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Abstract

Large language models (LLMs) are being applied to time series forecasting. But
are language models actually useful for time series? In a series of ablation studies
on three recent and popular LLM-based time series forecasting methods, we find
that removing the LLM component or replacing it with a basic attention layer does
not degrade forecasting performance—in most cases, the results even improve!
We also find that despite their significant computational cost, pretrained LLMs
do no better than models trained from scratch, do not represent the sequential
dependencies in time series, and do not assist in few-shot settings. Additionally, we
explore time series encoders and find that patching and attention structures perform
similarly to LLM-based forecasters]

1 Introduction

Time series analysis is a critical problem across many domains, including disease propagation
forecasting [8]], retail sales analysis [3]], healthcare [26, [17] and finance [31]. A great deal of
recent work in time series analysis (constituting repositories with more than 1200 total stars on
GitHub) has focused on adapting pretrained large language models (LLMs) to classify, forecast, and
detect anomalies in time series [[15} 50} 221 14} |5} 32} [14} 144} [16]]. These papers posit that language
models, being advanced models for sequential dependencies in text, may generalize to the sequential
dependencies in time series data. This hypothesis is unsurprising given language models are now
pervasive in machine learning research. However, direct connections between language modeling
and time series forecasting remain largely undefined. So to what extent is language modeling really
beneficial for traditional time series tasks?

Our claim is simple but profound: popular LLM-based time series forecasters perform the same or
worse than basic LLM-free ablations, yet require orders of magnitude more compute. Derived
from extensive ablations, this reveals a worrying trend in contemporary time series forecasting
literature. Our goal is not to imply that language models will never be useful for time series. In fact,
recent works point to many exciting and promising ways that language and time series interact, like
time series reasoning [235} [7},1451 142} 371, social understanding [6] and financial reasoning [36, [20].
Rather, we aim to highlight surprising findings that existing methods do very little to use the innate
reasoning power of pretrained language models on established time series tasks.

We substantiate our claim by performing three ablations of three popular and recent LLM-based
forecasting methods [50 [15} 22] using eight standard benchmark datasets from reference methods
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and another five datasets from MONASH [13]]. First, we successfully reproduce results from the
original publications. Then, we show that replacing language models with simple attention layers,
basic transformer blocks, randomly-initialized language models, and even removing the language
model entirely, yields comparable or better performance. The same performance was observed on
another five datasets that were not studied by the reference methods.

Next, we compare the training and inference speed of these methods against their ablations, showing
that these simpler methods reduce training and inference time by up to three orders of magnitude
while maintaining comparable performance. Then, to investigate the source of LLM forecaster‘s
performance, we further explore time series encoders. We find that a simple linear model with an
encoder composed of patching and attention can achieve forecasting performance similar to that of
LLMs. Next, we test whether the sequence modeling capabilities of LLMs transfer to time series
by shuffling input time series and find no appreciable change in performance. Finally, we show that
LLMs do not even help forecasting in few-shot settings with 10% of the training data. We discuss the
implications of our findings and suggest that time series methods that use large language models are
better left to multimodal applications [4} 12} [38]] that require textual reasoning.

The key contributions we make in this paper are as follows:

* We propose three straightforward ablation methods for methods that pass time series into LLMs
for forecasting. We then ablate three top-tier methods on thirteen standard datasets and find that
LLMs fail to convincingly improve time series forecasting. However, they significantly increase
computational costs in both training and inference.

* We study the impact of an LLM’s pretraining by re-initializing their weights prior to forecasting.
We find that this has no impact on forecasting performance. Additionally, in shuffling input time
series, we find no evidence the LLMs successfully transfer sequence modeling abilities from text to
time series and no indication they help in few-shot settings.

* We find a very simple model, with patching and attention as encoder, can achieve performance
similar to LLMs. This suggests a massive gap between the benefits LLMs pose and the time series
forecasting problem, despite a rapid rush to adopt LLMs.

2 Related Work

Here, we summarize the key works relevant to LLM-based time series models. They can be broadly
classified into three sections: (i) time series forecasting using LLMs; (ii) encoders in LLM time series
models; and (iii) smaller and efficient neural models for time-series.

Time Series Forecasting Using LLMs. Recently, with the development of Large Language Mod-
els (LLMs) [10, 29, 34] and their demonstrated multi-modal capabilities, more researchers have
successfully applied LLMs to time series forecasting tasks [[14} [16} 15, 4]. Chang et al., [5] used
finetuning the transformer module and positional encoding in GPT-2 to align pre-trained LLMs
with time series data for forecasting tasks. Zhou et al. [50]] proposed a similar finetuning method,
named “OneFitsAll”, for time series forecasting with GPT-2. Additionally, Jin et al. [15]] introduced a
reprogramming method to align LLM’s Word Embedding with time series embeddings, showing good
representation of time series data on LLaMA [34]. Similarly, CALF [22] and TEST [32] adapted
word embeddings to enable LLMs to forecast time series data effectively. In addition to time-series
forecasting models, Liu et al. [23] show that these models can be extended to classifying health-time
series, such as heart-rate and daily-footsteps. These models have also been shown to outperform
supervised neural models in few-shot settings.

Encoders in LLM Time Series Models. In order for an LLM to learn from text it must first be
discretized and encoded as word tokens which are 1 x d vectors [[10, 29} [34]]. Similarly, LLM-based
methods for time series learn discrete time series tokens. One method is to segment the time series
into overlapping patches, which effectively shortens the time series while retaining its features
[LLSLIS0L 1S, 144 281 27, [11]]. Other methods decompose time series into trend, seasonal components,
and residual components [4} 28]]. Lastly, Liu et al. [22] feed the multivariate time series using a
Transformer to enable different channels to learn the dynamics of other channels. These embedding
procedures are followed by a linear neural network layer that projects the time series encoding to the
same dimensions used by the pre-trained LLM.



Dataset ETThl & ETTh2 ETTml & ETTm2 Traffic Electricity Weather Illness

Channels 7 7 862 321 21 7
Sampling-Rate 1 Hour 15 Min. 1 Hour 1 Hour 10 Min. 1 Week
Timesteps 17,420 69,680 17,544 26,304 52,696 966

Table 1: Statistics for all datasets used in reference methods [50), 22} [15]].

Base Learnable Positional ~ Align Word :
Method Model LM Parameters Embeddings Embeddings Multimodal
OneFitsAll [50] GPT-2 Add&Norm Fine-Tune o o)
Time-LLM [15] LLaMA None Freeze ° °
CALF [22] GPT-2 LoRA Fine-Tune ° o

Table 2: Three popular methods for time series forecasting with Large Language Models.

Small and Efficient Neural Forecasters. In addition to LLMs, there has been a large body of
research on smaller yet efficient frameworks that outperform their bulky counterparts in time series
forecasting [19, 47, 33|24} [2]. For example, Zeng et al. [46] present DLinear, an incredibly simple
model that combines decomposition techniques and achieves better forecasting performance than
state-of-the-art transformer-based time series architectures at the time, such as Informer [48]], FED-
former [49], and Autoformer [40]]. Furthermore, Xu et al. [43] introduces a lightweight model with
only 10k parameters, which captures both amplitude and phase information in the time-series to
outperform transformer-based models.

3 Experimental Setup

We use three state-of-the-art methods for time series forecasting and propose three ablation methods
for LLMs: (i) “w/o LLM”; (ii) “LLM2Attn”; (iii) and “LLM2Trsf”. To evaluate the effectiveness
of LLM:s in time series forecasting, we test these methods on eight standard datasets.

3.1 Reference Methods for Language Models and Time Series

We experiment with three recent methods for time series forecasting using LLMs. All models were
published between December 2023 and May 2024 and are popular, with their GitHub repositories
collectively amassing 1,245 stars. These methods are summarized in[Table 2] and use either GPT-
2 [29] or LLaMA [34] as base models, with different alignment and fine-tuning strategies.

* OneFitsAll [50]: OneFitsAll, sometimes called GPT4TS, applies instance norm and patching to
the input time series and then feeds it into a linear layer to obtain a input representation for the
language model. The multi-head attention and feed forward layers of the language model are frozen
while the positional embeddings and layer norm are optimized during training. A final linear layer
is used to transform the language model’s final hidden states into a prediction.

e Time-LLM [15]]: In Time-LLM the input time series is tokenized via patching and aligned with
a low-dimensional representation of word embeddings using multi-head attention. The outputs
of this alignment, combined with the embeddings of descriptive statistical features, are passed to
a frozen pre-trained language model. The output representations of the language model are then
flattened and passed through a linear layer to obtain a forecast.

* CALF [22]: CALF embeds the input time series by treating each channel as a token. One
half of the architecture is a “textual branch” which uses cross attention to align the time series
representation with a low dimensional representation of the language model’s word embeddings.
This representation is then passed through a pretrained, frozen language model to obtain a “textual
prediction”. Simultaneously, a “temporal” branch learns a low-rank adapter for a pretrained
language model based on the input time series to produce a “temporal prediction” which is used
for inference. The model includes additional loss terms that enforce similarity between these
representations.

Reproducibility Note. While experimenting with each model, we tried to replicate the conditions
of their original papers. We used the original hyper-parameters, runtime environments, and code,
including model architectures, training loops, and data-loaders. To ensure a fair comparison, we have
included error metrics from the original papers alongside our results wherever possible.
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Figure 1: Overview of all LLM ablation methods. Figure (a) represents time series forecasting using
an LLM as the base model. In some works, the LLM components are frozen [15}[14]], while in others,
they undergo fine-tuning [50, 22} 4]]. Figure (b) shows the model with the LLM components removed,
retaining only the remaining structure. Figure (c) replaces the LLM components with a single-layer
self-attention mechanism. Figure (d) replaces the LLM components with a simple Transformer.

3.2 Proposed Ablations

To isolate the influence of the LLM in an LLM-based forecaster, we propose three ablations: removing
the LLM component or replacing it with a simple block. Specifically, for each of the three methods
we make the following three modifications:

* w/o LLM (b)). We remove the language model entirely, instead passing the input tokens
directly to the reference method’s final layer.

e LLM2Attn (c)). We replace the language model with a single randomly-initialized
multi-head attention layer.

e LLM2Trsf (d)). We replace the language model with a single randomly-initialized
transformer block.

In the above ablations, we keep left parts of the forecasters unchanged (trainable). For example, as
shown in[Figure 1| (a), after removing the LLM, the input encodings are passed directly to the output
projection. Alternatively, as shown in[Figure T](b) or (c), after replacing the LLM with attention or a
transformer, they are trained along with the remaining structure of the original method.

3.3 Datasets and Evaluation Metrics

Benchmark Datasets. We evaluate on the following real-world datasets: (1) ETT [21]: encompasses
seven factors related to electricity transformers across four subsets: ETThl and ETTh2, which
have hourly recordings, and ETTm1 and ETTm?2, which have recordings every 15 minutes; (2)
Illness [40]: includes the weekly recorded influenza illness among patients from the Centers for
Disease Control, which describes the ratio of patients seen with influenza-like illness to the total
number of patients; (3) Weather [40]: local climate data from 1,600 U.S. locations, between 2010
and 2013, and each data point consists of 11 climate features; (4) Traffic [40]: is an hourly dataset
from California transportation department, and consists of road occupancy rates measured on San
Francisco Bay area freeways; (5) Electricity [35]]: contains the hourly electricity consumption of
321 customers from 2012 to 2014. The train-val-test split for ETT datasets is 60%-20%-20%, and
for Illness, Weather, and Electricity datasets is 70%-10%-20% respectively. The statistics for all
datasets is given in[Table T} We highlight that these datasets, with the same splits and size, have been
extensively used to evaluate time-series forecasting ability of LLM-based and other neural models for
time-series data [48}, 1501 4] [15 15,146, 40, 49]. (6) Exchange Rate [18]: collected between 1990 and
2016, it contains daily exchange rates for the currencies of eight countries (Australia, British, Canada,
Switzerland, China, Japan, New Zealand and Singapore). (7) Covid Deaths [13]: contains daily
statistics of COVID-19 deaths in 266 countries and states between January and August 2020. (8)
Taxi (30 min) [1]: contains taxi rides from 1,214 locations in New York City between January 2015
and January 2016. The data is collected every 30 minutes, with an average of 1,478 samples. (9) NN5
(Daily) [13]]: contains daily cash withdrawal data from 111 ATMs in the UK, with each ATM having
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Figure 2: In the above examples, only OneFitsAll “w/ LLM” performs better than the ablation
methods on ETTh1, but there is substantial overlap in bootstraped confidence intervals. The figures
show the comparison of OneFitsAll, CALF, and Time-LLM using LLMs and ablations (i.e., w/o
LLM, LLM2Attn, and LLM2Trsf) on ETTh1, ETTm2, and Electricity, and the vertical dashed lines
represent the results from the original work. Others Figures for MSE and other datasets are available
in|Figure 5|and|Figure 6|in the Appendix.

791 data points. (10) FRED-MD [13]]: contains 107 monthly macroeconomic indices released by the
Federal Reserve Bank since 01/01/1959. It was extracted from the FRED-MD database.

Evaluation Metrics and Setup. We report the results in terms of mean absolute error (MAE) and
mean squared error (MSE) between predicted and true values of the time-series. Mathematically, given
a test-set with D elements, MAE = 7; 3=, plle; — G|l and MSE = 7 3=, cp(ci — €)%, where

¢; and ¢; denote the true value and predicted value at the i-th index of the time-series respectively.
4 Results

In this section, we provide the details of our comprehensive evaluation of all baseline LLM models for
time-series forecasting. Specifically, we ask the following research questions. (RQ1) Do pretrained
language models contribute to forecasting performance? (RQ2) Are LLM-based methods worth
the computational cost? (RQ3) Does language model pretraining help performance on forecasting
tasks? (RQ4) Do LLMs represent sequential dependencies in time series? (RQS) Do LLMs help
with few-shot learning? (RQ6) Where does the performance come from?

4.1 Do pretrained language models contribute to forecasting performance? (RQ1)

Our results show that pretrained LLMs are not useful for time series forecasting tasks yet. Overall,
as shown in across 13 datasets and two metrics, ablations out perform Time-LLM methods
in 26/26 cases, CALF in 22/26 cases, and OneFitsAll in 19/26 cases. We averaged results over
different predicting lengths, as in [50, [15 22]. Across all prediction lengths (thirteen datasets and
four prediction lengths) ablations outperformed Time-LLM, CALF, and OneFitsAll in 35/40, 31/40,
and 29/40 cases as measured by MAE, respectively. To ensure a fair comparison, we also report
results from each method’s original paper alongside our replication. For specific results refer to
Appendix [EI] To better evaluate the effectiveness of LLMs and ablation methods, we include
95% bootstrapped confidence intervals for each task. In tasks where LLMs performed better, such
as OneFitsAll with ETTh1, shown in there is still substantial overlap in the confidence
intervals with the ablation method “w/o LLM” in MAE. Other datasets results and MSE metrics are
shown in|Figure 5|and [Figure 6|in the Appendix. To summarize, our results on the evaluation above,
it is hard to conclude that LLMs are effective in time series forecasting.

4.2 Are LLM-based methods worth the computational cost? (RQ2)

In the previous section, we showed that LLMs do not meaningfully improve performance on time
series forecasting tasks. Here, we evaluate the computational intensity of these methods with their



Model — Time-LLM w/o LLM LLM2Attn LLM2Trsf From Original Paper

Dataset | MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
ETThl 0432 0417 0419 0405 0437 0.422 0.439 0429 0423 0.408
ETTh2 0.396 0360  0.383  0.345  0.389 0.353 0.394 0359 0.383 0.334
= ETTml 0377 0356 0371 0.350  0.376 0.356 0.377 0359 0371 0.329
= ETTm2 0315 0260 0307  0.252 0314 0.259 0310 0253  0.329 0.250
= Tllness 0.894 2017 0924 1956 0.849 1.789 0.837  1.795 0.801 1.435
3 Weather 0.270 0243 0272 0243 0.254 0.224 0.254 0226  0.257 0.225
?EI) Traffic 0.281 0421 0295 0428  0.276 0.416 0.275  0.416  0.263 0.387
=) Electricity 0259 0.164 0269 0.171  0.260 0.167 0.254  0.161 0.252 0.158
Exchange Rate  0.448 0422  0.413  0.384 0432 0.403 0.442 0422 - -
Covid Deaths 0.089  0.189  0.080  0.198  0.058 0.086 0.054  0.079 - -
Taxi 30 Min)  0.277  0.163  0.286  0.176  0.269 0.157 0.255  0.141 - -
NN5 (Daily) 0432 0402 0425 0379 0411 0.364 0.401  0.347 - -
FRED-MD 0.0004  Se-7  0.0002  3e-7  0.0046 2.53e-5 0.0008 2.6e-6 - -
# Wins 0 12 2 12 -
#Parameters 6651.82M 0.55M 0.55M 0.66M -
Model — CALF w/o LLM LLM2Attn LLM2Trsf From Original Paper
Dataset | MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
ETThl 0.431 0.431 0.428 0436  0.430 0.428 0.430 0430 0.428 0.432
ETTh2 0383 0351 0383 0352  0.382 0.349 0.383  0.350 0.382 0.349
ETTml 0.391 0396 0390 0.397 0390 0.396 0.390  0.394 0390 0.395
~| ETTm2 0323 0283 0322 0282 0.321 0.281 0.320 0281 0321 0.281
o TlIness 0.869 1.699  0.861 1.639  0.892 1.748 0.860  1.630 - -
5 Weather 0.273  0.251 0277 0257 0.279 0.258 0.277 0255 0274 0.250
6 Traffic 0.284 0443 0278 0439  0.275 0.430 0.271  0.426 0.281 0.439
Electricity 0266 0.175 0262 0.174 0.264 0.175 0.261  0.172  0.265 0.175
Exchange Rate  0.417 0388 0409  0.367 0417 0.389 0.409 0367 - -
Covid Deaths 0.084  0.163  0.066 0.115 0.131 0.431 0.066  0.106 - -
Taxi (30 Min)  0.258  0.142 0264 0.147  0.267 0.150 0.267  0.150 - -
NN5 (Daily) 0.403 0362 0386 0.336  0.463 0.445 0.415  0.381 - -
FRED-MD 0.0012  29e-6 0.0011 2.7e-6 0.0015 4.9e-6 0.0017 4.5e-6 - -
# Wins 4 7 4 11 -
#Parameters 180.25M 8.17M 10.5M 13.68M -
Model — OneFitsAll w/o LLM LLM2Attn LLM2Trsf From Original Paper
Dataset | MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
ETThl 0.420 0417 0422 0417 0452 0.465 0.474  0.525 0426 0.427
ETTh2 0.388  0.353 0389 0356  0.402 0.375 0.397 0367 0.394 0.354
= ETTml 0377 0362 0374  0.358  0.379 0.369 0.379 0369 0.383 0.351
5| ETTm2 0310  0.253 0309 0255 0312 0.256 0310 0254 0326 0.266
= TlIness 0.852  1.871 0924 1960  0.829 1.763 0.850  1.830  0.903 1.925
2z Weather 0.254 0226 0272 0245 0.256 0.226 0.256  0.228 0.270 0.236
[‘é;) Traffic 0273 0420 0273 0439  0.266 0.415 0.256  0.409 0.294 0.414
e) Electricity 0.262  0.169 0254  0.165 0.250 0.162 0.245  0.157  0.263 0.166
Exchange Rate  0.378 0357  0.361  0.323  0.376 0.350 0393 0.387 - -
Covid Deaths 0.057  0.075  0.050  0.073  0.058 0.103 0.078  0.162 - -
Taxi 30 Min)  0.252  0.138  0.259  0.143  0.259 0.145 0.257  0.140 - -
NN5 (Daily) 0.438 0438 0422 0385 0423 0.390 0.420  0.386 - -
FRED-MD 0.0006 1.2e-6 0.0002  4e-7  0.0006 1.5e-6 0.0012 2.4e-6 - -
# Wins 7 11 3 5 -
#Parameters 91.36M 9.38M 10.71IM 13.54M -

Table 3: Forecasting performance of all models — Time-LLM, CALF, and OneFitsAll and results
from our ablations. All results are averaged across different prediction lengths, though full results are
available in Appendix Results in Red denote the best-performing model. # Wins refers to the
number of times the method performed best, and # Params is the number of model parameters. “-”
means the dataset is not included in the original paper.

nominal performance in mind. The language models in our reference methods use hundreds of
millions and sometimes billions of parameters to perform time series forecasting. Even when the
parameters of the language models are frozen they still contribute to substantial overhead during
training and inference. For instance, Time-LLM has 6642 M parameters and takes 3003 minutes to
train on the Weather dataset whereas ablation methods have only 0.245 M parameters and take 2.17
minutes on average. Information about training other methods on ETTh1 and Weather datasets are
shown in In the case of inference time, we divide by the maximum batch size to give an
estimate of inference time per example. Time-LLM, OneFitsAll, and CALF take, on average, 28.2,
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Figure 3: Ablation methods consume less time for inference while providing better forecasting
performance. The figure above shows the inference time and prediction accuracy of Time-LLM,
OneFitsAll, and CALF on ETTm?2, Traffic, and Electricity datasets, averaged across prediction
lengths. For more datasets and MSE metrics refer to [Figure 7|and [Figure 8|in the Appendix.

Method Time-LLM (LLaMA) OneFitsAll (GPT-2) CALF (GPT-2)
# Param (M) Time (min) # Param (M) Time (min) # Param (M) Time (min)
_ wW/LLM 6652 181 85 7.36 180 3.28
£ w/oLLM 0.198 0.99 3 0.27 8 0.35
E LLM2Attn 0.202 141 5 0.70 10 0.37
LLM2Trsf 0.336 0.84 8 0.64 13 0.40
5 w/ LLM 6642 3003 86 152 180 12
g w/o LLM 0.198 1.91 4 16 8 2.32
é’ LLM2Attn 0.202 2.22 7 21 10 2.14
LLM2Trsf 0.336 2.38 10 24 13 1.89

Table 4: In time series tasks, LLM (LLaMA and GPT-2) significantly increases training time. The
table shows the number of model parameters (in millions) and total training time (in minutes) for
three methods predicting over a length of 96 on ETTh1 and Weather data. Compared with original
method “w/ LLM” are “w/o LLM”, “LLM2Attn” and “LLM2Trsf”.

2.3, and 1.2 times longer than the modified models. Examples can be seen in[Figure 3] where the
green marks (ablation methods) are typically below the red one (LLM) and are positioned towards
the left of the axis, indicating a lower computational costs and better forecasting performance. Other
datasets and MSE metric refer to[Figure 7]and [Figure 8|in Appendix. In conclusion, the computational
intensity of LLMs in time series forecasting tasks does not result in a corresponding performance
improvement.

4.3 Does language model pretraining help performance on forecasting tasks? (RQ3)

Our evaluation in this section indicates that pretraining with language datasets is unnecessary
for time series forecasting. To test whether the knowledge learned during pretraining meaningfully
improves forecasting performance we experimented with different combinations of pretraining and
finetuning CALF’s [22] language model on time series.

* Pretrain + Finetune (Pre+FT). This is the original method, wherein a pretrained language model
is finetuned on time series data. In the case of CALF, the base language model is frozen and low
rank adapters (LoRA) are learned.

* Random Initialization + Finetune (woPre+FT). Does the textual knowledge from pretraining aid
time series forecasting? In this method we randomly initialize the weights of the language model
(thereby erasing any effect of pretraining) and train the LLM from scratch.

* Pretrain + No Finetuning (Pre+woFT). How much does finetuning on time series improve
prediction performance? For this baseline we again leave the language model frozen and forgo



Methods Pre+FT (GPT-2) woPre+FT Pre+woFT woPre+woFT
MAE MSE MAE MSE MAE MSE MAE MSE

ETThl 04312 0.4313 0.4284 0.4362 0.4267 0.4342 0.4365 0.4474
ETTh2 0.3838 0.3510 0.3839 0.3508 0.3830 0.3514 0.3872 0.3554
ETTml 0.3910 0.3963 0.3933 0.4013 0.3898 0.3954 0.3949 0.4028
ETTm2 0.3230 0.2831 0.3221 0.2852 0.3221 0.2827 0.3224 0.2829
Illness  0.8691 1.6996 0.8523 1.6146 0.8742 1.6640 0.8663 1.6381
Weather  0.2737  0.2510 0.2760 0.2520 0.2771 0.2535 0.2776 0.2582
Traffic  0.2844 0.4438 0.2771 0.4409 0.2820 0.4446 0.2863 0.4483
Electricity 0.2660 0.1758  0.2597 0.1669 0.2635 0.1730 0.2663 0.1784

# Wins: 3 8 5 0

Table 5: Randomly initializing LLM parameters and training from scratch (woPre) achieved better
results than using a pretrained (Pre) model. “woFT” and “FT” refer to whether the LLM parameters
are frozen or trainable.

Dataset ETTh1 Illness
Input Ablation  Sf-all. ~ Sf-half. Ex-half Masking Sf-all.  Sf-half. Ex-half Masking

Time-LLM 51.8%  5.6% 79.6% 32.5% 99.0%  33.6%  34.9% 64.6%
w/o LLM 56.0% 4.5% 89.7% 39.5% 76.5%  209%  18.4% 53.0%
LLM2Attn  53.8% 3.3% 92.2% 33.8% 727%  204%  13.1% 44.6%
LLM2Trsf  503%  3.4% 89.2% 34.8% 745%  23.0% 143% 49.3%

OneFitsAll 62.1%  6.1% 16.6% 31.3% 86.2% 309%  36.7% 77.5%
w/o LLM 58.6%  6.1% 19.2% 36.1% 689%  13.0% 17.3% 43.5%
LLM2Attn  68.5%  9.0% 15.0% 344%  1083% 39.8%  44.2% 74.2%
LLM2Trsf  58.0%  7.8% 12.6% 30.2% 90.8%  27.4%  40.3% 60.6%

CALF 50.5%  9.6% 5.6% 8.5% 113.0% 47.4%  24.4% 22.9%
w/o LLM 56.2% 12.1% 6.1% 10.4%  118.0% 50.4%  45.8% 28.9%
LLM2Attn  51.9% 10.8% 5.8% 7.3% 873%  424%  35.1% 25.8%
LLM2Trsf  503%  8.5% 5.5% 7.0% 102.6% 562%  32.6% 26.0%

Table 6: For the input shuffling/masking experiments on ETTh1 (predict length is 96) and Illness
(predict length is 24), the impact of shuffling the input on the degradation of time series forecasting
performance does not change significantly before and after model modifications. Results of other
predict lengths refer to table [2;1'] in Appendix.

learning LoRAs. Results from this model are therefore indicative of the base language model’s
performance without additional guidance on processing time series.

* Random Initialization + No Finetuning (woPre+woFT). This baseline is effectively a random
projection from the input time series to a forecasting prediction and serves as a baseline comparison
with the other methods.

Overall, as shown in across 8 datasets using MAE and MSE metrics, the "Pretraining +
Finetune" method performed the best 3 times, while "Random Initialization + Finetune" achieved this
8 times. This indicates that language knowledge offers very limited help for forecasting. However,
"Pretrain + No Finetuning" and the baseline "Random Initialization + No Finetuning" performed
the best 5 times and 0 times, respectively, suggesting that Language knowledge does not contribute
meaningfully during the finetuning process. Detailed results refer to in Appendix.

In summary, textual knowledge from pretraining provides very limited aids for time series forecasting.

4.4 Do LLMs represent sequential dependencies in time series? (RQ4)

Most time series forecasting methods that use LLMs finetune the positional encoding to help under-
stand the position of time steps in the sequence [4} 50} 22} |5} 132]]. We would expect a time series
model with good positional representations to show a significant drop in predictive performance when
the input is shuffled [46]. We applied three types of shuffling to the time series: shuffling the entire
sequence randomly ("sf-all"), shuffling only the first half of the sequence ("sf-half"), and swapping
the first and second halves of the sequence ("ex-half"). As shown in[Table 6 LLM-based methods
were no more vulnerable to input shuffling than their ablations. This implies that LLMs do not
have unique capabilities for representing sequential dependencies in time series.



Model LLaMA w/o LLM LLM2Attn LLM2Trsf
MAE MSE MAE MSE MAE MSE MAE MSE

ETTh1 0.522  0.555 0.543 0.621 0547 0.611 0.566 0.656
ETTh2 0.394 0371 0432 0407 0437 0416 0433 0412
ETTml 0.426 0.404 0.403 0.393 0428 0440 0.438 0.457
ETTm2  0.323 0277 0319 0.269 0.355 0316 0351 0.311
Weather  0.273  0.234 0.271 0.241 0275 0.241 0.271 0.239
Traffic 0.306 0.429 0303 0431 0302 0432 0.298 0.432
Electricity  0.270  0.175 0.275 0.175 0.273 0.179 0.274 0.181

# Wins: 8 7 0 1

Table 7: In few-shot scenarios (10% dataset), LLaMA (Time-LLM) performs similarly to the ablation
methods. LLaMA and “w/o LLM” each outperformed the other 8 times. Note that the results of
Time-LLM is from the original paper [15].

Model GPT-2 w/o LLM LLM2Attn LLM2Trsf
MAE MSE MAE MSE MAE MSE MAE MSE

ETTh1 0.543 0.649 0.542 0.642 0545 0.646 0.544 0.643
ETTh2 0.433 0.434 0429 0.427 0433 0431 0432 0434
ETTml 0.500 0.574 0.499 0.572 0.503 0581 0.507 0.586
ETTm2 0339 0304 0338 0.303 0.340 0.305 0.340 0.305
Weather  0.286 0.263 0.287 0.265 0.293 0.270 0.286 0.264
Traffic 0369 0.571 0337 0517 0341 0518 0.333  0.510
Electricity  0.301 0.220 0.287 0.205 0.292 0.208 0.290 0.206

# Wins: 2 10 0 2

Table 8: In few-shot scenarios (10% dataset), Ablation methods perform much better than GPT-2
(CALF). Without LLMs, 12 out of 14 cases showed better performance.

4.5 Do LLMs help with few-shot learning in forecasting? (RQS5)

In this section, our evaluation demonstrates that LLMs are still not meaningfully useful in few-shot
learning scenarios.

While our results indicate that LLMs are not useful for time series forecasting, it is nonetheless
possible that knowledge encoded in pretrained weights could help performance in few-shot settings
where data are scarce. To evaluate whether this is the case we trained models and their ablations
on 10% of each dataset. Specifically, we evaluated LLaMA in Time-LLM methods. The results
for LLaMA, shown in compared LLaMA with completely removing the LLM (w/o LLM).
There was no difference, with each performing better in 8 cases. We conducted similar experiments
with CALF, a GPT-2-based method. Our results in indicate that our ablations can perform
better than LL.Ms in few-shot scenarios.

4.6 Where does the performance come from? (RQ6)

In this section, we evaluate common encoding techniques used in LLM time series models. We find
that combining patching with one-layer attention is a simple and effective choice.

In we found that simple ablations of LLM-based methods

did not decrease performance. To understand why such simple methods RTTEn
work so well we selected some popular techniques used for encoding in
LLM time series tasks, such as patching [50, 15l 5 32, 22| [T1]], decom-
position [4} 28]. A basic transformer block also can be used to aid in * i
encoding [22].

The specific results, shown in[Table T8]in the Appendix, indicate that a . ‘ ‘ ‘ ‘

structure combining patching and attention, named “PAttn”, performs bet-

ter than most other encoding methods on small datasets (with time stamps T s .
less than 1 million) and is even comparable to LLM methods. Its detailed (Channel-Independence)’
structure, as shown in involves applying "instance norm" to

the time series, followed by patching and projection. Then, one-layer ~Figure 4: PAttn Model.



attention enables feature learning between patches. For larger datasets,

such as Traffic (~15 million) and Electricity (~8 million), a model named "LTrsf," using the encoder
from CALF [22], performs better. In those methods, finally, time series embedding will be projected
with a single linear layer to forecast. Details of other encoders is in Appendix [subsection D.3]

Overall, patching plays a crucial role in encoding. Additionally, basic Attention and Transformer
blocks also effectively aid in encoding.

5 Conclusion

In this paper we showed that despite the recent popularity of LLMs in time series forecasting they do
not appear to meaningfully improve performance. We experimented with simple ablations, showing
that they maintain or improve the performance of the LLM-based counterparts while requiring
considerably less compute. Once more, our goal is not to suggest that LLMs have no place in time
series analysis. To do so would likely prove to be a shortsighted claim. Rather, we suggest that
the community should dedicate more focus to the exciting tasks could be unlocked by LLMs at
the interface of time series and language such as time series reasoning [25| 7, 45} [37], or social
understanding [6].
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Are Language Models Actually Useful for

Time Series Forecasting?
(Appendix)

A Limitations

Here, we discuss the limitations of our paper.

1. We evaluate the ability of LLMs using time-series forecasting. However, to get a better
picture of how LLMs can work with time-series, this ability should be evaluated across other
downstream tasks as well, such as time-series classification and question-answering.

2. Our evaluation is limited to only time-series datasets, i.e., sequences with even time-intervals.
However, there also exists a large fraction of data in the form of non-uniform series, such as
payment records, online purchases, etc. Understanding the ability of LLMs in forecasting
non-uniform sequences is also necessary to verify our claim on the usefulness of LLMs for
time-series data.

B Broader Societal Impact

One of the major impacts our study will have is on the influx of models that use LLMs for modeling
time-series. Our results will help researchers to not simply follow the trend of using LLMs in all
applications, but to check their usability in detail. Specifically, these findings will help them determine
if the LLM component is necessary and if the computational costs are reasonable for the specific
setting. In addition to the research community, our findings on the better performance of smaller
and simpler models will help develop scalable models that are easy to understand, interpret, and can
be deployed cheaply in real-world applications. While we agree that a majority of our results are
experimental and limited to selected datasets, we feel that these results will also help researchers
narrow down their search space for better models in time-series forecasting, and not simply neglect
the simpler models.

C License

All our contributions will be released under the MIT License.

D Additional Experimental Details

D.1 System Configuration

We train and evaluate each reference method and each architecture modification using the same
device. For Time-LLM [15], applying LIaMA-7B [34], we use NVIDIA A100 GPU with 80GB
memory. For other methods [50, 22], applying GPT-2 [29], we use NVIDIA RTX A6000 GPU with
48GB memory. Though an analysis of memory footprint is beyond scope of this research, we note
that training the baselines in the absence of LLM can be done within smaller GPUs as well.

D.2 Baseline Hyper-Parameter Details

When reproducing the reference methods, we used the original repository’s hyper-parameters and
model structures. In the ablation study, due to the smaller model parameters, we adjusted the learning
rate or increased the batch size in some cases. All other training details remained identical with the
reference methods. The specific training details and hyper-parameters are provided in the code and
run scripts of the repositoryﬂ Note that the training process and hyper-parameters for the simple
methods can also be accessed via this link.

D.3 Details of Encoder Exploration and Simple Methods

To investigate the source of LLM method performance, we conducted further research on encoders.
We used various encoders to encode time series data, followed by a linear layer to project the time

Zhttps://github.com/Benny TMT/LLMsForTimeSeries
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series embeddings to the forecast. The encoder structure combining patching and attention is shown in
The key difference between PAttn and PatchTST [27] is the absence of position embedding
and the Feed Forward in PatchTST [27], or, more specifically, replacing the Transformer Encoder
with a simple single-layer Attention structure. It could be a simple yet effective method to help
evaluate the trade-off between cost and performance for newly proposed methods.

In addition, we propose three different neural models (i) “LTrsf””: which performs better on larger
datasets, uses CALF ’s [22] encoder without cross-modal attention. This could be a potential source
of CALF ’s performance; (ii) “D-LTrsf”; and (iii) “D-PAttn”: both of them decompose the time
series into three sub-sequences and forecast each using the above two methods respectively, and then
linearly combine the results for the final forecast. Across our results in Table[T8] we note that even
simpler models significantly outperform LLM-based time-series models. In detail, the LLM-based
models, all combined we able to appear 33 times as the best and the second-best performer. However,
“PAttn” was outperforming them by appearing 34 times as the best and the second-best performer. In
addition, the comparison between “PAttn”, “LTrsf”” and other state-of-the-art methods is shown in
Table

E Additional Experiments

Here we present the results of additional experiments that also highlight the ability of LLMs in
modeling time-series data.

E.1 Confidence Intervals for Forecasting

Since LLMs and deep learning models in general are probabilistic in nature, their predictions can
vary across different runs and different random initializations. Thus, we report the confidence
intervals (Cls) for all MAE and MSE predictions made by our baseline models. We report the CIs
for MAE prediction by Time-LLM, CALF, OneFitsAll in Tables 9} [[] and[I3] for MSE predictions
in Tables [T0} [T2] and [T4] respectively. Across all results, we note that the range of variation is quite
small, and these intervals do not affect our observations. To illustrate the subtle differences more
clearly, we present the visualized results in [Figure 5|and [Figure 6]

Confidence Intervals for other Datasets. To evaluate the generality of the ablations in the paper,
we introduce five additional datasets that have not been studied by the reference methods [50 [15} 22].
The above datasets are used in many time series forecasting studies [30} 9} 139, [1} 146]. The prediction
lengths for the “Exchange Rate” are "96, 192, 336, 720", as in [46l [18]. The prediction lengths for
the other four datasets are 30, 48, 56, and 12, respectively, following the settings in Chronos [1]. As
shown in Tables[T3] [T6] and the forecasting performance on the five new datasets, using the three
methods [50} [15} 22] we referenced, still demonstrates that language models are unnecessary for
forecasting tasks.

E.2 Complete Results

Here we provide the results for all methods and datasets that we were unable to add to the main paper.

Inference Times. All results regarding “inference time” and forecast performance are shown in

Figure 7] and [Figure §|respectively.

Randomized Parameters and Random-Shuffling of Inputs. The results of the randomized parame-
ters are shown in[Table 20| The remaining results for shuffled input are shown in Table 2T|22]23]| and
24
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Models Time-LLM w/o LLM LLM2Attn LLM2Trsf From Paper
Dataset Window MAE CI MAE CIL MAE CIL MAE CI

96 0.402  (0.399,0.405) 0.385 (0.383,0.388) 0.400 (0.397,0.402) 0.402 (0.399,0.405) 0.392

=) 192 0.421 (0.418,0.424) 0.412 (0.409,0.415) 0.423 (0.420,0.426) 0.426 (0.424,0.429) 0.418
E 336 0.438 (0.435,0.440) 0.431 (0.428,0.433) 0475 (0.472,0.478) 0.449 (0.447,0.453) 0.427

720 0.468 (0.465,0.470) 0.452 (0.450,0.455) 0.452 (0.449,0.455) 0.480 (0.477,0.483) 0.457
~ 96 0.346  (0.343,0.350) 0.331 (0.328,0.334) 0.338 (0.334,0.342) 0.346  (0.342,0.350) 0.328
= 192 0.391 (0.387,0.396) 0.374 (0.369,0.378) 0.384 (0.381,0.389) 0.390 (0.386,0.393) 0.375
= 336 0.414 (0.410,0.418) 0.407 (0.402,0.410) 0.406 (0.402,0.410) 0.404 (0.400,0.408) 0.409

720 0.434  (0.429,0437) 0.424 (0.421,0.428) 0430 (0.426,0.434) 0.437 (0.434,0.441) 0.420
—_ 96 0.341  (0.340,0.342) 0.337 (0.336,0.338) 0.333  (0.332,0.335) 0.336  (0.335,0.338) 0.334
& 192 0369 (0.368,0.371) 0.360 (0.359,0.361) 0.366 (0.364,0.367) 0.366 (0.365,0.368) 0.358
5 336 0.379  (0.378,0.381)  0.379 (0.378,0.381) 0.386 (0.385,0.387) 0.386 (0.385,0.388) 0.384

720 0.419  (0.418,0.420) 0.410 (0.409,0411) 0422 (0.421,0.423) 0419 (0.418,0.421) 0.411
a 96 0248 (0.247,0.250) 0.246 (0.245,0.248) 0.249 (0.248,0.251) 0.249  (0.248,0.251) 0.253
E 192 0.304 (0.303,0.306) 0.285 (0.283,0.287) 0.293  (0.291,0.295) 0.294  (0.292,0.295) 0.293
E 336 0.329 (0.328,0.331) 0.321 (0.319,0.323) 0.333  (0.331,0.335) 0.323  (0.321,0.325) 0.392

720 0.382  (0.380,0.385) 0.377 (0.375,0.379) 0.384 (0.382,0.387) 0.377 (0.376,0.380) 0.379
- 24 0.807  (0.772,0.841) 0913 (0.879,0.950) 0.848 (0.812,0.884) 0.837 (0.805,0.870) 0.727
8 36 0.833  (0.804,0.861) 0.902 (0.878,0.931) 0.846 (0.813,0.882) 0.846 (0.816,0.872) 0.814
E 48 1.012  (0.986,1.041) 0.932 (0.907,0.958) 0.828 (0.805,0.847) 0.805 (0.785,0.842) 0.807

60 0.925 (0.898,0.953) 0.949 (0.920,0.979) 0.873 (0.846,0.905) 0.862 (0.836,0.893) 0.857
5 96 0.199  (0.198,0.200) 0213  (0.212,0.214) 0.189  (0.188,0.190) 0.189  (0.188,0.190) 0.201
= 192 0261 (0.260,0.262) 0.252 (0.251,0.253) 0.231 (0.230,0.232) 0.229  (0.229,0.230) 0.234
§ 336 0.279 (0.278,0.280) 0.288 (0.286,0.289) 0.272  (0.270,0.273) 0.273  (0.271,0.274) 0.279

720 0342 (0.341,0.343) 0337 (0.336,0.338) 0.327 (0.326,0.328) 0.327 (0.326,0.329) 0.316
° 96 0267 (0.267,0.267) 0.287 (0.287,0.287) 0.266 (0.266.0.266) 0.269  (0.269,0.269) 0.248
£ 192 0.271 (0.270,0.271)  0.290 (0.290,0.290) 0.270  (0.270,0.271)  0.272  (0.272,0.272) 0.247
E 336 0.296  (0.296,0.297) 0.294 (0.294,0.294) 0.278 (0.278,0.278) 0.269  (0.269,0.269) 0.271

720 0291 (0.291,0.292) 0312 (0.312,0.312) 0.294 (0.293,0.294) 0.294  (0.294,0.294) 0.288
2 96 0233 (0.233,0.233) 0.246 (0.246,0.246) 0.234 (0.233,0.234) 0.229  (0.229,0.230) 0.224
-2 192 0.247 (0.247,0.247) 0257 (0.257,0.257) 0.250 (0.249,0.250) 0.242  (0.241,0.242) 0.241
3 336 0.267 (0.266,0.267) 0.273 (0.273,0.274) 0.263 (0.263,0.264) 0.257 (0.257,0.258) 0.248
m 720 0.290  (0.290,0.290)  0.302  (0.302,0.302) 0.296 (0.296,0.296) 0.290  (0.290,0.290) 0.298

#Wins 5 13 6 8 -
Table 9: Confidence Intervals for MAE predictions of Time-LLM. The best performing model in
highlighted in Red color text. #Wins refers to the total number of times the method performed best.

Models Time-LLM w/o LLM LLM2Attn LLM2Trsf From Paper
Dataset Window MSE CI MSE CI MSE CI MSE CI

96 0.376  (0.371,0.382) 0.360 (0.355,0.364) 0.377 (0.371,0.383) 0.382 (0.375,0.387) 0.362

= 192 0.407 (0.401,0.412) 0.401 (0.397,0.406) 0.408 (0.403,0.414) 0.416 (0.411,0.422) 0.398
5 336 0.430 (0.423,0437) 0.431 (0.425,0437) 0477 (0.470,0.482) 0.441 (0.437,0.446) 0.430

720 0.457 (0.450,0.463) 0.429 (0.422,0.434) 0.429 (0.423,0.434) 0479 (0.473,0.484) 0.442
~ 96 0286 (0.282,0.295) 0.271 (0.264,0.278) 0.281 (0.276,0.288) 0.292  (0.284,0.297) 0.268
=) 192 0.361 (0.354,0.367) 0.342  (0.336,0.349)  0.355 (0.346,0.363) 0.360 (0.354,0.367) 0.329
E 336 0.390 (0.384,0.396) 0.379 (0.373,0.384) 0.384 (0.377,0.393) 0.379 (0.371,0.385) 0.368

720 0.405 (0.397,0.410) 0.389 (0.382,0.396) 0.395 (0.390,0.400) 0.405 (0.397,0.412) 0.372
— 96 0291 (0.288,0.293) 0.292 (0.289,0.295) 0.289  (0.286,0.292) 0.292  (0.289,0.295) 0.272
£ 192 0.341  (0.339,0.344) 0331 (0.328,0.334) 0.336 (0.334,0.340) 0.341 (0.338,0.344) 0.310
[; 336 0.359  (0.356,0.362) 0.362 (0.359,0.364) 0.373 (0.368,0.376) 0.374 (0.370,0.377) 0.352
= 720 0.433  (0.431,0436) 0417 (0.414,0419) 0429 (0.425,0432) 0429 (0.426,0.433) 0.383
) 96 0.162  (0.160,0.164) 0.161  (0.159,0.163) 0.163  (0.160,0.165) 0.165 (0.163,0.167) 0.161
E 192 0235 (0.232,0.239) 0217 (0.214,0.220) 0.223 (0.221,0.227) 0.222  (0.219,0.225) 0.219
5 336 0.280 (0.276,0.282) 0.272 (0.268,0.275) 0.284 (0.281,0.287) 0.270  (0.266,0.273) 0.271

720 0.366  (0.362,0.370) 0.359 (0.356,0.362) 0.367 (0.363,0.371) 0.355 (0.352,0.359) 0.352
- 24 1.792  (1.651,1.954) 2.034 (1.872,2.225) 1.860 (1.691,2.059) 1.923 (1.755,2.073) 1.285
& 36 1.833  (1.701,2.009) 1.923 (1.753,2.056) 1.805 (1.657,1.967) 1.816 (1.707,1.961) 1.404
é 48 2269 (2.153,2.379) 1916 (1.804,2.024) 1.716 (1.601,1.844) 1.655 (1.552,1.760) 1.523

60 2,177 (2.064,2.308) 1953 (1.844,2.076) 1.777 (1.680.1.874) 1.789 (1.637,1.916) 1.531
5 96 0.155 (0.153,0.157) 0.171 (0.168,0.173)  0.147  (0.144,0.149)  0.147  (0.145,0.150) 0.147
= 192 0223 (0.221,0.225) 0214 (0.212,0.217) 0.191 (0.189,0.193) 0.191 (0.189,0.194) 0.189
g 336 0251 (0.249,0.254) 0.260 (0.258,0.262) 0.242  (0.240.0.245) 0.246  (0.243,0.248) 0.262

720 0.345 (0.343,0.348) 0.328 (0.325,0.331) 0.319 (0.317,0.322) 0.323  (0.321,0.326) 0.304
° 96 0392 (0.390,0.394) 0.409 (0.407,0.411) 0.395 (0.393,0.397) 0.395 (0.393,0.397) 0.362
=] 192 0.409 (0.407,0411) 0417 (0.415,0420) 0.405 (0.403.0.407) 0.407 (0.405,0.409) 0.374
E 336 0.434 (0.432,0436) 0.426 (0.424,0428) 0416 (0.414,0418) 0412 (0.410,0.415) 0.385

720 0.451  (0.450,0.454) 0.461 (0.459,0.463) 0.450 (0.448,0.452) 0.451 (0.448,0.453) 0.430
2 96 0.137  (0.137,0.138)  0.143  (0.143,0.143) 0.138  (0.137,0.138) 0.133  (0.133,0.134) 0.131
E 192 0.152  (0.151,0.152)  0.157 (0.157,0.158) 0.154 (0.154,0.155) 0.148 (0.148,0.149) 0.152
3 336 0.169 (0.169,0.169) 0.174 (0.173,0.174) 0.169 (0.169,0.170) 0.164  (0.164.,0.165) 0.160
m 720 0.200  (0.199,0.200)  0.211 (0.210,0.211)  0.209 (0.208,0.209) 0.201  (0.201,0.202) 0.192

1% count 5 11 10 7 -
Table 10: Confidence Intervals for MSE predictions of Time-LLM. The best performing model in
highlighted in Red color text. #Wins refers to the total number of times the method performed best.
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Models CALF w/o LLM LLM2Attn LLM2Trsf From Paper
Dataset Window MAE CI MAE CI MAE CI MAE CI

96 0.393  (0.391,0.394) 0391 (0.390,0.392) 0.391 (0.389,0.392) 0.393 (0.392,0.395) 0.389

= 192 0.426  (0.424,0427) 0419 (0.418,0.420) 0.424 (0.423,0.425) 0.423 (0.422,0.425) 0.423
= 336 0.440 (0.439,0.441) 0.437 (0.436,0.438) 0.441 (0.440,0.442) 0.439 (0.438,0.440) 0.436
720 0.466 (0.465,0.467) 0.467 (0.465,0.467) 0.467 (0.466,0.467) 0.465 (0.464,0.466) 0.467

~ 96 0336 (0.333,0.339) 0332 (0.329,0.335) 0.333 (0.331,0.336) 0.333 (0.331,0.336) 0.331
=) 192 0.378 (0.376,0.381) 0.378 (0.376,0.381) 0.379 (0.376,0.382) 0.379 (0.376,0.382) 0.380
E 336 0.394  (0.391,0.396) 0.394 (0.391,0.398) 0.393  (0.390,0.396) 0.394 (0.391,0.398) 0.394
720 0.428 (0.425,0.430) 0.428 (0.426,0.430) 0.427 (0.424,0.430) 0.427 (0.425,0.429) 0.426

— 96 0.350 (0.349,0.352) 0.348 (0.346,0.350) 0.348 (0.347,0.349) 0.348 (0.347,0.349) 0.349
E 192 0.376  (0.375,0.376)  0.374 (0.374,0.375) 0.376 (0.375,0.377) 0.374 (0.373,0.375) 0.375
E 336 0.401  (0.400,0.402) 0.399 (0.398,0.400) 0.401 (0.400,0.401) 0.399 (0.398,0.400) 0.399
720 0.438  (0.437,0.439) 0.442 (0.441,0443) 0439 (0.438,0.439) 0.439 (0.438,0.440) 0.438

a 96 0.255 (0.255,0.256) 0.256 (0.255,0.257) 0.253 (0.252,0.254) 0.252 (0.251,0.253) 0.256
& 192 0.300 (0.299,0.302) 0.299 (0.297,0.300) 0.297 (0.295.0.298) 0.297  (0.296,0.298) 0.297
5 336 0.341 (0.340,0.343) 0.340 (0.338,0.341) 0.339 (0.338.0.341) 0.339 (0.338,0.341) 0.339
720 0.395  (0.394,0.397) 0395 (0.394,0.397) 0.395 (0.394,0.397) 0.395 (0.393,0.396) 0.393

- 24 0.788  (0.742,0.841)  0.800 (0.740,0.852) 0.806 (0.757,0.845) 0.792 (0.745,0.832) 0.000

& 36 0.837 (0.798,0.872) 0.802 (0.771,0.830) 0.892 (0.849,0.943) 0.928 (0.895,0.974) 0.000

E 48 0.890 (0.842,0.937) 0.888 (0.849,0.933) 0.897 (0.868,0.938) 0.859 (0.816,0.907) 0.000
60 0962 (0.917,0.999) 0.955 (0.917,0.997) 0.975 (0.937,1.022) 0.861 (0.832,0.904) 0.000

5 96 0.207  (0.206,0.207) 0.212  (0.212,0.213) 0.217 (0.216,0.217) 0.211 (0.210,0.211) 0.204

< 192 0.251  (0.250,0.252) 0256  (0.255,0.257) 0.257 (0.256,0.258) 0.255 (0.254,0.255) 0.250
g 336 0292 (0.291,0.293) 0296 (0.295,0.297) 0.298 (0.297,0.299) 0.296  (0.295,0.297) 0.291
720 0.345  (0.344,0.347)  0.347 (0.346,0.349)  0.347 (0.345,0.348)  0.347  (0.346,0.349) 0.352

° 96 0.274  (0.272,0.275) 0.267 (0.266,0.268) 0.265 (0.264,0.266) 0.258  (0.257,0.260) 0.268

=] 192 0276 (0.275,0.277) 0271 (0.270,0.273) 0.268 (0.267,0.269) 0.265 (0.265,0.267) 0.278
E 336 0.286 (0.285,0.287) 0.278 (0.277,0.279) 0.275 (0.274,0.276) 0.272  (0.271,0.273) 0.281
720 0.301  (0.300,0.302) 0.297 (0.296,0.298) 0.293  (0.292,0.294) 0.291  (0.290,0.291) 0.300

= 96 0.240 (0.239,0.240) 0.238 (0.238,0.239) 0.238 (0.238,0.239) 0.236  (0.235,0.236) 0.238
-2 192 0.254 (0.253,0.254) 0.250 (0.249,0.251) 0.251 (0.250,0.252) 0.248  (0.248,0.249) 0.252
3 336 0.270  (0.270,0.271)  0.265 (0.265,0.266) 0.266  (0.266,0.267) 0.264  (0.263,0.264) 0.267
m 720 0.300 (0.300,0.301) 0.297 (0.296,0.297) 0.302 (0.302,0.303) 0.299  (0.299,0.300) 0.303

#Wins 7 9 4 12 -
Table 11: Confidence Intervals for MAE predictions of CALF. The best performing model in
highlighted in Red color text. #Wins refers to the total number of times the method performed best.

Models CALF w/o LLM LLM2Attn LLM2Trsf From Paper
Dataset Window MSE CI MSE CI MSE CI MSE CI
— 96 0.370  (0.366,0.373) 0.375 (0.372,0.378) 0.368 (0.364,0.371) 0.371 (0.368,0.374) 0.369
= 192 0.429 (0.426,0.433) 0.427 (0.424,0430) 0.425 (0.422,0.428) 0.428 (0.424,0.431) 0.427
= 336 0.451 (0.448,0.454) 0.457 (0.454,0.460) 0.448 (0.446.0.452) 0.449 (0.446,0.451) 0.456
720 0.476  (0.474,0478) 0.4838 (0.486,0491) 0471 (0.470,0.473) 0475 (0.474,0.478) 0.479
~ 96 0.284 (0.279,0.289) 0.282  (0.277,0.286) 0.282  (0.278,0.286) 0.282  (0.278,0.286) 0.279
= 192 0353 (0.347,0.359) 0.354 (0.349,0.359) 0.354 (0.348,0.359) 0.353 (0.349,0.358) 0.353
E 336 0.361  (0.356,0.365) 0.366 (0.362,0.371) 0.360 (0.356,0.364) 0.363  (0.359,0.367) 0.362
720 0.406  (0.403,0.409) 0.408 (0.404,0.412) 0.404 (0.400,0.408) 0.404 (0.400,0.408) 0.404
— 96 0323  (0.319,0.329) 0.323 (0.320,0.325) 0.320 (0.318.0.323) 0.321 (0.319,0.324) 0.323
E 192 0.375 (0.374,0.377) 0.374 (0.371,0.376) 0.375 (0.373,0.377) 0.372  (0.370,0.374) 0.374
S 336 0.411  (0.409,0.413) 0.409 (0.407,0411) 0.411 (0.410,0.414) 0.408 (0.406,0.410) 0.409
720 0.476  (0.474,0478) 0.484 (0.482,0.485) 0.477 (0.476,0.479) 0.478 (0.476,0.480) 0.477
) 96 0.177  (0.175,0.179)  0.178 (0.176,0.180) 0.176  (0.174,0.178) 0.175 (0.173,0.176) 0.178
g 192 0.245 (0.243,0.246) 0244 (0.241,0.246) 0.241  (0.239,0.243)  0.242  (0.240,0.245) 0.242
[; 336 0.309 (0.306,0.311) 0.308 (0.305,0.310) 0.306 (0.304,0.309) 0.308 (0.305,0.310) 0.307
= 720 0.402  (0.400,0.405) 0.401 (0.397,0.404) 0.401 (0.398,0.404) 0.401 (0.398,0.404) 0.397
- 24 1.460 (1.297,1.672) 1.544 (1.342,1.719) 1.573 (1.382,1.758) 1.450 (1.267,1.625) -
& 36 1.573  (1.441,1.705) 1.437 (1.307,1.533) 1.699 (1.540,1.868) 1.780 (1.610,1.960) -
§ 48 1.784 (1.630,1.937) 1.710 (1.500,1.883) 1.716 (1.602,1.854) 1.639 (1.528,1.821) -
60 1.982  (1.786,2.128) 1.867 (1.720,2.025) 2.004 (1.837,2.186) 1.652 (1.522,1.832) -
5 96 0.168  (0.166,0.169) 0.176 (0.175,0.177) 0.178 (0.177,0.180) 0.173  (0.172,0.175) 0.164
< 192 0216 (0.214,0.218) 0.224 (0.223,0.226) 0.225 (0.223,0.226) 0.221 (0.220,0.223) 0.214
%ﬁ 336 0271 (0.269,0.273) 0277 (0.275,0.279) 0.279 (0.277,0.280) 0.276  (0.274,0.278) 0.269
720 0.350  (0.347,0.353)  0.352  (0.350,0.355) 0.352 (0.349,0.354) 0.353 (0.350,0.355) 0.355
o 96 0416 (0.413,0419) 0410 (0.407,0413) 0.402 (0.399,0.404) 0.396 (0.393,0.399) 0.407
E 192 0.430 (0.429,0.433) 0.428 (0.425,0431) 0.419 (0.416,0.421) 0416 (0.414,0.418) 0.430
E 336 0.451 (0.449,0.453) 0.443 (0.441,0.445) 0435 (0.433,0437) 0431 (0.429,0.432) 0.444
720 0.478 (0.476,0.480) 0.476 (0.474,0479) 0.467 (0.465,0.469) 0.463 (0.461,0.465) 0.477
= 96 0.147  (0.146,0.148)  0.149  (0.148,0.151) 0.148 (0.146,0.149) 0.145 (0.144,0.147) 0.145
-2 192 0.163  (0.162,0.164) 0.162 (0.161,0.163) 0.161 (0.160,0.162) 0.159 (0.158,0.160) 0.161
3 336 0.178 (0.178,0.179) 0.175 (0.175,0.176)  0.175 (0.174,0.176) 0.172  (0.171,0.173) 0.175
m 720 0215 (0.214,0215) 0212 (0.211,0.213) 0.217 (0.217,0.218) 0.213 (0.213,0.214) 0.222

#Wins 6 4 9 13 -
Table 12: Confidence Intervals for MSE predictions of CALF. The best performing model in
highlighted in Red color text. #Wins refers to the total number of times the method performed best.
Note that ’-” means the dataset has not been included in the original paper.
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Models OneFitsAll w/o LLM LLM2Attn LLM2Trsf From Paper
Dataset Window MAE CI MAE CI MAE CI MAE CI

96 0.389  (0.387,0.391) 0.390 (0.387,0.392) 0.406 (0.404,0.409) 0.412 (0.408,0.414) 0.397

=) 192 0413  (0.411,0416) 0.416 (0.413,0418) 0441 (0.438,0.443) 0.455 (0.452,0.458) 0.418
E 336 0431 (0.428,0.433) 0.430 (0.428,0.432) 0.461 (0.458,0.464) 0.460 (0.457,0.462) 0.433

720 0.449  (0.446,0.451) 0.454 (0.451,0.457) 0.501 (0.498,0.504) 0.570 (0.566,0.575) 0.456
~ 96 0.335 (0.333.0.336) 0.337 (0.335,0.338) 0.351 (0.349,0.353) 0.348 (0.346,0.350) 0.342
= 192 0.380  (0.378,0.381) 0.382 (0.380,0.383) 0.395 (0.393,0.396) 0.391 (0.389,0.392) 0.389
E 336 0.405  (0.403,0.406) 0.410 (0.407,0411) 0416 (0.414,0.418) 0.414 (0.413,0.416) 0.407

720 0436 (0.435,0.438) 0.430 (0.428,0.432) 0.448 (0.446,0.450) 0.439 (0.437,0.441) 0.441
—_ 96 0.340  (0.339,0.340) 0.342 (0.341,0.342) 0.337 (0.336.,0.338) 0.339 (0.338,0.340) 0.346
E 192 0.368 (0.367,0.368) 0.363  (0.362,0.363) 0.366 (0.366,0.367) 0.369 (0.369,0.370) 0.372
= 336 0.386  (0.386,0.387) 0.381 (0.381,0.382) 0.389 (0.389,0.390) 0.387 (0.386,0.387) 0.394
= 720 0416 (0.415,0.416) 0413 (0.412,0413) 0427 (0.426,0.428) 0.421 (0.420,0.422) 0.421
~ 96 0.249  (0.248,0.250) 0.248 (0.247,0.248)  0.251 (0.251,0.252) 0.250 (0.249,0.250) 0.262
E 192 0291 (0.291,0.292) 0.286 (0.286,0.287) 0.291  (0.290,0.292) 0.288 (0.287,0.289) 0.301
E 336 0327 (0.326,0.328) 0.323  (0.322,0.324) 0.327 (0.326,0.327) 0.323  (0.322,0.324) 0.341

720 0.376  (0.375,0.377) 0.380 (0.379,0.381) 0.382 (0.381,0.383) 0.382 (0.381,0.383) 0.401
- 24 0.823  (0.806,0.841) 0.930 (0.914,0.945) 0.807 (0.788,0.824) 0.846  (0.830,0.865) 0.881
§ 36 0.854 (0.840,0.868) 0.913 (0.901,0.926) 0.816 (0.799,0.830) 0.848 (0.833,0.864) 0.892
= 48 0.855 (0.840,0.866) 0.911 (0.897,0.923) 0.846 (0.828,0.860) 0.848 (0.837,0.860) 0.884

60 0.877 (0.867,0.889) 0.942 (0.932,0.957) 0.850 (0.836.0.863) 0.861 (0.850,0.876) 0.957
5 96 0.188 (0.188,0.189) 0.212 (0.212,0.213) 0.193  (0.192,0.193) 0.188 (0.187.0.188) 0.212
= 192 0.230  (0.230,0.231) 0.251 (0.251,0.252) 0.231 (0.230,0.232) 0.233  (0.232,0.234) 0.248
g 336 0273 (0.272,0.273)  0.289 (0.288,0.290) 0.273  (0.273,0.274) 0.275 (0.274,0.275) 0.286

720 0.328 (0.328,0.329) 0.339 (0.339,0.340) 0.328 (0.327.0.328) 0.328 (0.328,0.329) 0.337
© 96 0.264 (0.263,0.264) 0.264 (0.264,0.264) 0.257 (0.257,0.257) 0.252 (0.252,0.252) 0.282
& 192 0.268 (0.268,0.268) 0.271 (0.271,0.271) 0.260 (0.260,0.261) 0.246  (0.245,0.246) 0.290
g 336 0273 (0.273,0.273) 0.271 (0.270,0.271)  0.264 (0.264,0.265) 0.255 (0.254,0.255) 0.294

720 0291 (0.291,0.291) 0.289 (0.289,0.289) 0.284 (0.284,0.284) 0.274 (0.274,0.274) 0.312
2 96 0239 (0.238,0.239) 0.230 (0.229,0.230) 0.224 (0.224,0.224) 0.218 (0.218.,0.218) 0.238
2 192 0.253  (0.252,0.253) 0.242 (0.242,0.242) 0.238 (0.238,0.238) 0.233  (0.233,0.233) 0.251
3 336 0.266  (0.266,0.267) 0.258 (0.258,0.258) 0.254 (0.254,0.254) 0.250  (0.250,0.250) 0.266
o 720 0293  (0.293,0.294) 0.290 (0.290,0.290) 0.285 (0.285,0.285) 0.283  (0.283,0.283) 0.297

#Wins 9 8 6 9 -
Table 13: Confidence Intervals for MAE predictions of OneFitsAll. The best performing model in
highlighted in Red color text. #Wins refers to the total number of times the method performed best.

Models OneFitsAll w/o LLM LLM2Attn LLM2Trsf From Paper
Dataset Window MSE CI MSE CI MSE CIL MSE CI

96 0.370  (0.365,0.375) 0371  (0.366,0.376) 0.403  (0.397,0.409) 0.397 (0.391,0.403) 0.376

= 192 0412 (0.406,0.417) 0.416 (0.410,0.420) 0.454 (0.448,0.461) 0.482 (0.476,0.489) 0.416
5 336 0.448 (0.443,0454) 0.441 (0.434,0.446) 0.483 (0.475,0.490) 0.480 (0.475,0.487) 0.442

720 0.441  (0.436,0.447) 0.442 (0.437,0448) 0.522 (0.515,0.527) 0.743  (0.732,0.752) 0.477
~ 96 0.280 (0.278,0.283) 0.284 (0.282,0.287) 0.304 (0.301,0.307) 0.298 (0.295,0.301) 0.285
= 192 0.348  (0.346,0.352) 0355 (0.352,0.357) 0.370 (0.367,0.375) 0.363  (0.360,0.366) 0.354
E 336 0.380 (0.377,0.383) 0.388  (0.384,0.390) 0.399 (0.396,0.401) 0.392 (0.389,0.395) 0.373

720 0.406 (0.403,0.409) 0.400 (0.398,0.403) 0.431 (0.428,0433) 0419 (0.416,0.422) 0.406
— 96 0.300 (0.298,0.301) 0.301 (0.300,0.303) 0.299 (0.297,0.300) 0.304 (0.303,0.306) 0.292
g 192 0.343  (0.342,0.344) 0.338 (0.337,0.339) 0.349 (0.348,0.351) 0.356 (0.355,0.358) 0.332
E 336 0376 (0.374,0.377) 0.369 (0.368,0.370) 0.383 (0.382,0.385) 0.379 (0.378,0.381) 0.366
= 720 0.431 (0.430,0.433) 0.425 (0.424,0427) 0.447 (0.446,0.449) 0.438 (0.437,0.440) 0.417
a 96 0.163  (0.162,0.164)  0.163  (0.162,0.164) 0.165 (0.164,0.166) 0.164 (0.163,0.165) 0.173
E 192 0222 (0.220,0.223) 0.221 (0.219,0.222) 0.223 (0.221,0.224) 0.219 (0.218,0.220) 0.229
E 336 0273 (0.272,0.275) 0275 (0.273,0.276) 0.275 (0.273,0.276) 0.272  (0.270,0.273) 0.286

720 0.357 (0.355,0.359) 0364 (0.363,0.366) 0.362 (0.360,0.364) 0.362 (0.360,0.363) 0.378
- 24 1.869 (1.780,1.950) 2.119 (2.022,2.215) 1.799 (1.711,1.887) 1.929 (1.868,2.020) 2.063
& 36 1.853  (1.791,1.925) 1.929 (1.857,1.997) 1.727 (1.660,1.800) 1.801 (1.741,1.859) 1.868
E: 48 1.886 (1.828,1.942) 1.883 (1.827,1.932) 1.804 (1.744,1.866) 1.807 (1.749,1.869) 1.790

60 1.877 (1.827,1.937) 1911 (1.861,1.953) 1.724 (1.672,1.776) 1.784 (1.736,1.841) 1.979
5 96 0.148  (0.147,0.150)  0.173  (0.172,0.175)  0.150 (0.149,0.152) 0.149  (0.148,0.150) 0.162
= 192 0.192 (0.191,0.194) 0216 (0.215,0.218) 0.192 (0.191,0.194) 0.196 (0.194,0.197) 0.204
§ 336 0246 (0.244,0.247) 0.263 (0.261,0.264) 0.244 (0.243,0.246) 0.247  (0.246,0.248) 0.254

720 0.320 (0.318,0.321) 0.330 (0.329,0.332) 0.318 (0.316,0.319) 0.322 (0.321,0.324) 0.326
° 96 0.396 (0.393,0.398) 0.422 (0.419,0424) 0.393 (0.391,0.395) 0.391 (0.389,0.393) 0.388
=] 192 0.412  (0.410,0.414) 0.430 (0.428,0432) 0.406 (0.404,0.408) 0.395 (0.393,0.397) 0.407
E 336 0.421  (0.419,0.423) 0.437 (0.435,0439) 0413 (0.412,0.416) 0.406 (0.405,0.408) 0.412

720 0.455 (0.453,0.457) 0.470 (0.468,0.472) 0.451 (0.449,0.453) 0.444 (0.442,0.446) 0.450
2 96 0.141  (0.141,0.142)  0.137 (0.136,0.137)  0.133  (0.133,0.134) 0.128  (0.128,0.129) 0.139
-2 192 0.158 (0.157,0.158) 0.151 (0.151,0.152) 0.149 (0.149,0.150) 0.145 (0.145,0.146) 0.153
3 336 0.172 (0.172,0.172)  0.167 (0.167,0.168) 0.165 (0.164,0.165) 0.160 (0.160,0.161) 0.169
m 720 0.207  (0.207,0.208) 0.206  (0.205,0.206) 0.201  (0.201,0.202) 0.196  (0.195,0.196) 0.206

#Wins 10 5 7 10 -
Table 14: Confidence Intervals for MSE predictions of OneFitsAll. The best performing model in
highlighted in Red color text. #Wins refers to the total number of times the method performed best.
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Models Time-LLM w/o LLM LLM2Attn LLM2Trsf

Dataset Window  MAE CI MAE CI MAE CI MAE CI
96 0.251 (0.248,0.255) 0.209 (0.206,0.212) 0.213 (0.210,0.217) 0.239 (0.237,0.242)
192 0.344 (0.340,0.349) 0.305 (0.301,0.309) 0.330 (0.325,0.334) 0.331 (0.326,0.336)

Exchange Rate 334 0451 (0.446,0456) 0423 (0.417.0428) 0471 (04650477) 0453 (0.447,0.458)

720 0.771 (0.761,0.782) 0.719 0.709.0727) 0762 (0.752,0.771) 0762 (0.753.0.771)

Covid Deaths 30 0.090 (0.018,0.193) 0.080 (0.015,0.178) 0.059 (0.007,0.125) 0.055 (0.008,0.113)
Taxi (30 Min) 48 0.275 (0.270,0.280) 0.286 (0.280,0.292) 0.269 (0.265,0.275) 0.256 (0.251,0.261)
NN5 (Daily) 56 0.432 (0.358,0.500) 0.425 (0.360,0.498) 0411 (0.341,0.484) 0.401 (0.327,0.465)
FRED-MD 12 6.0e-04  (5.2e-04,7.9e-04)  2.0e-04  (1.4e-04,2.7e-04) 4.7e-03  (4.5e-03,4.8¢e-03) 9.0e-04  (6.7e-04,1.1e-03)
#Wins 0 5 0 3
Models Time-LLM w/o LLM LLM2Attn LLM2Trsf
Dataset Window MSE CI MSE CI MSE CI MSE CI
96 0.123 (0.120,0.127) 0.090 (0.087,0.093) 0.090 (0.087,0.093) 0.110 (0.107,0.113)
Exchanee Rate 192 0.224 (0.217,0.230) 0.185 (0.180,0.190) 0.211 (0.206,0.217) 0.211 (0.206,0.216)
8 336 0.377 (0.369,0.387) 0.341 (0.332,0.348) 0.407 (0.398,0.418) 0.384 (0.376,0.392)
720 1.018 (0.997,1.041) 0.922 (0.896,0.943) 1.022 (1.007,1.043) 0.996 (0.975,1.023)
Covid Deaths 30 0.194 (0.000,0.467) 0.199 (0.004,0.462) 0.087 (0.009,0.196) 0.082 (0.002,0.183)
Taxi (30 Min) 48 0.161 (0.154,0.169) 0.177 (0.168,0.188) 0.157 (0.149,0.164) 0.141 (0.134,0.148)
NN5 (Daily) 56 0.404 (0.273,0.548) 0.379 (0.271,0.525) 0.365 (0.233,0.539) 0.347 (0.234,0.474)
FRED-MD 12 14e-06  (7.5¢-07.2.2¢-06) 2.8¢-07 (8.0e-08,5.6e-07) 2.5¢-05 (2.4e-052.7e-05) 2.6e-06 (1.7e-06,3.7e-06)
#Wins 0 5 0 3

Table 15: Confidence Intervals for MAE and MSE predictions of Time-LLM. The best performing
model in highlighted in Red color text. #Wins refers to the total number of times the method
performed best. The ablation results in the table above are from datasets that have not been studied

by the reference methods [50, 15} 22].

Models CALF w/o LLM LLM2Attn LLM2Trsf
Dataset Window ~ MAE I MAE a1 MAE I MAE el
9 0.203 (0.200.0206) 0207 02040211) 0206  (0.203,0209)  0.207 (0.204,0.210)
Exchange Rate 192 0306  (0.300,0.312) 0305 (0.300,0311)  0.305 (0.298.0309)  0.305 (0.298,0.309)
s 336 0.427 (0.420,0435) 0426 0.419,0436) 0427 (0.418,0.435) 0415 (0.406,0.424)
720 0732 (0.721,0.745) 0.697 (0.687,0710)  0.731 (0.7160.750)  0.708 (0.695,0.723)
Covid Deaths 30 0.084  (0.0250.174) 0.066 0.012,0.144)  0.131 (0.027.0274) 0066  (0.014,0.151)
Taxi (30 Min) 48 0.258 (0.2540263) 0264 (0.259.0268)  0.267 0.262,0271) 0267 (0.263,0.272)
NN (Daily) 56 0.403 (0.348,0.471) 0386 (0.3250432) 0433 (0.367,0504)  0.431 (0.357,0.495)
FRED-MD 12 1.3¢-03  (1.2¢-03,1.4¢-03)  1.2¢-03  (1.0e-03,1.3¢-03)  1.6e-03  (1.4¢-03,1.7¢-03)  1.7¢-03  (1.6¢-03,1.9¢-03)
#Wins 2 4 1 1
Models CALF w/o LLM LLM2Attn LLM2Trsf
Dataset Window ~ MSE al MSE I MSE I MSE el
9% 0.083 (0.080,0.085)  0.086 (0.084,0089) 0086  (0.084,0.089)  0.087  (0.085,0.090)
192 0.186  (0.180,0.193)  0.183 (0.177.0.188) 0182 (0.177.0.189) 0.181 (0.175.0.186)

Exchange Rate 43¢ 0.350 (0.339,0.361) 0.345 (0.335,0.360) 0.345 (0.332,0.356) 0.324 (0.310,0.337)

720 0.935 (0.906,0.965) 0.854 (0.833.0.877) 0.943 (0.911,0.978) 0.878 (0.856,0.900)

Covid Deaths 30 0.163 (0.005,0.373) 0.115 (0.003,0.287) 0.431 (0.010,1.046) 0.106 (0.008,0.207)

Taxi (30 Min) 48 0.142 (0.134,0.152) 0.147 (0.140,0.158) 0.150 (0.143,0.157) 0.150 (0.142,0.158)

NN5 (Daily) 56 0.362 (0.275,0.522) 0.336 (0.236,0.451) 0.405 (0.277,0.618) 0.399 (0.272,0.585)

FRED-MD 12 2.9e-06 (2.0e-06,4.5e-06) 2.7e-06 (2.0e-06.3.3e-06) 4.9e-06 (3.4e-06,6.8¢-06) 4.5e-06  (3.7e-06,5.4e-06)
#Wins 2 3 0 3

Table 16: Confidence Intervals for MAE and MSE predictions of CALF. The best performing model
in highlighted in Red color text. #Wins refers to the total number of times the method performed best.
The ablation results in the table above are from datasets that have not been studied by the reference

methods [50, [13], 22]].
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Models OneFitsAll w/o LLM LLM2Attn LLM2Trsf

Dataset Window MAE CI MAE CI MAE CI MAE CI
96 0.218 (0.215,0.221) 0.204 (0.202,0.207) 0.215 (0.213,0.218) 0.224 (0.221,0.226)
Exchanee Rate 192 0.307 (0.303,0.311) 0.308 (0.304,0.312) 0.339 (0.334,0.344) 0.343 (0.340,0.347)
& 336 0.461 (0.455,0.467) 0.452 (0.446,0.457) 0.469 (0.463,0.477) 0.434 (0.430,0.440)
720 0.767 (0.756,0.777) 0.727 (0.716,0.736) 0.735 (0.722,0.747) 0.781 (0.771,0.790)
Covid Deaths 30 0.057 (0.019,0.122) 0.050 (0.004,0.100) 0.058 (0.019,0.114) 0.078 (0.015,0.175)
Taxi (30 Min) 48 0.260 (0.256,0.267) 0.265 (0.259,0.271) 0.264 (0.258,0.272) 0.263 (0.256,0.268)
NN5 (Daily) 56 0.438 (0.364,0.517) 0.422 (0.352,0.497) 0.423 (0.363,0.480) 0.420 (0.354,0.487)
FRED-MD 12 6.7e-04  (5.6e-04,7.7e-04) 2.5e-04 (1.9e-04,3.3e-04) 6.1e-04 (4.9e-04,7.1e-04) 1.2e-03  (1.2e-03,1.3e-03)
#Wins 2 4 0 2
Models OneFitsAll w/o LLM LLM2Attn LLM2Trsf
Dataset Window MSE CI MSE CI MSE CI MSE CI
96 0.096 (0.093,0.098) 0.086 (0.084,0.089) 0.092 (0.090,0.095) 0.103 (0.100,0.106)
Exchanee Rate 192 0.182 (0.177,0.186) 0.189 (0.184,0.194) 0.232 (0.224,0.239) 0.228 (0.221,0.233)
s 336 0.402 (0.393,0.414) 0.392 (0.382,0.401) 0.462 (0.444,0.481) 0.359 (0.351,0.368)
720 1.055 (1.028,1.084) 0.932 (0.909.0.951) 0.985 (0.958,1.010) 1.113 (1.090,1.146)
Covid Deaths 30 0.075 (0.004,0.161) 0.073 (0.002,0.175) 0.103 (0.003,0.265) 0.162 (0.009,0.435)
Taxi (30 Min) 48 0.148 (0.139,0.158) 0.150 (0.141,0.159) 0.150 (0.143,0.159) 0.149 (0.141,0.158)
NN5 (Daily) 56 0.438 (0.309,0.555) 0.385 (0.252,0.508) 0.390 (0.262,0.542) 0.385 (0.254,0.515)
FRED-MD 12 1.2e-06  (7.4e-07,1.9e-06)  3.8¢-07  (1.0e-07,7.6e-07)  1.5e-06  (8.4e-07,2.2e-06) 2.4e-06  (2.1e-06,3.0e-06)
#Wins 2 5 0 1

Table 17: Confidence Intervals for MAE and MSE predictions of OneFitsAll. The best performing
model in highlighted in Red color text. #Wins refers to the total number of times the method
performed best.
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Figure 5: Ablation studies indicate that when different methods remove the LLM (“w/o LLM”) or re-
place it with a single-layer attention (“LLM2Attn”) or Transformer (“LLM2Trsf”), the performance
on time series forecasting tasks with MAE metric does not decline and even improves, compared with
original methods, such as “GPT-2” or “LLaMA”. The vertical dashed line in the figures represents
the results from the original paper. Above figures are from "ETTh2’, ’ETTm1’, ’Illness’, *Weather’,
and ’Traffic’ datasets.
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LLM2Attn e i LLM2Attn ————  LLM2Attn ! ——i
LLM2Trsf —— LLM2Trsf ——— LLM2Trsf | e
1.800 2.000 1.600 1.800 1.600 2.000
MSE MSE MSE
Weather-OneFitsAll Weather-CALF Weather-TimeLLM
w/ LLM i w/ LLM i w/ LLM i gl
w/o LLM ! 1ol w/o LLM ! —— w/o LLM ! g
LLM2Attn i ! LLM2Attn ! — LLM2Attn !
LLM2Trsf ! LLM2Trsf ! —— LLM2Trsf  HH
0.225 0.240 0.252 0.258 0.225 0.240
MSE MSE MSE
Traffic-OneFitsAll Traffic-:CALF Traffic-TimeLLM
w/ LLM . w/ LLM el w/ LLM | ]
w/o LLM ! 1ol w/o LLM lag! w/o LLM | L]
LLM2Attn ol LLM2Attn g} ! LLM2Attn | ol
LLM2Trsf W | LLM2Trsf +H i LLM2Trsf | 1
0.420 0.440 0.430 0.440 0.400 0.425
MSE MSE MSE

Figure 6: Ablation studies indicate that when different methods remove the LLM (“w/o LLM”) or re-
place it with a single-layer attention (“LLM2Attn”) or Transformer (“LLM2Trsf”), the performance
on time series forecasting tasks with MSE metric does not decline and even improves, compared with
original methods, such as “GPT-2" or “LLaMA”. The vertical dashed line in the figures represents
the results from the original paper.
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Methods  Pre+FT (GPT2) woPre+FT Pre+woFT woPre+woFT
Metric MAE MSE MAE MSE MAE MSE MAE MSE

96 0.3927 0.3695 0.3925 0.3747 0.3920 0.3735 0.3969 0.3798
192 0.4258 0.4290 0.4185 0.4268 0.4178 0.4243 0.4276 0.4345
336 0.4404 04510 04397 04627 04316 04526 0.4413 0.4656
720 0.4661 0.4757 0.4629 0.4807 0.4654 0.4863 0.4804 0.5099

96 0.3359 0.2841 0.3291 0.2741 0.3340 0.2829 0.3336 0.2831
192 0.3782 0.3532 0.3780 0.3526 0.3758 0.3510 0.3778 0.3547
336 0.3937 0.3611 0.3992 0.3697 0.3946 0.3649 0.4006 0.3667
720 04275 0.4057 0.4295 04067 0.4277 0.4067 0.4366 0.4172

96  0.3497 0.3228 0.3497 0.3240 0.3483 0.3231 0.3516 0.3243
192 0.3756 0.3751 0.3783 0.3789 0.3751 0.3750 0.3775 0.3801
336 0.4009 0.4108 0.3998 0.4092 0.4014 0.4105 0.4050 0.4152
720 0.4378 0.4765 0.4454 0.4931 04343 04730 0.4456 0.4916

96 0.2553 0.1771 0.2529 0.1752 0.2544 0.1771 0.2546 0.1768
192 0.3002 0.2446 0.2986 0.2466 0.2991 0.2451 0.2985 0.2438
336 0.3413 0.3086 0.3375 0.3064 0.3401 0.3079 0.3397 0.3070
720 0.3953 0.4023 0.3995 0.4124 0.3947 0.4005 0.3969 0.4038

24 0.7876 1.4596 0.7862 1.4470 0.8327 1.5333 0.8346 1.5892
36 08373 1.5726 0.8317 1.5531 0.8308 1.5083 0.8438 1.5347
48 0.8895 1.7839 0.9300 1.8532 0.8931 1.7503 0.9033 1.7689
60 09619 19824 08612 1.6051 0.9400 1.8644 0.8837 1.6594

96  0.2065 0.1675 0.2092 0.1678 0.2076 0.1677 0.2112 0.1744
192 0.2506 0.2159 0.2526 0.2172 0.2555 0.2165 0.2567 0.2247
336 0.2923  0.2709 0.2967 0.2734 0.2939 0.2714 0.2949 0.2777
720 0.3454  0.3495 0.3458 0.3494 0.3514 0.3582 0.3476 0.3559

96 0.2737 04159 0.2622 0.4103 0.2708 0.4158 0.2751 0.4201
192 0.2764 0.4302 0.2694 0.4287 0.2742 0.4324 0.2776 0.4356
336 0.2863 0.4507 0.2781 0.4456 0.2817 0.4485 0.2868 0.4530
720 0.3010 0.4783 0.2986 0.4792 03013 0.4817 0.3056 0.4844

96  0.2397 0.1469 0.2308 0.1377 0.2382 0.1442 0.2430 0.1530
192 0.2538 0.1629 0.2506 0.1581 0.2522 0.1605 0.2541 0.1652
336 0.2701 0.1785 0.2676 0.1733 0.2673 0.1768 0.2699 0.1797
720 0.3004 0.2148 0.2897 0.1987 0.2964 0.2104 0.2980 0.2156

#Wins 17 28 17 2

Table 20: Pretraining on language datasets is not necessary for time series forecasting tasks. The
table shows the performance of using pretraining models versus not using pretraining, as well as the
combination of fine-tuning and not fine-tuning LL.Ms in time series forecasting.

ETThl

ETTh2

ETTml

ETTm2

Illness

Weather

Traffic

Electricity
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Dataset ETTh1 Illness
Predict Lengths Sf-all. Sf-half. Ex-half Masking Sf-all. Sf-half. Ex-half Masking

Time-LLM 51.8% 5.6% 79.6% 325% 99.0% 33.6% 349% 64.6%
wioLLM 56.0% 4.5% 89.7% 39.5% 76.5% 20.9% 18.4%  53.0%

96(24) LLM2Attn 53.8% 33% 922% 33.8% 727% 204% 13.1% 44.6%
= LLM2Trsf 503% 3.4% 89.2% 34.8% 74.5% 23.0% 143% 49.3%
= Time-LLM 439% 59% 721% 325% 839% 434% 30.7% 69.9%
E 192(36) wlo LLM 46.8% 43% 773% 329% 77.0% 245% 153% 56.6%
- LLM2Attn 45.0% 4.4% 78.0% 30.0% 73.8% 257% 112% 53.3%
"E’ LLM2Trsf 44.0% 55% 771% 299% 72.1% 27.0% 6.0% 51.3%
E Time-LLM 39.1% 59% 67.0% 247% 51.6% 260% 112% 485%
336(48) wioLLM 41.7% 39% 71.6% 299% 73.6% 27.6% 13.6% 52.9%
LLM2Attn 34.1% 12% 69.5% 21.1% 85.1% 388% 12.8% 57.5%
LLM2Trsf 549% 3.7% 75.0% 263% 852% 427% 18.6% 63.6%
Time-LLM 72.6% 31.8% 733% 32.1% 73.0% 424% 27.5% 76.3%
720(60) w/oLLM 39.7% 52% 643% 293% 74.1% 27.7% 142% 56.6%
LLM2Attn 455% 6.0% 66.0% 260% 662% 285% 119% 51.7%
LLM2Trsf 533% 102% 63.7% 273% 67.7% 30.7% 78%  492%
Dataset ETThl Illness

Predict Lengths Sf-all. Sf-half. Ex-half Masking Sf-all. Sf-half. Ex-half Masking
CALF 50.5% 9.6% 5.6% 85% 113.0% 474% 244% 22.9%
96(24) w/o LLM 562% 12.1% 6.1% 104% 118.0% 504% 45.8%  28.9%
LLM2Attn 519% 10.8% 5.8% 7.3% 873% 42.4% 351% 25.8%
LLM2Trsf 503% 8.5% 5.5% 7.0% 102.6% 562% 32.6% 26.0%
§ CALF 41.7% 7.8% 3.3% 3.6% 1009% 457% 129% 17.1%
. 192(36) w/o LLM 509% 13.5% 4.5% 6.0% 115.6% 57.0% 283% 21.4%
— LLM2Attn 45.8% 9.7% 3.6% 5.0% 78.8% 41.8% 10.1% 19.9%
é LLM2Trsf 424% 8.3% 3.4% 4.3% 73.6% 425% 7.0% 17.5%
CALF 38.1% 9.0% 1.7% 5.0% 68.9% 43.0% 15.1% 14.9%
336(48) w/o LLM 472% 145% 2.3% 8.7% 763% 49.0% 18.5% 18.1%
LLM2Attn 39.3% 10.0% 1.7% 5.5% 789% 542% 222% 153%
LLM2Trsf 40.3% 10.0% 1.9% 4.9% 789% 52.0% 234% 17.7%
CALF 36.5% 10.0% 0.7% 5.5% 63.8% 22.7% 5.4% 15.3%
720(60) w/oLLM 41.0% 102% 1.2% 6.2% 69.7% 303% 12.1% 19.4%
LLM2Attn 36.0% 9.9% 0.7% 5.0% 71.7% 292% 12.7% 14.2%
LLM2Trsf 352% 9.3% 0.7% 5.1% 90.4% 553% 264% 21.9%

Dataset ETThl Illness

Predict Lengths Sf-all. Sf-half. Ex-half Masking Sf-all. Sf-half. Ex-half Masking
OneFitsAll 62.1% 6.1% 16.6% 313% 862% 309% 36.7% 71.5%
96(24) w/io LLM 58.6% 6.1% 192% 36.1% 689% 13.0% 173% 43.5%
LLM2Attn 68.5% 9.0% 15.0% 344% 1083% 39.8% 442% 742%
= LLM2Trsf 58.0% 7.8% 12.6% 302% 90.8% 27.4% 403% 60.6%
E OneFitsAll  52.7% 8.2% 8.8% 285%  52.0% 152% 85%  44.4%
= 192(36) w/io LLM 47.5% 6.1% 10.6% 31.8% 763% 24.0% 18.0% 47.5%
Z LLM2Attn 80.8% 134% 6.7% 256% 97.8% 42.0% 363% 65.0%
%‘é LLM2Trsf 54.7% 12.5% 6.4% 24.1%  82.0% 29.6% 244% 63.83%
© OneFitsAll 62.1% 6.1% 16.6% 313% 795% 348% 251% 74.5%
336(48) w/oLLM 58.6% 6.1% 192% 36.1% 78.1% 22.1% 157% 49.4%
LLM2Attn 68.5% 9.0% 15.0% 344% 864% 458% 21.7% 69.8%
LLM2Trsf 58.0% 7.8% 12.6% 302% 89.2% 358% 21.6% 66.9%
OneFitsAll 40.1%  8.0% 3.5% 254%  53.6% 21.8% 99%  44.9%
720(60) w/o LLM 394% 7.1% 4.1% 282%  74.5% 209% 17.1% 45.5%

LLM2Attn 93.8% 219% 15% 253% 86.0% 41.4% 27.0% 72.8%
LLM2Trsf 87.2% 20.1% 1.6% 27.1% 923% 40.7% 293% 76.3%

Table 21: Results for input shuffling/masking for Time-LLM, CALF, and OneFitsAll methods on
ETTh1 (predict length are "96, 192, 336 and 720") and Illness (predict length are "24, 36, 48 and
60"), the impact of shuffling the input on the degradation of time series forecasting performance does
not change significantly before and after model modifications.
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Dataset ETTh2 Electricity
Input Ablation Sf-all. Sf-half. Ex-half Masking Sf-all. Sf-half. Ex-half Masking

Time-LLM  27.1% 4.5% 44.6% 99.5% 212.1% 522% 323.4% 103.3%
w/oLLM  312% 29% 52.4% 1379% 2209% 473% 332.4% 105.5%
LLM2Attn  30.7% 29% 46.7% 134.8% 234.7% 582% 350.4% 115.3%
LLM2Trsf 24.8% 23% 43.4% 1150% 240.8% 50.8% 362.0% 118.5%

OneFitsAll  33.0% 1.1% 39.7% 112.1% 237.8% 252% 382.0% 88.9%
w/oLLM  327% 28% 387% 1158% 249.7% 43.4% 384.7% 109.2%
LLM2Attn  27.5% 10% 36.5% 137.4% 2552% 49.5% 393.9% 119.2%
LLM2Trst  29.6% 22% 372% 130.8% 263.8% 55.1% 406.4% 125.4%

CALF 113% 20%  9.1%  44.7% 2351% 1082% 29.3%  37.6%
w/oLLM 23.1% 4.1% 172% 469% 239.5% 1092% 28.6% 39.4%
LLM2Attn  16.7% 34% 148% 31.7% 2379% 1162% 289% 422%
LLM2Trsf  189% 3.0% 153% 432% 245.6% 107.0% 292% 423%

Table 22: For the input shuffling/masking experiments on ETTh2 and Electricity, the impact of
shuffling the input on the degradation of time series forecasting performance does not change
significantly before and after model modifications.

Dataset ETTml ETTm2
Input Ablation Sf-all. Sf-half. Ex-half Masking Sf-all. Sf-half. Ex-half Masking

Time-LLM  66.6% 10.1% 107.7% 43.5% 47.0% 53% 77.7% 202.9%
w/oLLM  68.7% 12.4% 112.0% 52.6% 498% 4.7% 78.7% 199.6%
LLM2Attn  73.5% 13.5% 1193% 50.7% 49.6% 4.7% 759% 196.3%
LLM2Trsf 72.0% 27.6% 117.0% 542% 46.4% 3.7% 76.5% 191.9%

OneFitsAll  74.4% 8.0% 123.4% 41.8% 48.0% 3.7% 829% 172.9%
w/oLLM  66.7% 103% 1151% 45.0% 48.1% 44% 81.9% 190.7%
LLM2Attn  739% 11.1% 124.8% 51.6% 455% 33% 77.8% 183.6%
LLM2Trsf 70.1% 83% 1262% 50.5% 482% 43% 82.0% 182.9%

CALF 643% 248% 1223% 1377% 235% 9.1% 471% 61.7%
w/oLLM  66.7% 26.0% 123.6% 159% 27.1% 112% 51.9% 58.1%
LLM2Attn  62.5% 234% 1223% 156% 252% 88% 51.5% 57.3%
LLM2Trsf 61.8% 25.6% 122.6% 13.6% 23.7% 82% 51.0% 59.3%

Table 23: For the input shuffling/masking experiments on ETTm1 and ETTm2, the impact of shuffling
the input on the degradation of time series forecasting performance does not change significantly
before and after model modifications.

Dataset Weather Traffic
Input Ablation Sf-all. Sf-half. Ex-half Masking Sf-all. Sf-half. Ex-half Masking

Time-LLM  658% 5.5% 859% 859% 198.1% 56.6% 309.8% 101.3%
w/oLLM  592% 4.7% 787% 74.6% 196.8% 702% 282.1% 78.3%
LLM2Attn  71.8% 85% 91.6% 953% 2123% 824% 312.7% 922%
LLM2Trsf  719% 7.1% 949% 1032% 197.5% 64.6% 3072% 101.1%

OneFitsAll ~ 71.0% 9.8% 102.1% 97.7% 2064% 11.7% 369.1% 93.5%
w/oLLM  564% 23% 812% 73.5% 2384% 67.0% 338.6% 85.9%
LLM2Attn  649% 54% 902% 94.8% 222.6% 57.5% 350.5% 95.1%
LLM2Trsf 77.8% 83% 101.9% 111.0% 217.8% 359% 361.3% 113.3%

CALF 326% 42% 545% 272% 201.7% 105.0% 63.1% 27.2%
w/oLLM  28.1% 59% 494% 13.6% 2173% 1154% 672% 29.7%
LLM2Attn  26.0% 62% 492% 17.1% 226.7% 122.7% 69.4%  30.7%
LLM2Trsf 28.0% 6.4% 54.1% 21.1% 2328% 120.5% 72.0%  29.6%

Table 24: For the input shuffling/masking experiments on Weather and Traffic, the impact of shuffling
the input on the degradation of time series forecasting performance does not change significantly
before and after model modifications.
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Figure 7: Ablation methods consume less time for inference while providing better forecasting
performance in most cases. The figure above shows the inference time and prediction accuracy of
Time-LLM, OneFitsAll, and CALF on ETTh1, ETTh2, ETTm]1, Illness, and Weather, Traffic datasets,
averaged across prediction lengths. Results of other datasets refer to [Figure 3]
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(a) Inference Time and Performance for ETTh1, ETTh2, ETTm1, and ETTm2.
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(b) Inference Time and Performance for Illness, Weather, Traffic, and Electricity.

Figure 8: Ablation methods consume less time for inference while providing better forecasting
performance in most cases. The figure above shows the inference time and prediction accuracy of
Time-LLM, OneFitsAll, and CALF on all the datasets, averaged across prediction lengths in MSE
metric.
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Answer: [Yes]
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and scope.

. Limitations
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Answer: [Yes]
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Answer: [NA]

Justification: The paper does not make any theoretical contributions.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section[d]and Appendix [D|shows the details of the baselines used and their
hyper-parameter details respectively.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
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Answer: [Yes]
Justification: We have shared the code as a .zip file in the supplementary material.

. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Experiments [3.3]and Appendix [D]describe them.

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have provided the details of confidence intervals for all our results in
Appendix [E.T|

. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of computing workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We mention the hardware details in Appendix D]
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the paper properly credited, and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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