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Abstract—The COVID-19 pandemic has underscored the ne-
cessity for advanced diagnostic tools in global health systems.
Infrared Thermography (IRT) has proven to be a crucial
non-contact method for measuring body temperature, vital for
identifying febrile conditions associated with infectious diseases
like COVID-19. Traditional non-contact infrared thermometers
(NCITs) often exhibit significant variability in readings. To
address this, we integrated machine learning algorithms with
IRT to enhance the accuracy and reliability of temperature mea-
surements. Our study systematically evaluated various regression
models using heuristic feature engineering techniques, focusing
on features’ physiological relevance and statistical significance.
The Convolutional Neural Network (CNN) model, utilizing these
techniques, achieved the lowest RMSE of 0.2223, demonstrating
superior performance compared to results reported in previ-
ous literature. Among non-neural network models, the Binning
method achieved the best performance with an RMSE of 0.2296.
Our findings highlight the potential of combining advanced
feature engineering with machine learning to improve diagnostic
tools’ effectiveness, with implications extending to other non-
contact or remote sensing biomedical applications. This paper
offers a comprehensive analysis of these methodologies, providing
a foundation for future research in the field of non-invasive
medical diagnostics.

Index Terms—COVID-19, Infrared Sensors, Temperature Mea-
surement, Infrared Thermography, Machine Learning, Regres-
sion analysis, Deep Learning

I. INTRODUCTION

As the COVID-19 pandemic continues to challenge global
health systems, the adoption of advanced diagnostic tools has
become crucial.

Infrared Thermography (IRT), a pre-existing technology
recognized for its utility in medical diagnosis and disease mon-
itoring, has gained renewed attention due to its non-contact
and efficient method for measuring body temperature [1],
[2]. This is vital for identifying elevated body temperatures,
a primary indicator of infectious diseases such as COVID-
19, which has a prevalence rate of fever in about 78% of
confirmed adult cases. Traditional non-contact infrared ther-
mometers (NCITs), however, exhibit significant variability in
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readings, with error rates as high as 2°C [3], [4]. Consequently,
the use of more advanced methods like IRT combined with
machine learning algorithms becomes essential to improve the
accuracy and reliability of temperature measurements, building
on approaches used for COVID-19 prognosis with biomarkers
and demographic information [5]. This integration not only
contributes to safer and more effective public health screening
practices but also aligns with the global need for improved
diagnostic tools during pandemics [6], [7].

The relevance of IRT in medical diagnostics and epidemic
prevention is supported by its increasing utilization in various
clinical and public settings. Recent studies have highlighted
the potential of IRT systems, particularly when calibrated
with precise regression techniques, to provide accurate tem-
perature readings essential for detecting potential cases of
COVID-19. For example, [6] demonstrated that calibrated
IRT systems, when compared with non-contact infrared ther-
mometers (NCITs), could achieve higher clinical accuracy and
repeatability in temperature measurement. Another research
[3] focused on using machine learning to predict core body
temperatures from IR-measured facial features, revealing that
specific regions such as the temple and nose could serve as
reliable indicators of body temperature.

Despite these developments, there remains a noticeable
gap in the enhancement of feature engineering techniques
to improve the predictive performance of these temperature
measurement models. This paper introduces novel heuristic
feature engineering methods that significantly enhance model
accuracy, addressing shortcomings of previous studies.

The structure of the paper is as follows: Section II details
our approach to data collection, feature selection, and the ap-
plication of regression models, emphasizing the development
of our heuristic feature engineering techniques. In Sections
III and IV, we present a detailed analysis of the models’
performance, offering insights into their clinical and practical
implications. The paper concludes with a summary of our
findings and an outlook on future research directions in Section
V, exploring how these methods can be adapted to other
infectious diseases and broader clinical applications.



II. METHODOLOGY

A. Dataset

The Infrared Thermography Temperature Dataset, sourced
from Forward Looking Infrared (FLIR) data, contains temper-
atures read from various locations of infrared images about
patients, along with oral temperatures measured for each indi-
vidual. The dataset comprises 1020 data points and 33 features,
intended for a regression task to predict oral temperature
using environmental information and thermal image readings.
The dataset is divided into two groups based on ambient
temperature: Group 1 (20.0 to 24.0°C) and Group 2 (24.0 to
29.0°C), both considered in this study [6], [8], [9].

1) Data Allocation: The final dataset, after removing some
data points with missing values, consisted of 959 data points,
was divided into training (669 data points) and testing sets
(290 data points). This split ensured that the models were
trained on a substantial portion of the data while retaining a set
for unbiased evaluation of their performance. The target output
is the oral temperature measured in monitor mode (aveOralM).

2) Validation Set and Hyperparameter Tuning: Validation
sets, constituting 20% of the training data, were essential
for tuning models and avoiding overfitting and bias across
various algorithms. Nested cross-validation was utilized for
hyperparameter optimization, each parameter set evaluated
across five folds to determine its effectiveness, selecting di-
verse populations for each fold to mitigate the risk of bias.

B. Feature Extraction

Our feature extraction methodology comprises polynomial
features, replicated features, and categorical features.

1) Incorporating New Features with Polynomial Interaction
Terms: Polynomial interaction terms were introduced in the
feature engineering process to capture complex relationships
between features. This technique goes beyond linear models,
enabling the model to learn from higher-order interactions and
nonlinear patterns present in the data.

Polynomial features were created to emphasize the com-
bined and nonlinear effects of original features. By squaring
certain features and creating interaction terms between pairs of
highly predictive features, we aimed to enhance the richness
of the data representation. This approach allows the model to
better capture the underlying physiological dynamics, leading
to improved predictive accuracy and robustness.

2) Enhancing Model Predictions with Replicated Feature
Engineering: The second method in the feature engineering
process involved replicating the most predictive features to
amplify the impact of key features that exhibited the strongest
correlation with the target variable.

The feature replication strategy involved creating multiple
replicas of the most influential features identified. Unlike tra-
ditional approaches that might assign equal importance to all
features, it was hypothesized that increasing the representation
of a highly predictive feature would significantly improve
model performance. The impact of this replication varies
across different regression methods. For example, in kNN,

it makes a difference because the distance between two data
points would put more emphasis on the replicated features.
In contrast, for Linear Regression with no regularization,
replicating one feature to two identical features would be
equivalent to doubling the weight value of the original feature,
making little difference in performance.

This hypothesis was tested by empirically determining the
optimal number of replications through multiple iterations. By
replicating these key features several times, a decrease in the
RMSE was observed, indicating enhanced model accuracy.
This strategy aligns with advanced analytical practices that
prioritize data-driven insights over uniform feature treatment.

3) Encoding and Developing New Features from Categor-
ical Variables: This approach focused on enhancing the rep-
resentation of categorical variables in the dataset, specifically
Gender, Age, and Ethnicity. The Age feature, exhibiting an
ordinal nature, was encoded using an OrdinalEncoder. This
transformation translated the categorical age ranges into an
ordered numerical format, with the mapping as follows: {’18-
20’: 0, ’21-25’: 1, ’26-30’: 2, ’31-40’: 3, ’41-50’: 4, ’51-
60’: 5, ’> 60’: 6, ’> 70’: 7}, facilitating a more nuanced
interpretation by our regression models.

One-hot encoding was applied to the features Gender and
Ethnicity, which are nominal data without intrinsic ordering.
This strategy transformed each categorical variable into a
set of binary variables, one for each category, ensuring the
model treats each categorical value as a separate entity without
imposing any ordinal relationship among them. The encoding
strategy enhances the model’s ability to utilize these categori-
cal features effectively, improving overall predictive accuracy.

C. Feature Selection

Feature selection is a crucial step in developing a robust
predictive model, involving the identification of features that
enhance model accuracy and efficiency. The methodology in
this study is divided into biological and physiological analysis
and technical and statistical analysis. A notable consideration
was given to selecting and validating features based on their
physiological relevance and statistical significance, drawing
from both experimental data and related scientific literature.

1) Biological and Physiological Analysis: The selection of
important features was guided by their physiological relevance.
Specifically, the focus on temperatures from facial regions,
particularly the inner canthi, was informed by their high
correlation with core body temperatures. This area, being
perfused by the internal carotid artery, is crucial for accurate
non-contact temperature measurement. The high correlation
of these temperatures with oral temperatures underscores their
importance as predictors in our model.

Environmental factors, such as humidity and distance,
potentially play a critical role in the accuracy of thermal
imaging. Although humidity is not a direct predictor of oral
temperature, it affects the thermal emissivity of the skin and
the measurement dynamics, indirectly impacting temperature
readings. The dataset accounted for fluctuations in humidity
by including it as a feature, ensuring that the temperature
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Fig. 1. Overview of the system workflow, illustrating stages from data preprocessing to model training and evaluation. The process includes initial data
sanitization, feature encoding, polynomial and categorical feature engineering, biological and technical analysis for feature selection, and model training with
performance evaluation.

measurements could adjust for these variations and maintain
consistency and reliability under varying clinical conditions
while reducing potential environmental biases.

The distance between the infrared thermography device
and the subject is potentially important for ensuring accurate
temperature readings. Proper distance affects the resolution
and the field of view of the thermal camera, which in turn
influences the accuracy of capturing temperatures at vital facial
points such as the inner canthi and forehead. By including
distance as a feature in the dataset, it allowed for adjustments
to be made for variations, maintaining measurement accuracy.

These considerations have been integrated into the model
development process, ensuring that each feature included in
the final model is backed by both statistical evidence and
physiological relevance. This approach enhances the predictive
accuracy of the model and ensures that the model’s outputs
are interpretable and relevant in clinical settings. By carefully
selecting features that are robustly supported by experimental
data and scientific understanding, this study aims to create
a reliable and effective tool for predicting oral temperatures
using infrared thermography.

During the refinement process, it was observed that the
distribution of data across different age groups was highly
skewed, predominantly concentrated within the 21–30 age
range. This imbalance raised concerns about the representa-
tiveness and effectiveness of the ’Age’ feature in our models.
Given the skewed distribution, the ’Age’ feature’s potential
to contribute effectively to the predictive accuracy of the
model was limited. Including age as a predictive variable could
mislead the model, as it would not adequately capture the
variability across the general population. Consequently, the
’Age’ feature was excluded from the final model to enhance
generalization and avoid biases associated with disproportion-
ate data distribution among different age groups.

An intermediate result from the feature refinement pro-
cess focused on the gender feature initially represented as a
single categorical variable. To enhance the model’s capacity
to differentiate impacts based on gender, this variable was
transformed into two distinct binary features: ’female’ and

’male.’ The balanced distribution of data points across these
categories allowed the model to learn potential differences
in oral temperature across genders without the bias that can
arise from uneven sample sizes. This transformation aids in
capturing any gender-specific variations in oral temperature,
crucial for the precision and reliability of the predictions.

Our analysis also considered features representing temper-
ature readings from the mouth and various points on the fore-
head. Supporting literature on the physiological relevance of
temperature measurements at these locations suggested limited
predictive power for oral temperature estimation compared to
regions like the inner canthi [6], [10], [11]. Given the statistical
findings and corroborating literature, features related to mouth
and forehead temperatures were excluded to enhance the
model’s focus on more predictive variables, thereby improving
its overall predictive accuracy and efficiency.

Overall T Max 1, canthi4Max 1, canthiMax 1,
Max1R13 1, Max1L13 1, aveAllL13 1, aveAllR13 1,
Distance, T offset, T atm, Humidity, Gender Female,
and Gender Male are considered as biologically important
features. Our construction of a predictive model using
the Infrared Thermography Temperature Dataset involved
careful selection and validation of features based on their
physiological relevance. This process was informed by
insights from relevant scientific literature. The integration
of prior knowledge facilitated the identification of beneficial
features within the physiological context of the study,
enhancing the model’s implementation.

2) Technical and Statistical Analysis: In the process of
refining the set of features developed through various engineer-
ing methods, we initially used Pearson correlation coefficients
to identify strong linear associations between features and the
target variable, oral temperature (aveOralM ). Recognizing
that linear correlation might not capture all interactions, we
complemented this with regression-based feature importance,
assessing each feature’s impact on model accuracy using
RMSE. This dual approach ensured that both linear and non-
linear relationships were effectively captured.



a) Observations on Temperature-related Features: The
inclusion or exclusion of atmospheric temperature (T atm) and
temperature offset (T offset) provided minimal variation in
the RMSE, suggesting that these features do not significantly
influence the model’s accuracy.

In contrast, features related to the maximal and inner
canthi temperatures, specifically those representing critical
facial regions, proved to be highly significant. Their inclusion
consistently lowered the RMSE, while their removal led to a
noticeable degradation in model performance. This aligns with
existing scientific literature that emphasizes the physiological
relevance of these temperature measurements in accurately
estimating core body temperatures.

Based on these findings, the feature set was refined to
focus more on the Maximal and Inner Canthi temperature
measurements that showed substantial predictive power and
relevance. This decision was supported by both the quantitative
impact on model performance and the qualitative insights
derived from domain-specific studies.

b) Mouth and Forehead Temperature Features: Pearson
correlation analysis and linear regression models were used
to evaluate the relationship between each forehead and mouth
temperature feature and the target variable, oral temperature
(aveOralM ). These analyses indicated that these features had
low correlations and did not significantly reduce the RMSE
when compared to other variables in the dataset.

Given the statistical findings and corroborating literature,
it was determined that features related to the mouth and
forehead temperatures did not contribute significantly to model
accuracy. Consequently, these features were removed from the
model, resulting in a noticeable improvement in the RMSE.

3) Feature Dimensionality Reduction: This involved a com-
bination of statistical techniques to identify and enhance
features with the highest predictive power.

a) Statistical Correlation Analysis: Initially, Pearson cor-
relation coefficients were employed to quantify the linear
relationship between each feature and the target variable,
oral temperature (aveOralM ). The absolute values of the
Pearson correlation coefficients were considered to recognize
both strong positive and negative correlations. This analysis
pinpointed the features with the highest correlation score (ab-
solute value of Pearson coefficient) with the oral temperature.

b) Regression-Based Feature Importance: To further re-
fine feature selection, a linear regression model was employed
to assess the impact of each feature on the model’s accuracy.
By analyzing the RMSE for models trained on single features,
the features that minimize prediction errors were identified.

Table I presents the features selected based on their cor-
relation with the target variable from (a) and their corre-
sponding RMSE values from (b). The most effective features
according to this combination of methods included T Max 1,
canthi4Max 1, and canthiMax 1 which exhibited the low-
est RMSE values and the highest correlation scores.

This combined approach of using Pearson correlation co-
efficients and regression-based feature importance allowed

TABLE I
BIOLOGICALLY-RELATED FEATURES SELECTED BASED ON CORRELATION

ANALYSIS AND RMSE VALUES

Feature Name Correlation Score RMSE
T Max 1 0.830394 0.2576921021
canthi4Max 1 0.74778 0.2881620275
canthiMax 1 0.74742 0.2878116205
Max1R13 1 0.7016 0.301061764
Max1L13 1 0.697585 0.3107211261
aveAllL13 1 0.588969 0.3407036569
aveAllR13 1 0.569556 0.3526179759

for a robust selection process, ensuring that the final model
incorporates features with the highest predictive power.

This choice was driven by the hypothesis that the interac-
tions between the most influential variables (as indicated by
their correlation) are likely to provide significant predictive
insights, especially in a biological context where many rela-
tionships are inherently nonlinear. Including only these two
features in our polynomial analysis was a strategic decision
to test this hypothesis without excessively complicating the
model with numerous higher-order terms, which could lead to
overfitting especially if extended to less influential features.

c) Sequential Backward Selection (SBS): In Section
III-A0g, we will apply Sequential Backward Selection to
systematically evaluate each feature’s necessity, helping to
prevent overfitting and improve generalizability.

d) Principal Component Analysis: After selecting the
final feature set, Principal Component Analysis (PCA) was
initially employed to explore further dimensionality reduction.
We used the ’MLE’ method for determining the number of
principal components, based on [12], which optimizes system
complexity by balancing bias and variance. However, applying
PCA did not enhance system performance and increased the
RMSE. This indicates that the feature selection process had
already effectively identified the most relevant features. A
comparison of RMSE results between systems using PCA and
those using only feature standardization (no PCA) confirmed
that excluding PCA post-feature selection provided superior
accuracy. These findings underscore the robustness of the
feature selection methodology, ensuring the chosen features
contribute effectively to the system’s performance without fur-
ther dimensionality reduction. Similar methodologies in other
health-related studies highlight the importance of effective
feature selection and dimensionality reduction.

4) Final Selected Features: After this feature selection
process involving Pearson correlation analysis and regression
modeling, the most predictive features for oral temperature
estimation were identified. The analysis, detailed in previous
sections II-C1, II-C2, and II-C3, highlighted the relevance of
features such as temperatures from the inner canthi, which
have a high correlation with core body temperatures and
are physiologically significant [6], [3]. Features with low
correlation coefficients and those not significantly reducing
RMSE were excluded to streamline the model, based on both
statistical and physiological considerations. Consequently, the



TABLE II
FINAL ENGINEERED FEATURE SET BASED ON TECHNICAL ANALYSIS

AND SCIENTIFIC BACKGROUND KNOWLEDGE

Final Selected Features Selection Criteria

T Max 1
High corr and low RMSE, strong pre-
dictive power (+5X replications)

canthi4Max 1 High corr and low RMSE, strong pre-
dictive power

canthiMax 1 High corr and low RMSE, strong pre-
dictive power

Max1R13 1 Significant corr and acceptable
RMSE, good predictive power

Max1L13 1 Significant corr and acceptable
RMSE, good predictive power

aveAllL13 1 Moderate corr and acceptable RMSE,
contributing to predictive power

aveAllR13 1 Moderate corr and acceptable RMSE,
contributing to predictive power

T offset Important for measurement consis-
tency; accounts for baseline temper-
ature variations

T atm Influences thermal readings; account-
ing for ambient temperature variations

Humidity Affects skin thermal emissivity; con-
sistent temperature measurements

Gender Female Captures gender-specific variations in
temperature measurements

Gender Male Captures gender-specific variations in
temperature measurements

T Max 1× canthi4Max 1 Polynomial-interaction term
(T Max 1)2 Nonlinear term
(canthi4Max 1)2 Nonlinear term

final feature set is optimized for predictive accuracy, enhancing
the model’s generalizability and reducing overfitting risks.

Table II illustrates the final selected features based on
technical analysis and scientific background knowledge. The
first seven features, referred to as Group 1, were selected
based on technical and statistical analysis, including correla-
tion and RMSE values. The second group initially comprised
six features: T Distance, T offset, T atm, Humidity,
Gender Female, Gender Male, were not identified as
strong candidates by correlation analysis and regression-based
feature importance assessments. However, as outlined in Sec-
tion II-C1, these features are biologically and physiologically
significant for measuring oral temperature, as supported by a
thorough review of relevant literature.

To ensure the inclusion of these biologically essential fea-
tures, the model was trained under 64 different conditions,
encompassing all possible (26) subsets of these six features to
identify the subset that achieved the lowest validation RMSE.
The best combination, excluding the T Distance feature, was
ultimately selected. Further explanations about these combi-
nations are discussed in Section III. The five features from
this group that yielded the lowest RMSE were included in the
final model, as indicated in Table II. The criteria for selecting
these two feature groups ensure both strong predictive power
and physiological relevance, thereby enhancing the model’s
accuracy and reliability in practical applications.

To enhance our model’s capacity to capture complex, non-
linear relationships inherent in our dataset, as discussed in

TABLE III
MODEL PARAMETERS IN REGRESSION ANALYSIS

Model Parameter Values
1NN Regression n neighbor 1
Linear Regression l2 regularization coef 0.01
KNN Regression n neighbor {1, ..., 30}
Random Forest n estimators {50, ..., 250}

SVR
C 1
epsilon 0.1
kernel type RBF

Quadratic Regression max degree 2

Weighted Linear Regression bw method silverman
sample weight 1/density

Binning Linear Regression n bins 3

CNN

activation function ReLU
optimizer Adam
learning rate 0.001
epoch 1000
batch-size 32

Section II-B1,we implemented polynomial features, focusing
on Feature T Max 1 and Feature canthi4Max 1. These two
were selected as they are the most correlated features with
Oral temperature, suggesting their strong linear relationship
with the target. The resulting 3 polynomial features comprise
the last group shown in Table II. In addition, five replications
of T Max 1 were integrated into the final feature set to im-
prove its predictive influence. This decision was substantiated
through extensive testing, where five replications consistently
delivered superior and more reliable outcomes.

D. Model Training and Evaluation

We employed various regression models to address the
challenges presented by Infrared data, each selected for its
unique ability to capture spatial and temporal patterns.

The models range from simple linear approaches to more
complex non-linear and deep learning methods. For instance,
we utilized 1-Nearest Neighbor (1NN) and Linear Regression
as basic benchmarks. To better handle the complexity and
nuances of our dataset, more capable techniques like Support
Vector Regression (SVR) with radial basis function (RBF)
kernels and K-Nearest Neighbors (KNN) and Random Forest
with hyperparameter optimization were also applied. Addition-
ally, Quadratic Regression was chosen to model non-linear
relationships more effectively than linear models. Binning
Linear Regression was implemented to localize regression
within discrete data intervals, addressing non-linear trends
within smaller, more homogeneous segments of the data [13],
[14]. To take into account uneven density distributions,
Weighted Linear Regression was utilized, assigning weights
inversely proportional to data density to enhance estimates.

A series of Regularized Convolutional Neural Networks
(CNNs) were developed to interpret the complex spatial pat-
terns, suited to the sequential format of the inputs. These
models can better handle the variability inherent in the dataset,
which includes differences in demographic and physiological
factors, reducing the potential bias. The networks varied in the
number of 1D CNN layers (ranging from 2 to 5), filter sizes



Fig. 2. RMSE Variation with Repetitions of Feature T Max 1: Shows the
relationship between RMSE and the number of repetitions for T Max 1.
A minimum RMSE is observed at five repetitions, beyond which additional
repetitions do not improve model performance.

TABLE IV
COMPARATIVE ANALYSIS OF DIFFERENT FEATURE SETS FOR PREDICTIVE

MODELING, MAE, MSE, AND RMSE.

Feature Set Description Number of Features MAE MSE RMSE
Correlation-Bio Features Set (a) 7 0.2079 0.0746 0.2732
Comprehensive Bio Features Set (b) 13 0.2251 0.0892 0.2986
Optimized Correlation-Bio Set (c) 12 0.2219 0.0849 0.2913
Expanded Optimal Feature Set (d) 17 0.2134 0.0822 0.2867
Optimal Combo Feature Set (e) 15 0.1948 0.0672 0.2592
Final Engineered Feature Set (f) 20 0.1905 0.0647 0.2545

(8 to 64), and kernel sizes (2 and 3), with ’same’ padding and
strides of 1 to maintain output size.

ReLU activation and L2-regularization were used in the
CNN layers to extract key features. A flattening layer was
followed by dense layers, starting with 64 units and ReLU
activation and ending with a single-neuron output layer for
regression. The Adam optimizer was employed to minimize
mean squared error. The evaluation of these CNN archi-
tectures, summarized in Table VI, helped identify the best
configuration for handling Infrared Thermography data.

III. RESULTS

In this study, we systematically evaluated the performance
of various regression models applied to Infrared Thermogra-
phy data, utilizing three established statistical metrics: Mean
Squared Error (MSE), Mean Absolute Error (MAE), and
RMSE. These metrics were selected to cater to the diverse
nature of our data; MSE highlights the impact of larger errors,
MAE offers a straightforward average error magnitude that is
less sensitive to outliers, and RMSE provides a balance by
giving more weight to larger errors but in a scale comparable
to MAE. Collectively, these metrics enable a comprehensive
assessment of model accuracy.

A. Feature Engineering Analysis

The linear regression model without regularization was used
as the benchmark to evaluate the effectiveness of the various
combinations of features together.

a) Feature Selection Based on High Correlation and
Biological Relevance: Our analysis began by identifying fea-
tures that were both highly correlated with the target variable
and biologically relevant. The initial selection, named the
Correlation-Bio features set in Table IV, included Features

of Table I, which were chosen for their statistical significance
and relevance to our study’s biological context. This feature
set provided a baseline for model performance, achieving an
RMSE of 0.2732, MSE of 0.0746, and MAE of 0.2079.

b) Inclusion of All Biologically Relevant Features:
As the next step, we incorporated all biologically relevant
features, regardless of their statistical correlation, in a set
named the Comprehensive Bio features set in Table IV. This
comprehensive approach was intended to capture the full
spectrum of biologically significant factors, expanding the
feature set to include Features stated in Section II-C1. This
expanded set yielded a slightly increased RMSE of 0.2986,
suggesting the inclusion of less predictive features.

c) Correlation-Based and Comprehensive Biological
Features: In refining our approach, we retained features show-
ing both high correlation with the target variable and biological
relevance. For those biologically relevant features with lower
correlation, we methodically identified an optimal subset that
minimized validation RMSE to benefit from their inclusion in
the model performance. This meticulous optimization process
led to the development of the Optimized Correlation-Bio
set, as denoted in Table IV. This final feature set strikes a
balance between statistical robustness and biological insights,
achieving an improved RMSE of 0.2913.

d) Expanding Features Through Repetition of the most
correlated feature: To further enhance model’s performance,
we experimented with engineering features by augmenting
the representation of the most statistically significant feature,
Feature T Max 1, five-fold. This was based on an analysis
of the impact of feature repetition on model performance, as
illustrated in our RMSE versus number of repetitions plot as
depicted in Figure 2. The plot indicated that repeating this
feature five times minimized the RMSE, prompting its inclu-
sion in the final model. This approach led to the formulation
of the Expanded Optimal Feature Set, as designated in Table
IV, leveraging enhanced feature representation to improve
predictive accuracy. The results were improved, with an MAE
of 0.2134, MSE of 0.0822, and RMSE of 0.2867.

e) Using Polynomial combinations of the two most cor-
related features: Building upon our refined set of (c), the Op-
timal Combo Feature Set has polynomial terms of T Max 1
and canthi4Max 1 (see Table II) in addition to the Optimized
Correlation-Bio set. This set captures complex interactions
that linear models might miss, substantially enhancing the
model’s predictive capabilities. The inclusion of these polyno-
mial features resulted in an improvement in model accuracy,
achieving a RMSE of 0.2592, which suggests effective capture
of underlying patterns without overfitting.

f) Final Engineered Feature Set: The Final Engineered
Feature Set, as indicated in Table IV, represents the pinnacle
of our feature engineering efforts. It extends the Optimal
Combo Feature Set by adding repetitions of the feature
T Max 1, reinforcing its impact on the predictive model.
This integration of repeated and polynomial features aims
to maximize the predictive accuracy and robustness of the
model. The effectiveness of this strategy is demonstrated by



the lowest recorded MSE of 0.0647 and RMSE of 0.2545
in our experiments, highlighting the benefits of combining
multiple feature engineering techniques.

g) Final Feature Set Validation Using Sequential Back-
ward Selection (SBS): To validate our final feature set, we
employed Sequential Backward Selection (SBS). Starting with
the full set of 38 features, including new features from
categorical variables mentioned in Section II-B3, SBS it-
eratively removed the least significant ones, reducing the
set to 11. The Ordinary Linear Regression model using the
SBS-reduced set achieved an RMSE of 0.3380. SBS was
preferred over Sequential Forward Selection (SFS) due to its
thorough evaluation of feature combinations and effectiveness
in handling irrelevant features. We compared the Ordinary
Linear Regression model’s performance using the final feature
set (Table V) and the SBS-derived set. The RMSE was 0.2545
for the final set and 0.3380 for the SBS set, confirming the
final set’s superior predictive power and biological relevance.

B. Regression Models Analysis

We evaluated the performance of various regression models
with the final set of selected features using both traditional ML
models and deep learning architectures to identify the most
effective approach for Infrared Thermography data. Table V
compares traditional machine learning models. Table VI ana-
lyzes different CNN architectures with varying configurations.

The 1-Nearest Neighbor (1NN) model served as a basic
benchmark, and with an RMSE of 0.3873, it demonstrated lim-
ited capability in generalizing the dataset’s intricate patterns.
In contrast, Ordinary Linear Regression and Random Forest
provided significantly better results, with an RMSE of 0.2545
and 0.2460, respectively, indicating a strong linear relationship
in the data that this model captured effectively.

While KNN, optimized for the number of neighbors, and
Support Vector Regression (SVR) offered moderate perfor-
mance, they did not surpass the linear regression model in
terms of overall effectiveness. The RMSE of KNN was 0.2589,
and of SVR was 0.2692, suggesting potential misalignments
with the data’s underlying patterns or insufficient capturing of
non-linear interactions by the employed kernel.

Specialized techniques such as Binning emerged as par-
ticularly effective, achieving the lowest RMSE of 0.2296
among all tested traditional models. This method’s success
underscores the utility of segmenting data into bins and apply-
ing localized models within these segments to better capture
variable dynamics. On the other hand, Piecewise and Weighted
Linear Regression underperformed, suggesting issues such as
overfitting and suboptimal weighting schemes, respectively.

Quadratic Regression did not substantially improve predic-
tion accuracy, showing that simpler models achieved compa-
rable results without the additional computational complexity.

The use of CNNs necessitated an additional layer of analy-
sis, shown in Table VI. The architecture with four Conv1D(16)
layers with a kernel size of 3 and L2-regularization of 0.01 ex-
hibited the best performance among CNNs, with an RMSE of
0.2223, showcasing its capability to handle complex patterns

TABLE V
PERFORMANCE METRICS OF VARIOUS MACHINE LEARNING MODELS

USING THE FINAL SET OF SELECTED FEATURES, HIGHLIGHTING MAE,
MSE, AND RMSE. THE TABLE INCLUDES A COMPREHENSIVE

COMPARISON ACROSS ALL CONSIDERED METHODS.

Model Performance measures
MAE MSE RMSE

1NN 0.2748 0.1500 0.3873
Ordinary Linear Regression 0.1905 0.0647 0.2545

KNN with Optimization over K 0.2005 0.0670 0.2589
Support Vector Regression 0.1918 0.0725 0.2692

Binning 0.1708 0.0527 0.2296
Piecewise Linear Regression 0.2377 0.1072 0.3273
Weighted Linear Regression 0.2320 0.0925 0.3041

Quadratic Regression 0.2203 0.0963 0.3103
Random Forest 0.1907 0.0606 0.2460

TABLE VI
COMPARATIVE ANALYSIS OF DIFFERENT FEATURE SETS FOR PREDICTIVE

MODELING, MAE, MSE, AND RMSE.

Performance MeasuresHidden Layer Architecture Kernel Size L2-Regularization MAE MSE RMSE
2 ×Conv1D(64) 2 0.01 0.2017 0.0667 0.2583
2 ×Conv1D(32) 2 0.01 0.2063 0.0989 0.2496
4 ×Conv1D(16) 2 0.01 0.187 0.1496 0.2417
5 ×Conv1D(8) 2 0.01 0.234 0.1552 0.2733

4 ×Conv1D(16) 3 0.01 0.1823 0.1501 0.2223
5 ×Conv1D(16) 3 0.01 0.1886 0.1752 0.2298
4 ×Conv1D(16) 3 0.001 0.2312 0.1208 0.3124

and non-linearities more effectively. The L2 regularization
coefficient was optimized over various values, with 0.01 as
the optimal value for minimizing the RMSE.
In summary, the model evaluation revealed that while some
advanced models, including certain CNN configurations, en-
hanced performance, simpler approaches like Binning also
provided a highly effective balance of simplicity and accuracy.

IV. DISCUSSION

The integration of machine learning algorithms with In-
frared Thermography (IRT) has demonstrated significant im-
provements in the accuracy and reliability of non-contact
temperature measurements. By employing a comprehensive
feature selection strategy that combines both physiological
relevance and statistical significance, the models achieved
higher predictive accuracy, as evidenced by lower RMSE
values compared to more traditional feature-selection methods.

The importance of selecting features based on both scientific
literature and empirical data was highlighted. Features such as
maximal and inner canthi temperatures were identified as crit-
ical predictors due to their strong correlation with core body
temperatures. Additionally, the inclusion of environmental
factors like humidity and temperature offset further enhanced
the model’s robustness and reliability in practical applications.
Our results outperform those reported in [6], which utilized
only a single feature for regression implementation, either
TCEmax or Tmax. In [6], the best RMSE values achieved
using Ordinary, Piecewise, Weighted, and Binning methods
were 0.33, 0.35, 0.30, and 0.45, respectively, when using the
optimal choice between TCEmax or Tmax for each method.
By contrast, our use of the selected features has resulted in



better alignment and robustness between the predicted outputs
of the regression models and the reference temperature values,
as demonstrated in Table V. We also introduced CNNs for the
thermography dataset as a new layer of analysis that effectively
handled complex patterns and non-linearities (see Table VI).

Our model enhances IRT accuracy by addressing discrepan-
cies between measured surface and actual core body temper-
atures, improving upon traditional methods with an RMSE of
0.2223°C, compared to potential errors up to 2°C in NCITs.
NCITs often suffer from sensor inaccuracies and environmen-
tal factors that introduce considerable errors. Similarly, unless
properly calibrated, IRT systems face reliability challenges.
When properly calibrated, IRTs demonstrate enhanced perfor-
mance over NCITs, achieving a clinical bias within ±0.03°C
[6]. Our approach thus offers more reliable temperature mea-
surements and improves the calibration process to ensure high
accuracy and robustness in clinical and public health settings.
To integrate our approach into a real thermometer device, the
IRT system captures thermal images, feeding raw data into our
ML model to refine temperature estimates.

The methodologies developed in this study, including the
comprehensive feature selection process and the integration
of machine learning algorithms with IRT (Figure 1), are not
limited to the specific application of infrared thermography for
temperature measurement. They can be generalized to other
biomedical applications requiring non-contact measurements
or predictions of biomedical parameters, where advanced data
processing and machine learning are essential [15].

The pipeline, encompassing scientific background knowl-
edge and advanced technical feature engineering, can be ap-
plied to other healthcare and sensor applications. For instance,
predicting physiological parameters like heart rate, oxygen
saturation, or glucose levels using non-contact or remote sens-
ing technologies could benefit from a similar approach [16].
Moreover, this methodology could improve the robustness
and accuracy of ill-posed regression problems in non-invasive
cancer microstructural imaging methods, offering a substan-
tial improvement over conventional optimization techniques
[17]. Comparable machine learning algorithms have been
successfully applied in health monitoring devices, enhancing
predictive accuracy and reliability [18]. The versatility and
potential of these algorithms are further exemplified in diverse
applications [19]–[22]. Enhancing predictive accuracy and reli-
ability through robust feature selection and model optimization
is widely applicable in biomedical engineering

V. CONCLUSION AND OUTLOOK

The integration of machine learning algorithms with In-
frared Thermography (IRT) has demonstrated significant im-
provements in the accuracy and reliability of non-contact
temperature measurements. By employing a comprehensive
feature selection strategy that combines both physiological rel-
evance and statistical significance, the models achieved higher
predictive accuracy, as evidenced by lower RMSE values com-
pared to traditional methods. The refined feature set, identified

through a combination of statistical analysis and domain-
specific insights, considerably enhanced the model’s predictive
accuracy while maintaining computational efficiency.

Future research could focus on expanding the applicability
of these methods to other infectious diseases and sensor appli-
cations, suggesting broad potential for non-contact diagnostic
tools and public health advancements.
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