
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SOLOS: SPARSE OPTIMIZATION FOR LONG
SEQUENCES IN CONTEXT COMPRESSION ENHANCED
LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in long-context large language models (LLMs) make them
commercially viable, but their standard attention mechanisms’ quadratic
complexity hinders deployment due to excessive computational costs. To address
this, researchers have explored Q-former-like architectures that compress input
sequences for LLMs, reducing inference costs. However, these methods often
underperform compared to mainstream LLMs trained on short sequences and
struggle with longer context. We introduce SOLOS, an innovative method for
training long sequences within limited computational resources. This approach
effectively narrows the performance gap between context-compressed LLMs and
mainstream LLMs handling long contexts. By significantly reducing training
overhead, SOLOS enables training on long-sequence datasets, such as 100K
tokens for instruction tuning, using merely an 8× RTX3090 machine. Our
comprehensive experimental analysis confirms SOLOS not only significantly
outperforms other context-compression-augmented LLMs but also matches the
performance of state-of-the-art long-context models. The introduction of SOLOS
marks a significant step toward deploying long-context LLMs, offering both
efficiency and effectiveness in practical scenarios.

1 INTRODUCTION

In recent years, long-context Large Language Models (LLMs) have seen rapid advancements,
increasingly meeting commercial robustness standards (Li et al., 2023a; Team et al., 2024; Xinrong
et al., 2024). Despite these advancements, deploying long-context LLMs in practical applications
remains challenging, mainly due to the computational overhead from the standard full attention
mechanism’s quadratic complexity in long-context scenarios.

To address this issue, much research has focused on reducing computational burden. Notably,
Wingate et al. (2022); Ge et al. (2024) found that LLM input tokens have considerable redundancy
due to natural language’s inherent redundancy. Building on this, Chevalier et al. (2023); Zhang et al.
(2024) suggested compressing the input sequence by consolidating key information, reducing token
count and computational costs. Many studies, including (Chevalier et al., 2023; Zhang et al., 2024),
use a context encoder like BLIP-2’s Q-former (Li et al., 2023b). This encoder integrates contextual
information into learnable queries via an attention module. These queries, a new modality, must be
aligned with the LLM’s embedding space by a dedicated network before being input into the LLM.

Though these approaches offer significant acceleration through high compression rates, their
performance often lags behind uncompressed models. The performance gap occurs because these
models are typically trained on shorter sequences and directly applied to longer ones. For instance,
Activation Beacon (Zhang et al., 2024) trains on up to 8K tokens but infers on sequences up to
400K tokens. The training-inference discrepancy limits the model’s ability to handle long-context
understanding. However, training these context-compression models on extremely long sequences
is typically impractical due to excessive computational demands. Thus the challenge is reducing the
training overhead for context-compression LLMs to effectively leverage long sequences.

We introduce Sparse Optimization for LOng Sequences (SOLOS), a context-compression
framework with an efficient training methodology. Specifically, the context is divided into segments,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) Pre-filling latency and memory allocation during inference. (b) Long context downstream tasks.

Figure 1: (a) End-to-end pre-filling latency and maximum GPU memory allocation comparison
between SOLOS and LLaMA2-7B-32K (TogetherAI, 2023) across different sequence lengths. (b)
Performance comparison between SOLOS and other long-context LLMs on downstream tasks.

each of which is appended with multiple special tokens at its end. After the forward propagation
through the encoder, the activation of the special tokens have distilled contextual information,
effectively forming a compact and informative condensed representation. This representation can
be transferred to the decoder as additional key-value (KV) caches, via a projector consisting of two
projection matrices. To minimize the introduction of additional parameters, we leverage LoRA (Hu
et al., 2022) to fine-tune the encoder and the projector. This results in a mere 2% increase in
parameters for LLaMA2-7B (Touvron et al., 2023). For optimization, we employ incremental
computation exclusively on the decoder side. This means processing each segment sequentially,
performing backpropagation immediately after each forward pass, and discarding activations
to reduce memory usage—achieving up to an order-of-magnitude reduction. We avoid using
incremental computation on the encoder side because it leads to extensive redundant computations.
Instead, we use a reservoir sampling-based sparse optimization strategy to manage encoder
activations, efficiently managing memory allocation without sacrificing long-term dependencies.

We conduct a comprehensive evaluation of SOLOS using LLaMA2-7B (Touvron et al., 2023) as our
base model for a range of tasks. The tasks include auto-encoding, language modeling on datasets like
PG19 (Rae et al., 2019), and long-context retrieval challenges like Needle In A Haystack (gkamradt,
2023). Additionally, we use the LongBench benchmark (Bai et al., 2023b) to assess SOLOS’s
real-world long-context performance. As illustrated in Figure 1, our findings show SOLOS achieves
excellent compression at 8× and 32× ratios, allowing near-perfect reconstruction of the original
context. Furthermore, SOLOS significantly outperforms other context-compression-enhanced
LLMs across various tasks. Notably, SOLOS matches the performance of mainstream long-context
LLMs in some evaluations, with significantly lower inference costs. This highlights SOLOS’s
potential to efficiently integrate long-context LLMs into practical scenarios.

2 RELATED WORKS

Context-Compression-Enhanced LLMs. For Large Multimodal Models, architectures like
Q-former (Li et al., 2023b) have emerged as important methods for context compression, effectively
condensing information from the context through a small number of learnable queries. Given
the success of these techniques, they have gradually been integrated into the realm of LLMs.
RMT (Bulatov et al., 2022) pioneers the application of this technique within language models, fusing
information from each context segment iteratively into a fixed-size memory. This approach allows
for efficient processing of long sequences at a minimal computational cost. Building on RMT,
AutoCompressor (Chevalier et al., 2023) improves performance by concatenating representations
from the context encoder across different segments. Activation Beacon (Zhang et al., 2024)
expanded the trainable parameters and leveraged extensive instruction-tuning datasets, leading to
even stronger performance on downstream tasks. However, because all these methods use the LLM
as the context encoder, the training cost is prohibitively high, which limits the feasibility of training
on long sequences. Consequently, the performance of these methods still falls short when compared
to mainstream long-context models based on standard attention mechanisms.

Long-Context LLMs. Most mainstream long-context LLMs today are primarily pre-trained on
short sequences; they then utilize position embedding extension techniques, coupled with limited

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: SOLOS uses an encoder-decoder structure. The context encoder’s special tokens gather
and blend information from regular tokens via attention. The combined representations are projected
to the decoder. The encoder, decoder, and projector share parameters, but the encoder and projector
have distinct LoRA adapters, treated as extra parameters, separate from model weights.

post-training on longer sequences, to handle extended contexts (Li et al., 2023a; TogetherAI,
2023). However, because these methods do not fundamentally alter the quadratic complexity
of the standard attention mechanism, they continue to face prohibitive computational costs in
real-world applications. For example, Huiqiang et al. (2024) reports that processing a 300K-token
sequence with LLaMA3-8B (Dubey et al., 2024) requires 6 minutes on a single A100 machine,
just to complete the pre-filling stage. This clearly demonstrates that excessive overhead hinders the
commercial deployment of these long-context models. To address this issue, LongLoRA (Chen
et al., 2023a) proposes using S2 attention to replace standard full attention during training,
significantly reducing the training overhead of long-context LLMs. However, since it still employs
full attention during inference, the problem remains only partially resolved.

3 METHODOLOGY

3.1 OVERALL FRAMEWORK

The architecture of SOLOS, as depicted in Figure 2, is similar to Q-former. In this framework, each
context segment is integrated into a compact assembly of special tokens. These special tokens, as
context-rich representations, are projected into the decoder’s embedding space for utilization.

3.2 STREAMLINED ENCODER-DECODER ARCHITECTURE

Our proposed model innovates by employing a decoder-only LLM as the context encoder, forming
an encoder-decoder architecture. The encoder is akin to Q-former, but diverges from traditional
methods (Chevalier et al., 2023; Zhang et al., 2024), where the encoder’s output is typically
liked directly to the decoder’s initial layer. Instead, we introduce a parallel architecture. In this
setup, the hidden states associated with special tokens from each encoder layer are mapped to the
corresponding decoder layer to serve as compressed context. This mapping process is facilitated
by a projector that transforms the hidden states into KV representations. These representations are
then utilized directly as the KV cache for the decoder. To operationalize the projector, we harness
the encoder’s attention projection matrices WK and WV and incorporate LoRA adapters (Hu et al.,
2022). This integration enhances the model’s ability to adapt to new tasks with minimal additional
parameters. Furthermore, to tap into the context encoder’s potential for contextual summarization,
we apply LoRA adapters to the encoder’s WQ and WV projection matrices at each layer. These
adapters are stored as separate parameters, rather than being integrated into the main model weights.
This design choice allows for greater flexibility and control over the model’s learning process.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Our architecture shares conceptual parallels with the Activation Beacon (Zhang et al., 2024),
but with a novel twist: the deployment of two distinct sets of adapters. The first set is tasked
with enhancing the projector’s functionality, while the second is aimed at refining the encoder’s
capabilities. This dual-focus approach allows our model to more effectively capture and articulate
the nuances of contextual information. We now present a formal mathematical description.
Consider a given context X , which is partitioned into k segments, each of length l, represented
as x1, x2, ..., xk. Additionally, there is a residual part xk+1 that may be shorter than l.

1) Pre-filling Stage. 1.1) Special Token Appending: In the initial layer of our model, we introduce
special tokens of length c, denoted by π, to the end of each segment x1, x2, ..., xk:

xi ← xi ⊕ π, ∀i ∈ [1, 2, 3, ..., k], (1)

where ⊕ denotes the concatenation of the special tokens to the end of each segment.

1.2) Hidden States Derivation: In each layer’s attention module, we derive the input hidden states
hi corresponding to each segment xi, where hi ∈ R(l+c)×d and d is the embedding dimension. 1.3)
Special Token States Extraction: Next, we extract the portion of the hidden states hi that corresponds
to the special tokens, denoted as hπ . 1.4) Projection to KV Representation: After passing hπ through
the projector, we obtain the key Ki and value Vi representations for each segment:

Ki, Vi ← Projector(hπ), ∀i ∈ [1, 2, 3, .., k]. (2)

1.5) Concatentaion of KV Pairs: The resulting key and value representations are concatenated to
form the initial KV cache:

Kcache ← K1 ⊕K2 ⊕ ...⊕Kk, Vcache ← V1 ⊕ V2 ⊕ ...⊕ Vk. (3)

Finally, the concatenated Kcache and Vcache are fed into the decoder to be used as standard KV cache.
The above process reflects the pre-filling stage.

2) Decoding Stage and KV Cache Update. During the decoding stage, new tokens are generated
continuously. Once the total number of newly generated tokens, combined with the tokens from the
residual part xk+1, exceeds the size of one segment l, these tokens form a new segment. At this
point, we can repeat the process of appending special tokens and projecting generate new Kk+1 and
Vk+1. These new key-value pairs are then added to the existing KV cache:

Kcache ← Kcache ⊕Kk+1, Vcache ← Vcache ⊕ Vk+1. (4)

3.3 NAIVE OPTIMIZATION

Figure 3: The gradients contains
independent gradient flows.

Segments Independence. Though causal relationships exist
among different segments, the compression process for each
segment is independent and does not require the involvement of
other segments. This allows segments to be processed separately,
making a departure from previous approaches such as (Chevalier
et al., 2023; Zhang et al., 2024), where later segments could
leverage the fused representations from earlier ones.

Gradient Expression. The independent compression of each
segment greatly simplifies the computational graph, enabling a
concise expression for the parameter gradients. For the language
modeling loss associated with the segment xj , denoted as Jj , and considering the condensed
representations {mi}i=j−1

i=1 of the j − 1 preceding segments after passing through the encoder, the
gradients can be efficiently calculated. These condensed representations are independent, acting as
a relay during backpropagation to pass the gradient from the decoder to the trainable parameters in
the encoder and the projectors, as depicted in Figure 3.

Assuming the LoRA adapters’ trainable parameters are Θ, the gradient for the j-th segment is:

∇ΘJj =

j−1∑
i=1

∂Jj
∂mi

· ∂mi

∂Θ
. (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The final gradient is the cumulative sum of the gradients from all segments:

∇Θ =

k∑
j=1

∇ΘJj . (6)

Challenge in Training on Long Sequences. The gradient calculation as shown in Eq. (5) requires
storing k independent forward pass caches due to the independent generation of different mi. Given
that our encoder is based on an LLM, these caches are significantly large. For example, even with the
use of gradient checkpoint, our test reveals that the memory capacity of an 8× RTX3090 machine
is limited to k ≤ 8, posing a challenge for optimizing long sequences.

3.4 SPARSE OPTIMIZATION FOR LONG SEQUENCES

Figure 4: Recomputation.

Running parallel forward and backward propagation for all
segments from Eq. (6) can cause excessive GPU memory usage.
To address this, we compute each segment one at a time and
sum the results. This method, called incremental computation,
balances the trade-off between time and memory, enabling
training on longer sequences with limited resources.

Incremental Computation Brings Recomputation. Upon
reviewing Eq. (5) and Eq. (6), we find that naive incremental
computation leads to considerable recomputation, as shown in
Figure 4. The derivative ∂mi

∂Θ is repeatedly calculated across
segments, causing overhead and reducing its benefits.

Incremental Computation on Decoder Only. To reduce the excessive recomputation from the
naive incremental method on the encoder, we focus incremental computation on the decoder. For
each segment, we complete forward passes for both the encoder and decoder, but only apply
backpropagation to the decoder. After processing all segments sequentially, mi sums the gradients
from each segment’s loss, as shown in the equation below:

∇mi
=

k∑
j=i+1

∂Jj
∂mi

, i ∈ [1, 2, ..., k]. (7)

After accumulating gradients, we backpropagate through the encoder to determine the final gradients
for Θ. This approach, by conducting a single backpropagation through the encoder at the end,
eliminates all unnecessary computations. The resulting final gradient matches that shown in Eq. (6).
We will now demonstrate their equivalence.

Proof. We start by defining an indicator function I(i, j) as:

I(i, j) =

{
1 1 ≤ j ≤ k, 1 ≤ i ≤ j − 1,

0 otherwise,
(8)

where the condition can be inverted and explicitly solved as:

I(i, j) =

{
1 1 ≤ i ≤ k, i+ 1 ≤ j ≤ k,

0 otherwise.
(9)

After applying this indicator function, we can rewrite Eq. (6) as follows:

∇Θ =

+∞∑
j=−∞

[
+∞∑

i=−∞
I(i, j) · ∂Jj

∂mi
· ∂mi

∂Θ

]
=

+∞∑
i=−∞

 +∞∑
j=−∞

I(i, j) · ∂Jj
∂mi

· ∂mi

∂Θ

,
=

k∑
i=1

 k∑
j=i+1

∂Jj
∂mi

· ∂mi

∂Θ

 =

k∑
i=1

 k∑
j=i+1

∂Jj
∂mi

 · ∂mi

∂Θ

 =

k∑
i=1

(
∇mi

· ∂mi

∂Θ

)
.

(10)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 5: Comparison of different sparsity patterns. The sparsity achieved using reservoir sampling
ensures both practicality and the ability to capture long-range dependencies.

Sparse Optimization for Encoder Memory Reduction. By applying incremental computation to
the decoder, memory usage is stable since only the cache for one segment is needed, no matter
the sequence length. This greatly reduces memory requirements, often leading to significant
improvements. However, for the encoder, memory allocation remains high as all segment caches
are stored, offering no reduction. Halting optimization here would only cut memory use in half
without increasing FLOPs—a minor benefit, especially for very long sequences like 100K tokens.
To cut encoder memory further, we suggest using a sparsity budget to limit the number of stored
forward pass caches. if the cache limit is exceeded, we use an eviction strategy. For instance, if
segment i is removed, we first update ∇Θ by backpropagating ∇mi

, then apply a stop gradient to
mi to halt further accumulation. We will now find the best eviction policy.

Limitations of Local Window and Random Eviction Policies. In Figure 5, the simplest
eviction strategy is to keep only the most recent segment caches. This method ignores
long-term dependencies and relies only on recent data for inference, reducing performance due to
biased estimation. In contrast, random sparsity might ideally balance long-term and short-term
dependencies, approaching the performance of dense optimization. However, since we cannot
recover removed caches, we cannot randomly select segments from the complete set at each step.

Reservoir Sampling for Eviction Policy. To achieve efficient memory management, we need
an eviction policy that integrates seamlessly with our incremental computation and provides
unbiased gradient estimates. Reservoir Sampling (Vitter, 1985) meets both criteria. It offers a
natural incremental processing mechanism that aligns with our sequential handling of segments.
Additionally, its uniform sampling property ensures that the retained segments are a fair
representation of the entire sequence, yielding unbiased gradient estimates of the true gradients.
Next, we will demonstrate the expected gradient from reservoir sampling-based sparse optimization
is equivalent to that of random sparse optimization.

Proof. We first express the uniform sampling property of reservoir sampling mathematically.
Suppose we are processing the j-th segment (j > S). Let the binary random variables
Zj,1,Zj,2, . . . ,Zj,j−1 denote the inclusion status of the previous j − 1 segments in the reservoir.
For example, Zj,2 = 1 indicates that the forward pass cache of the 2nd segment is retained in the
reservoir, while Zj,1 = 0 indicates that the forward pass cache of the 1st segment has been evicted.
Since the size of our reservoir is fixed at S, the following constraint must hold:

j−1∑
i=1

Zj,i = S. (11)

Given these definitions, the uniform sampling property can be expressed as follows:

P (Zj,1 = 1) = P (Zj,2 = 1) = ... = P (Zj,j−1 = 1) =
S

j − 1
, (12)

where P (△ = 1) denotes the probability of the random variable △ taking the value 1. In
fact, random sampling also satisfies Eq. (12), but unlike reservoir sampling, it maintains uniform

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Sparse Optimization with budget size S

1: R← ∅ ▷ Initialize empty reservoir
2: for i = 1 to T do
3: mi ← Encoder(xi) ▷ Perform forward pass through the encoder
4: Ji ← Decoder(xi, {mj}j=i−1

j=1) ▷ Perform forward pass through the decoder
5: backprop(Ji, {mj}j∈R ∪mi) ▷ Backpropagate through the decoder only
6: if i < S then ▷ If reservoir is not full, retain forward cache
7: R← R ∪ {i}
8: else ▷ If reservoir is full, trigger eviction
9: j ← randint(1, i)

10: if j < S then ▷ Evict a previously saved segment t
11: t← R[j]
12: R[j]← i
13: stop gradient(mt)
14: backprop(mt,Θ)
15: else ▷ Or discard the incoming segment i
16: stop gradient(mi)
17: backprop(mi,Θ)
18: end if
19: end if
20: end for
21: for i = 1 to S do ▷ Backpropagate through the remaining segment
22: j ← R[i]
23: backprop(mj ,Θ)
24: end for

sampling properties regardless of whether the previous step is observed or not:

P (Zj,i|Zj−1,i = 1) = P (Zj,i|Zj−1,i = 0), ∀i ∈ [1, 2,, j − 1]. (13)

Nevertheless, without this property, reservoir sampling-based sparse optimization still achieves
unbiased gradient estimation. Combining Eq. (5) and Eq. (6), we derive the expected final gradient:

EZ[∇Θ] = EZ

 k∑
j=1

j−1∑
i=1

∑
z∈{0,1}

(
z · P (Zj,i = z) · ∂Jj

∂mi
· ∂mi

∂Θ

)
= EZ

 k∑
j=1

j−1∑
i=1

(
P (Zj,i = 1) · ∂Jj

∂mi
· ∂mi

∂Θ

) .

(14)

Here, the additional Zj,i acts as a gate—if it is 0, it indicates that segment i has been evicted when
processing the j-th segment, thus making this term zero upon multiplication. Substituting Eq. (12)
into Eq. (14) directly yields the expected value of the final gradient:

EZ[∇Θ] =

k∑
j=1

j−1∑
i=1

(
S

j − 1
· ∂Jj
∂mi

· ∂mi

∂Θ

)
=

k∑
j=1

S

j − 1
∇ΘJj . (15)

We observe that this gradient is almost identical to the true gradient in Eq. (6), except for a factor
of S/(j − 1). While this factor induces a systematic estimation error, it can be precisely offset by
multiplying the resulting gradient ∇ΘJj by a compensating factor, (j − 1)/S, thereby enabling the
reservoir sampling-based sparse optimization to achieve unbiased gradient estimation of Eq. (6).

Using reservoir sampling-based sparse optimization on the encoder side maintains constant
memory allocation regardless of sequence length, significantly reducing memory requirements while
preserving gradient fidelity. We provide the detailed process in Algorithm 1 and further validate the
unbiasedness of the gradient estimation in Appendix B.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4 EXPERIMENTATION

We evaluate SOLOS by: (1) Lossless Compression of Contexts, evaluated by an auto-encoding
task introduced by (Ge et al., 2024). In this task, the input sequence undergoes a single forward pass
through the context encoder to generate a compressed representation, which is subsequently utilized
by the decoder to reconstruct the original input sequence. Superior performance is indicated by
higher reconstruction fidelity. (2) Long Context Language Modeling, assessed using perplexity on
the PG-19 (Rae et al., 2019), Proof-Pile (Azerbayev et al., 2022), and four distinct content categories
from SlimPajama (Soboleva et al., 2023): Arxiv, Books, Github, and StackExchange. (3) Retrieval,
evaluated through the Needle In A Haystack task (gkamradt, 2023), which scrutinizes the model’s
capacity to distill key information from arbitrary positions within the context. (4) Long Context
Downstream Tasks, assessed on the LongBench (Bai et al., 2023b), encompassing a variety of
subtasks: Single-Doc QA, Multi-Doc QA, Summarization, Few-shot, and Code. This suite of tasks
provides a comprehensive evaluation of both comprehension and generative capabilities.

Setups. We use the LLaMA2-7B model (Touvron et al., 2023) with a 1K token segment size and
compression ratios of 32 and 8. This configuration allows our model to support maximum context
lengths of about 100K and 25K tokens, respectively. We apply LoRA fine-tuning (Hu et al., 2022)
to both the encoder and the projectors, using a consistent configuration of r = 32 and α = 64 for all
LoRA modules. This allows us to adapt the pre-trained model to our specific task while maintaining
a reasonable parameter count. Our training process has two stages. In the first stage, we train
on 1B tokens from the SlimPajama dataset (Soboleva et al., 2023), building a strong foundation
for language understanding. In the second stage, we fine-tune the decoder with a mixed dataset,
comprising LongAlpaca (Chen et al., 2023b) (55.5%), Single-Detail QA (Zhang et al., 2024) (30%),
BookSum (Kryściński et al., 2021) (12%), and Needle (gkamradt, 2023) (2.5%). We format these
datasets into conversations using Vicuna’s (Zheng et al., 2023) chat template, allowing our model to
learn from diverse instructions and tasks. We use our proposed sparse optimization algorithm with
a reservoir budget size of S = 2, enabling cache storage for up to 3 segments. We use the Adam
optimizer at a 1e-4 learning rate with a cosine scheduler.

Figure 6: Auto-encoding task.

Table 1: Results of SOLOS and ICAE on the
auto-encoding task.

Ratio BLEU-4↑ Rouge-L↑

SOLOS 8 0.9851 0.993
32 0.5948 0.762

ICAE 8 0.6461 0.797
32 0.4289 0.585

Auto-Encoding Task. To evaluate information loss during context compression, we use the
auto-encoding task introduced in (Ge et al., 2024), compressing and reconstructing text. We use the
trained encoder to perform context compression. On the decoder side, we also train a “repeat” token
as a signal for the auto-encoding task, as shown in Figure 6. We select the ICAE (Ge et al., 2024)
as the baseline for comparing performance in reconstructing 1K-token sequences at 32× and 8×
compression ratios. Table 1 shows the results. Our model performs well, achieving Rouge-L scores
of 0.993 and 0.762 at at 32× and 8× compression ratios, respectively. To demonstrate our model’s
minimal information loss during compression, we randomly selected a sample and compared
the original and reconstructed paragraphs, as shown in Figure 7. This significant reconstruction
capability lays the foundation for using compressed context in inference.

Long Sequence Language Modeling. We assess SOLOS’s long sequence language modeling
using the PG19 (Rae et al., 2019) and ProofPile (Azerbayev et al., 2022) datasets, along with
four SlimPajama (Soboleva et al., 2023) sub-datasets: Arxiv, Book, Github, and StackExchange,
each with 100 randomly sampled instances. The results are summarized in Table 2. We compare
SOLOS to baselines like LongChat-7B-v1.5-32K (Li et al., 2023a), LongAlpaca-7B-32K (Chen
et al., 2023a), LLaMA2-7B-32K (TogetherAI, 2023), YaRN-7B-128K (Peng et al., 2024), and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

<s> Essays\n\nPhilosophers who think everyday
morality is objective should examine the
evidence, argues Joshua Knobe.\n\nImagine two
people discussing a question in mathematics.
One of them says \u201c7,497 is a prime
number, \u201d while the other says,
\u201c7,497 is not a prime number. \n\nJust
in the past few years, experimental philosophers
have been gathering a wealth of new data on
these issues, and we now have at least the first
glimmerings of a

Original Context

<s> Essays\n\nPhilosophers who think everyday
morality is objective should examine the
evidence, argues Joshua Knobe.\n\nImagine two
people discussing a question in mathematics.
One of them says \u201c7,497 is a prime
number, \u201d while the other says,
\u201c7,497 is not a prime number. \n\nJust
in the past few years, experimental philosophers
have been gathering a wealth of new data on
these issues, and we now have at least the first
glimmerings\n

8 Compression Rate

<s> Essays\n\nPhilosophers who think
everyday morality is objective should examine
the evidence, Joshua Knobe
argues.\n\nImagine two people discussing a
question in mathematics. One of them says,
\u201c7,497 is a prime number, while the other
says, \u201c7,497 is not a prime number.
\n\nJust a few years ago, these experimental
philosophers have been gathering a wealth of
new data on these issues, and we now have the
first glimpses at the actual philosophical <s>

32 Compression Rate

Figure 7: A case study of the auto-encoding task shows near-lossless compression at a ratio of 8.
Even with a ratio of 32, reconstructed paragraphs retained meaning with minor wording changes.

Table 2: Results of various long-context LLMs on language modeling capability. “OOM” stands for
Out-of-Memory error, which we’ve encountered upon an 8× RTX3090 machine.

PG19 ProofPile Arxiv Book Github StackExchange
Method Ratio 4K 16K 25K 32K 100K 4K 16K 25K 32K 100K 25K 100K 25K 100K 25K 100K 25K 100K

LongChat-7B 9.93 9.49 9.41 9.39 5.65 3.90 3.56 3.21 3.56 6.91 2.97 8.77
LongAlpaca-7B 9.96 9.75 9.69 9.67 6.31 3.97 3.74 3.59 3.71 7.29 3.09 9.01

LLaMA2-7B-32K 7.06 7.17 7.15 7.14 4.32 3.23 2.84 2.70 2.85 5.61 2.37 5.52
YaRN-7B-128K

1

6.54 6.62 6.60 6.58 OOM 4.45 3.32 2.93 2.79 OOM 3.07 OOM 5.43 OOM 2.36 OOM 5.67 OOM

8 6.27 6.09 6.09 4.43 3.84 3.41 3.32 6.21 2.46 6.34SOLOS 32 6.51 6.32 6.30 6.30 6.28 4.78 4.26 3.72 3.53 3.19 3.37 2.98 6.42 5.69 2.52 2.44 6.88 6.39
8 8.26 8.13 8.16 5.41 3.91 3.47 3.45 6.67 2.68 8.33Activation Beacon 32 8.56 8.54 8.58 8.59 8.83 5.79 4.33 3.86 3.70 3.33 3.51 3.78 6.93 7.92 2.76 3.05 8.45 9.91

Activation Beacon (Zhang et al., 2024). Our evaluation shows SOLOS performs comparably
to non-compression models across sequence lengths and improves with length, unlike Activation
Beacon. This is due to our protocol, which includes training on longer sequences, enabling SOLOS
to capture long-range dependencies effectively and maintain performance on long sequences.

Needle In A Haystack. The Needle In A Haystack benchmark (gkamradt, 2023) assesses LLMs’
ability to retrieve information from any context position. We assess both Activation Beacon and
SOLOS, as shown in Figure 8. SOLOS performs flawlessly at 8× compression and maintains a high
pass rate even at 32× compression. This indicates SOLOS can effectively use extended contexts,
showing its remarkable efficiency in understanding long contexts.

(a) SOLOS 8× (b) SOLOS 32× (c) Activation Beacon 32×

Figure 8: Results of SOLOS and Activation Beacon on the Needle In A Haystack test.

LongBench. We compare the performance of SOLOS on LongBench (Bai et al., 2023b) with
LongChat-7B-v1.5 (Li et al., 2023a), LongAlpaca-7B (Chen et al., 2023a), Qwen1.5-7B-Chat (Bai
et al., 2023a), Mistral-7B-Instruct-v0.2 (MistralAI, 2023), InternLM2-Chat-7B (Cai et al., 2024),
GPT-3.5-Turbo-16K and Activation Beacon (Zhang et al., 2024). As shown in Table 3, SOLOS
exhibits comparable performance to other LLaMA2-7B based models under both compression rates.

5 LIMITATIONS

Though SOLOS enhances training efficiency for sequences up to 100K tokens and performs well on
downstream tasks, it faces limitations. One issue is SOLOS’s reliance on a decoder-only LLM for
context encoding instead of a specialized, newly trained encoder. This can lead to significant data
loss at higher compression levels, limiting efficiency improvements. Moreover, SOLOS’s use of an

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Results of various long-context LLMs on five subtasks from LongBench. † denotes results
from the LongBench paper.

Model Ratio SQA MQA SUM FEW CODE
LLaMA2-7B / LLaMA2-7B-chat based

LongChat-7B-32K 31.6 23.5 21.7 49.3 54.9
LongAlpaca-7B-16K 26.6 28.0 24.5 52.9 52.4

YaRN-7B-128K
1

24.0 24.1 19.8 60.0 62.71

8 22.1 24.8 20.2 60.8 57.7Activation Beacon 32 19.8 23.4 18.0 58.3 56.2

8 33.8 31.3 22.1 58.3 61.5SOLOS 32 28.5 26.9 20.3 57.0 60.8

Others

Qwen1.5-7B-Chat 27.9 14.2 21.0 21.8 28.9
Mistral-7B-Instruct-v0.2 31.3 26.4 21.8 46.6 44.8
†GPT-3.5-Turbo-16K 45.1 36.2 23.9 52.9 54.1

InternLM2-Chat-7B
1

45.7 43.1 26.5 58.3 36.4

LLM for context encoding is computationally intensive. Employing simpler models might compress
context more efficiently, reducing costs and enhancing performance. Future research could benefit
from investigating more efficient encoding techniques. Finally, SOLOS requires additional training,
potentially making it less convenient than methods that bypass training requirements.

6 CONCLUSION

To enhance the ability of LLMs on processing long sequences, We have proposed SOLOS,
which employs a streamlined encoder-decoder framework where the weights-shared encoder and
decoder respectively encapsulate a context segment into compressed representations and leverage
these representations to predict outputs of the subsequent segment. Moreover, we introduce two
strategies for reducing memory allocation in the encoder and decoder. For the decoder, we
adopt incremental computation, which processes segments sequentially rather than in parallel,
significantly reducing memory footprint without increasing FLOPs. For the encoder, we apply
reservoir sampling-based sparse optimization, an unbiased method that balances efficiency and
gradient accuracy. With these optimizations, SOLOS can be efficiently trained on sequences of
100K tokens with limited resources, resulting in a strong performance on language modeling tasks
and comparable performance on various downstream tasks.

REFERENCES

Zhangir Azerbayev, Edward Ayers, and B.P. Proof-pile, 2022.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan,
Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou,
Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv, 2023a.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
multitask benchmark for long context understanding. arXiv, 2023b.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Aydar Bulatov, Yuri Kuratov, and Mikhail Burtsev. Recurrent memory transformer. In NeurIPS,
2022.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
Chen, Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, Zhaoye Fei, Yang Gao, Jiaye
Ge, Chenya Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He, Yingfan Hu, Ting
Huang, Tao Jiang, Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, Linyang Li,
Shuaibin Li, Wei Li, Yining Li, Hongwei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu, Kuikun
Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang
Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai Shang, Yunfan Shao, Demin Song, Zifan Song,
Zhihao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Jiayu Wang,
Rui Wang, Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong Xiong,
Chao Xu, Ruiliang Xu, Hang Yan, Yirong Yan, Xiaogui Yang, Haochen Ye, Huaiyuan Ying, Jia
Yu, Jing Yu, Yuhang Zang, Chuyu Zhang, Li Zhang, Pan Zhang, Peng Zhang, Ruijie Zhang, Shuo
Zhang, Songyang Zhang, Wenjian Zhang, Wenwei Zhang, Xingcheng Zhang, Xinyue Zhang, Hui
Zhao, Qian Zhao, Xiaomeng Zhao, Fengzhe Zhou, Zaida Zhou, Jingming Zhuo, Yicheng Zou,
Xipeng Qiu, Yu Qiao, and Dahua Lin. Internlm2 technical report, 2024.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models. arXiv, 2023a.

Yukang Chen, Shaozuo Yu, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya
Jia. Long alpaca: Long-context instruction-following models, 2023b.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models to
compress contexts. In EMNLP, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, and Abhishek Kadian. The llama 3 herd of
models. arXiv, 2024.

Tao Ge, Hu Jing, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder for
context compression in a large language model. In ICLR, 2024.

gkamradt. gkamradt/llmtest-needleinahaystack, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In ICLR, 2022.

Jiang Huiqiang, Li Yucheng, Zhang Chengruidong, Wu Qianhui, Luo Xufang, Ahn Surin, Han
Zhenhua, Abdi Amir H, Li Dongsheng, Lin Chin-Yew, Yang Yuqing, and Qiu Lili. Minference
1.0: Accelerating pre-filling for long-context llms via dynamic sparse attention. arXiv, 2024.

Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong, and Dragomir Radev.
Booksum: A collection of datasets for long-form narrative summarization. arXiv, 2021.

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph E. Gonzalez, Ion Stoica,
Xuezhe Ma, , and Hao Zhang. How long can open-source llms truly promise on context length?,
2023a.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: bootstrapping language-image
pre-training with frozen image encoders and large language models. In ICML, 2023b.

MistralAI. mistralai/mistral-7b-instruct-v0.2. Huggingface, 2023.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. YaRN: Efficient context window
extension of large language models. In ICLR, 2024.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, Chloe Hillier, and Timothy P Lillicrap.
Compressive transformers for long-range sequence modelling. arXiv, 2019.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan Dey.
SlimPajama: A 627B token cleaned and deduplicated version of RedPajama, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Gemini Team, Petko Georgiev, Ving Ian Lei, and Ryan Burnell. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. arXiv, 2024.

TogetherAI. Togetherai/llama2-7b-32k. Huggingface, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

Jeffrey S. Vitter. Random sampling with a reservoir. TOMS, 1985.

David Wingate, Mohammad Shoeybi, and Taylor Sorensen. Prompt compression and contrastive
conditioning for controllability and toxicity reduction in language models. In EMNLP, 2022.

Zhang Xinrong, Chen Yingfa, Hu Shengding, Xu Zihang, and Chen Junhao. ∞Bench: Extending
long context evaluation beyond 100K tokens. In ACL, 2024.

Peitian Zhang, Zheng Liu, Shitao Xiao, Ninglu Shao, Qiwei Ye, and Zhicheng Dou. Soaring from
4k to 400k: Extending llm’s context with activation beacon, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-judge with MT-bench and chatbot arena. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023.

A IMPLEMENTATION DETAILS

Overview of Pretraining Data. During the pretraining phase, we use a total of 1 billion tokens from
five sub-datasets of SlimPajama. For Github, StackExchange, and Wiki, most of the data consists
of short sequences, while for Book and Arxiv, the majority of the data consists of long sequences.
We randomly sample tokens from each dataset for training, with a total of 1 billion tokens sampled
across all datasets. Detailed information is provided in Table 4.

Table 4: Detailed information on pretraining data.

Corpus Num Seq. Num Sample Token Sequence Length
Max Min Average

Book 13K 0.15B 18M 29 510K
Arxiv 101K 0.15B 3M 217 57K
Github 1M 0.4B 1M 571 6K

StackExchange 1.3M 0.15B 267K 1K 3K
Wiki 1.3M 0.15B 452K 523 3.5K

Overview of Instruction Tuning Data. In instruction tuning, we add LoRA adapters (Hu et al.,
2022) to the query and value projection matrices of each layer in the decoder. We organize all
instruction tuning data into a conversation format following Vicuna’s chat template (Zheng et al.,
2023), as shown below: “A chat between a curious user and an artificial intelligence assistant. The
assistant gives helpful, detailed, and polite answers to the user’s questions. ### USER: ⟨Request⟩
Assistant: ⟨Response⟩” We finetune on multiple instruction tuning datasets, most of which are
using ChatGPT for response generation.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

B ADDITIONAL EXPERIMENTATION

Ablation on LoRA Hyperparameters. During pretraining, we add LoRA adapters to the query
and value projection matrices of all encoder layers, as well as to the key and value projection
matrices of all projectors. In the instruction tuning phase, in addition to the LoRA adapters used in
pretraining, we also add LoRA adapters to the query and value projection matrices of each decoder
layer. To assess the impact of different LoRA configurations on the final results, we train with a
32× compression ratio using the same training recipe and evaluated the resulting models on PG19
and SingleDoc QA from LongBench. The results are shown in Table 5. The experimental results
indicate that larger rank and alpha values improve language modeling performance but negatively
affect instruction-following capabilities.

Table 5: Performance comparison under different LoRA configurations.

LoRA Rank LoRA Alpha PG19 SQA
4K 16K 32K 100K

32 64 6.51 6.32 6.30 6.28 28.5
64 128 6.43 6.23 6.21 6.20 27.7

128 256 6.41 6.22 6.20 6.19 27.3

Ablation on Sparse Optimization Algorithm. Local window sparse optimization only considers
the most recent segments, theoretically favoring local dependencies while overlooking long-term
ones. This prevents the full utilization of long context, making it a suboptimal approach. To
evaluate the actual performance of local window sparse optimization and quantify the improvements
brought by SOLOS, we use the same training recipe to compare the models trained with these
two optimization algorithms. We assess their language modeling performance on PG19 and their
performance on the SingleDoc QA task from LongBench, as shown in Table 6. The results
demonstrate that models trained using local window sparse optimization fail to capture long-term
dependencies, causing language modeling perplexity to stagnate as context length increases. In
contrast, SOLOS addresses this limitation effectively.

Table 6: Performance Comparison between local window sparse optimization and SOLOS

Local Window Sparse SOLOS PG19 SQA
4K 16K 32K 100K

✓ 6.42 6.45 6.57 6.51 22.1
✓ 6.51 6.32 6.30 6.28 28.5

Accuracy of Gradient Estimation. To assess the accuracy of SOLOS in gradient estimation, we
compare its gradients with those from Eq. (6). We expect high similarity, indicating our method’s
accuracy. We use a context window of 128, compression ratio of 8, and compute gradients for
parameters Θ based on a mini-batch of 64 inputs, each with 2048 tokens. To avoid the influence of
initial trainable parameter values, we use the same checkpoint for both approach after hundreds of
training iterations. We use ∇∗

Θ to represent the gradient from our reservoir sampling-based sparse
optimization and compute the similarity ratio r = ∥∇∗

Θ∥
/
∥∇Θ∥. A ratio of r = 1 indicates the

gradients are close. Table 7 shows the mean and variance of r for different reservoir budget. Our
results demonstrate that applying the compensating factor j−1

S ensures high similarity between the
estimated and true gradients, even when the reservoir budget is as low as 1.

Table 7: A statistical analysis compares the L2 norm ratios of gradients from two algorithms. Key
findings: 1) The compensating factor is vital for accurate gradient estimation. 2) Variance decreases
with increasing window size S, enhancing estimation accuracy.

Statistics w/o Factor w/ Factor

S = 1 S = 4 S = 8 S =∞ S = 1 S = 4 S = 8 S =∞
Mean 0.676 0.818 0.935 1.000 0.994 0.980 1.024 0.999

Variance 0.112 0.041 0.008 3e-5 0.039 0.038 0.009 4e-5

13

	Introduction
	Related Works
	Methodology
	Overall Framework
	Streamlined Encoder-Decoder Architecture
	Naive Optimization
	Sparse Optimization for Long Sequences

	Experimentation
	Limitations
	Conclusion
	Implementation Details
	Additional Experimentation

