlake University (No. WU2025WF003).

References
[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,

J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4 technical report,” arXiv preprint
arXiv:2303.08774, 2023.

[2] W. X. Grattafiori, A. Défossez, J. Copet, F. Azhar, H. Touvron, L. Martin, N. Usunier,
T. Scialom, and G. Synnaeve, “Code llama: Open foundation models for code,” arXiv preprint
arXiv:2308.12950, 2023.

[3] J. Y. Koh, D. Fried, and R. Salakhutdinov, “Generating images with multimodal language
models,” in NeurIPS, 2023.

[4] W. Wang, Z. Chen, X. Chen, J. Wu, X. Zhu, G. Zeng, P. Luo, T. Lu, J. Zhou, Y. Qiao et al.,
“Visionllm: Large language model is also an open-ended decoder for vision-centric tasks,” in
NeurIPS, 2023.

[5] D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi et al.,
“Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,” arXiv
preprint arXiv:2501.12948, 2025.

[6] X. Tu, Z. He, Y. Huang, Z.-H. Zhang, M. Yang, and J. Zhao, “An overview of large ai models
and their applications,” Visual Intelligence, vol. 2, no. 34, 2024.

[7] Y. Jiang, X. Yan, G.-P. Ji, K. Fu, M. Sun, H. Xiong, D.-P. Fan, and F. S. Khan, “Effectiveness
assessment of recent large vision-language models,” Visual Intelligence, vol. 2, no. 17, 2024.

[8] Y. Sheng, L. Zheng, B. Yuan, Z. Li, M. Ryabinin, B. Chen, P. Liang, C. Ré, I. Stoica, and
C. Zhang, “Flexgen: High-throughput generative inference of large language models with a
single gpu,” in ICML, 2023.

[9] Z. Zhang, Y. Sheng, T. Zhou, T. Chen, L. Zheng, R. Cai, Z. Song, Y. Tian, C. Ré, C. Barrett
et al., “H2o: Heavy-hitter oracle for efficient generative inference of large language models,” in
NeurIPS, 2023.

10

[10] Z. Liu, C. Zhao, F. Iandola, C. Lai, Y. Tian, I. Fedorov, Y. Xiong, E. Chang, Y. Shi, R. Krish-
namoorthi et al., “Mobilellm: Optimizing sub-billion parameter language models for on-device
use cases,” in ICML, 2024.

[11] Z. Gao, Z. Chen, E. Cui, Y. Ren, W. Wang, J. Zhu, H. Tian, S. Ye, J. He, X. Zhu, L. Lu, T. Lu,
Y. Qiao, J. Dai, and W. Wang, “Mini-internvl: a flexible-transfer pocket multi-modal model
with 5% parameters and 90% performance,” Visual Intelligence, vol. 2, no. 32, 2025.

[12] Z. Wu, T. Nagarajan, A. Kumar, S. Rennie, L. S. Davis, K. Grauman, and R. Feris, “Blockdrop:
Dynamic inference paths in residual networks,” in CVPR, 2018.

[13] Y. Han, Y. Pu, Z. Lai, C. Wang, S. Song, J. Cao, W. Huang, C. Deng, and G. Huang, “Learning
to weight samples for dynamic early-exiting networks,” in ECCV, 2022.

[14] Y. Leviathan, M. Kalman, and Y. Matias, “Fast inference from transformers via speculative
decoding,” in ICML. PMLR, 2023.

[15] P. Sun, Y. Jiang, S. Chen, S. Zhang, B. Peng, P. Luo, and Z. Yuan, “Autoregressive model beats
diffusion: Llama for scalable image generation,” arXiv preprint arXiv:2406.06525, 2024.

[16] V. autoregressive modeling: Scalable image generation via next-scale prediction, “Tian, keyu
and jiang, yi and yuan, zehuan and peng, bingyue and wang, liwei,” in NeurIPS, 2024.

[17] Y. Li, F. Wei, C. Zhang, and H. Zhang, “EAGLE: Speculative sampling requires rethinking
feature uncertainty,” in ICML, 2024.

[18] H. Deng, T. Pan, H. Diao, Z. Luo, Y. Cui, H. Lu, S. Shan, Y. Qi, and X. Wang, “Autoregressive
video generation without vector quantization,” in ICLR, 2024.

[19] Y. Teng, H. Shi, X. Liu, X. Ning, G. Dai, Y. Wang, Z. Li, and X. Liu, “Accelerating auto-
regressive text-to-image generation with training-free speculative jacobi decoding,” in ICLR,
2024.

[20] D. Jang, S. Park, J. Y. Yang, Y. Jung, J. Yun, S. Kundu, S.-Y. Kim, and E. Yang, “Lantern:
Accelerating visual autoregressive models with relaxed speculative decoding,” arXiv preprint
arXiv:2410.03355, 2024.

[21] T. Schuster, A. Fisch, J. Gupta, M. Dehghani, D. Bahri, V. Q. Tran, Y. Tay, and D. Metzler,
“Confident adaptive language modeling,” in NeurIPS, 2022.

[22] M. Elhoushi, A. Shrivastava, D. Liskovich, B. Hosmer, B. Wasti, L. Lai, A. Mahmoud, B. Acun,
S. Agarwal, A. Roman et al., “Layerskip: Enabling early exit inference and self-speculative
decoding,” in ACL, 2024.

[23] D. Raposo, S. Ritter, B. Richards, T. Lillicrap, P. C. Humphreys, and A. Santoro, “Mixture-of-
depths: Dynamically allocating compute in transformer-based language models,” arXiv preprint
arXiv:2404.02258, 2024.

[24] A. Liu, J. Liu, Z. Pan, Y. He, R. Haffari, and B. Zhuang, “Minicache: Kv cache compression in
depth dimension for large language models,” in NeurIPS, 2024.

[25] C. Li, G. Wang, B. Wang, X. Liang, Z. Li, and X. Chang, “Dynamic slimmable network,” in
CVPR, 2021, pp. 8607–8617.

[26] Z. Zheng, L. Yang, Y. Wang, M. Zhang, L. He, G. Huang, and F. Li, “Dynamic spatial focus for
efficient compressed video action recognition,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 34, no. 2, pp. 695–708, 2023.

[27] Y. Pu, Y. Wang, Z. Xia, Y. Han, Y. Wang, W. Gan, Z. Wang, S. Song, and G. Huang, “Adaptive
rotated convolution for rotated object detection,” in CVPR, 2023.

[28] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet: Fast inference via early exiting
from deep neural networks,” in ICLR, 2016.

11

[29] T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama, “Adaptive neural networks for efficient
inference,” in ICML, 2017.

[30] L. Yang, Y. Han, X. Chen, S. Song, J. Dai, and G. Huang, “Resolution adaptive networks for
efficient inference,” in CVPR, 2020.

[31] L. Del Corro, A. Del Giorno, S. Agarwal, B. Yu, A. Awadallah, and S. Mukherjee, “Skipdecode:
Autoregressive skip decoding with batching and caching for efficient llm inference,” arXiv
preprint arXiv:2307.02628, 2023.

[32] X. Hu, Z. Huang, A. Huang, J. Xu, and S. Zhou, “A dynamic multi-scale voxel flow network for
video prediction,” in CVPR, 2023.

[33] W. Zhao, J. Tang, Y. Han, Y. Song, K. Wang, G. Huang, F. Wang, and Y. You, “Dynamic tuning
towards parameter and inference efficiency for vit adaptation,” in NeurIPS, 2024.

[34] W. Zhou, C. Xu, T. Ge, J. McAuley, K. Xu, and F. Wei, “Bert loses patience: Fast and robust
inference with early exit,” in NeurIPS, 2020.

[35] S. Tang, Y. Wang, Z. Kong, T. Zhang, Y. Li, C. Ding, Y. Wang, Y. Liang, and D. Xu, “You need
multiple exiting: Dynamic early exiting for accelerating unified vision language model,” in
CVPR, 2023.

[36] J. Xin, R. Tang, J. Lee, Y. Yu, and J. Lin, “Deebert: Dynamic early exiting for accelerating bert
inference,” in ACL, 2020.

[37] J. Kong, J. Wang, L.-C. Yu, and X. Zhang, “Accelerating inference for pretrained language
models by unified multi-perspective early exiting,” in COLING, 2022.

[38] M. Jazbec, J. Allingham, D. Zhang, and E. Nalisnick, “Towards anytime classification in
early-exit architectures by enforcing conditional monotonicity,” in NeurIPS, 2023.

[39] J. Xin, R. Tang, Y. Yu, and J. Lin, “Berxit: Early exiting for bert with better fine-tuning and
extension to regression,” in EACL, 2021.

[40] S. Mangrulkar, A. MS, and V. Sembium, “Be3r: Bert based early-exit using expert routing,” in
KDD, 2022.

[41] Y. Chen, X. Pan, Y. Li, B. Ding, and J. Zhou, “Ee-llm: Large-scale training and inference of
early-exit large language models with 3d parallelism,” in ICML, 2023.

[42] Z. Ni, Y. Wang, R. Zhou, R. Lu, J. Guo, J. Hu, Z. Liu, Y. Yao, and G. Huang, “Adanat: Exploring
adaptive policy for token-based image generation,” in ECCV, 2024.

[43] A. Van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves et al., “Conditional
image generation with pixelcnn decoders,” in NeurIPS, 2016.

[44] X. Chen, N. Mishra, M. Rohaninejad, and P. Abbeel, “Pixelsnail: An improved autoregressive
generative model,” in ICML, 2018.

[45] A. Van Den Oord, O. Vinyals et al., “Neural discrete representation learning,” in NeurIPS, 2017.

[46] P. Esser, R. Rombach, and B. Ommer, “Taming transformers for high-resolution image synthesis,”
in CVPR, 2021.

[47] T. Li, Y. Tian, H. Li, M. Deng, and K. He, “Autoregressive image generation without vector
quantization,” in NeurIPS, 2024.

[48] J. Li, Z. Zhang, and J. Yang, “Tp2o: Creative text pair-to-object generation using balance
swap-sampling,” in ECCV, 2024.

[49] Z. Xiong, Z.-d. Zhang, Z. Chen, S. Chen, X. Li, G. Sun, J. Yang, and J. Li, “Novel object
synthesis via adaptive text-image harmony,” in NeurIPS, 2024.

12

[50] J. Han, J. Liu, Y. Jiang, B. Yan, Y. Zhang, Z. Yuan, B. Peng, and X. Liu, “Infinity: Scaling bitwise
autoregressive modeling for high-resolution image synthesis,” arXiv preprint arXiv:2412.04431,
2024.

[51] X. Li, K. Qiu, H. Chen, J. Kuen, Z. Lin, R. Singh, and B. Raj, “Controlvar: Exploring
controllable visual autoregressive modeling,” arXiv preprint arXiv:2406.09750, 2024.

[52] X. Ma, M. Zhou, T. Liang, Y. Bai, T. Zhao, H. Chen, and Y. Jin, “Star: Scale-wise text-to-image
generation via auto-regressive representations,” arXiv preprint arXiv:2406.10797, 2024.

[53] H. Tang, Y. Wu, S. Yang, E. Xie, J. Chen, J. Chen, Z. Zhang, H. Cai, Y. Lu, and S. Han, “Hart:
Efficient visual generation with hybrid autoregressive transformer,” in ICLR, 2024.

[54] Q. Zhang, X. Dai, N. Yang, X. An, Z. Feng, and X. Ren, “Var-clip: Text-to-image generator
with visual auto-regressive modeling,” arXiv preprint arXiv:2408.01181, 2024.

[55] S. Ren, Q. Yu, J. He, X. Shen, A. Yuille, and L.-C. Chen, “Beyond next-token: Next-x prediction
for autoregressive visual generation,” arXiv preprint arXiv:2502.20388, 2025.

[56] Z. Chen, X. Ma, G. Fang, and X. Wang, “Collaborative decoding makes visual auto-regressive
modeling efficient,” in CVPR, 2024.

[57] W. Ren, H. Yang, G. Zhang, C. Wei, X. Du, S. Huang, and W. Chen, “Consisti2v: Enhancing
visual consistency for image-to-video generation,” arXiv preprint arXiv:2402.04324, 2024.

[58] H. Li, S. Li, W. Dai, M. Cao, N. Kan, C. Li, J. Zou, and H. Xiong, “On disentangled training
for nonlinear transform in learned image compression,” in ICLR, 2025.

[59] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in CVPR, 2009.

13

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction faithfully reflect the paper’s
contributions. The proposed framework (FreqExit) and its components are detailed in
Section 3, and the empirical results claimed are validated in Section 4.2 and Table 1. The
motivation and observed challenges with dynamic inference in VAR are also supported by
the analysis in Section 3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Appendix C of the supplementary material,
where the authors reflect on the scope and assumptions of the proposed method.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

14

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include formal theoretical results or proofs. Instead, it
focuses on empirical analysis and the design of a practical training framework for dynamic
inference in visual autoregressive models.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides sufficient details to reproduce the main experimental results.
Section.4 describes all baseline methods, implementation settings, and evaluation metrics.
Model configurations are listed in Tables 1 and 2, with additional training configurations
included in the Appendix B of the supplementary material. These descriptions allow
independent reproduction of the main results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

15

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide anonymized access to our code and datasets, along with instructions
to reproduce all main results, including training and evaluation procedures.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all relevant training and evaluation details in the Experi-
mental Setup section, including dataset, data split, optimizer (AdamW), learning rate, batch
size, training schedule (number of epochs), and model configurations. Additional implemen-
tation and hyperparameter details are provided in Appendix B of the supplementary material
to ensure full reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: Due to the prohibitive compute cost of training large-scale visual autoregres-
sive models, we do not report error bars or repeated runs. That said, we have thoroughly
evaluated our method across standard datasets (e.g., ImageNet-1K) and multiple configura-
tions (see Table 1, Figure 1) to confirm the robustness and consistency of our performance
improvements.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper specifies the compute resources used for both training and evaluation.
Specifically, model training was performed on 8 NVIDIA A100 GPUs with 80GB memory
each. Evaluation and inference were conducted on a single NVIDIA RTX 4090 GPU, as
noted in the Experimental Setup section. While we do not report exact training time, all
experiments follow a fixed schedule of 80 epochs with batch size 1024.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research strictly adheres to the NeurIPS Code of Ethics. All experiments
are conducted using publicly available datasets (e.g., ImageNet), without involving any
personally identifiable information, sensitive content, or human subjects. The work focuses
on methodological development for visual generative models and does not raise foreseeable
ethical concerns regarding fairness, misuse, or societal harm.

17

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: The paper does not include an explicit discussion of broader societal impacts.
However, the work focuses on improving inference efficiency for generative models and
does not introduce new capabilities that raise direct ethical or societal concerns.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve models or datasets with high risk for misuse. The
method focuses on improving the efficiency of visual autoregressive generation and does
not entail the release of pretrained generative models or scraped datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

18

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All used assets, including pretrained models and datasets, are publicly available
under appropriate licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper provides newly developed training code for the proposed method.
An anonymized version of the codebase is submitted alongside the paper to support repro-
ducibility.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing experiments or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

19

paperswithcode.com/datasets

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methods and contributions of this research do not involve large
language models (LLMs) as important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

FreqExit: Enabling Early-Exit Inference for Visual
Autoregressive Models via Frequency-Aware Guidance

Appendix

This appendix provides additional details on the proposed methodology, training configurations, and
experimental results. Section A elaborates on implementation components such as early-exit super-
vision, frequency-gated reconstruction, and gradient-based loss tuning. Section C outlines training
setups and hyperparameters for baseline comparisons. Section D presents qualitative visualizations
under conditional generation and zero-shot inpainting. Section E concludes with a discussion of
limitations and future directions, along with information for reproducibility.

A Details of Methodology

A.1 Curriculum-Based Early-Exit Supervision

Depth-Aware Layer Dropout. To promote the expressiveness of the shallow layer during train-
ing, we implement a depth-sensitive layer dropout strategy. Each transformer block l is skipped
independently with a depth-increasing probability:

pl = min
(
max

((
e

ln 2
L−1 ·l − 1

)
, 0

)
, 1

)
· pmax, (14)

where L is the total number of layers and pmax is a global dropout scaling factor (default 0.1). This
formulation ensures that early layers are less likely to be skipped during training, thereby encouraging
them to learn stronger and more generalizable representations.

Layer-Wise Exit Weights. To prioritize deeper exits while still training shallow ones, we assign a
normalized weight wl to the loss of each layer based on its relative depth. Let S ⊆ 0, . . . , L−1 be
the set of supervised layers at training step t; the unnormalized weight is defined as:

wl =

{∑l
i=0 i, if l < L−1

(L−1) +
∑L−2

i=0 i, if l = L−1
(15)

These weights are then normalized across S and used in both the cross-entropy loss and knowledge
distillation loss to ensure that deeper exits dominate the overall optimization process, thereby
effectively preventing performance degradation at the final output layers.

Rotational Curriculum Scheduling. We adopt a rotational curriculum mechanism to activate
a subset of exit layers per iteration, ensuring all layers are periodically updated while avoiding
conflicting gradients. Let S(t) be the selected subset of layers at iteration t. For a fixed number of
partitions R and block size B = ⌈L/R⌉, we define the active block index as:

S(t) = { l | l ∈ [(t mod R) ·B, min((t mod R+ 1) ·B, L))} (16)

This schedule ensures that each layer is supervised once every R steps, enabling more diverse gradient
signals across training steps while also improving overall training stability:

pℓ,t = S(t)D(ℓ) pmax, (17)

where D(ℓ) controls the per-layer profile and S(t) adjusts the global schedule over training steps.

A.2 Frequency-Gated Self-Reconstruction: Implementation Details

Given the progressive decoding nature of next-scale generation in VAR, each generation step exhibits
distinct spatial resolution and frequency characteristics. To accommodate this, we adopt a step-
wise Frequency-Gated Self-Reconstruction (FGSR) strategy: a lightweight FGSR module is
instantiated for each generation step, allowing frequency-specific supervision that aligns with the
evolving spectrum across decoding stages. This setup supports stage-aware, spectrum-adaptive
learning while preserving architectural simplicity and inference efficiency.

21

Algorithm 1 Step-Wise Frequency-Gated Self-Reconstruction Loss

1: Input: Token maps {xℓ}, patch sizes {pi}, FGSR modules {FGSR(i)}, weight λ
2: Output: Total loss LFGSR + λ · Lalign
3: Initialize LFGSR ← 0, Lalign ← 0
4: for layer ℓ ∈ S do
5: Extract rℓ ← xℓ

6: for step i ∈ A do
7: Extract token slice rℓi of shape [B,C, pi, pi]

8: Apply step-specific module: r̂ℓi ← FGSR(i)(rℓi)
9: LFGSR += ∥r̂ℓi − rℓi∥22

10: Extract W (i)
fgp ,W

(i)
inv from FGSR(i)

11: Lalign += ∥Sym(W
(i)⊤
fgp W

(i)
fgp − I)∥2F + ∥W (i)

inv −W
(i)⊤
fgp ∥2F

12: end for
13: end for
14: return 1

|S|LFGSR + λ · 1
|S|·|A|Lalign

Initialization Details. Each FGSR module operates on the token map rt ∈ RB×C×H×W at step t
and applies a wavelet-based frequency decomposition. The learnable exponential gates γb for each
sub-band b ∈ {LL,LH,HL,HH} are initialized as:

• γLL = log(1),
• γLH = γHL = log(0.5),
• γHH = log(1e−8).

Each FGSR module contains a pair of 1 × 1 convolutional layers: one forward projection Wfgp ∈
RC×4C initialized to be near orthogonal, and one inverse projection Winv ∈ R4C×C initialized as the
transpose of Wfgp. These projection layers are shared within the module and are explicitly regularized
during training to ensure long-term numerical consistency and stable convergence behavior. We
apply FGSR loss to the supervised layers and all decoding steps, using step-specific FGSR modules
instantiated for each generation step i, as shown in Algorithm 1.

Adaptive Gating Across Generation Stages. FGSR enables adaptive frequency gating by respond-
ing to the evolving spectral structure across decoding steps. Early token maps primarily capture
coarse, low-frequency components, while high-frequency details emerge progressively in later stages.
To justify the gating design of FGSR, we provide a view from the information bottleneck principle.

At generation step t, the objective is to retain the most relevant information under a distortion
constraint. This trade-off can be formulated as a rate-distortion problem:

Rt(D) = min
p(rt|x)

I(x; rt) s.t. E[d(x, x̂t)] ≤ D, (18)

where I(x; rt) denotes the mutual information between input x and representation rt, and d(·) is a
distortion measure. Let EHF = ∥HH∥22 denote the high-frequency energy. FGSR indirectly controls
EHF via learned sub-band gates γb. From an information-theoretic view, the sensitivity of the rate
function to high-frequency energy is given by:

∂Rt

∂EHF
=

λ

1 + λ
· ∥HH∥22
∥rt∥22

, (19)

where λ is a regularization strength associated with frequency emphasis. This term increases with
the decoding steps, which justifies the design of FGSR to progressively activate the high-frequency
sub-band gates. Such adaptive behavior ensures early stages prioritize structure and layout, while
later stages refine details, maintaining reconstruction fidelity with minimal redundancy. It supports
information-efficient frequency allocation and aligns with the coarse-to-fine generation paradigm.

A.3 Gradient-Based Loss Weight Tuning

To achieve a proper balance among the multiple auxiliary losses used during training, such as early-
exit supervision, knowledge distillation, and frequency-aware objectives, we perform gradient-based

22

analysis in the debugging phase. This analysis serves to inform the manual adjustment of the fixed
loss weights prior to the final training. At selected training intervals, each loss component Lk is
isolated, and its relative gradient influence with respect to the total loss Ltotal is computed as:

ck = max

(
0,
⟨∇Ltotal, ∇Lk⟩
∥∇Ltotal∥22

)
, (20)

where∇Lk and∇Ltotal denote the flattened gradients with respect to all trainable parameters. The
resulting contribution scores ck are used as a reference to adjust the relative weights of different loss
terms to improve the stability and effectiveness of training.

B Additional Discussion on High-Frequency Behavior

VAR generates images in a scale-by-scale manner, where coarse-to-fine decoding naturally induces a
frequency progression from low-frequency structure to high-frequency details. This behavior follows
the Nyquist sampling principle: early steps with low spatial resolution can only represent coarse, low-
frequency components, while upsampled later steps allow finer textures to emerge. Moreover, natural
images exhibit a 1/f power spectrum, implying that most signal energy lies in low frequencies; during
training, cross-entropy loss first reduces low-frequency errors, leaving high-frequency residuals to
dominate later-stage gradients. This explains the observed “structure-first, detail-later” dynamics in
next-scale generation and motivates the frequency-aware supervision strategy used in FreqExit.

C Experimental Details

We compare our method FreqExit with two representative early-exit baselines, LayerSkip[22]
and CoDe[56]. Since both methods require additional training beyond the original autoregressive
model, we detail their training configurations alongside ours below. All methods are trained on the
ImageNet-1K dataset using the AdamW optimizer with a global batch size of 1024 and progressive
patch scheduling (1, 2, 3, 4, 5, 6, 8, 10, 13, 16).

CoDe. Following the original two-stage pipeline of CoDe, the drafter (VAR-d20) is fine-tuned for
15 epochs using cross-entropy loss on the first N=6 decoding steps, with a learning rate of 1e−6
and weight decay of 0.08. The refiner (VAR-d16) is then distilled for 65 epochs from the drafter
using soft-label supervision. The loss over the first N steps is down-weighted progressively using a
dynamic coefficient α = 1− λ, where λ is the normalized training progress.

LayerSkip. We adapt LayerSkip to our autoregressive model and train it for 80 epochs with a
learning rate of 1e−5 and weight decay of 0.01. At each step, a subset of transformer layers is
supervised in a round-robin fashion with a rotation interval of R=4, and layer-wise sample dropout
is applied with a maximum dropout probability pmax = 0.1.

FreqExit. Our method adopts the same optimizer and schedule setup as the other baselines. At
each training step, a subset of transformer layers is supervised in a round-robin fashion with group
size R=4 and dropout probability pmax = 0.1. Three types of losses are used during training:

• Early-exit loss: Applied to selected intermediate layers, this loss combines cross-entropy
and distillation terms, each contributing a fixed ratio of 0.5.

• HF loss: This wavelet-domain consistency loss is disabled for the first 25% of training, then
linearly increased to full strength. Its weight is dynamically computed as

γ = α · L̄other

L̄hf + ϵ
, with α=0.3, (21)

where L̄other denotes the average of CE, early-exit, and distillation losses.
• FGSR loss: This loss promotes frequency-aware representation learning via self-

reconstruction. A fixed weight of 5.0 is applied to the FGSR term, along with an or-
thogonality regularization term weighted by 0.1.

The total loss is computed as the weighted sum of these components. Both HF and FGSR losses are
further modulated during training via gradient-based dynamic weight scaling.

23

Table 4: Training hyperparameters and loss types for methods requiring fine-tuning. BS = batch size,
LR = learning rate, WD = weight decay.

Method Model Epochs BS LR WD R pmax Loss Type
CoDe (drafter) VAR-d20 15 1024 1e−6 0.08 – – CE
CoDe (refiner) VAR-d16 65 1024 1e−5 0 – – KD

LayerSkip VAR-d20 80 1024 1e−5 0.01 4 0.1 CE
FreqExit VAR-d20 80 1024 1e−5 0 4 0.1 CE + KD, HF, FGSR

Original VAR-d20

Exit @ Layer 16

Exit @ Layer 14

Exit @ Layer 12

Exit @ Layer 10

Speedup 1.0×

Speedup 1.27×

Speedup 1.30×

Speedup 1.63×

Speedup 2.00×

Figure 4: Visualization of generated images from different exit layers under conditional generation.
Despite the reduced number of layers, the image quality remains nearly unchanged across exits, while
the inference speed can be improved by up to 2×.

D Qualitative Generation Results

Condition Generation. We provide an extensive qualitative comparison between the original
VAR-d20 model and our proposed FreqExit model fine-tuned with early-exit supervision. As shown
in Fig. 4, we visualize outputs from different exit layers (Layer 16, 14, 12, and 10), corresponding
to speedups of 1.27×, 1.30×, 1.63×, and 2.00×, respectively. From these results, it is evident that
even with a two-fold reduction in inference cost, the generated images maintain high visual quality,
semantic consistency, and fine-grained detail. This confirms the effectiveness of our approach in
enabling efficient autoregressive decoding without compromising fidelity.

Zero-Shot Inpainting. We further evaluate the model’s capability under zero-shot inpainting
settings. As illustrated in Fig. 5, we begin with complete original images and apply random binary
masks to simulate missing regions. These masked images, along with class labels, are provided
as inputs, and the model performs inpainting using different exit layers. The results demonstrate
that our method retains strong generative performance even with early exits. The inpainted regions
remain semantically coherent and visually indistinguishable from the ground truth, indicating that the
intermediate layers are well-equipped to capture both global structure and local detail. This highlights

24

Exit @ Layer 16

Exit @ Layer 14

Exit @ Layer 12

Exit @ Layer 10

Figure 5: Visualization of zero-shot inpainting results at different exit layers. The model demonstrates
strong capability in reconstructing missing regions, and the inpainted content remains visually
consistent across different exit depths without introducing artifacts or semantic mismatches.

the capacity of the model for semantic understanding at multiple depths and validates its robustness
and adaptability under varying inference conditions.

E Discussion and Future Work

We propose FreqExit, a unified framework for enabling efficient early-exit inference in next-scale
visual autoregressive models such as VAR. By analyzing the spectral dynamics of VAR and addressing
the instability of intermediate representations, our method introduces a curriculum-based supervision
strategy, a progressive high-frequency consistency loss, and a lightweight frequency-gated self-
reconstruction module. These components collectively enhance representation quality and support
dynamic exit behavior with minimal impact on generation quality. Experiments on ImageNet
256×256 demonstrate that FreqExit achieves up to 2× speedup with little perceptual degradation,
and performs well in both conditional generation and zero-shot inpainting scenarios.

Limitations. While FreqExit demonstrates strong dynamic inference performance, it introduces
multiple loss terms to guide intermediate learning. As a result, careful tuning of their weights is
needed during training. In particular, we find that the high-frequency consistency loss must be
appropriately balanced—if overemphasized, it can hinder the learning of low-frequency structures.
Nevertheless, this tuning process is manageable and only needs to be done once per configuration,
and a gradient-based analysis used to guide weight selection is provided in Appendix A.

Future Work Future work will explore more adaptive training strategies to better coordinate
frequency-aware supervision with semantic objectives, aiming to further improve dynamic inference
performance while minimizing the need for manual tuning efforts.

25

Reproducibility. To support reproducibility and further research, we provide training and evaluation
code in the supplementary FreqExit.zip file and at the anonymous repository https://github.
com/NeuraLiying/FreqExit.

26

https://github.com/NeuraLiying/FreqExit
https://github.com/NeuraLiying/FreqExit

	Introduction
	Related Work
	Dynamic Inference Methods
	Inference Acceleration for Visual Generation

	Method
	Comprehensive Analysis of VAR Generation Dynamics
	Our Method
	Curriculum-Based Early-Exit Supervision
	High-Frequency Consistency Loss
	Frequency-Gated Self-Reconstruction Loss

	Experimental Results
	Experimental Setup
	Main Results
	Dynamic Inference Capability
	Ablation Study

	Conclusion
	Details of Methodology
	Curriculum-Based Early-Exit Supervision
	Frequency-Gated Self-Reconstruction: Implementation Details
	Gradient-Based Loss Weight Tuning

	Additional Discussion on High-Frequency Behavior
	Experimental Details
	Qualitative Generation Results
	Discussion and Future Work

