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Abstract— Normal trajectory optimizations are carried out
without the consideration of the closed-loop feasibility and
performance. During aggressive flights, bias from the nominal
trajectory could trigger feedback with larger control inputs,
which might break through the actuator constraints, induc-
ing stability issues. By leveraging the idea of TRAjectory
refinement with Control Error (TRACE) for higher closed-
loop performance, we develop a post-trajectory optimization
approach for safe and accurate tracking control. A closed-
loop model is established combining both control policy and
saturations in order to model the dynamic progress of trajectory
tracking. Subsequently, a time-varying optimal control problem
(OCP) is constructed to enhance the tracking performance
by weighted minimizing the tracking error and the variation
from the nominal trajectory progress. Meanwhile, a flatness-
based method is presented to provide aggressive time-optimal
trajectories with high-order derivatives of the reference states.
Examples show the effectiveness of our approach in refining
aggressive trajectories, where safe and accurate tracking can
be done using a baseline controller without fine-tuning and
further control allocation design.

I. INTRODUCTION

As maneuverable, flexible and small-sized aerial plat-
forms, autonomous quadrotors appear in various applications
with promising utility. The pursuit of mission completion
with higher efficiency makes time-optimal and agile flights
active topics with noticeable works [1], [2], [3]. To execute
a task, a typical solution is to hierarchically decouple the
quadrotor system into a higher-level planner and lower-level
reference tracking controller. The decoupling brings us an
explainable system architecture and allows us to construct
straightforward designs. However, such treatment also brings
a degradation to the tracking performance and even triggers
safety issues [4].
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Fig. 1. The effect of the input saturation constraint in real-world time-
optimal flight. The quadrotor fails (black) to track the time-optimal trajectory
optimized with the open-loop input constraint and successfully tracks (cyan)
the one refined with the input saturation constraint. The camera captions of
real-world flight footage are presented. The complete video can be found
at https://youtu.be/2LhG1oYMrq8.

Actuator constraints are typical input feasibility constraints
for the safety and stability ensurance of maneuvers. Gener-
ally, they can be formulated as box constraints in trajec-
tory optimizations. Despite the straightforward setup, such
constraints are not exact guarantees of safety and stability
during trajectory tracking. Tracking errors could be observed
when references are violent. Such errors could bring extra
input from the control policy. As the reference requires input
values next to the boundary of actuator limits in aggressive
trajectories [5], [4], it is possible to induce inputs overshoot-
ing the capability thresholds, leading to input saturations that
trigger instability.

Accuracy is another major objective in many researches.
Challenges are left to the controller level in common applica-
tions [6], [7]. A well-designed-and-tuned tracking controller
is demanded for accurate trajectory tracking. However, both
designing and fine-tuning works remain difficult in practice
[8] and high-gain controllers are not practical in many
applications [9]. Furthermore, tracking error can still be
stimulated by saturations as the desired converging rate is
loss due to the limits of inputs.

Since the reference trajectory is usually optimized without
the consideration of the closed-loop properties, tracking error
could not be directly controlled during motion planning. Our
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approach (TRACE) refines the nominal trajectory optimized
by an arbitrary trajectory optimizer, minimizing the tracking
error while maintaining the original trajectory progress as
much as possible.

Inside TRACE, a standard quadrotor open-loop model
is constructed while integrating low-level control policy,
forming a closed-loop one. We choose a differential flatness-
based controller (DFBC) as the control policy. An input
saturation constraint is established in the OCP for motor
thrust saturation avoidance. Besides, TRACE comes with a
flatness-based time-optimal trajectory generation method that
provides aggressive trajectories for simulations and experi-
ments. Our main contributions are summarized as follows.
• A differential flatness-based time-optimal trajectory op-

timization method of higher flexibility compared with
polynomial-based approaches.

• A post-optimizer with time-varying OCP setup aimed
at refining time parameters of the given nominal trajec-
tories for safe and accurate tracking performance.

• Simulations and real-world experiments on tracking
refined trajectories associated with parameter scanning
and analysis.

The post-optimization strategy could be seen as an optimal
coordination of pre-computed trajectories and a given control
policy, potentially bridging the gap between planning and
control for quadrotors as well as other modern robotics.

The outline of this paper is as follows. Section II reviews
the related works. Section III provides the preliminaries
on notations, quadrotor dynamics and the DFBC scheme.
Section IV goes into the details of the design of the flatness-
based trajectory optimizer and the post-optimizer. Section V
presents the simulations and numerical studies. Section VI
shows the results of the real-world experiments. Section VII
concludes this article with a discussion of the limitations of
the proposed methods.

II. RELATED WORK

A. Time-Optimal Trajectory Optimization for Quadrotors

Minimum-time planning is demanded in numerous appli-
cations yet with huge challenges. Recent successful cases
consist of various approaches are briefly discussed next.
Point-mass model with bang-bang control could be derived
using Pontryagin’s Maximum Principle. Online replanning of
this method is also carried out by combining sampling-based
techniques [10]. Despite the advantages of computation, this
policy introduces discontinuity into acceleration and does
not inherently handle obstacle-avoidance constraints. Full-
state model-based trajectory optimizations [11], [6] provide
trajectories based on more accurate open-loop dynamics
associated with feasibility constraints and therefore lead to
higher tracking robustness compared with the simplified
models. Yet point-mass models with sampling-based meth-
ods are more favored by obstacle-free path generation in
complex environments [12].

Another category of trajectory optimization utilizes the
differential flatness property of quadrotor systems. General

differential flatness-based planners apply piecewise polyno-
mials with pre-assigned time collocation. For time-optimal
implementations, one could use the bi-level optimization [13]
technique to optimize the total trajectory time at the upper
level, or convert to a convex problem [14] by utilizing the in-
ternal structure of the minimum-time problems. Additionally,
these methods are favored by trajectory tracking since one
can obtain high-order state references from the optimization,
passing these terms to the tracking controller as feedforwards
[15]. Despite the effectiveness of the flatness property, han-
dling input limits require more complex constraints through
the flatness mapping and polynomial-based representation
lacks flexibility due to its pre-assigned collocation points.
Our trajectory optimization method is flatness-based yet with
a more flexible formulation of the time-optimal OCP.

Neither full-state nor flatness-based trajectory methods
have access to the closed-loop dynamics. The security and
accuracy remain unknown without the consideration of track-
ing performance and input saturations of the closed-loop
system.

B. Trajectory Tracking Controller for Quadrotors

As a state-of-the-art controller scheme, differential
flatness-based controller (DFBC) has been gaining attention
for its high performance in tracking aggressive trajectories
[16], [17]. By leveraging the flat outputs, DFBC enjoys
direct feedforward from trajectories. However, tracking time-
optimal trajectories requires further modification to a stan-
dard DFBC. Improvements could be made by introducing
control allocations and extra internal-model compensations
at the cost of increasing complexity [18], [7].

Model predictive controllers (MPCs) are another group
of controllers that are worth mentioning. MPC receives the
information on the coming reference trajectories, potentially
being able to achieve higher tracking accuracy. Optimal
tracking with input constraints could provide better robust-
ness since the saturations are avoided while minimizing
the objectives. But the tracking accuracy of normal MPC
controllers is undesirable in aggressive flights [4]. A model
predictive contouring controller is presented in this work [6]
for time-optimal trajectory tracking. This controller provides
a trade-off between trajectory progress and tracking accuracy,
gaining improvements in tracking performance and flight ro-
bustness. A time-adaptive MPC is designed in [19], in which
the initial sampling time of the upcoming trajectory segment
is optimized with control inputs, introducing flexibility into
the original reference signal.

Above mentioned model predictive controllers leverage the
idea of time-scaling into real-time control for better trajectory
tracking. While appreciable working frequencies are retained
thanks to modern embedded computing toolkits [20], [21],
yet onboard CPUs are still required with heavy works on
tuning. TRACE also includes time-scaling techniques but
focuses on the planning stage with the consideration of low-
level tracking performance. General controllers with contin-
uous mapping are able to be adapted, making it generalized
for various of platforms with microcontrollers.
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III. PRELIMINARIES

A. Notation
Several notations in this paper are explained as follows.

∥ · ∥2 represents the Euclidean norm of a vector. diag{a}
refers to a diagnal matrix with elements of vector a. (·)⊤ is
noted as the transpose of a matrix or a vector. (·)∨ represents
the mapping from SO(3) to so(3). Hm×n represents a m×n
dimensional matrix/vector whose elements are real number
H . In refers to a n-dimensional elementary matrix. × refers
to the multiplication of a number with another number, vector
or matrix and also the cross product of two vectors of the
same length. With a quaternion written as q = [q0, qv]

⊤ ∈
R4×1, q ⊗ x, x ∈ R3×1 equals to: [−q⊤

v x, q0I3x + qv ×
x ]⊤ ∈ R4×1.

B. Quadrotor Dynamics

Fig. 2. Quadrotor schematic with definitions of the earth-fixed and the
body-fixed frame.

Two coordinate systems are defined for the quadrotor:
the earth-fixed frame E = [XE ,Y E ,ZE ] and the body-
fixed frame B = [XB ,Y B ,ZB ]. The rotational matrix
RB

E = [XB ,Y B ,ZB ] refers to the rotational transformation
that rotates E to B. A state-space model is constructed with
a 13-dimensional state vector x = [p,v, q,ω]⊤ and a 4-
dimensional input vector u = [T1, T2, T3, T4]

⊤ of motor
thrusts. p,v represent the position and velocity E while ω is
the angular velocity defined in B. q refers to the quaternion
for attitude expression.

ṗ = v

v̇ = a = − 1
mZBT + gZE

q̇ = 1
2q ⊗ ω

Jω̇ = −ω × (Jω) + τ

[T, τ ]⊤ = C[T1, T2, T3, T4]
⊤

(1)

where C is the mapping from the motor thrusts to the total
thrust T and torque τ ∈ R3×1.

C. Differential Flatness-based Controller
In a DFBC scheme, a dual-loop structure is constructed

based on that the attitude loop is equipped with a bandwidth
of over 10 times higher than that of the position loop. The
output of the position loop forms the reference of the attitude
loop. The position loop includes a PD feedback term with
feedforward compensations:

ad = Kv(Kp(pr − p) + ṗr − v) + p̈r − gZE (2)

where pr is the reference position and ad refers to the desired
acceleration.

The desired acceleration indicates a desired attitude related
to where the joint acceleration of total thrust and gravity
force points. A mapping could be established from ad to
the desired attitude RB

E d = [XBd,Y Bd,ZBd]. Note that
the mapping may sometimes go singular and singularity-free
mapping such as Hopf fibration can be adopted, for more
detail please refer to [15], [16], [22], [23]. The desired body
rate ωd and angular acceleration ω̇d are given as:

ωd =
[
−h⊤

ωY Bd h⊤
ωXBd [0, 0, ψ̇r]ZBd

]⊤
(3)

ω̇d =
[
−h⊤

αY Bd h⊤
αXBd [0, 0, ψ̈r]ZBd

]⊤
(4)

where ψr refers to the reference yaw angle and

hω ≜ ω ×ZBd = −m
T
(

...
p r − (ZB

⊤
d

...
p r)ZBd)

hα ≜ ω̇ ×ZBd = −ω × (ω ×ZBd)

+
m

T
(

...
p⊤

r ZB)(ω ×ZBd) +
2m(ZB

⊤
d

...
p r)

T
(ω ×ZBd).

(5)
The attitude loop provides a desired torque using techniques
from the geometric controller [17]:

τ = Ka(R
B
E
⊤RB

E d −RB
E d

⊤RB
E )

∨

+Kr(ωd − ω) + Jωd × ωd + Jω̇d.
(6)

Current attitude RB
E can be derived from the Euler angles.

The motor thrusts are finally given as:

u = C−1[∥mad∥2, τ ]⊤. (7)

IV. METHODOLOGY

A. Flatness-based Time-Optimal Trajectory Generation

By choosing the positional flat outputs and their deriva-
tives (up to the order of 4) as state vector Ψp, and the snap
(the 5th order derivatives) as input vector Ψs, the positional
flatness system appears to be linear:

Ψ̇p = ApΨp +BpΨs (8)

where Ψp = [p,v,a, j]⊤, Ψs = [s]⊤, and

Ap =

[
09×3 I9

03×3 03×9

]
,Bp =

[
09×3

I3

]
.

To optimize the heading of the quadrotor, the flatness system
of the yaw can be constructed as:

[ψ̇, ψ̈,
...
ψ ]⊤ = Aψ[ψ, ψ̇, ψ̈]

⊤ +Bψ
...
ψ , (9)

where

Aψ =

[
02×1 I2

0 01×2

]
,Bψ =

[
02×1

1

]
.

We note the flatness system with the augmentation of the
two systems as

Ψ̇x = F (Ψx,Ψu) =

[
Ap

Aψ

]
Ψx +

[
Bp

Bψ

]
Ψu

(10)
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in which Ψx = [Ψp ψ ψ̇ ψ̈]⊤, Ψu = [Ψs

...
ψ ]⊤. With the

two linear systems established, one can restore the 13 (with
quaternion) or 12 (with Euler angles) dimensional state of
the quadrotor system with flatness mapping.

Discretization of the system requires a timestep h. Here,
h at each discrete point is defined as an extra decision
variable, where minimizing h at each discrete point brings
the trajectory to a time-optimal fashion. For OCP setup,
the explicit 4th order Runge-Kutta method is applied for
discretization and a box constraint is applied to hk to prevent
infeasible integration, we note the discrete flatness system as:

Ψxk+1 = FRK4(Ψxk,Ψuk, hk). (11)

A sequence of position waypoints W = {w1, · · · ,wm}
is given and the waypoint constraints are activated only
on specified discrete nodes M . These indices could be
determined according to the distances between waypoints.
Waypoint constraints are relaxed and become box constraints
with tolerance δ. The time-optimal OCP can be formulated
as a nonlinear programming (NLP) using direct multiple
shooting:

min
X

N∑
k=1

h2k

s.t. c(X) = 0

g(X) ≤ 0

ulb ≤ π0(Ψx) ≤ uub

0 ≤ hk ≤ h̄, k = 1, · · · , N
− δ ≤ [13×3 03×12]Ψxk −wk ≤ δ, k ∈M

(12)

where:

X = [Ψx1,Ψu1, h1, · · · ,ΨxN ,ΨuN , hN ]⊤ (13)

c(X) =

 Ψx1 − FRK4(Ψx0,Ψu0, h1)
...

ΨxN − FRK4(ΨxN−1,ΨuN−1, hN−1)

 = 0

(14)
where g(X) is defined for obstacle-avoidance. π0 refers to
the mapping from the flat output to the motor thrusts.

NLP (12) can be solved using the interior point method,
which is done using Ipopt and CasADi toolkit [24] in this
letter. In waypoint trajectory optimizations, hk can be set
to be the same in the segment between waypoints, where
the OCP performs more like a polynomial-based method
but without waypoint time collocations. This property makes
it more flexible than polynomial-based approaches while
still providing high-order derivatives of flat outputs, and
considering motor thrust constraints as methods with full-
state dynamics do.

This method might produce aggressive trajectories that
DFBC is not able to track them accurately, even failing
to stay stable if control inputs are saturated. Similar issues
could be found using other methods since the closed-loop
performance is not considered. Next, we show how such is-
sues can be solved using closed-loop modeling and trajectory
refinement.

B. Closed-loop Quadrotor Model

A closed-loop dynamic ϕ is obtained by combining the
DFBC policy π with the quadrotor dynamics f :

ẋ = f(x,π(x,Ψx)) = ϕ(x,Ψx). (15)

where u = π(x,Ψx) refers to the inputs of the open-loop
system, i.e., the motor thrusts generated by the DFBC policy
π. Input saturations are avoided using the constraint:

ulb ≤ π(x,Ψx) ≤ uub. (16)

Enabling the constraint allows us to get access to the real
dynamic feasibility of trajectory tracking.

The singularity at 90 degrees of pitch could be found in
some controllers [15], [16]. To avoid such singularity, state
constraints on attitude are constructed as (ϵ is sufficiently
small for the approximation of an open set):

−π/2 + ϵ ≤ [0 1 0]Θ ≤ π/2− ϵ. (17)

Θ refers to the Euler angles. Such a setting guarantees the
safe usage of DFBC policy while normal constraints without
closed-loop consideration would not.

C. OCP Formulation of TRACE

The key idea of trajectory refinement is to re-scale the
trajectory progress by optimizing a scale multiplier α. By
introducing such multipliers, the original trajectory timestep
is refined as h← h/α, where some trajectory segments can
be relaxed for higher tracking accuracy. Correspondingly, the
variation of flat output Ψx ∈ R15×1 could be given by the
chain rule:

Ψx(α) = [13×1 α13×1 α
213×1 α

313×1 1 α α2]Ψx. (18)

The chain rule indicates that the continuous trajectory time t
is modified as t← αt, and α gets powered with derivatives
orders. α ≤ 1 refers to trajectory relaxation where tracking
accuracy could be recovered, as illustrated in Fig. 3.

Fig. 3. The rationale of the post-optimization process. A scale multiplier
is divided by the original timestep to reduce the rate of trajectory progress.

The process-scaling scheme is adapted to the closed-
loop dynamic via discretization using the explicit 4th order
Runge-Kutta method, where hk and Ψxk are pre-computed
trajectory parameters:

xk+1 = ϕRK4(xk,Ψx(αk), hk/αk). (19)
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Fig. 4. Simulation scenario: Time-optimal flight in narrow corridors. Four random mazes sized 10 × 10 with safe flight corridors as the union of blue
rectangles areas. Colorations illustrate the variation in the multiplier of the refined trajectories. Tracking trajectories without refinement is visualized as
red dash-dot lines with collisions (highlighted as a red cross) taking in place. Each 3D plot shows the attitude and the position of the quadrotor motion in
tracking both original (black) and refined trajectories (colored).

The reference trajectory varies during the tracking progress,
therefore, such a dynamic system is time-varying with
nonlinearity. The closed-loop system takes the multiplier
as input, with the states as same as the open-loop one.
In the objective function, we only compare the tracking
error of position and velocity in the earth-fixed frame,
where the quadrotor states and the flat outputs share the
same definition. To match the sizes of states and flat
outputs, we remove the extra terms by defining: P1 =
[I6 06×7] and P2 = [I6 06×9], Therefore, the cost for
tracking error is established: Lk(xk,Ψx(αk)) = (P1xk −
P2Ψx(αk))

⊤Q(P1xk−P2Ψx(αk)), where Q = diag{ql}.
The time-varying OCP for post-optimization could then
be constructed as an NLP using direct multiple shooting
formulation.

min
X

N∑
k=1

Lk(xk,Ψx(αk)) + r(αk − 1)2

s.t. c(X) = 0

lbα ≤ αk ≤ ubα,
ulb ≤ π(xk,Ψxk) ≤ uub.

(20)

where

X = [x1, α1, · · · ,xN , αN ]⊤ (21)

Ψx(αk) = [13×1 α13×1 α
213×1 α

313×1 1 α α2]Ψxk

(22)
and

c(X) =

 x1 − ϕRK4(x0, α1, 0)
...

xN − ϕRK4(xN−1, αN−1, N − 1)

 = 0. (23)

If attitude singularity occurs, one can apply

−π/2 + ϵ ≤ [0 1 0]Θ ≤ π/2− ϵ. (24)

The OCP optimizes a dual-objective problem, as targets of
high accuracy and progress maintenance (accuracy and ag-
gressiveness for time-optimal cases) are weighted by ql and
r. The OCP applies the original closed-loop state trajectory
together with the multiplier αk = 1 as an initial guess of the
solution. We again use the Ipopt and CasADi toolkit [24] to
obtain the solution.

For parameter tuning, one may utilize warm-starting tech-
niques, i.e. construct a sequence of problems with different
ql setup and apply the previous result as the initial guess
of the next problem. Starting with a relatively low penalty
on tracking accuracy, one could increase it until the desired
trade-off between aggressiveness and accuracy is achieved.

Note that the method does not even require a stable closed-
loop system since the integration has a limited horizon, but
numerical tests show that a closed-loop system with poor
tracking performance can sometimes destroy the convergence
of TRACE. A general controller with light-tuning work
would be fine for TRACE to work. Since the multiplier is
one-dimensional and serves as the input of the closed-loop
dynamics, TRACE has fewer decision variables compared
with an open-loop full-state trajectory optimization problem
formulated using direct multiple shooting, and they share a
similar computational complexity.

Trajectories provided by conventional trajectory optimiza-
tion methods could be refined by TRACE since it does
not rely on continuous-time parameterization of the nominal
trajectory. Yet a conversion from the quadrotor states to the
flat outputs is required.
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V. SIMULATIONS

In this section, two scenarios: time-optimal flights in
narrow corridors and a time-optimal waypoint flight, are pre-
sented to illustrate the effectiveness of TRACE in enhancing
the tracking performance and avoiding input saturations.

TABLE I
PARAMETER SETUP IN (12) AND (20).

Parameters Value Parameters Value
q 100.0 uub 44×1

r 1.0 ulb 04×1

N 500 lbα 0.5
δ 0.053×1 ubα 1.0
h̄ 0.05 ϵ 1e− 2

A. Time-Optimal Flight in Narrow Corridors

This scenario creates random mazes with narrow corridors
that require accurate trajectory tracking. We construct safe
flight corridors inside the maze as obstacle-avoidance con-
straints. As shown in Fig. 4, four random mazes of size 10×
10 are generated, each of them is associated with safe flight
corridors with margin (highlighted in blue) as box constraints
of states to compute collision-free time-optimal trajectories
by solving (12). Such safe flight corridors are built based on
the shortest path of the maze. Subsequently, the trajectories
are refined using TRACE for safe and accurate tracking. The
parameters of (12) and (20) OCP setups are given in table
I. For convenience, we use q to scale the cost parameter
Q in (20) by making Q = q × diag{16×1}. The nominal
quadrotor dynamics and controller parameters are consistent
with our experiment platform and will be introduced in the
next section.

Despite the success of time-optimal trajectory optimization
in mazes with narrow corridors, the current DFBC controller
fails to provide safe and accurate tracking performance as
quadrotors collide with the walls. After the refinement of
the original trajectories, α < 1 could be found at aggressive
corners inside the maze, where the closed-loop model outputs
an increase in its tracking error and reduced by solving the
OCP (20). All four cases show the relaxation in trajectory
progress in exchange for extraordinary tracking accuracy
with control inputs bounded.

B. Time-Optimal Waypoint Flight

A time-optimal waypoint flight is carried out for parameter
scanning and analysis. From Fig. 5, direct trajectory tracking
leads to the divergence of tracking control as the inputs are
saturated and fail to provide effective feedback. After the
post-optimization, the multipliers are optimized to average
around 0.7 along most of the trajectory. The relaxation brings
back the capability for tracking error elimination.

Next, the influence of parameter setup is studied since
the OCP in (20) is in a dual-objective fashion. QR ratio
q/r represents the weight on tracking error elimination
and trajectory progress. A higher weight on q outputs a
more accurate but slower trajectory. The Euclidean norm of
positional tracking error ∥ep∥2 is applied to characterize the

Fig. 5. Simulation scenario: Time-optimal waypoint flight. The gray
quadrotor motions refer to direct trajectory tracking while colored ones
represent the trajectory tracking after refinement. Colorations indicate the
magnitude of the multiplier along the nominal trajectory.

tracking performance. As demonstrated in Fig. 6, the tracking
error starts to level off as q/r reaches beyond a certain value
while the trajectory time still rises before it reaches a plateau.
These could be varied throughout different tasks and the
warm-starting techniques introduced in section IV-C could
be utilized for tuning q/r.

Furthermore, the effect of the controller gain is analyzed.
Based on the assumption of time-scale separation, our con-
troller gain of the translational loop in the simulations stays
below or slightly reaching over 1/10 of that of the attitude
loop, where the latter is determined by real-world practice.
Higher controller gain in simulations might work but would
enlarge the uncertainty originated from localization, filtering
and disturbances in real-world flights. Without the constraints
on input saturations, the DFBC fails to stay stable during
trajectory tracking. Therefore, in the analysis, the saturations
are removed during simulations. After that, the ∥ep∥2 of
each group with different multiples (ranging from 0.2-1.4)
of the Kp, are recorded. Reaching over 1.4 would lead to
an unreasonable value for holding the time-scale separation
assumption, leading to stability issues. From the result in Fig.
6, although increasing the gain in a rational range can bring
down the tracking error, refining trajectories still significantly
improves the accuracy.

VI. REAL-WORLD EXPERIMENTS

Real-world experiments are constructed for further vali-
dation of the proposed methods. Our experiment platform
comes with m = 0.83kg and J = diag{3e − 3 3e −
3 4e− 3}kg ·m2. The controller with its parameters shown
in table II runs onboard with an STM32-F7 microcontroller.
An STM32-F4 microcontroller is set up for data reception
and transmission with an ultra-wideband (UWB) telemetry
module. Localization of the quadrotor UAV is done using a
motion-capturing system running on a ground station.

First, we show the effect of the input saturation constraint
in agile flight. Two trajectories of the same q/r = 1 are post-
optimized with and without the input saturation constraint.
As shown in Fig. 1, tracking reference trajectory with the
original open-loop input constraint is unsafe under the exis-
tence of tracking errors. However, with the input saturation
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Fig. 6. Parameter scanning and analysis. a) Study on the dual-objective
parameter setup of TRACE, i.e., q/r ratio, b) Study on the influence of
controller gain to the optimization result.

constraint activated, the nominal trajectory is further relaxed
for safe tracking as motor thrusts maintain below their limits.

TABLE II
CONTROLLER PARAMETER SETUP.

Parameters Value
Kp diag{[1.0 1.0 0.7]}
Kv diag{[4.0 4.0 2.8]}
Ka diag{[10.0 10.0 4.0]}
Kr diag{[0.25 0.25 0.1]}
ulb [0.0 0.0 0.0 0.0]
uub [4.0 4.0 4.0 4.0]

Next, four cases with varied q/r are carried out in the
experiment, the actual trajectories with references are plotted
in Fig. 7, each closed-loop trajectory is colored the mag-
nitude of the multipliers. Table III presents the results of
the real-world experiments. The tracking accuracy is related
to the mean square error (MSE) of the reference position
and the actual position. Specifically, the last case is prepared
with q = 0 and the input saturation constraint is activated,
but it results in unstable trajectory tracking. An explanation
could be made that there might exist model mismatches and
disturbances in real-world flights.

Fig. 7. Four cases of trajectory tracking experiments with different q/r.
a) q/r = 100, b) q/r = 10, c) q/r = 1, d) q/r = 0.

TABLE III
EXPERIMENTAL CASES AND RESULTS.

Case Mode Max.Vel Max.Acc Time MSE

Time-Optimal
Nominal 7.9759 16.7547 7.6496 /
Refined N/A

q/r = 0
Nominal 7.3640 14.8231 8.3507 /
Refined Crashed

q/r = 1
Nominal 6.0781 10.4445

9.4216
/

Refined 6.1937 9.6133 0.1126

q/r = 10
Nominal 5.2372 7.6709

11.0265
/

Refined 5.2621 7.4401 0.0115

q/r = 100
Nominal 4.1848 5.4149

13.7127
/

Refined 4.2793 5.7026 0.0060

VII. CONCLUSION

In this paper, the methodologies of generating time-
optimal trajectories and trajectory refinement are carried out.
Flatness-based time-optimal trajectory optimizations with
narrow corridors and waypoints are conducted in simulations
and experiments. TRACE refines the pre-computed trajecto-
ries, making the trajectory-tracking process safer and more
accurate. Some limitations still exist in our approach. Our
method ignores the influence of model mismatches as well
as other kinds of uncertainties. This has led to a failed case in
real-world experiments. Online application of such method
can be further developed, which allows real-time adjustment
of multipliers to improve robustness. Future work might
focus on extending the proposed idea into robust trajectory
refinement to handle the uncertainties, as well as direct
trajectory optimization in the presence of multiple bounded
disturbances.
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