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Abstract

We consider the problem of explaining the predictions of an arbitrary blackbox
model f : given query access to f and an instance x, output a small set of x’s features
that in conjunction essentially determines f(x). We design an efficient algorithm
with provable guarantees on the succinctness and precision of the explanations
that it returns. Prior algorithms were either efficient but lacked such guarantees, or
achieved such guarantees but were inefficient.
We obtain our algorithm via a connection to the problem of implicitly learning de-
cision trees. The implicit nature of this learning task allows for efficient algorithms
even when the complexity of f necessitates an intractably large surrogate decision
tree. We solve the implicit learning problem by bringing together techniques from
learning theory, local computation algorithms, and complexity theory.
Our approach of “explaining by implicit learning” shares elements of two previously
disparate methods for post-hoc explanations, global and local explanations, and we
make the case that it enjoys advantages of both.

1 Introduction

Modern machine learning systems have access to unprecedented amounts of computational resources
and data, enabling them to rapidly train sophisticated models. These models achieve remarkable
performance on a wide range of tasks, but their success appears to come at a price: the complexity of
these models, responsible for their expressivity and accuracy, makes their inner workings inscrutable
to human beings, rendering them powerful but opaque blackboxes. As these blackboxes become
central in mission-critical systems and their predictions increasingly relied upon in high-stakes
decisions, there is a growing urgency to address their lack of interpretability [DVK17, Lip18].

There has therefore been a surge of interest in the problem of explaining the predictions of black-
box models: why did a model f assign an instance x the label f(x)? While there are numerous
possibilities for what qualifies as an explanation (see e.g. [SK10, BSH+10, SVZ14, RSG16, KL17,
LL17, STY17]), in this work we consider an explanation to be a set of x’s features that in conjunction
essentially determines f(x) [RSG18]. Following terminology from complexity theory, we call such
an explanation a certificate.

We seek succinct and precise certificates. Intuitively, this means that we would like the set of features
to be as small as possible, and for it to nonetheless be a sufficient explanation for f(x) with high
probability; more formally, we have the following definition:
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Definition 1 (Succinct and precise certificates). Let f : {±1}d → {±1} be a classifier and x ∈
{±1}d be an instance. We say that a set C ⊆ [d] of features is a size-k ε-error certificate for x if both
of the following hold:

◦ Succinctness: |C| ≤ k,

◦ Precision: Pr
y∼{±1}d

[
f(y) 6= f(x) | yC = xC

]
≤ ε,

where we write ‘yC = xC’ to mean that y and x agree on all the features in C.

Our main result. We give an efficient certificate-finding algorithm with provable guarantees on
the succinctness and precision of the certificates that it returns. Our algorithm is model agnostic,
requiring no assumptions about the structure of f .

Theorem 1. Our algorithm A is given as input an instance x and parameters ε, δ ∈ (0, 1). It makes
queries to a blackbox model f and returns a certificate A (x) for x with the following guarantees.

With probability 1− δ over a uniform random instance x ∼ {±1}d, A (x) is an ε-error certificate
of size poly(C(f), 1/ε, 1/δ), where C(f) is the “average certificate complexity" of f . The time and
query complexity of A is poly(d, C(f), 1/ε, 1/δ).

There is a sizable literature on certificate finding and related problems, studying them from both
algorithmic and hardness perspectives. Previous algorithms, which we overview next, were either
efficient but lacked provable guarantees on the succinctness and precision of the certificates that they
return, or achieved such guarantees but were inefficient. Furthermore, our algorithm circumvents
several hardness results for finding succinct and precise certificates, which we also discuss next.

1.1 Prior work on certificate finding

Efficient heuristics. Recent work of Ribeiro, Singh, and Guestrin [RSG18] studies certificates
(which they term anchors) from an empirical perspective. They demonstrate, through experiments
and user studies, the effectiveness of certificates as explanations across a variety of domains and tasks.
Their work highlights the ease of understanding of certificates by human beings and their clarity of
scope. The authors also point out several advantages of certificates over LIME explanations [RSG16].

Their work gives an efficient heuristic, based on greedy search, for finding high-precision certificates.
However, there are no guarantees on the succinctness of these certificates, and in fact, it is easy to
construct classifiers f : {±1}d → {±1} with near-minimal certificate complexity, C(f) = 2, for
which their heuristic returns certificates of near-maximal size, Ω(d). (We elaborate on this in the
body of this paper.) This should be contrasted with the guarantees of Theorem 1; specifically, the
dimension-independent bound on the sizes of the certificates that our algorithm returns.

Prime implicants. A separate line of work has focused on finding prime implicants [Ign20, DH20,
INM19, INMS19, SCD18]. In the terminology of Definition 1, an implicant is a 0-error certificate,
and an implicant is prime if its error increases whenever a single feature is removed from it. We note
that an implicant being prime (i.e. of minimal size) is not equivalent to it being the most succinct
(i.e. of minimum size): a classifier f : {±1}d → {±1} can have an implicant of size 1 and also
prime implicants of size d− 1.

While 0-error certificates are desirable for their perfect precision, it is often impossible to find them
efficiently. With no assumptions on f , even verifying that a certificate has 0 error requires querying f
on the potentially exponentially many possible instances consistent with that certificate. Existing
algorithms therefore focus on specific model classes. For example, [DH20] gives an algorithm for
enumerating all prime implicants for a restricted class of circuits. Still, there are numerous hardness
results even for model-specific algorithms. For CNF formulas, determining whether a certificate is
0-error is NP-complete. For general size-m circuits, finding the an 0-error certificate that has size
within m1−ε of the smallest possible is NPNP-complete for any ε > 0 [Uma01].

Setting aside the computational intractability of finding 0-error certificates, we note that they are in
general much less succinct than ε-error certificates. It is easy to construct examples where a size-1
certificate with 0.01-error exists, but the only 0-error certificate is the trivial one of size d containing
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all features. In general, there is a natural tradeoff between the two desiderata of succinctness and
precision, and our algorithm allows the user to choose their desired tradeoff rather than forcing them
to choose perfect precision at the cost of succinctness.

Hardness of finding approximate certificates. There are also intractability results for finding the
smallest ε-error certificate. [WMHK21] show that for any ε, determining whether there exists an
ε-error certificate of size k for a given circuit and instance is NPPP-complete. Furthermore, they
show that assuming P 6= NP, there is no efficient algorithm that can even approximate the size of the
smallest ε-error certificate to within a factor of d1−α for any α > 0.

Theorem 1 circumvents these hardness results because our algorithm is only expected to succeed for
most (at least a 1− δ fraction) rather than all instances, and only returns a small certificate relative to
the average certificate complexity of the model, rather than smallest for a particular instance.

1.2 Our approach and techniques

We connect certificate finding to a new algorithmic problem that we introduce, that of implicitly
learning decision trees. The key to this connection is a deep result from complexity theory, Smyth’s
theorem [Smy02], which enables us to relate the certificate and decision tree complexities of functions.
We then show how recently developed decision tree learning algorithms [BLT20b, BGLT20] can be
extended to solve the implicit learning problem. In more detail, there are three modular components
to our approach:

◦ Implicitly learning decision trees. Decision trees are the canonical example of an in-
terpretable model. Their predictions admit simple explanations: a certificate for an
instance x is the root-to-leaf path in the tree that x follows. A natural and well-
studied approach to explaining a blackbox model f is therefore to first learn a deci-
sion tree T that well-approximates f , and with this surrogate decision tree T in hand,
one can then output a certificate for any instance x by returning the corresponding path
in T [CS95, BS96, VAB07, ZH16, VLJ+17, BKB17, VS20]. A limitation of this approach
lies in the fact that many models of interest are inherently complex and cannot be well-
approximated by a decision tree of tractable size.
To circumvent this, we introduce the problem of implicitly learning decision trees. Roughly
speaking, an algorithm for this task allows one to efficiently navigate a surrogate decision
tree T for f—without building T in full. With such an algorithm, the complexity of finding
a certificate scales with the depth of T , making it exponentially more efficient than building
T in full, the complexity of which scales with its overall size.

◦ Relating certificate and decision tree complexities. To translate algorithms for implicitly
learning decision trees into algorithms for finding certificates, we apply a theorem of Smyth
that relates the certificate complexity of a function to its decision tree complexity. The
notion of certificates is central to complexity theory, where it is basis of the complexity class
NP. (Smyth’s result resolved a longstanding conjecture of Tardos [Tar89] that was motivated
by the relationship between P and NP ∩ coNP.)

◦ An efficient algorithm with provable guarantees. With the two items above in hand, we
are able to leverage recent advances in decision tree learning to design certificate-finding
algorithms. Specifically, we show that the decision tree learning algorithm of Blanc, Gupta,
Lange, and Tan [BGLT20] can be extended to the setting of implicit learning. Our resulting
certificate-finding algorithm is simple: it constructs a certificate C for an instance x by
recursively adding to C the most noise stabilizing feature. Fruitful connections between
noise stability and learnability have long been known [KOS04, KKMS08]; our work further
demonstrates its utility for certificate finding.

Our overall approach falls within the framework of Local Computation Algorithms [RTVX11]. Such
algorithms solve computational problems for which the output—in our case, the surrogate decision
tree—is so large that returning it in its entirety would be intractable. Local computation algorithms
are able access and return only select parts of the output—in our case, the path through the tree that
corresponds to the specific instance x of interest—efficiently and consistently.
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1.3 Discussion of broader context: global and local explanations

Existing approaches to post-hoc explanations mostly fall into two categories. Global explanations
seek to capture the behavior of the entire model f , often by approximating it with a simple and
interpretable model such as a decision tree [CS95, BS96, VAB07, ZH16, VLJ+17, BKB17, VS20]
or a set of rules [LKCL19, LAB20]. A limitation of such approaches, alluded to above and also
discussed in numerous prior works (see e.g. [RSG16, RSG18]), is that complex models often cannot
be well-approximated by simple ones. In other words, using a simple surrogate model necessarily
results in low fidelity to the original model.

Our work falls in the second category of local explanations [SK10, BSH+10, SVZ14, RSG16, KL17,
LL17, RSG18]. These seek to explain f ’s label for specific instances x. Several of these approaches
are based on notions of f being “simple around x”: for example, LIME explanations [RSG16] show
that f is “approximately linear around x”, and certificates, the focus of our work, show that f is
“approximately constant in a subspace containing x”. The corresponding algorithms can therefore be
run on models that are too complex to be faithfully represented by a simple global surrogate model.

While our work falls in the category of local explanations, we believe that our new approach of
“explaining by implicit learning” enjoys advantages of both local and global methods. The local
explanations that our algorithm returns are all consistent with a single decision tree T that well-
approximates f globally. The implicit nature of the learning task allows for T to be intractably large,
hence allowing for corresponding algorithms to be run on complex models f , circumventing the
limitation of global methods discussed above. On the other hand, the existence of a single global
surrogate decision tree, albeit one that may be too large to construct in full, affords several advantages
of global methods. We list a few examples:

◦ Partial information about global structure. Our implicit learning algorithm can efficiently
construct the subgraph of T comprising the root-to-leaf paths of a few specific instances;
alternatively, it can construct the subtree of T rooted at a certain node, or the first few layers
of T . All of these could shed light on the global behavior of f .

◦ Feature importance information. Our implicit decision tree T has useful properties beyond
being a good approximator of f . As we will show, its structure carries valuable semantic
information about f , since the feature queried at any internal node v is the most “noise
stabilizing” feature of the subfunction fv . The features in the certificates that our algorithm
returns can be ordered accordingly, each being the most noise stabilizing feature of the
subfunction determined by x’s value on the previous features.

◦ Measures of similarity between instances. Every decision tree T naturally induces a “sim-
ilarity distance” between instances, given by the depth of their lowest common ancestor
within T . Therefore pairs of instances that share a long common path in T before diverging
(or do not diverge at all) are considered very similar, whereas pairs of instances that diverge
early on, say at the root, are considered very dissimilar. (Such tree-based distance functions
have been influential in the study of hierarchical clustering; see e.g. [Das16].) This distance
between two instances can be easily calculated from the certificates that our algorithm
returns for them.

1.4 Preliminaries

Feature and distributional assumptions. We focus on binary features and the uniform distribu-
tion over instances. Several aspects of our approach extend to more general feature spaces and
distributions; we elaborate on this in the conclusion. We use boldface to denote random variables
(e.g. x ∼ {±1}d), and unless otherwise stated, all probabilities and expectations are with respect to
the uniform distribution.

Decision tree and certificate complexity. The depth of a decision tree is the length of the longest
root-to-leaf path, and its size is the number of leaves.

Definition 2 (Decision tree complexity). The ε-error decision tree complexity of f : {±1}d →
{±1}, denoted D(f, ε), is the smallest k for which there exists a depth-k decision tree T satisfying
Pr[T (x) 6= f(x)] ≤ ε.
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Definition 3 (Certificate complexity). For a function f : {±1}d → {±1} and an instance x ∈
{±1}d, the ε-error certificate complexity f at x, denoted C(f, x, ε), is the size of the smallest ε-error
certificate for x. That is, C(f, x, ε) is the size of the smallest set C ⊆ [d] for which

Pr
y∼{±1}d

[
f(y) 6= f(x) | yC = xC

]
≤ ε.

The ε-error certificate complexity of f is the quantity

C(f, ε) := E
x∼{±1}d

[C(f,x, ε)].

When ε = 0, we simply write C(f, x) and C(f).

2 Implicitly learning decision trees

Our motivation for introducing the problem of implicitly learning decision trees is based on a simple
but key property of decision trees. For any instance x, only a tiny portion of T ’s overall structure is
“relevant” for its operation on x: the root-to-leaf path in T that x follows. The depth of a decision tree
is, in general, exponentially smaller than its overall size, so this is indeed a tiny portion.

This natural modularity of decision trees is perhaps the most fundamental reason that decision trees
are so interpretable, and we design our overall approach of “explaining by implicitly learning" to take
advantage of it. For contrast, consider polynomials instead of decision trees: for a polynomial p and
an instance x, all the monomials of p are “relevant” for p’s operation on x.

An algorithm for implicitly learning decision trees allows one to efficiently navigate a decision tree
hypothesis for a target function without constructing the tree in full.

Definition 4 (Implicitly learning decision trees). An algorithm for implicitly learning decision trees
is given query access to a target function f : {±1}d → {±1} and supports the following basic
operations on a decision tree hypothesis T for f :

1. ISLEAF(T, α) which, given some node α, returns whether α is a leaf in T .

2. QUERY(T, α) which, given a non-leaf node α, returns the index i ∈ [d] corresponding to
the feature that T queries at node α.

3. LEAFVALUE(T, α) which, given a leaf node α, returns the output value of that leaf.

We assume that α is represented as a restriction of a subset of the features {±1}d corresponding to
the features queried along to the root-to-α path in T .

The focus of our paper will be on the connections between implicit learning decision trees and our
efficiently finding certificates. As discussed in Section 1.3, we believe that the former problem is
of independent interest and will see applications beyond certificates; we return to this point in the
conclusion.

2.1 The connection between implicitly learning DTs and certificate finding

Since an implicit learning algorithm is not required to fully construct the decision tree hypothesis,
this definition allows for efficient algorithms even when the complexity of f necessitates a surrogate
decision tree of intractably large size. Building on this, we now show that algorithms for implicitly
learning decision trees yield certificate-finding algorithms with efficiency that scales with the depth
of the decision tree hypothesis T rather than its overall size.

Lemma 2.1 (Implicitly learning decision trees⇒ certificate finding). Let f : {±1}d → {±1} and
ε, δ ∈ (0, 1). Suppose there is algorithm for implicitly learning f where the decision tree hypothesis
T satisfies:

1. T is (εδ/2)-close to f , meaning Prx∼{±1}d [T (x) 6= f(x)] ≤ εδ/2.

2. T has depth k.
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FINDCERTIFICATE(f, T, x, ε, δ):

Given: Query access to f : {±1}d → {±1}, an algorithm for implicitly learning f with
T as its decision tree hypothesis, instance x ∈ {±1}d, precision parameter ε, and
confidence parameter δ.

Output: An ε-error certificate for x of size at most the depth of T , or ⊥ if no certificate is
found.

1. Initialize α← ∅.
2. Initialize C ← ∅.
3. While not ISLEAF(T, α):

(a) Set i← QUERY(T, α).
(b) Add i to C.
(c) Set α← α ∪ {i = xi}.

4. Using queries to f , check whether the following holds with confidence at least 1− δ,
indicating if C is an ε-error certificate for x:

Pr
y∼{±1}d

[
f(y) 6= f(x) | yC = xC

]
≤ ε.

If so, output C. Otherwise, output ⊥.

Figure 1: How an algorithm for implicitly learning decision trees can be used to design a
certificate-finding algorithm.

Suppose each of the operations in Definition 4 is supported in time t. Then there is an algorithm,
FINDCERTIFICATE, which on x ∼ {±1}d runs in timeO(tk)+O(log(1/δ)/ε2) and finds an ε-error
certificate of size at most k with probability at least 1− δ.

Proof. Consider the algorithm FINDCERTIFICATE given in Figure 1. By design, the certificates that
it returns is ε-error and has size at most k, the depth of T . Each iteration of the algorithm takes time
O(t), and the number of iterations is at most the depth of the root-to-leaf path in T that x follows,
which is at most k; the additional time complexity of the random sampling step is O(log(1/δ)/ε2).

It remains to prove that FINDCERTIFICATE(f, T,x, ε, δ) outputs ⊥ with probability at most δ. Let
A (x) the certificate checked in Step 4 or FINDCERTIFICATE. We prove that A (x) is an ε-error
certificate for x with probability at least 1 − δ. First, we union bound the definition of an ε-error
certificate as follows:

Pr
y∼{±1}d

[
f(y) 6= f(x) | yA (x) = xA (x)

]
≤ Pr

y∼{±1}d
[f(y) 6= T (y) | yA (x) = xA (x)

]
+ Pr

y∼{±1}d
[T (y) 6= T (x) | yA (x) = xA (x)

]
+ Pr

y∼{±1}d
[T (x) 6= f(x) | yA (x) = xA (x)

]
.

Our goal is to prove for a random x ∼ {±1}d, the probability that the sum of three terms is more
than ε is at most δ. The second term is simplest: whenever yA (x) = xA (x), y and x visit the same
leaf in T , so T (y) 6= T (x) with probability 0. Hence, if the sum of the three terms is more than ε, it
must be the case that either the first term or the third term is more than ε/2. The third term is just
Pr[T (x) 6= f(x)

]
, independent of the choice of y. This is at most 1

2εδ ≤
1
2ε since T is 1

2εδ close
to f . Finally, since

E
x∼{±1}d

[
Pr

y∼{±1}d

[
f(y) 6= T (y) | yA (x) = xA (x)

]]
= Pr

y∼{±1}d

[
f(y) 6= T (y)

]
≤ 1

2δε,

the first probability is more than ε/2 with probability at most δ by Markov’s inequality.

6



3 Certificate complexity, decision tree complexity, and Smyth’s theorem

Our notion of certificates as defined in Definition 1 is local, specific to each instance x, whereas
Smyth’s theorem concerns a global notion of certificates, defined for the entire function f .

Notation. Fix a function f : {±1}d → {±1} and let C be a collection of subsets C ⊆ [d]. We
write ‘x |= C ’ if there exists a 0-error certificate C ∈ C for x, and we write ‘x 6|= C ’ otherwise.

Given two collections C1 and C−1 of subsets, we define a corresponding function ΦC1,C−1
:

{±1}d → {±1,⊥} as follows:

ΦC1,C−1(x) =


1 if x |= C1 and x 6|= C−1
−1 if x |= C−1 and x 6|= C1

⊥ otherwise.

Definition 5 (Global certificate complexity). The global ε-error certificate complexity of f :
{±1}d → {±1}, denoted GC(f, ε), is the smallest k for which there exists two collections C1

and C−1 of size-k subsets satisfying Pr[f(x) 6= ΦC1,C−1
(x)] ≤ ε.

Recalling Definition 2, it is straightforward to verify that GC(f, ε) ≤ D(f, ε) for all f : {±1}d →
{±1} and ε > 0. Briefly, give a depth-k ε-error decision tree T for f , takes C1 to be the collection
of size-k certificates corresponding to paths leading to 1-leafs, and C−1 to be the collection of
size-k certificates corresponding to paths leading to −1-leafs. It is easy to see that Pr[f(x) 6=
ΦC1,C−1(x)] ≤ ε.
Smyth [Smy02], resolving a longstanding conjecture of Tardos [Tar89], proved a surprising converse
to the elementary inequality above:

Theorem 2. For all f : {±1}d → {±1} and ε > 0, we have D(f, ε) ≤ O(GC(f, ε3/30)2/ε3).

We derive as a corollary of Smyth’s theorem a relationship between certificate and decision tree
complexities:

Corollary 3.1 (Bounding decision tree complexity in terms of certificate complexity). For all
f : {±1}d → {±1} and ε > 0, we have D(f, ε) ≤ O(C(f)2/ε9).

Proof. Let k := C(f). By Markov’s inequality, we have that Prx∼{±1}d [C(f,x) ≤ 30k/ε3] ≥ 1−
(ε3/30). For every x ∈ f−1(1) (resp. x ∈ f−1(−1)) that contributes to this probability, we include
in C1 (resp. C−1) its certificate of size 30k/ε3. It follows that Prx∼{±1}d [f(x) 6= ΦC1,C−1

(x)] ≤
ε3/30 and hence GC(f, ε3/30) ≤ 30k/ε3. By Smyth’s theorem,D(f, ε) ≤ O(GC(f, ε3/30)2/ε3) =
O(k2/ε9) and this completes the proof.

4 An efficient algorithm with provable guarantees

The notion of noise sensitivity underlies our implicit learning algorithm and its provable guarantees:

Definition 6 (Noise sensitivity). For f : {±1}d → {±1} and p ∈ (0, 1), the noise sensitivity of f at
noise rate p is the quantity

NSp(f) := E
x∼{±1}n

[
Pr

x′∼px
[f(x) 6= f(x′)]

]
,

where x′ ∼p x means that x′ is drawn by independently rerandomizing each coordinate of x with
probability p.

Strong connections between noise sensitivity and learnability have long been known [KOS04,
BOW08, KKMS08, DHK+10, Kan14]. Most relevant for us is the work of Blanc, Gupta, Lange, and
Tan [BGLT20], which gives a new decision tree learning algorithm with a noise-sensitivity-based
splitting criterion, and shows that it achieves strong provable performance guarantees. Our algorithm
is an implicit version of theirs that enjoys the exponential efficiency gains made possible by the
implicit setting.
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4.1 Greedy noise stabilizing decision trees

Definition 7 (Noise stabilizing score). For f : {±1}d → {±1} and p ∈ (0, 1), the noise stabilizing
score, or simply the score, of the i-th feature with respect to f and p is the quantity:

Scoref (i, p) := NSp(f)− E
b∼{±1}

[NSp(fi=b)],

where fi=b is the restriction of f obtained by fixing the i-th feature to b.

We associate with every function f : {±1}d → {±1} its greedy noise stabilizing decision tree.
Definition 8 (Greedy noise stabilizing decision tree). The greedy noise stabilizing decision tree for
f : {±1}d → {±1} at noise rate p, denoted Υf,p, is the complete depth-d decision tree where at
every internal node α, the feature i that is queried is the one with the highest noise stabilizing score
with respect to the subfunction fα, the restriction of f by the root-to-α path. Every leaf ` of Υf,p is
labeled according to f ’s value for the unique instance that follows the root-to-` path.

Υf,p has maximum depth d, the dimension of f ’s feature space. Since the succinctness of the
certificates that of our certificate-finding algorithm returns scales with the depth of the decision tree
hypothesis, we will truncate Υf at a much smaller depth k � d. Furthermore, with query access to f
one can only obtain high-accuracy estimates of the noise stabilizing scores of each of its features, and
not the exact values of these scores. These algorithmic considerations motivate the following variant
of Definition 8:
Definition 9 (Depth-k η-approximate greedy noise stabilizing decision tree). Let f : {±1}d → {±1}
and p ∈ (0, 1). For k ≤ d and η ∈ (0, 1), a depth-k η-approximate greedy noise stabilizing decision
tree for f at noise rate p, denoted Υk,η

f,p , is a complete depth-k decision tree where:

◦ At every internal node α, the feature i that is queried has noise stabilizing score with respect
to f that is within η of the highest:

Scorei(fα, p) ≥ Scorej(fα, p)− η for all j 6= i.

◦ Every leaf ` is labeled sign(E[f`]).

4.2 Proof of Theorem 1

We now show that, owing to the simple top-down inductive definition of Υk,η
f,p , there is an efficient

algorithm for implicitly learning any target function f with Υk,η
f,p as the decision tree hypothesis.

Lemma 4.1 (Implicit learning with Υk,η
f,p as the decision tree hypothesis). Let f : {±1}d → {±1}

be a function. For k ≤ d and η, p ∈ (0, 1), given query access to f , all the operations of Definition 4
can be supported in time O(d2/η2) with Υk,η

f as the decision tree hypothesis.

Proof. Since Υk,η
f is a complete tree of depth k, we return TRUE for ISLEAF(Υk,η

f,p , α) iff α corre-
sponds to a path of length exactly k. Note that query access to f gives us query access to all its
subfunctions fα for any α. Therefore, by standard random sampling arguments, we can an estimate
of the noise sensitivity of fα that is accurate to within ±η w.h.p. using O(1/η2) queries to f . This
allows us to obtain high-accuracy estimates of the noise stabilizing scores of all the features of fα in
time O(d2/η2), and hence support QUERY(Υk,η

f,p , α) queries by returning the feature with the highest
empirical score. Similarly, we can support LEAFVALUE(Υk,η

f,p , α) queries by approximating E[fα] to
high accuracy and returning its sign.

We will need a structural theorem of [BLT20a] that bounds the distance between f and the greedy
noise stabilizing decision tree Υk,η

f,p :

Theorem 3 (Lemma 2.1 of [BLT20a]). Let function f : {±1}d → {±1} be a function. Consider
Υk,η
f,p where

k = O((D(f, ε)/ε)3), η = Θ(1/k), p = O(ε/D(f, ε)).

Then Pr[Υk,η
f,p(x) 6= f(x)] ≤ O(ε).
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We are now ready to put all the pieces together and establish Theorem 1:

Proof of Theorem 1. By our corollary to Smyth’s theorem, Corollary 3.1, we have the bound
D(f, εδ) ≤ O(C(f)2/(εδ)9). Combining this with Theorem 3, we get that

1. Pr[Υk,η
f (x) 6= f(x)] ≤ O(εδ), where

2. k ≤ O((D(f, εδ)/ε)3) ≤ poly(C(f), 1/ε, 1/δ).

These correspond exactly to the two items in the assumption of Lemma 2.1 with ‘T ’ being Υk,η
f,p , and

the theorem follows.

Comparison with the certificate-finding algorithm of [RSG18]. We conclude this section by
comparing our resulting certificate-finding algorithm to the heuristic proposed in [RSG18].

Different greedy choice. Both our algorithm and [RSG18]’s heuristic are greedy in nature. Our
algorithm builds a certificate by iteratively adding to it the most noise stabilizing feature of f , and
recursing on the subfunction obtained by restricting f according to x’s value for this feature. Our
approach can therefore be viewed as using noise stability as a proxy for progress towards a high-
precision certificate. In contrast, [RSG18] takes a more direct approach and iteratively adds to the
certificate the feature that results in the largest gain in estimated precision.

Provable performance guarantees. [RSG18]’s heuristic is efficient and returns high-accuracy cer-
tificates, but it is easy to construct examples showing that it fails to return succinct certificates. As
a simple example, consider f(x) = xi ⊕ xj , the parity of two unknown features i, j ∈ [d]. Every
instance has a certificate of size two, C = {i, j}, but since any certificate comprising a single feature
{k} has the same precision (regardless of whether k ∈ {i, j}), [RSG18]’s heuristic may include in
its certificate all d − 2 irrelevant features. In contrast, since C(f) = 2, Theorem 1 shows that our
algorithm returns a high-accuracy certificate of constant-size with high probability. ([RSG18] also
considers an extension of their algorithm that incorporates beam search; similar hard functions can
be constructed for this extension.)

5 Conclusion

Certificates are simple and intuitive explanations that have been shown to be effective across domains
and applications [RSG18]. In this work we have designed an efficient certificate-finding algorithm
and proved that it returns succinct and precise certificates. Prior algorithms were either efficient but
lacked such performance guarantees, or achieved such guarantees but were inefficient. Our algorithm
also circumvents known intractability results for finding succinct and precise certificates.

Limitations of our work. The main limitation, and perhaps the most immediate avenue for future
work, is the feature and distributional assumptions of Theorem 1. We do not believe that these are
inherently necessary for the provable guarantees that we achieve. The main bottleneck to relaxing
these assumptions is the decision tree learning algorithm of [BGLT20]: their analysis relies on the
assumptions of binary features and the uniform distribution, and consequently, so does our extension
of their algorithm to the implicit setting.

Other aspects of our approach go through for more general feature spaces and distributions. Smyth’s
theorem holds for arbitrary product spaces, and so does our corollary relating decision tree and
certificate complexities. The overarching connection between implicitly learning decision trees and
certificate finding holds for arbitrary feature spaces and distributions.

Future directions. There are numerous other avenues for future work; we list a few concrete ones:

◦ Improved algorithms and guarantees for specific models. Our algorithm is model agnostic,
requiring no assumptions about the model f that it seeks to explain, and therefore can be
run on any model. It would be interesting to develop improved algorithms, or to improve
upon the guarantees of our algorithms, for specific classes of models, such as deep neural
networks and random forests, by leveraging knowledge of their structure.
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◦ Instantiating our approach with other notions of feature importance. Our certificate-finding
algorithm proceeds by iteratively adding to the certificate the most noise-stabilizing feature.
It would be interesting to analyze natural variants of our algorithm that are based on other
notions of feature importance (e.g. Shapley values [LL17]). Can we determine the optimal
notion of feature importance that will lead to the most efficient algorithm with the strongest
guarantees on the succinctness and precision of the certificates that it returns?

◦ Implicit learning of other interpretable models. As discussed in the introduction, we believe
that our overall approach of “explaining by implicit learning" enjoys advantages of both local
and global approaches to post-hoc explanations. Can our techniques be extended to give
implicit learning algorithms for generalized decision trees, ones that branch on predicates
more expressive than singleton variables? Can we develop implicit learning algorithms for
other interpretable models beyond decision trees?

◦ Beyond explainability: implicit decision trees as a robust model. The motivating application
of our work is that of explaining blackbox models, and therefore the key feature of decision
trees that we have focused on is their interpretability. Decision trees have advantages beyond
interpretability, and it would be interesting to explore further applications of algorithms for
implicitly learning decision trees. For example, can our techniques be combined with those
of Moshkovitz, Yang, and Chaudhuri [MYC21] to robustify arbitrary models, making them
more resilient to noise and adversarial examples?

More broadly, our work is built on new connections between post-hoc explainability and the areas
of learning theory, local computation algorithms, and complexity theory. It would be interesting
to identify other avenues through which ideas from theoretical computer science can be utilized to
contribute to a theory of explainable ML.
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