On Event Detection in Scientific Papers: A Multi-Domain Dataset

Anonymous ACL submission

Abstract

Given the growing number of scientific papers, automatic information extraction in scientific documents is important for efficient knowledge update and discovery. A key component in scientific papers involves rhetorical activities/events to convey new knowledge and convince readers of the correctness. This work explores a new information extraction problem for scientific documents, aiming to identify event trigger words of rhetorical events/activities, i.e., event detection (ED). To promote future research in this area, we present SciEvent, the first and new dataset for event detection in scientific documents. SciEvent annotates scientific papers of four different domains (i.e., computer science, biology, physics, and mathematics) using 8 popular event types. Our experiments on SciEvent demonstrate the challenges of scientific ED for existing models and call for further research effort in this area. We will publicly release SciEvent to facilitate future research.

1 Introduction

Scientific papers retain most of the knowledge discovery for academia. However, the current exponential growth of scientific literature makes it difficult for even the most experienced reader to keep track of all the ongoing research. Hence, automatic information extraction from scientific documents is helpful for researchers to efficiently comprehend new knowledge and boost scientific discovery.

In natural language processing (NLP), automatic information extraction (IE) has been an ambitious goal for which a wide range of topics have been considered, including summarization (Collins et al., 2017), keyphrase extraction (Gupta and Manning, 2011; Augenstein et al., 2017), entity extraction (Hobbs, 2002; Luan et al., 2017; Jain et al., 2020), relation extraction (Kruiper et al., 2020), clause tagging (Li et al., 2021), and knowledge population (Groth et al., 2018). However, despite extensive progress, prior work on scientific IE has not explored the task of event detection (ED) whose goal is to identify event trigger words of predefined event types in text (Chen et al., 2015). In particular, a scientific paper is a discourse between the authors and readers rather than a simple writing (Li et al., 2021): the authors aim to provide new findings, and more importantly, convince expert readers of the correctness of the presented knowledge. As such, to achieve the persuasion purpose, rhetorical activities/events are prevalent in scientific papers, characterizing different intents such as proposing ideas, reporting results, making claims, or citing issues. Extracting such rhetorical events is thus important to reveal structures of scientific discourses and aid scientific document understanding. Consequently, our goal in this paper is to perform the first study on event detection for rhetorical events in scientific documents. For instance, in the following sentence, an event detection system for scientific documents should be able to predict the words “apply”, “provide”, and “comparison” as event trigger words of the event types Apply, Claim, and Compare, respectively.

In this study we apply what we hope is a representative set of anomaly detection algorithms and in so doing we are able to provide a robust comparison of these algorithms.

In the literature, there have been some studies on recognizing rhetorical activities in scientific documents (De Waard and Maat, 2012; Dernoncourt and Lee, 2017; Huang et al., 2020; Li et al., 2021); however, these works mainly focus on the analysis of discourse at the sentence/clause level, seeking to classify sentences/clauses according to rhetorical components. Our work is different from these prior works in that we consider rhetorical events at the trigger word level that is necessary for scientific document analysis. In particular, as sentences/clauses in scientific documents tend to be long and contain compound information (potentially with more than one event), sentence/clause
level modeling might introduce noisy/irrelevant information for rhetorical event representation, thus hindering event analysis and structuring for document understanding. In contrast, extracting event trigger words allows systems to focus on each specific event to facilitate event-centric analysis, e.g., how rhetorical events are expressed in scientific documents or how rhetorical events can be linked to reveal knowledge discovery processes.

A hindrance for event detection research in scientific papers involves the lack of annotated datasets that are necessary for model development and evaluation. This is more pronounced for recent advanced deep learning models for ED (Chen et al., 2015; Cui et al., 2020) where annotated benchmark datasets are critical to measure progress and drive research agenda. To resolve this bottleneck for ED research, our work presents a new dataset for Scientific Event Detection, called SciEvent. The dataset is manually annotated by skilled crowd annotators for 8 rhetorical event types in scientific papers. Different from prior datasets for rhetorical components in scientific discourses that mainly focus on biomedical articles (Dernoncourt and Lee, 2017; Huang et al., 2020), SciEvent annotates papers in four different domains, i.e., biology, physics, computer science, and mathematics, to provide a more diverse dataset. Our experiments reveal the challenging nature of SciEvent for ED where the performance of state-of-the-art ED models on SciEvent is far behind those on existing general-domain datasets, thus calling for more research effort in this area. We will publicly release SciEvent to promote scientific ED research.

2 Data Preparation

The documents in SciEvent are collected from arxiv.org, focusing on four domains: computer science (CS), quantitative biology, physics, and mathematics. To prepare for the rhetorical event annotation, we design an event taxonomy with 8 event types to capture the most relevant and impactful events in our collected data. As such, we divide the event types into three groups depending on whether they are concerned about current or prior proposed methods/studies.

The first group involves five event types to characterize different aspects of novel methods or studies proposed in the current paper, i.e., PROPOSE, WISDOM, APPLY, EVALUATE, and CLAIM. In particular, the PROPOSE event type involves expressions to describe the novelty or procedure of the proposed methods/studies. An example for this event type is: “In this Letter, we investigate the feasibility of generating multi-MeV gamma-rays.”

A WISDOM event, on the other hand, presents established wisdom/knowledge that serves as the direct foundation or motivation to develop the proposed methods/studies, e.g., “It has been demonstrated that humans can perform even one-shot classification.”. In contrast, an APPLY event indicates a direct application of existing concrete tools, methods, or systems in the current paper, e.g., “We leverage BERT to encode sentences.”. In addition, the EVALUATE event type captures evaluations of the proposed methods/studies that are usually associated with experiment procedures and performance metrics (e.g., “One motherset in particular, yeast, has a failure rate approaching 100%”). Finally, a CLAIM event captures an expression of claim for characteristics or achievements of the proposed methods/studies, e.g., “We achieve state-of-the-art results on the CU-Birds dataset”.

The second event type group has two event types to exclusively represent existing or prior methods/studies which are mentioned in the current paper, including ISSUE and DISCUSS. As such, an ISSUE event expresses a potential issue or gap of existing methods/studies for which the current paper aims to directly avoid/address, e.g., “Prior methods only consider English data.”. In contrast, DISCUSS events cover general discussions or judgements of existing methods that are related but not directly comparable with the proposed methods/studies in the current paper, e.g., sentences in the Related Work sections such as “These methods can perform well in their generalized forms.”. Finally, the third event group contains one event type, i.e., COMPARE, to capture comparison expressions between the proposed methods/studies in the current paper and those in prior works, e.g., “The proposed method significantly outperforms the baselines.”.

3 Annotation

We recruit 8 annotators from the crowdsourcing platform upwork.com to annotate scientific papers in the four domains (i.e., two annotators for each domain). As Upwork provides resumes of annotators, we explicitly select annotators that have demonstrated experience in reading and writing
scientific papers in their corresponding domains (e.g., M.S. and Ph.D. students). Detailed annotation guidance with many examples and explanation are provided to train the annotators. Following the practice in prior ED research (Nguyen and Grishman, 2015), we also instruct annotators to select a single most important word to serve as the trigger word for an event mention. Overall, we annotated 115 papers (29 for computer science, 45 for biology, 28 for physics, and 13 for mathematics), amounting to over 22K sentences and 633K words. Our annotators for each domain co-annotate the documents in their domain and achieve Cohen’s Kappa scores of 0.76, 0.65, 0.83, and 0.61 on CS, biology, physics, and mathematics, respectively. These inter-agreement scores thus indicate substantial agreements between our annotators. Eventually, the annotators are engaged in discussions to resolve any conflict to produce a final consolidated version of our SciEvent dataset. Table 1 presents some statistics for SciEvent while Figure 1 shows the event type distributions in different domains.

<table>
<thead>
<tr>
<th>Domain</th>
<th>CS</th>
<th>Biology</th>
<th>Physics</th>
<th>Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Event</td>
<td>10,352</td>
<td>18,528</td>
<td>7,730</td>
<td>3,372</td>
</tr>
<tr>
<td>#Doc</td>
<td>29</td>
<td>45</td>
<td>28</td>
<td>13</td>
</tr>
<tr>
<td>#Sent</td>
<td>5,742</td>
<td>9,825</td>
<td>4,439</td>
<td>2,019</td>
</tr>
<tr>
<td>#Token</td>
<td>142K</td>
<td>289K</td>
<td>141K</td>
<td>61K</td>
</tr>
</tbody>
</table>

Table 1: Statistics for SciEvent in different domains.

Figure 1: Distributions of event types in SciEvent.

Dataset Challenges: Our dataset reveals several challenges for event detection in scientific papers. One particular challenge involves appropriate coreference resolution of noun phrases/entity mentions to accurately determine event types for trigger words. For example, in the sentence “This capability greatly facilitates experiments related to weak nonlinearity-based quantum computing.”, the event trigger word “facilitates” might belong to the CLAIM or DISCUSS event type depending on whether “This capacity” is referring to a characteristics of the currently proposed method (i.e., CLAIM) or prior one (i.e., DISCUSS). As such, solving event detection for scientific papers often requires modeling context beyond sentence boundary to identify accurate references. In addition, domain knowledge and expertise are critical to predict event types for triggers in scientific documents. An example for this challenge can be seen in the sentence “This approach is only able to handle a single domain in the input.”. The event trigger “handle” should be assigned to the ISSUE event type if the current paper is directly addressing the single-domain issue in prior work. However, “handle” should instead be a DISCUSS event if this sentence is merely contributing to the discussion of relevant works for the current paper. As such, understanding the research topics and directions in the current paper is essential to event type recognition.

To demonstrate the ambiguity in SciEvent, Table 2 presents five words with the highest frequency of being labeled as event triggers (i.e., Count). The table also shows the occurrence frequency of the words (i.e., Total) and the percentages that they are annotated as event triggers (i.e., Rate) in SciEvent. As can be seen, even for the most frequent event trigger words, there is still a probability that they do not trigger/evoke any event of interest. Consequently, capturing the context of the words is crucial to detect event triggers in scientific documents. Finally, we find that sentences in scientific papers often contain multiple event triggers. Among sentences containing at least an event trigger in SciEvent, 51% contains one event trigger, 31% contains 2 event triggers, 12% contains 3 event triggers, and 6% contains more than 3 event triggers. This suggests potential correlations between events at sentence level, which might be helpful to improve ED models for scientific documents.

<table>
<thead>
<tr>
<th>Word</th>
<th>Count</th>
<th>Total</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>be</td>
<td>2,752</td>
<td>10,208</td>
<td>27.0%</td>
</tr>
<tr>
<td>use</td>
<td>1,516</td>
<td>1,858</td>
<td>81.6%</td>
</tr>
<tr>
<td>show</td>
<td>1,053</td>
<td>1,177</td>
<td>89.5%</td>
</tr>
<tr>
<td>have</td>
<td>601</td>
<td>1,534</td>
<td>39.2%</td>
</tr>
<tr>
<td>give</td>
<td>286</td>
<td>471</td>
<td>60.7%</td>
</tr>
</tbody>
</table>

Table 2: Event rates of the most frequent triggers.

4 Experiments

To reveal the complexity of the ED task in SciEvent, we evaluate the performance of the state-of-the-art deep learning models for ED. In particular,
we consider two major groups of ED models, i.e., sequence-based and graph-based. In the sequence-based approach, we evaluate three typical models: (i) **CNN**: a convolutional neural network for ED (Nguyen and Grishman, 2015), (ii) **DMBERT**: a model that employs dynamic pooling over BERT-based representations (Wang et al., 2019), and (iii) **BERTED**: a model that uses a feed-forward layer over BERT embeddings for representation learning (Yang et al., 2019). For graph-based models, we also consider three recent ED models. In particular, **BERTGCN** is a graph convolutional network (GCN) based on dependency trees (Nguyen and Grishman, 2018), **GatedGCN** augments GCN with trigger-aware gating mechanism for each layer (Lai et al., 2020), and **EEGCN** introduces both dependency labels and structures into GCN for ED (Cui et al., 2020). For all the methods, we leverage **SciBERT** (Beltagy et al., 2019), a customized BERT model for scientific documents to encode input texts. The Stanza toolkit (Qi et al., 2020) is used for dependency parsing. We also follow the word-classification formulation for ED models as prior work (Nguyen and Grishman, 2015; Chen et al., 2015). As such, to facilitate the experiments, we divide the annotated documents for each domain in SciEvent into three separate portions for training/test/development data. In particular, the numbers of documents in training/test/development data for CS, biology, physics, and math are 24/3/2, 40/3/2, 23/3/2, and 8/3/2 respectively. We fine-tune the hyper-parameters for the models on the development set of CS. Appendix A provides a reproducibility checklist that includes the selected values for the hyper-parameters.

<table>
<thead>
<tr>
<th>Model</th>
<th>CS</th>
<th>Biology</th>
<th>Physics</th>
<th>Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN</td>
<td>49.8</td>
<td>39.0</td>
<td>52.6</td>
<td>48.1</td>
</tr>
<tr>
<td>DMBERT</td>
<td>60.2</td>
<td>40.4</td>
<td>57.2</td>
<td>47.9</td>
</tr>
<tr>
<td>BERTED</td>
<td>60.0</td>
<td>39.5</td>
<td>57.1</td>
<td>48.2</td>
</tr>
<tr>
<td>BERTGCN</td>
<td>60.0</td>
<td>39.1</td>
<td>54.9</td>
<td>48.9</td>
</tr>
<tr>
<td>GatedGCN</td>
<td>59.8</td>
<td>39.1</td>
<td>54.3</td>
<td>47.5</td>
</tr>
<tr>
<td>EEGCN</td>
<td>60.3</td>
<td>41.2</td>
<td>56.4</td>
<td>49.9</td>
</tr>
</tbody>
</table>

Table 3: Performance (F1 scores) on the test sets of different domains in SciEvent.

Table 3 presents performance of the models on the test sets of different domains in SciEvent. One observation is that the graph-based models do not exhibit significant improvement over the sequence-based models. We attribute this to the potential noises in the general-domain dependency parser (i.e., Stanza) that cannot achieve its optimal performance on scientific documents, thus hindering the effectiveness of the dependency trees for ED in graph-based models. Importantly, we find that the performance of existing ED models over different domains in SciEvent is far behind those for the general domains (i.e., at least 77% on the popular ACE 2005 dataset (Walker et al., 2006; Lai et al., 2020)). This result suggests new challenges for ED in scientific documents and call for more research effort in this domain. Finally, to further demonstrate the ED challenges in SciEvent, we present an additional experiment for cross-domain evaluation of ED (i.e., trained and tested on different domains) in Appendix B.

5 Related Work

Prior studies on ED involve feature engineering for statistical models (Ahn, 2006; Ji and Grishman, 2008; Hong et al., 2011; Li et al., 2013; Mitamura et al., 2015) and recent deep learning models (Chen et al., 2015; Liu et al., 2017, 2018; Wang et al., 2019). However, such prior work has mainly considered the general domain (i.e., on ACE 2005) that might not be useful for specific domains. Recently, there have been some effort on creating new datasets for ED in specific domains, including biomedical texts (Kim et al., 2009), literary texts (Sims et al., 2019), cybersecurity texts (Satyapanich et al., 2020), and Wikipedia texts (Wang et al., 2020). However, existing ED datasets have not explored rhetorical events in scientific documents as we do. Finally, as discussed in the introduction, scientific document understanding has been studied for different tasks in NLP, including summarization (Teufel and Moens, 2002; AbuRa`ed et al., 2020), keyword extraction (Augenstein et al., 2017), entity/relation extraction (Luan et al., 2017; Jain et al., 2020; Kruiper et al., 2020), and discourse tagging (Dernoncourt and Lee, 2017; Li et al., 2021). However, trigger-based event detection has not been explored for scientific documents.

6 Conclusion

We present SciEvent, the first dataset for ED on scientific documents. SciEvent is manually annotated for 8 popular rhetorical event types in four different domains. Extensive evaluation of state-of-the-art ED models highlights the challenges of SciEvent for ED. In the future, we plan to extend SciEvent to annotate arguments for scientific events.
References

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event extraction via structured prediction with global features. In *ACL*.

A Reproducibility checklist

- **Dataset**: The statistics of the created dataset SciEvent and the annotation process are presented in Section 3. The dataset is included in the submission. We will publicly release the dataset upon the acceptance of the paper. A URL to the publishing site will be included in the paper.

- **Source code with the specification of all dependencies, including external libraries**: We will publicly release the code to run the models upon the acceptance of the paper.

- **Description of computing infrastructure used**: All the experiments were run on a machine with 2 Intel Xeon E5-2620 v4 CPUs, 128GB of RAM, and 4 NVIDIA RTX 2080 Ti GPUs with 11GB RAM. We only train the models with one GPU. The amount of GPU memory for each run ranges from 5 to 7 GB, depending on the models being used.

- **Average runtime for each approach**: We train the models for 100 epochs; each takes approximately 2 minutes. The best epoch is chosen based on the performance on the development sets.

- **Number of parameters in the model**: Every model uses the pre-trained BERT model with non-trainable 110M parameters. The CNN, DMBERT, BERTED, BERTGCN, GatedGCN, EEGCN models have additional 20M, 250K, 80K, 10M, 10M, and 8M trainable parameters, respectively.

- **Explanation of evaluation metrics used, with links to code**: Follow prior work in ED (Nguyen and Grishman, 2015; Chen et al., 2015), we use the precision, recall, and F1 scores for performance metrics.

- **Hyperparameter bounds and configurations for best-performing models**: We use the allenai/scibert_scivocab_cased version of BERT in all the considered models (Bel gazzy et al., 2019). The Stanza toolkit (Qi et al., 2020)\(^2\) (version 1.3.0) is employed for dependency parsing. To obtain the representation vector for a trigger word candidate in a sentence, the hidden vectors of 12 layers of BERT are concatenated. We fine-tune the hyper-parameters for the models in this work over the development data of the computer science domain. For consistency, the same hyper-parameters are applied for the models in other domains of SciEvent. As such, to train the models, we use the Adam optimizer with the learning rate of \(2e^{-5}\) (searched in the range of \(\{2e^{-5}, 3e^{-5}, 4e^{-5}, 5e^{-5}\}\)) and batch size of 128 (searched in the range of \(\{32, 64, 128, 256\}\)). For the CNN model, we use 4 kernel sizes of \(2, 3, 4, 5\), each with 150 filters (searched in the range \(\{100, 150, 200, 250, 300\}\)). The BERTGCN, GatedGCN, EEGCN models employ two GCN layers (searched in the range \(\{2, 3, 4, 5\}\)), each with 256 hidden units (searched in the range \(\{128, 256, 512\}\)). The edge embedding size of the EEGCN model is set to 50. Finally, we use two layers for all the feed-forward neural networks in the models with 256 hidden units in the layers (searched in the range \(\{128, 256, 512\}\)).

<table>
<thead>
<tr>
<th>Model</th>
<th>In-domain CS</th>
<th>Out-of-domain Biology</th>
<th>Physics</th>
<th>Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN</td>
<td>49.8</td>
<td>19.0</td>
<td>26.3</td>
<td>18.1</td>
</tr>
<tr>
<td>DMBERT</td>
<td>60.2</td>
<td>28.8</td>
<td>36.9</td>
<td>29.1</td>
</tr>
<tr>
<td>BERTED</td>
<td>60.0</td>
<td>27.3</td>
<td>35.9</td>
<td>29.0</td>
</tr>
<tr>
<td>BERTGCN</td>
<td>60.0</td>
<td>27.7</td>
<td>40.7</td>
<td>27.6</td>
</tr>
<tr>
<td>GatedGCN</td>
<td>59.8</td>
<td>27.8</td>
<td>39.2</td>
<td>27.9</td>
</tr>
<tr>
<td>EEGCN</td>
<td>60.3</td>
<td>28.0</td>
<td>37.9</td>
<td>28.1</td>
</tr>
</tbody>
</table>

Table 4: Performance (F1 scores) in the cross-domain setting. CS is the source domain while Biology, Physics, and Math serve as the target domains.

B Cross-Domain Evaluation

As SciEvent involves four different domains, we further explore the cross-domain evaluation setting where the models are trained on a source domain and evaluated on different domains. In particular, we choose CS as the source domain and treat the others as the target domains. As such, we train the models on the training data portion of CS and evaluate the models on the test data in different domains. Table 4 reports in-domain (i.e., trained and tested on CS) and out-of-domain (i.e., trained on CS and tested on other domains) performance of the models. It is clear from the table that the performance of all the ED models degrades significantly when they are evaluated on new domains (i.e., Biol-
ogy, Physics, and Math). This clearly demonstrates the divergence between different scientific domains and introduces room for further development of ED research in this setting.

C Annotation Guideline

Table 5 and 6 present a detailed description of event types and examples for each event type in our Sci-Event dataset.
<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
</table>
| PROPOSE| This event type captures expressions to describe the novelty or procedure of the proposed methods or studies in the papers. | A new method is explicitly introduced:
- We propose prototypical networks for the problem of few-shot classification
- In this Letter, we investigate the feasibility of generating multi-MeV gamma-rays of several hundreds attoseconds duration ...

The description of how the new method works:
- Our model learns a metric space in which classification can be performed by computing distances to prototype representations of each class. |
| WISDOM | This event type involves expressions to present established wisdom/knowledge that serves as the direct foundation or motivation to develop the proposed methods/studies in the current paper. | A knowledge that the current paper relies on to motivate its methods/studies:
- While the problem is quite difficult, it has been demonstrated that humans have the ability to perform even one-shot classification.

Some benefit of an approach that the current paper follows:
- The concept... has gained popularity because of its flexibility when dealing with complex models and large data sets, in contrast with maximum likelihood estimation. |
| APPLY | This event type involves expressions to indicates a direct application of existing concrete tools, methods, or systems in the current paper | An explicit mention:
- The use of episodes makes the training problem more faithful to the test environment.
- The package solver uses Golang’s native data structures and interfaces.

An implicit mention:
- The game comes with an built-in package named solver that powers some features of it. |
| EVALUATE| This event type involves expressions for the evaluations of the proposed methods/studies that are associated with experiment procedures and performance metrics. | Some achievements of the proposed methods is mentioned:
- We further extend prototypical networks to zero-shot learning and achieve state-of-the-art results on the CU-Birds dataset.
- We provide an analysis showing that some simple design decisions can yield substantial improvements over recent approaches involving complicated architectural choices and meta-learning.

Some characteristics of the proposed methods are mentioned:
- The generated OD’s are commensurate with those required for all previous demonstrations of optical modulation using the Rb - PBGF system.
- This capability greatly facilitates performing experiments related to weak nonlinearity - based quantum computing. |
| CLAIM | This event type captures an expression of claim for characteristics or achievements of the proposed methods/studies. This is different from EVALUATE where the experiment and performance details of evaluations are mentioned. | |

Table 5: Event types with their descriptions and examples in the SciEvent dataset. Event trigger words are underlined. Continued in Table 6.
<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
</table>
| ISSUE | This event type capture expressions to indicate a potential issue or gap of existing methods/studies for which the current paper aims to directly avoid/address. | — A naive approach, such as re-training the model on the new data, would severely overfit.
— However, the RDR regime is only achievable with extremely intense lasers $\xi \gg 1$.
— MCMC methods used for parameter estimation within a model use only ratios of posterior densities, and are therefore unable to measure its normalisation in general. |
| DISCUSS | This event type captures expressions for general discussions or judgements of existing methods that are related but not directly comparable with the proposed methods/studies in the current paper. This is in contrast to ISSUE that necessitates a direct connection with the proposed methods/studies. | — Two recent approaches have made significant progress in few-shot learning.
— These algorithms focus on finding a feasible solution and do not contain support for preferences (optimization criteria).
— On the other hand, they can perform well in their generalised forms, but if and only if an adequate reference distribution is used. |
| COMPARE | This event type captures expressions to indicate comparisons between the proposed methods/studies in the current paper and and those in prior works. | — Compared to recent approaches for few-shot learning, they reflect a simpler inductive bias that is beneficial in this limited-data regime ...
— Our results show that despite the lack of task-specific tuning our model performs surprisingly well, yielding better results than all previously reported models ... |

Table 6: Event types with their descriptions and examples in the SciEvent dataset. Event trigger words are underlined.