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Abstract

As Large Language Models (LLMs) are increasingly proposed for high-stakes
medical applications, there has emerged a critical need for reliable and accurate
evaluation methodologies. Traditional accuracy metrics fail inadequately as they
neither capture question characteristics nor offer topic-specific insights. To address
this gap, we introduce MEDIRT, a rigorous evaluation framework grounded in
Item Response Theory (IRT), the gold standard in high-stakes educational testing.
Unlike previous research relying on archival data, we prospectively gathered fresh
responses from 80 diverse LLMs on a balanced, 1,100-question USMLE-aligned
benchmark. Using one unidimensional two-parameter logistic IRT model per topic,
we estimate LLM’s latent model ability jointly with question difficulty and dis-
crimination, yielding more stable and nuanced performance rankings than accuracy
alone. Notably, we identify distinctive “spiky” ability profiles, where overall rank-
ings can be misleading due to highly specialized model abilities. While GPT-5
was the top performer in a majority of domains (8 of 11), it was outperformed
in Social Science and Communication by Claude-3-opus, demonstrating that
even an overall 23rd-ranked model can hold the top spot for specific competencies.
Furthermore, we demonstrate IRT’s utility in auditing benchmarks by identifying
flawed questions. We synthesize these findings into a practical decision-support
framework that integrates our multi-factor competency profiles with operational
metrics. This work establishes a robust, psychometrically grounded methodology
essential for the safe, effective, and trustworthy deployment of LLMs in healthcare.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities in high-stakes domains
like medicine, achieving expert-level performance on standardized medical licensing exams [Singhal
et al., 2023, Nori et al., 2023]. This progress has been tracked by a growing ecosystem of benchmarks
for different levels of expertise, such as MedQA [Jin et al., 2021] and MedMCQA [Pal et al., 2022],
and MedXpertQA [Zuo et al., 2025]. However, while existing benchmarks [Shah et al., 2025] are
valuable, the prevailing paradigm for evaluating these models is built on a foundation of aggregate
accuracy, a metric that masks critical nuances and faces two fundamental challenges threatening its
long-term viability.

First, the reliance on overall accuracy assumes all questions are equally informative, yet test items
inherently vary in quality, difficulty, and diagnostic power. This approach fails to distinguish between
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models that master difficult concepts and those that merely solve easier problems. Second, this
item-level oversight creates a system-level crisis: without a unified scale, scores are incomparable
across different benchmarks. Consequently, researchers are forced into an unsustainable practice of
reporting an ever-expanding list of benchmark scores, making comprehensive evaluation increasingly
cumbersome and difficult to synthesize. These limitations highlight a pressing need for a more
principled evaluation framework.

To overcome these blind spots, recent work has increasingly turned to Item Response Theory (IRT),
the gold standard for high-stakes educational and psychological testing [Lord and Novick, 1968].
Unlike simple accuracy, IRT provides a sophisticated statistical framework to model the interaction
between a subject’s latent ability and the properties of individual test items (i.e., questions). By doing
so, it can co-estimate a model’s underlying capability and characterize each question’s difficulty and
discriminability on a unified, continuous scale. However, existing applications of IRT in machine
learning often diverge from its core purpose or contain critical methodological flaws. For instance,
early work utilized IRT for dataset curation rather than to measure model capabilities [Lalor et al.,
2016], while other influential studies built IRT models on archival, outdated data [Rodriguez et al.,
2021, Polo et al., 2024]. More recent applications have misapplied psychometric models to improve
efficiency, such as wrongly using unidimensional IRT to assess abilities across multiple distinct
domains [Zhuang et al., 2023, Zhou et al., 2025]. Even sophisticated approaches, such as using
Multidimensional IRT (MIRT) for LLM routing [Song et al., 2025], can suffer from limited sample
sizes and models with weakly interpretable, data-driven latent dimensions. This leaves a critical gap
for healthcare GenAI (Generative AI): the lack of prospective, domain-specific evaluation built from
the ground up to provide deep, diagnostic measurement of clinical knowledge in LLMs.

In this work, we apply IRT to conduct a rigorous, topic-level evaluation of diverse LLMs, moving
beyond simple accuracy to a psychometrically sound assessment of their capabilities. We introduce
MEDIRT, a framework to prospectively apply IRT for measuring the latent medical knowledge of
LLMs. Our approach involves creating a balanced 1,100-item benchmark aligned with the USMLE
content specifications [Federation of State Medical Boards (FSMB) and National Board of Medical
Examiners (NBME), 2025] and systematically evaluating 80 different LLMs. Unlike previous
research that relies on archival data, we collected fresh response data using a standardized API
protocol via OpenRouter [OpenRouter, 2025]. This methodology ensures true comparability across
both proprietary and open-source models while simultaneously capturing operational data on cost
and latency. The resulting framework yields not only robust estimates of overall ability but also
fine-grained, topic-specific specialty profiles across 11 medical topics, making the findings directly
interpretable for applications in medical education, licensing, and clinical decision support. Our work
makes four principal contributions:

• We establish a psychometrically rigorous evaluation methodology grounded in IRT that jointly
estimates model abilities and question characteristics, separating the model’s true ability from
item difficulty and discrimination properties. This approach provides more stable and interpretable
performance rankings than traditional accuracy-based measures.

• We developed a pipeline to gather fresh response data from 80 diverse models on a balanced
1,100-question medical benchmark, avoiding the limitations of outdated archival datasets.

• Our large-scale analysis reveals a previously unrecognized complex and heterogeneous landscape
of abilities from fine-grained, multi-factor competency profiles, demonstrating that even top-
performing models exhibit domain-specific weaknesses.

• We synthesize our analytical findings into a practical decision support framework, delivered as
an interactive platform1, that integrates our competency profiles with operational metrics. This
provides practitioners with a clear, evidence-based pathway to ensure safe, effective, and trustworthy
deployment for specific medical applications.

2 MEDIRT Framework

As shown in Figure 1, MEDIRT is a methodological framework designed to move beyond conven-
tional accuracy and provide topic-wise, item-adjusted evaluations of LLMs in medical domains.
The framework consists of three integrated stages: first, we construct a balanced benchmark dataset

1An interactive leaderboard with the benchmark is available at https://huggingface.co/spaces/
Pitt-iRiS-Lab/MedIRT.
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Figure 1: An Overview of MEDIRT Framework, illustrating the three critical phases including (1) Topic-level
2PL IRT modeling, (2) USMLE topic-aligned benchmark, (3) Large-scale LLMs cohort.

aligned to the USMLE content outline to ensure content validity and mitigate measurement bias;
second, we execute a standardized LLM inference protocol that systematically collects both response
data and operational metrics; and third, we perform psychometric evaluation by fitting 11 independent
unidimensional two-parameter logistic (2PL) IRT models—one per medical topic—to obtain item
parameters and model ability estimates that are inherently adjusted for item difficulty and discrimina-
tion; Together, these components yield robust, topic-specific ability estimates that support principled,
cost-aware model selection in medical contexts.

Table 1: Distribution of Medical Topics, according to the USMLE Step 1 Test Content Specifications in Original
Dataset, labeled by GPT-oss-120b model. Abbr. refers to abbreviations of each topic used in later sections.

Medical Topic Abbr. #Samples (%) #Final Sample

Musculoskeletal, Skin & Subcutaneous Tissue MSK/Skin 1,693 (21.4%) 100
Multisystem Processes & Disorders Multi 1,012 (12.8%) 100
Reproductive & Endocrine Systems Repro/Endo 926 (11.7%) 100
Behavioral Health & Nervous Systems/Special Senses Behav/Neuro 849 (10.7%) 100
Blood & Lymphoreticular/Immune Systems Blood/Immune 743 (9.4%) 100
Human Development Dev 658 (8.3%) 100
Cardiovascular System Cardio 606 (7.7%) 100
Respiratory & Renal/Urinary Systems Resp/Renal 545 (6.9%) 100
Gastrointestinal System GI 471 (6.0%) 100
Biostatistics & Epidemiology/Population Health Bio/Epi 294 (3.7%) 100
Social Sciences: Communication and Interpersonal Skills Comm 109 (1.4%) 100

Total 7,906 1,100

2.1 The Medical Knowledge Benchmark with USMLE-Aligned Topics

We constructed a topic-balanced evaluation dataset by integrating questions from three established
medical benchmarks: MedQA Test (1,273 questions), MedMCQA Dev (4,183 questions), and
MedXpertQA Test (2,450 questions), totaling 7,906 questions. To ensure topic-specific evaluation
aligned with medical education standards, we employed GPT-oss-120b [Agarwal et al., 2025] to
automatically classify all questions according to USMLE Step 1 Test Content Specifications. We
used GPT-oss-120b for labeling given its strong MedQA performance [Vals AI, 2025] at lower
cost than proprietary models, outperforming MedGemma-27b [Sellergren et al., 2025]. Verified by
one domain expert, the topic labels achieve a very low error rate of 1%, indicating the quality of
the automatic labeling for our dataset. Table 1 presents the topic distribution in our original dataset
before balanced sampling. The classification yielded 11 primary medical topics with substantial
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representation variations, ranging from 1,693 questions in Musculoskeletal, Skin & Subcutaneous
Tissue (21.4%) to 109 questions in Social Sciences: Communication and Interpersonal Skills (1.4%).
To create a balanced evaluation set, we implemented stratified sampling to select 100 questions
per topic, resulting in a final dataset of 1,100 questions. The composition of 544 questions from
MedMCQA, 382 questions from MedXpertQA, and 174 questions from MedQA, shows the final
dataset composition across source benchmarks. This balanced approach ensures equal representation
across medical specialties while maintaining sufficient sample sizes for reliable IRT parameter
estimation.

2.2 Large Language Model Cohort

The study evaluated a cohort of Large Language Models (LLMs), selected to represent the breadth
and diversity of the current GenAI landscape. 80 LLMs were randomly sampled from the OpenRouter
API [OpenRouter, 2025] to represent the current landscape of proprietary and open-source systems.
This cohort includes models that vary significantly across several key dimensions: Size and Architec-
ture ranges from efficient 3B-parameter models (Llama-3.2-3B [Grattafiori et al., 2024]) to frontier
systems exceeding 400B parameters (Hermes-3-405B [Teknium et al., 2024]), including both dense
architectures and mixture-of-experts (MoE) [Lo et al., 2025] designs; Access and Origin encompass
leading proprietary APIs (GPT-5, Claude-Sonnet-4 [Anthropic, 2025], Gemini-2.5-Pro [Gemini
Team, Google, 2025]) and prominent open-source alternatives (Llama-4-Maverick [Meta AI /
Hugging Face, 2025], Qwen-3-30B [Yang et al., 2025], DeepSeek-V3 [Liu et al., 2024]); Specializa-
tions include base models, instruction-tuned variants, and reasoning-optimized systems, with most
being general-purpose but some specialized for domains like code generation (Codex-Mini [OpenAI,
2025]) to assess skill transferability. Detailed model statistics for all 80 models are presented in the
Appendix Table S3.

To ensure reliable evaluation, we applied strict selection criteria: (1) API accessibility and standard-
ized interfaces, (2) operational reliability (error rates < 5%), (3) reasonable inference times (< 120
seconds per query), and (4) consistent availability during the evaluation period. After applying these
criteria, 80 models successfully completed the full evaluation protocol and were included in our final
analysis. All models were evaluated under identical inference parameters to ensure fair comparison:
Temperature 0 for deterministic sampling; Maximum tokens 3000 to accommodate single-letter
responses with a safety margin for reasoning; Reasoning mode was set to low to minimize com-
putational overhead; Retry maximum three attempts per question to handle transient API failures.
This standardized configuration ensures that observed performance differences reflect genuine model
capabilities rather than parameter optimization artifacts. Simultaneously, our operational telemetry
captures authentic computational costs associated with each model’s inference process, providing
decision-makers with complete information for deployment planning.

2.3 Topic-Level 2PL IRT Modeling

We treat each of the 11 USMLE topics as separate areas of knowledge and build one model per topic
using the two-parameter logistic (2PL) framework. Instead of fitting a single, complex multidimen-
sional model, this design provides stable estimates and clear, topic-level profiles of performance.

2.3.1 Why Topic-Level Models?

Medical training evaluates knowledge domain by domain (e.g., Cardiology, Pharmacology), and
our framework mirrors this structure [Downing, 2003, Holmboe et al., 2018]. To operationalize
this, we modeled each of the 11 USMLE-aligned topics independently using unidimensional 2PL
models, producing ability scores θm,t that are directly interpretable for diagnosing model strengths
and weaknesses in specific subject areas.

Our choice of topic-level unidimensional models provided the optimal balance of statistical rigor
and practical utility for this study. While a single multidimensional model is theoretically appealing,
attempts to fit one to our dataset (N=80 models, 1,100 items) resulted in estimation instability, a
known challenge with highly correlated dimensions and potential local item dependencies [Reckase,
1997, Yen, 1984]. Conversely, forcing a simple unidimensional model across all topics risks creating
biased, composite estimates of ability [Reckase, 1979]. By modeling each of the 11 medical domains
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independently, we achieved stable, reliable results and generated the interpretable, topic-specific
diagnostics essential for high-stakes evaluation.

2.3.2 IRT Model Specification

For each medical topic t, the probability that model m answers item i correctly is defined under the
two-parameter logistic (2PL) framework as:

Pr(Ximt = 1 | θm,t) = σ
(
ai,t(θm,t − bi,t)

)
, σ(x) = 1

1+e−x .

In this formulation, θm,t represents the latent ability of model m on topic t, bi,t captures the item’s
location on the ability scale (i.e., its difficulty), and ai,t indicates how sharply the item discriminates
between stronger and weaker models. This framework, widely used in educational and psychological
measurement [Birnbaum, 1968], provides a principled way to separate model proficiency from
item characteristics. Abilities are estimated on a standardized scale (mean 0, SD 1) using marginal
maximum likelihood procedures, ensuring comparability across topics and models.

To ensure measurement consistency, we evaluated the internal reliability of each of the 11 topic-
specific scales. All showed high reliability (marginal reliability > 0.93; see Appendix Table S1),
meeting accepted thresholds for high-stakes testing [Downing, 2003]. For interpretability, we also
report a composite measure by averaging standardized topic scores, Θ̂m = 1

11

∑11
t=1 Zm,t, where

Zm,t is the standardized ability estimate for topic t. This unweighted aggregation reflects the balanced
design of our benchmark, assigning equal weight to each medical domain in accordance with USMLE
content specifications, and facilitates meaningful comparisons of overall performance across models.

3 Results

3.1 Experiment Settings

Our evaluation is grounded in a standardized protocol to ensure that all models are assessed under
identical conditions, guaranteeing the reproducibility and fairness of our results. This comprehen-
sive evaluation environment ensures direct comparability across all evaluated models and enables
statistically valid performance assessments.

For prompt design, a zero-shot, multiple-choice question (MCQ) format was utilized in the study.
The prompt frames the task as a “closed-book multiple-choice medical exam” and strictly instructs
the model to return only one letter corresponding to the single best option, explicitly forbidding
any supplementary words or explanations. The exact prompt templates used in the study are shown
in Section 2 of the Appendix. We extracted final answers from the raw text using an automated
parsing script that requires strict adherence to the specified output format, treating any deviation as
an instruction-following failure.

3.1.1 Evaluation Metrics

Our framework employs three complementary metric classes that provide comprehensive model
assessment:

Accuracy-based metrics provide baseline comparisons with existing benchmarks, calculated as the
percentage of correct answers.

Psychometric metrics, our primary evaluation metric, use IRT to estimate each model’s latent ability
(θ) across 11 medical specialties. Unlike overall accuracy, IRT produces difficulty-adjusted scores on
a standardized scale (mean = 0, SD = 1), where positive values indicate above-average proficiency.
This yields interpretable “ability profiles” that reveal topic-specific strengths and weaknesses, offering
a robust foundation for high-stakes evaluation.

Operational metrics capture deployment-relevant telemetry such as API costs and inference latency,
supporting multi-objective optimization that balances capability, efficiency, and economic constraints.
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Table 2: Dual-Ranking Model Performance Leaderboard. Top-15 models ranked by their mean IRT ability
(θ), the mean of the 11 topic-specific ability scores. Acc refer to the mean accuracy for all topics. Time and
Cost refer to the mean response time per question (seconds) and total evaluation cost (USD), respectively. Rows
where the two ranks differ are bolded in the rank cells to indicate a “rank-flip.”

Model Rank
(θ)

Rank
(Acc)

Mean
Ability ↑

Mean
Acc(%) ↑

Mean
Time (s) ↓

Total
Cost ($) ↓

openai/gpt-5 1 1 2.394 74.4 26.68 2.88
google/gemini-2.5-pro 2 2 1.925 68.8 49.26 5.21
openai/codex-mini 3 3 1.873 66.9 24.89 2.58
openai/gpt-oss-120b 4 4 1.826 63.4 2.80 0.10
openai/gpt-5-nano 5 5 1.356 61.2 31.20 0.11
openai/gpt-4o 6 7 1.263 58.6 4.70 0.67
x-ai/grok-3-mini 7 6 1.258 60.7 3.22 0.42
anthropic/claude-sonnet-4 8 9 1.241 58.0 6.24 1.62
meta-llama/llama-4-maverick 9 8 1.155 58.3 2.06 0.04
anthropic/claude-3.7-sonnet 10 11 1.117 57.6 10.21 1.01
google/gemini-2.5-flash 11 12 1.086 57.4 6.97 0.08
moonshotai/kimi-k2 12 10 1.086 57.6 4.40 0.05
openai/gpt-4.1-mini 13 13 1.050 56.9 25.87 0.11
qwen/qwen3-30b-a3b 14 15 0.916 56.4 1.06 0.10
openai/gpt-oss-20b 15 14 0.914 56.7 1.98 0.08

3.2 Overall Performance

Eighty LLMs were evaluated on the benchmark, producing two distinct performance rankings: one
based on conventional accuracy and the other on psychometrically grounded IRT ability estimates.
Complete results for all 80 models are reported in Appendix Table S4. Table 2 presents the top 15
performing models, primarily ranked by their mean composite IRT ability, with their corresponding
accuracy rank shown for direct comparison. The results reveal a consistent pattern: among the highest-
performing models, accuracy and IRT-based ability estimates were in close agreement. The top five
models, led by openai/gpt-5, maintain identical rank orderings across both metrics, establishing
a clear top tier of performance. Beyond this tier, however, rank shifts begin to appear, reflecting
meaningful differences between accuracy and ability. For example, openai/gpt-4o improves from
seventh place in accuracy to sixth in ability, suggesting better performance on more difficult questions.
In contrast, moonshotai/kimi-k2 declines from tenth in accuracy to twelfth in ability, indicating
that its observed accuracy may be disproportionately driven by success on easier questions.
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Figure 2: Heatmap of topic-wise IRT Ability (θ) for the top 25 Models. Rows list models with the highest
mean ability across topics (sorted descending); columns are topic abbreviations, as shown in Table 1.
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4 Analysis

4.1 Topic-Specific Competency Profiles

Our topic-level decomposition reveals that even top-performing models display highly uneven
specialty profiles, as shown in Figure 2. No single model demonstrates mastery across all medical
specialties. While GPT-5 demonstrates exceptional ability in most areas (e.g., Respiratory & Renal,
Musculoskeletal, with ability θ > 2.3), other models lead in specific domains. Gemini-2.5-pro, for
instance, is the strongest in Multisystem Processes & Disorders (θ = 2.43), and even the overall 23rd-
ranked Claude-3-opus outperformed all others in Social Science and Communication (θ = 1.80).
These distinct ability “fingerprints” highlight critical trade-offs for deployment: while GPT-5 presents
as a strong generalist, other leading models exhibit pronounced variations in proficiency across
specialties. Importantly, this granular view also uncovers systemic weaknesses across the entire
80-model cohort. Even after adjusting for item difficulty, domains such as Multisystem Processes
and Communication/Interpersonal Skills remain universally challenging, marking key priorities for
future development in clinical LLMs. The complete topic-wise estimations are provided in Appendix
Table S5.

Comm

Behav/Neuro

Blood/Immune

MSK/Skin

Multi

GIDev

Resp/Renal

Cardio

Repro/Endo

Bio/Epi

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Topic-wise IRT Ability Top 5 Models
openai/gpt-5
google/gemini-2.5-pro
openai/codex-mini
openai/gpt-oss-120b
openai/gpt-5-nano
Cohort mean
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(b) Radar chart of topic-wise accuracy.

Figure 3: Radar charts of topic-wise IRT Ability (θ) and accuracy for the top five Models. Topic abbrevia-
tions are the same as in Table 1.

The radar visualizations in Figure 3 highlight why our psychometric metric (θ) provides a more
veridical account of a model’s capabilities than overall accuracy. Specifically, accuracy is an inherently
confounded metric: a high score on one topic may be an artifact of easy questions rather than
evidence of superior ability, as shown in Panel b). In contrast, our IRT-derived ability scores are
difficulty-adjusted, yielding a much cleaner signal of a model’s latent capacity, as shown in Panel a).
Furthermore, this perspective enables a more strategic, task-oriented model selection.

4.2 Item Parameter Landscape
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Figure 4: Item missed by model for the for the Reproductive/Endocrine topic in IRT space (difficulty b
vs. discrimination a). Each point is a missed item. Circles = items only GPT-5 missed; triangles = items only
Codex-mini missed. Dashed lines mark b = 0 (vertical) and a = 0 (horizontal).

To illustrate the added value of IRT-derived ability estimates over raw accuracy, Figure 4 contrasts
GPT-5 and Codex-mini on Reproductive & Endocrine Systems. Although their raw accuracies are
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similar (GPT-5 even a little bit higher), IRT analysis reveals distinct error profiles: GPT-5 misses
higher-discrimination items, which are especially informative for distinguishing between high- and
low-ability systems. In contrast, Codex-mini struggles with lower-discrimination ones, resulting in
higher ability compared to GPT-5. This case study underscores how IRT ability estimates provide a
more diagnostic and interpretable view of model competency than aggregate accuracy alone.

Shifting the focus from model performance to the properties of the test questions enables an audit
of the benchmark itself. The relatively high average discrimination (mean a = 1.96) indicates that
the benchmark is well suited for making fine-grained distinctions among top-performing systems.
Detailed statistics of item parameters are provided in Appendix Table S2.

However, our IRT analysis also identified a distinct subset of questions (N = 15) with negative
discrimination (a < 0) and positive difficulty (b > 0), indicating a paradoxical situation in which
higher-ability models were more likely to respond incorrectly to these items compared to lower-
ability models. A clear example is one question concerning “rapid prototyping,” which yielded a
discrimination of a = −0.342 and difficulty of b = 0.77, was consistently missed by top models
such as GPT-5. A closer inspection revealed a design pathology: its “All of the above” answer
format was compromised by imprecise distractors, rendering the intended answer unsound. This case
illustrates how IRT can serve as a powerful tool for quality control, flagging poorly constructed or
miscategorized items that may distort the evaluation.

Table 3: Top Cost- and Time-Normalized Performance (Ability). Models are ranked by θ/$ (mean IRT ability
per total cost). C and T refer to total cost (USD) and mean time (seconds), respectively. The other metric is
Ability/s (mean θ per second), computed using mean response time (s/question). Ranks are reported for θ and
θ/s among all 80 LLMs (larger is better).

Model θ ↑ C ($) ↓ T (s) ↓ θ/$ ↑ θ/s ↑ Rank θ Rank θ/s

meta-llama/llama-3.3-70b-instruct 0.829 0.01 1.99 82.905 0.417 16 5
meta-llama/llama-4-maverick 1.155 0.04 2.05 28.871 0.563 9 3
moonshotai/kimi-k2 1.086 0.05 4.40 21.728 0.247 12 6
openai/gpt-oss-120b 1.826 0.10 2.81 18.261 0.650 4 2
google/gemini-2.5-flash 1.086 0.08 6.97 13.580 0.156 11 7
openai/gpt-5-nano 1.356 0.11 31.20 12.329 0.043 5 9
deepseek/deepseek-chat-v3.1 0.688 0.05 6.63 13.760 0.104 18 8
openai/gpt-oss-20b 0.914 0.08 1.98 11.430 0.462 15 4
openai/gpt-4.1-mini 1.050 0.11 25.87 9.550 0.041 13 10
qwen/qwen3-30b-a3b 0.916 0.10 1.06 9.165 0.865 14 1

4.3 Cost-Performance Trade-offs

Economic considerations play crucial roles in practical LLM deployment decisions. We analyze
this by examining the relationship between model capability (mean IRT ability) and the associated
financial cost and inference latency of the evaluation. Top cost- and time-normalized performance
(based on mean IRT ability) is shown in Table 3. Practical deployment considerations reveal a clear
Pareto frontier [Jahan et al., 2016] in the cost-performance landscape. Considering the joint objectives
of (i) mean IRT ability (θ), (ii) cost-normalized performance (θ/$), and (iii) time-normalized perfor-
mance (θ/s), the non-dominated set comprises four models: GPT-oss-120b, Llama-4-maverick,
Llama-3.3-70b-instruct, and Qwen3-30b-a3b. Each occupies a distinct operating point on the
efficiency–performance landscape: GPT-oss-120b attains the highest absolute ability (strongest
θ); Llama-3.3-70b-instruct is the cost leader (maximizing θ/$); Qwen3-30b-a3b is the la-
tency/throughput leader (maximizing θ/s); and Llama-4-maverick provides a balanced trade-
off—high θ with favorable θ/$ and θ/s.

5 Discussion

5.1 A Diagnostic Framework for Evaluating Model and Benchmark Integrity

This work demonstrates that moving beyond simple accuracy to a psychometric approach like IRT
provides a "magnifying glass" for LLM evaluation. As shown in Figure 4, IRT reveals that GPT-5
and Codex-mini fail on different item types despite similar accuracies, highlighting contrasts in
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their error profiles. Crucially, an IRT-based evaluation also provides a unified scale for all questions,
making it possible to merge multiple benchmarks onto a single scoring scale in the future. IRT offers
a more stable and interpretable measure of a model’s latent knowledge by disentangling its capability
from the characteristics of the test questions. This transforms evaluation from a simple leaderboard
ranking into a rich diagnostic exercise, which is critical in high-stakes domains where understanding
the reason for a model’s failure is paramount.

A key application of this framework, discovered in Section 4.2, is a dual-probe diagnostic methodol-
ogy, which leverages items with strong negative discrimination (where high-ability models fail more
often than weaker ones). This method mandates a two-step workflow. First, the item is treated as
a probe for benchmark integrity, prompting domain experts to validate it for flaws like ambiguity
or factual errors. If the item is validated as sound, its function shifts to a probe for model integrity.
In this role, it can expose subtle, systematic reasoning fallacies in high-ability models, such as a
tendency to overthink simple questions. This process enhances evaluation rigor by first validating the
measurement instrument itself before using it to identify otherwise undetectable model failures.

5.2 Implications for Deploying Trustworthy AI in Healthcare

Our findings demonstrate that trustworthiness in a medical LLM cannot be a monolithic concept. The
highly variable, “spiky” performance profiles (Figure 3) mean that a model’s reliability is context-
and domain-dependent. A model trustworthy for cardiology might be dangerously unreliable for
patient communication. For AI to be deployed safely, its performance envelope must be precisely
defined at a granular level, moving beyond aggregate scores that can mask critical weaknesses.

Based on this, we synthesize our findings into a practical, multi-criteria framework for selecting an
LLM for a medical application. Practitioners should: (a) Assess global performance by examining
the ability–accuracy scatter plot in Table 2; (b) Ensure domain alignment by inspecting the model’s
topic-specific radar chart in Section 4.1; (c) Evaluate cost-performance trade-offs to identify
models that provide “good enough” capability at a sustainable cost follow Section 4.3; (d) Confirm
competence by validating the chosen model on a small panel of high-discrimination questions
relevant to the specific use case. This structured approach allows healthcare professionals to select
models based on demonstrated competencies in relevant domains, mitigating the risk of deploying a
model that fails unexpectedly in a high-stakes clinical situation.

5.3 Limitations

This study has several limitations. First, its reliance on static multiple-choice medical questions does
not fully capture the dynamic nature of clinical reasoning. Second, our evaluation was shaped by
practical constraints. Our reliance on the OpenRouter API excluded specialized medical LLMs from
our analysis, and the token and time limits we imposed for cost-efficiency may have compromised
the full potential of high-capacity reasoning models. Third, the domain-specific analysis may not
reflect the interdisciplinary integration required in actual medical practice.

6 Conclusion

In this paper, we present a large-scale, fine-grained evaluation of 80 LLMs across 11 distinct factors
of medical competence. Our analysis moves beyond monolithic performance metrics, uncovering a
complex and heterogeneous landscape of model abilities. We find that even top-performing models
exhibit notable, domain-specific weaknesses, and that essential skills related to communication and
quantitative reasoning are systematically underdeveloped across the current generation of LLMs.
These results deliver a clear and urgent message: safe, effective, and trustworthy deployment of
generative AI in health requires moving beyond the illusion of competence created by single-score
benchmarks. Adopting detailed, multi-factor competency profiles is a critical step toward accurately
characterizing the true capabilities of these LLMs. Also, a dual-probe diagnostic workflow that
uses negative-discrimination questions has been discovered to enhance benchmark integrity while
exposing subtle model reasoning failures. Moreover, we synthesize our findings into a practical,
multi-criteria framework for practitioners, integrating our competency profiles with cost-performance
analysis to guide evidence-based model selection. Together, these contributions establish a foundation
for more principled evaluation and informed deployment of medical LLMs.
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