
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LACTOK: LATENT CONSISTENCY TOKENIZER FOR
HIGH-RESOLUTION IMAGE RECONSTRUCTION AND
GENERATION BY 256 TOKENS

Anonymous authors
Paper under double-blind review

ABSTRACT

Image tokenization has significantly advanced visual generation and multimodal
modeling, particularly when paired with autoregressive models. However, current
methods face challenges in balancing efficiency and fidelity: high-resolution im-
age reconstruction either requires an excessive number of tokens or compromises
critical details through token reduction. To resolve this, we propose Latent Con-
sistency Tokenizer (LacTok) that bridges discrete visual tokens with the compact
latent space of pretrained Latent Diffusion Models (LDMs), enabling efficient
representation of 1024×1024 images using only 256 tokens—a 16× compression
over VQGAN. LacTok integrates a transformer encoder, a quantized codebook,
and a latent consistency decoder. Direct application of LDM as the decoder re-
sults in color and brightness discrepancies; thus, we convert it to latent consistency
decoder, reducing multi-step sampling to 1-2 steps for direct pixel-level supervi-
sion. Experiments demonstrate LacTok’s superiority in high-fidelity reconstruc-
tion, with 10.8 reconstruction Fréchet Inception Distance on MSCOCO-2017 5K
benchmark for 1024×1024 image reconstruction. We also extend LacTok to a text-
to-image generation model, LacTokGen, working in autoregression. It achieves
0.73 score on GenEval benchmark, surpassing current state-of-the-art methods.

1 INTRODUCTION

Image tokenizer Van Den Oord et al. (2017); Yu et al. (2024b) aims to convert images from their
raw pixel-based representations into discrete visual tokens, which can then be used to reconstruct the
original image through its corresponding decoder. This approach has garnered significant attention
due to its crucial role in image generation, particularly in autoregressive models Sun et al. (2024);
Tian et al. (2024); Wang et al. (2024) and masked transformers Chang et al. (2023; 2022); Ding et al.
(2022); Xie et al. (2024a).

A representative approach, VQGAN Yu et al. (2022) learns a codebook to quantize continuous em-
beddings of a 256×256 image into 256 discrete tokens using a spatial downsampling ratio of 16×—a
standard configuration in recent works Mizrahi et al.; Qu et al. (2024); Shi et al. (2022); Sun et al.
(2024). When it comes to high-resolution image reconstruction or generation, e.g., 1024×1024 pix-
els, requires predicting 4096 tokens, creating substantial challenges in both computational efficiency
and model optimization. This lengthy token sequence complicates downstream applications, such as
integrating visual tokens into large multimodal models for interleaved text and image understanding
and generation. While recent advancements explore token compression through residual codebooks
Lee et al. (2022b); Tian et al. (2024) and 1D tokenization Kim et al. (2025); Yu et al. (2024b); Li
et al. (2025); Bachmann et al. (2025) for 256×256 images, these approaches have not substantially
addressed the challenges of higher-resolution image reconstruction and generation. Recent latent
diffusion models (LDMs) Esser et al. (2024b); Labs (2024); Podell et al. (2024) have demonstrated
remarkable success in 1024×1024 image generation by operating in low-dimensional latent spaces.
This raises a compelling question: Can discrete tokens be aligned with the compact latent space of
LDMs to leverage their powerful decoders for high-fidelity reconstruction and generation use?

In this paper, we introduce a Latent Consistency Tokenizer (LacTok), comprising a transformer en-
coder, a quantized vector codebook, and a latent consistency decoder. Our key insight is to align
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discrete visual tokens with the compact latent space of pretrained LDMs, enabling efficient rep-
resentation of 1024×1024 images with only 256 tokens—a 16× reduction compared to VQGAN.
Inspired by ControlNet Zhang et al. (2023), we first employ a latent diffusion decoder through copy-
ing adaptive blocks in LDM with zero convolution connecting copy and raw LDM. During training,
LacTok is optimized using diffusion objectives with progressive resolution scaling from 512×512
to 1024×1024. However, relying solely on diffusion loss results in reconstructed images with no-
ticeable discrepancies in color and brightness. To address this, we introduce latent consistency
models Ren et al. (2024); Xie et al. (2024b) to the decoder, converting the multi-step sampling pro-
cess into one or two steps. It enables more direct supervision and improving reconstruction fidelity.
Moreover, we extend LacTok to text-to-image (T2I) generation model (LacTokGen) by training an
autoregressive transformer, which efficiently generates these compact token sequences through text-
instructed autoregressive prediction.

We conducted comprehensive experiments to evaluate LacTok on several validataset datasets. With
256 tokens to reconstruct 1024×1024 pixel images, LacTok achieves 10.80 reconstrution Fréchet
Inception Distance (rFID) score Heusel et al. (2017) on MSCOCO-2017 5K validation dataset Lin
et al. (2014), significantly outperforming SeedTok Ge et al. (2023), TiTok Yu et al. (2024b), Ll-
maGen Sun et al. (2024), and FlexTok Bachmann et al. (2025). On ImageNet benchmark Deng
et al. (2009), LacTok gets 2.78 rFID, surpassing SeedTok and LlamaGen, comparable to TiTok and
FlexTok, but with much better Peak Signal-to-Noise Ratio, Structural Similarity Index Measure, and
Learned Perceptual Image Patch Similarity than TiTok and FlexTok. On MJHQ-5K dataset Play-
groundai (2023) and FLUX-5k dataset synthesized by FLUX.1-dev Labs (2024), LaTok obtains
noticeably lower rFID than other tokenizers. For text-to-image task, LacTokGen obtains 0.73 score
on GenEval benchmark Ghosh et al. (2023), superior to other diffusion and autoregressive models,
e.g., 0.62 by SD3 Esser et al. (2024a), 0.56 by HART Tang et al. (2024), 0.53 by Show-o Xie et al.
(2024a), and 0.32 by LlamaGen Sun et al. (2024).

Our contributions are threefold:

• We propose LacTok, an image tokenizer that bridges discrete visual tokens with the la-
tent space of pretrained LDMs, demonstrating the ability to reconstruct and generate
1024×1024 images with only 256 tokens.

• To alleviate color and brightness discrepancies caused by diffusion objective in reconstruc-
tion, we integrate latent consistency model into latent diffusion decoder with direct pixel-
level supervision through efficient few-step sampling.

• Built on LacTok, LacTokGen can generate high-quality 1024×1024 images via text-guided
autoregressive token prediction. It achieves leading performances on multiple synthesis
benchmarks.

2 RELATED WORK

2.1 IMAGE TOKENIZATION

Variational Autoencoders (VAEs) Kingma (2013) represent a significant advancement in the field
by learning to map inputs to a distribution. Building upon this foundation, VQVAEs Van Den Oord
et al. (2017) learn discrete representations that form a categorical distribution. This process is fur-
ther improved in VQGAN Esser et al. (2021), which enhances the training process through the
integration of adversarial training techniques. The transformer architecture within autoencoders is
explored in ViT-VQGAN Yu et al. (2022). RQ-VAE Lee et al. (2022b), introduces residual quan-
tization to the VAE framework, recursively quantizes the feature map in a coarse-to-fine manner,
allowing for a precise approximation of the feature map with a fixed codebook size. In a different
vein, MAGVIT-v2 Yu et al. (2024a), FSQ Mentzer et al. (2024), BSQ-ViT Zhao et al. (2024) propose
lookup-free quantization, presenting an alternative approach that bypasses traditional lookup mech-
anisms. Visual autoregressive modeling Tian et al. (2024) exploits next-scale prediction for image
reconstruction, while TiTok Yu et al. (2024b) and MergeVQ Li et al. (2025) compress token number
by 1D tokens to represent the same image. DiVAE Shi et al. (2022), SEED tokenizer (SeedTok) Ge
et al. (2023) and FlexTok Bachmann et al. (2025) incorporate diffusion models into tokenizer for
image tokenization. Nevertheness, they either do not validate their efficacy on large-scale text-to-
image task, or generate undesirable images. VILA-U Wu et al. (2024), TokenFlow Qu et al. (2024),
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and TA-TiTok Kim et al. (2025) introduce text supervision to enhance semantic information for dis-
crete tokens. However, they can not reconstruct or generate high-resolution image details by small
number of tokens. Motivated by LDMs Esser et al. (2024a); Labs (2024); Podell et al. (2024) which
are able to generate high-resolution, high-quality images, we explore effective method to leverage
the pretrained LDM as decoder to reconstruct high-resolution images.

2.2 TOKENIZED IMAGE GENERATION

Image tokenization has become a powerful technique for image generation, allowing images to be
represented as discrete tokens that can be manipulated and generated using various modeling ap-
proaches. Two prominent methodologies in this domain are the masked-transformer style and the
autoregressive style. In the masked-transformer style, MaskGIT Chang et al. (2022) utilizes a bidi-
rectional transformer decoder. During training, the model predicts randomly masked tokens and
iteratively refines the image at inference. Other notable works in this category include Chang et al.
(2023); Lee et al. (2022a); Lezama et al. (2022a;b). Conversely, the autoregressive style involves
predicting all tokens of an image prediction Esser et al. (2021); Lu et al. (2023); Wang et al. (2024);
Han et al. (2025). HART Tang et al. (2024) uses hybrid tokenizers for image generation. Other
works Jin et al. (2024); Team (2024); Wu et al. (2024); Zhan et al. (2024) integrate discrete to-
kenizers with large language models to generate images. LlamaGen Sun et al. (2024) stands out
as a simple yet effective generation method that adopts the autoregressive approach, but it fails to
generate satisfactory images. We extend LacTok to T2I generation model by training an autoregres-
sive model to predict the next discrete tokens produced by the tokenizer. Thanks to the excellent
performance of LacTok to reconstruct images, our model is able to generate superior images.

3 PRELIMINARY

3.1 VQGAN.

VQGAN Esser et al. (2021) typically consists of encoder Enc, quantizer Q, and decoder Dec.
Given an image x ∈ RH×W×3, where H,W denotes image height and width, respectively, Enc
firsts extracts its latent embeddings G = Enc(x) ∈ RH/f×W/f×D, effectively reducing the spatial
dimensions by a factor of f . Then, Q maps each embedding g ∈ RD in G with D representing
embedding dimension to the nearest code ci in a learnable codebook C ∈ RN×D, where N is the
codebook size. Mathematically, this can be formulated as:

Q(g) = cTok, T ok = arg min
j∈{1,2,...,N}

∥g − cj∥22. (1)

The mapped feature vectors C ∈ RH/f×W/f×D are calculated by Q(G), while decoder converts C
to image x̂ through Dec(C)).

3.2 DIFFUSION MODELS.

Diffusion model Ho et al. (2020) is composed of a forward diffusion process and a reverse denoising
process. Forward process gradually adds random noise to clean data x0 and diffuses it into pure
Gaussian noise as:

xt = αtx0 + βtϵ, t ∈ [0, T ], (2)
where ϵ ∈ N (0, I), αt, βt are scheduler coefficients with α2

t + β2
t = 1, and T is the ending

time. During the training stage, DMs usually minimizes diffusion loss LDF via neural network ϵθ
predicting noise as:

LDF = ∥ϵθ(xt, t)− ϵ∥22. (3)
Denoising process reverses the diffusion process to create clean samples from the Gaussian noise.

To reduce resource consumption, Latent Diffusion Models Esser et al. (2024b); Labs (2024); Podell
et al. (2024) transform pixel image x0 into latent embedding z0 via VAE, and perform diffusion
and denoising operations in latent space. Sequentially, VAE decoder converts predicted z0 back
to the pixel image. LDMs has shown great success in text-to-image, image-to-image tasks, but
they have not been effectively explored for building discrete tokenizer. In this study, we investigate
effective method which enables LDMs to construct discrete tokenizer for high-resolution image
reconstruction and generation.
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Figure 1: (a) Overview of LacTok. The input image is sequentially processed by downsampler,
encoder and quantizer into condition features. It also goes through the VAE Encoder in pretrianed
LDM to produce latent z0, which will be diffused to produce zt. LADD takes C, zt and t as input.
In the first phase, we apply LDF to train LADD. In the second phase, we introduce acceleration
models to LADD and replace zt with Gaussian noise to perform one or two step inference, which
allows us to train LADD with pixel reconstruction loss LPR. For simplicity, we omit the time step
t. (b) Illustration of autoregressive text-to-image generation with LacTokGen.

4 METHODOLOGY

Conventional discrete tokenizers Esser et al. (2021); Sun et al. (2024); Van Den Oord et al. (2017);
Yu et al. (2022); Li et al. (2025) encode images into discrete tokens and decode the tokens into origi-
nal images in pixel space. These works transform text-to-image generation into next-prediction task,
which predict image tokens by autoregressive model conditioned on the text input. However, these
tokenizers need a large number of tokens to generate high-resolution images, leading to prohibitive
training and inference costs. Moreover, these tokenizers can not faithfully reconstruct images with
intricate, high-frequency details such as human faces. Such drawback sets a low ceiling for text-to-
image generation task.

We are targeting at constructing an innovative tokenizer for high-resolution image reconstruction
and generation via a small number of discrete tokens. As information loss inevitably occurs after
encoding and quantization, which is a form of lossy compression. The decoder’s task is to predict
an image as close as possible to the input from limited information. To this end, we propose Latent
Consistency Tokenizer (LacTok) which is capable of reconstructing and producing high-quality im-
ages with only 256 tokens. Unlike the existing tokenizers that operate image encoding and decoding
in pixel space, LacTok models decoding procedure in latent space through unleashing the potential
of latent diffusion model, which further makes use of latent consistency models Ren et al. (2024);
Xie et al. (2024b), to enforce pixel reconstruction. Upon LacTok, we build an autoregressive model
for high-resolution image generation driven by text conditions. Figure 1 illustrates the overview of
the proposed method.

4.1 LATENT DIFFUSION RECONSTRUCTION

Considering that latent diffusion models Esser et al. (2024a); Podell et al. (2024) are powerful to
synthesize high-quality images, we propose latent diffusion decoder (LADD), denoted as fθ, to build
discrete tokenizer. The core thought of LADD is to predict the latent representation z0 conditioned
on the pixel image x0. To fulfill this idea, the raw image x0 ∈ RH×W×3 is converted into latent
code z0 ∈ RH/8×W/8×C using VAE encoder of pretrained LDM, where H = W ∈ {512, 1024}.
To predict z0, diffusion loss is used to train LADD as:

LDF = ∥fθ(zt,C, t)− ϵ∥22, (4)

where zt is obtained by forward diffusion procedure using Eq. (2) in latent space. The condition
C is obtained by sequentially encoding x0 using Enc and the quantizer Q through the Eq. (1).
To reduce token number, x0 is first downsampled into the resolution of H ′ × W ′, where H ′ =
W ′ ∈ {224, 256, 288}. To promote training’s stability, we draw inspiration from ControlNet Zhang
et al. (2023) to design LADD structure. Specifically, LADD freezes the parameters of pretrained
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LDM and simultaneously clones some blocks of LDM to a trainable copy. Zero convolution (ZC)
is utilized to connect trainable copy and raw LDM. The output O of LADD block at timestep t is
computed as:

O = ZC(Ftrain(zt,C, t)) + F (zt, t), (5)
where F and Ftrain denote the frozen LDM block and trainable block in trainable copy, respectively.

To train our tokenizer and save training resource, the visual encoder and quantilizer are initialized
using pretrained LlamaGen tokenizer. Next, we freeze the visual encoder and quantilizer, enabling
only LADD to undergo training.

4.2 PIXEL RECONSTRUCTION

The diffusion loss enables the decoder to reconstruct the original image through multi-step sam-
pling. However, we have empirically observed that the reconstructed images exhibit discrepancies
in color and brightness compared to the original images. To address this issue, we introduce a
pixel reconstruction loss LPR that compels the decoded image to recover the original image. Since
diffusion model requires multi-step sampling to generate images, it is unable to directly minimize
LPR, which consumes a significant amount of GPU memory and may lead to gradient explosion.
Consistency model (CM) can enable LDMs to generate images with few-step inference. Therefore,
we leverage CM to assist LADD in achieving rapid image reconstruction. As HyperSD Ren et al.
(2024) and Training-efficient Latent Consistency Model (TLCM) Xie et al. (2024b) show state-of-
the-art performance, both of which are CMs for LDM’acceleration, they are integrated into LADD
to reconstruct image with few steps. Sequentially, LPR can be used to optimize our tokenizer as
gradient is easily propagated into decoder. One-step sampling is used to reconstruct clean latent
code ẑ0 when HyperSD is merged into LADD, because it can generate high-quality image with one
step. Two-step sampling is leveraged to restore ẑ0 when incorporating TLCM into LADD since it
needs at least two steps, where stop-gradient operation is adopted for the first iteration. Both models
accept pure Gaussian noise as initial latent code. The reconstruction loss LPR is:

LPR = LP (Dec(ẑ0),x0) (6)

where Dec(.) represents the pretrained VAE decoder in LDM, LP is a perceptual loss from
LPIPS Zhang et al. (2018). We use LacTok-H and LacTok-T to represent that HyperSD and TLCM
are utilized in LADD to minimize LPR, respectively.

4.3 TEXT-TO-IMAGE GENERATION

In order to unleash the value of tokenizer, we leverage LacTok to build text-to-image generation
model (LacTokGen). LacTokGen is implemented through an autoregressive models Pθ with θ de-
noting parameters. A text encoder is used to extract text feature ftext, which is projected by an
additional MLP to match the dimension of autoregressive models. Cross entropy loss LCE is ap-
plied to train autoregressive model as:

LCE = −
L∑

i=1

logPθ(Toki+1|Toki:1, ftext), (7)

where L is token number to represent a image. As classifier-free guidance (CFG) Ho & Salimans
(2022) is critical to generate high-quality image in LDM, we adopt it in our models. During training,
the conditional is randomly replaced by a null unconditional embedding. During inference stage,
the logit ℓg is computed as ℓg = ℓu+ s(ℓc− ℓu) for every token, where ℓc represents the conditional
logit, ℓu denotes the unconditional logit, and s is the scaling factor for CFG.

4.4 DATA CONSTRUCTION

It is well known that high-quality data is necessary to train LDM, but it is hard to access a mass of real
data. To deal with this challenge, FLUX.1-dev Labs (2024) is used to produce data as it can generate
superior images. The text input for FLUX.1-dev is from LAION-400M Schuhmann et al. (2021).
Totally, we synthesize 30M images, and synthetic images and LAION-Aesthetics-6.5+ constitute
the data source. Since raw caption is too simple to describe image content, we use Qwen2.5-VL-
72B Bai et al. (2025) to generate new caption according to image and raw caption. The new caption
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Table 1: The reconstruction performance of LacTok on ImageNet, MSCOCO-2017 5K validation
dataset. All the tokenizers are trained on ImageNet, except for those specifically marked with * or
+. * denotes the tokenizer is trained on our constructed data. + denotes the tokenizer is trained on on
CC3M Sharma et al. (2025), Unsplash Chesser & Carbone (2023), LAION-COCO Christoph et al.
(2022), and COCO Chen et al. (2015)

Methods ImageNet MSCOCO-2017

rFID↓ P↑ S↑ L↓ rFID↓ P↑ S↑ L↓
SeedTok+ Ge et al. (2023) 15.65 9.39 nan 0.69 23.28 9.37 nan 0.72
TiTok-S-128 Yu et al. (2024b) 2.32 16.97 0.51 0.49 12.31 16.47 0.50 0.51
LlamaGen Sun et al. (2024) 3.17 19.94 0.64 0.41 11.23 19.53 0.64 0.43
FlexTok Bachmann et al. (2025) 2.00 18.02 0.58 0.46 13.08 17.23 0.56 0.49
LacTok-H(Ours) 2.78 19.80 0.65 0.39 10.80 19.28 0.64 0.41
LacTok-H*(Ours) 9.04 19.02 0.65 0.43 16.93 18.20 0.64 0.43
LacTok-T*(Ours) 8.71 18.80 0.65 0.43 15.05 17.98 0.64 0.42

Table 2: The reconstruction performance of various methods on MJHQ-5K and FLUX-5K datasets.

Methods MJHQ-5K FLUX-5K

rFID↓ P↑ S↑ L↓ rFID↓ P↑ S↑ L↓
SeedTok+ Ge et al. (2023) 23.87 8.39 nan 0.73 25.85 8.88 nan 0.74
TiTok-S-128 Yu et al. (2024b) 14.17 16.42 0.54 0.50 15.09 16.29 0.59 0.47
LLamaGen Sun et al. (2024) 13.26 19.24 0.68 0.41 13.28 19.05 0.72 0.38
FlexTok Bachmann et al. (2025) 16.17 17.21 0.60 0.47 16.14 17.68 0.67 0.43
LacTok-H(Ours) 11.34 19.16 0.68 0.38 12.45 18.68 0.73 0.37
LacTok-H*(Ours) 14.02 18.04 0.68 0.39 12.18 18.70 0.74 0.35
LacTok-T*(Ours) 13.32 17.81 0.69 0.38 11.04 18.90 0.74 0.34

has to describe main objects and their attributes, as well as spatial relationship among the objects,
within 20 words. As some images do not meet human preferences, ImageReward (IR) Xu et al.
(2023)> 0.9 and Multi-dimensional Preference Score (MPS) Zhang et al. (2024)> 12.0 are used to
select desirable image-caption pairs from data source. Finally, we build 20M high-quality text-image
pairs. The examples of the image-caption pairs are shown in Figure 4.

5 EXPERIMENTAL RESULTS

Please refer to Section A for implementation details.

5.1 IMAGE RECONSTRUCTION

We employ Peak Signal-to-Noise Ratio (P), Structural Similarity Index Measure (S) to evaluate the
image similarity between reconstructed and raw images. Concurrently, we evaluate the distribution
discrepancy by reconstruction Fréchet Inception Distance score (rFID) Heusel et al. (2017). Learned
Perceptual Image Patch Similarity (L) Zhang et al. (2018) is further used to measure perceptual
similarity as it performs excellently in terms of human visual perception. The validation is conducted
on ImageNet 50K validation set Deng et al. (2009), MSCOCO-2017 5K validation set Lin et al.
(2014), MJHQ-5K validation set which is randomly sampled from MJHQ-30K dataset Playgroundai
(2023) and FLUX-5K validation dataset which is synthesized by FLUX.1-dev. All the images are
resized to 1024× 1024 size for evaluation as we aim at high-resolution image reconstruction.

Tables 1 and 2 list the reconstruction performance of the different tokenizers, where all tokeniz-
ers use 256 tokens except that SeedTok and TiTok-S-128 adopt 32 tokens and 128 tokens, respec-
tively. It can be observed that our LacTok-H demonstrates strong performance compared to other
tokenizers. SeedTok Ge et al. (2023) presents poor performance across all the datasets, indicating
the difficulty of image reconstruction using a pretrained LDM. Our approach overcomes this by
integrating diffusion and pixel reconstruction losses, leading to remarkable improvements. While
LacTok-H shows a slightly higher rFID than FlexTok Bachmann et al. (2025) and TiTok Yu et al.
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(2024b) on object-centric ImageNet, it achieves superior scores on P, S, and L metrics. More impor-
tantly, LacTok-H exhibits substantially better performance on datasets with complex scenes, such
as MSCOCO-2017, MJHQ-5K, and FLUX-5K. Furthermore, LacTok-H surpasses LlamaGen Sun
et al. (2024) on most metrics (rFID, S, L) across four datasets, with only a comparable P value.
This advantage stems from our use of a pretrained LDM enhanced by HyperSD, which excels at
reconstructing fine-grained details like human faces.

Moreover, the rFID of LacTok-H* and LacTok-T* trained on our constructed data is higher than
LacTok-H, because data distribution of the constructed images dramatically deviate from those of
ImageNet, MSCOCO, and MJHQ sets. When evaluated on FLUX-5K dataset, LacTok-H* and
LacTok-T* get better rFID score than other methods. The performance of LacTok-H* concerning
rFID, L are improved by LacTok-T*, thanks to its ability to reconstruct intricate, high-frequency by
increasing the sampling steps.

Figure 2 illustrates the visual comparisons of image reconstruction for different tokenizers. We
can observe that the proposed LacTok-H significantly improves reconstruction performance than
SeedTok, TiTok, FlexTok, and LlamaGen, especially in image details such as faces. Besides, it can
be seen that the images reconstructed by LacTok-H* and LacTok-T* show better quality than other
methods. The result also indicates that lower rFID on ImageNet does not necessarily indicate better
reconstruction with respect to human preference.

Figure 2: Visual comparisons of images reconstruction for different methods. LacTok can recon-
struct higher-quality images than SeedTok, TiTok, FlexTok, and LlamaGen, especially in detail
reconstruction.

5.2 TEXT-TO-IMAGE GENERATION

To evaluate the conditional generation performance of LacTok, we perform large-scale text-to-image
experiments using LacTokGen. The evaluation is conducted on GenEval benchmark Ghosh et al.
(2023) and MSCOCO-2017 5K validation dataset Lin et al. (2014). GenEval benchmark is used

7
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Table 3: The performance of our text-to-image models on GenEval and MSCOCO-2017 5K valida-
tion dataset.

Methods GenEval↑ MSCOCO-2017↑
Two Obj Position Color Attri Overall IR MPS HPSv2

Diffusion Models

SD1.5 Rombach et al. (2022b) 0.38 0.04 0.06 0.43 0.16 10.08 0.285
SDXL Podell et al. (2024) 0.74 0.15 0.23 0.55 0.82 11.9 0.295
SD3 Esser et al. (2024b) 0.74 0.34 0.36 0.62 1.00 12.59 0.303
FLUX.1-dev Labs (2024) 0.85 0.21 0.45 0.68 1.00 12.97 0.306

AutoRegressive Models

LlamaGen Sun et al. (2024) 0.34 0.07 0.04 0.32 0.29 9.56 0.273
HART Tang et al. (2024) - - - 0.56 0.66 11.69 0.298
Show-o Xie et al. (2024a) 0.52 0.11 0.28 0.53 0.95 10.58 0.277
LacTokGen-H 0.67 0.49 0.50 0.71 0.86 12.22 0.298
LacTokGen-H* 0.69 0.51 0.51 0.72 0.88 12.30 0.302
LacTokGen-T* 0.72 0.53 0.51 0.73 0.90 12.38 0.304

Table 4: Ablation study of key components in LacTok. VQ-LADD means substituting decoder in
LlamaGen with LADD, and using 25-step DDIM Song et al. (2020) to reconstruct images.

Methods rFID↓ P↑ S↑ L↓
LlamaGen 13.26 19.24 0.68 0.41
VQ-LADD 12.72 16.53 0.63 0.47
VQ-LADD+HyperSD 14.71 16.64 0.64 0.47
VQ-LADD+TLCM 14.40 16.82 0.65 0.45
LacTok-H 11.34 19.16 0.68 0.38

to evaluate compositional image properties, such as spatial relations and attribute binding. On
MSCOCO dataset, IR, MPS, and HPSv2 Wu et al. (2023) are used to assess human preference
of the generated image.

Table 3 summaries the performance of several models on two validation datasets. LacTokGen-T*
outperforms LlamaGen on GenEval benchmark by 0.41 points and achieves substantially better re-
sults across all metrics on MSCOCO-2017. This result demonstrates the superiority of our model
in terms of image quality, which derives from LacTokGen-T*’s capacity to effectively leverage the
pretrained Latent Diffusion Model (LDM) for rendering fine-grained details. LacTokGen-T* also
surpasses SDXL by 0.18 on GenEval and improves all metrics on MSCOCO-2017. This gain stems
from two factors: (1) our tokenizer efficiently represents high-resolution images with discrete to-
kens, simplifying autoregressive modeling compared to diffusion-based training; and (2) the use of
high-quality training data for the autoregressive model. Moreover, LacTokGen-T* significantly out-
performs other autoregressive models like Show-o Xie et al. (2024a) and HART Tang et al. (2024) on
both benchmarks, as these rely on simple CNN or transformer decoders that struggle to reconstruct
fine details and spatial relationships. Notably, LacTokGen-T* also beats SD3 Esser et al. (2024b)
and FLUX.1-dev on GenEval, due to its use of informative captions that well describe composi-
tional scenes. Additionally, LacTokGen-H* improves upon LacTokGen-H through better training
data, suggesting that ImageNet reconstruction metrics do not fully reflect generative capability. The
performance of LacTokGen-H* is further improved by LacTokGen-T*, which again verifies that
TLCM is more powerful than HyperSD to help decoder generate high-quality images.

Figure 5 compares the visual results of different models. we can observe that the images generated
by LacTokGen-T* enjoy better text-image alignment and higher human preference than SD1.5 Rom-
bach et al. (2022a), SDXL, HART Tang et al. (2024), Show-o Xie et al. (2024a), and LlamaGen,
especially in facial generation.
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Figure 3: Visual comparison of the generated images by different models.

5.3 ABLATION STUDY

As outlined in Table 4, we conduct several experiments on MJHQ-5K to verify the effectiveness of
the key components with respect to our LacTok, where LlamaGen is adopted as baseline.

Latent diffusion decoder. Compared with LLamaGen, LADD shows worse metrics concerning
P, S, L. The reason lies in the fact that LADD predicts the latent representation of the raw image,
leading to discrepancies in color and lighting compared to the original image.

LADD acceleration. LADD+HyperSD and LADD+TLCM denote that one-step HyperSD and
three-step TLCM are directly used to accelerate reconstruction procedure. It can be seen that TLCM
outperforms HyperSD. The probable reason is that TLCM is stronger to reconstruct the fine details
of the image due to its better generation performance.

Reconstruction loss. Through optimizing VQ-LADD using pixel reconstruction loss, LacTok-H
surpasses LLamaGen and VQ-LADD by a large margin in terms of rFID, S, and L metrics. The
result indicates that the proposed reconstruction loss is critical to improve tokenizer’s performance,
which is able to enforce the reconstructed image close to raw image in pixel space.

Token number. As summarized in Table 5, we can see even using 192 tokens, LacTok-H can
reconstruct 1024-pixel image with high performance. As the increase of the token number, the
performance is further improved.

CFG scale. Table 6 lists the performance of LacTok-T* for text-to-image generation with different
CFG scale. It can be observed that LacTok-T* is capable of generating high-quality image using
different CFG. The performance can be improved with higher CFG, and the improvement becomes
slight when scale>2.

6 CONCLUSION

We present LacTok, a discrete tokenizer, which leverages pretrainded LDMs assisted by acceleration
models for 1024-pixel image reconstruction with only 256 tokens. LacTok is trained by diffusion
loss and pixel reconstruction loss sequentially. It is also extended to text-to-image generation mod-
els, LacTokGen, through an autoregressive model. Extensive experiments demonstrate our LacTok
outperforms the existing methods for high-resolution image reconstruction. Our LacTokGen shows
strong capability to generate high-quality images, achieving 0.73 score on GenEval benchmark.
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A IMPLEMENTATION DETAILS

We adopt the encoder in LLamaGen as our encoder and SDXL as the pretrained LDM. For tokenizer
training, diffusion loss is first used to train LacTok for 80000 iterations, and then reconstruction loss
is exploited to further optimize LacTok for 20000 iterations. 4 A100 is used with Adam Optimizer
to train LacTok, where β1 = 0.9, β2 = 0.99, learning rate (lr) = 1e-5, total batch size = 4. All the
images x0 with progressive resolution from 512 to 1024 pixel size are encoded into latent space by
SDXL-VAE. The images are also randomly down-sampled to {224, 256, 288} pixel size, which is
then feed into encoder and quantilizer, yielding condition of the LDM. During the training stage of
LacTokGen, flan-t5-xl is utilized to extract text features, AR model is initialed by pretrained GPT-
XL with 77M parameters in LlamaGen. In this stage, we set lr=1e-4, batch size=320 with 8 A100.
AdamW optimizer with β1 = 0.9, β2 = 0.99 is used to train LacTokGen for 20K iterations. All the
tokenizers are trained on ImageNet, except for those specifically marked with an asterisk (*), which
are trained on the constructed data.
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B USAGE OF LLM

We employ DeepSeek to refine our writing.

Figure 4: The examples of images and their captions used to train LacTokGen.

Table 5: The effect of token number for LacTok-H to reconstruct 1024-pixel image on MJHQ-5K
dataset.

#Tokens rFID↓ P↑ S↑ L↓
192 12.35 18.46 0.66 0.40
256 11.34 19.16 0.68 0.38
324 11.01 19.33 0.69 0.37

Table 6: The effect of CFG scale for LacTokGen-T* to generate image on MSCOCO-2017 5K
validation set.

scale IR↑ MPS↑ HPSv2↑
1.5 0.86 12.37 0.303
2 0.89 12.38 0.304
3 0.90 12.40 0.304
7 0.90 12.41 0.304
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Figure 5: 1024-pixel image generation results of LacTokGen-T* in an autoregressive way with 256
tokens.
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