
SceneScore:
Learning a Cost Function for Object Arrangement

Ivan Kapelyukh1,2, Edward Johns1

Abstract— Arranging objects correctly is a key capability
for robots which unlocks a wide range of useful tasks. A
prerequisite for creating successful arrangements is the ability
to evaluate the desirability of a given arrangement. Our method
“SceneScore” learns a cost function for arrangements, such
that desirable, human-like arrangements have a low cost. We
learn the distribution of training arrangements offline using
an energy-based model, solely from example images without
requiring environment interaction or human supervision. Our
model is represented by a graph neural network which learns
object-object relations, using graphs constructed from images.
Experiments demonstrate that the learned cost function can be
used to predict poses for missing objects, generalise to novel
objects using semantic features, and can be composed with other
cost functions to satisfy constraints at inference time. Videos
are available at: sites.google.com/view/scenescore.

I. INTRODUCTION

Object rearrangement is a ubiquitous challenge in robotics:
given a set of objects, arrange them into a desirable state [1].
Many tasks can be expressed as rearrangement problems, e.g.
tidying a room, loading a dishwasher, assembling furniture in
a factory, or setting a table in a restaurant. For a robot to be
proficient at rearrangement in the real world, it must be able
to evaluate the desirability of an arrangement. Our method
“SceneScore” learns a cost function for arrangements, such
that desirable, human-like arrangements have a low cost, and
random arrangements have a higher cost. This cost function
can then be minimised to determine low-cost target poses
for objects (Fig. 1). This can be used to provide target
poses for robotic systems which can physically perform the
rearrangement [2], [3], [4].

Prior work [5], [6] has explored the problem of predicting
an optimal arrangement for a set of objects. This is a
related but different problem. By learning a cost function,
our method can also be used to find an optimal arrangement.
However, learning a cost function for any given arrangement
(an implicit approach) gives our method several advantages
compared to methods which predict only the optimal arrange-
ment (an explicit approach). These benefits include:
(1) Compositionality. The learned cost function can be
composed with additional cost functions at inference time.
E.g. the time it would take the robot to create an arrangement
can be added to the desirability cost of that arrangement.
The composed cost function can then be differentiated to
efficiently find an arrangement which is both desirable and
can be created quickly. Explicit methods cannot be easily
composed without re-training, as discussed in [7].

1 The Robot Learning Lab at Imperial College London. 2 The Dyson
Robotics Lab.

Sampling from the energy-based model

model cost
0.3141

predict cost

improve poses using gradient of cost

Useful applications

1. Keep some object poses fixed, optimise others

2. Determine if object 
is misplaced

3. Respect constraints 
e.g. avoid collisions

Fig. 1: An overview of how to sample from our energy-based
model and several useful properties of implicit methods.

(2) Robustness. This is a consequence of composition-
ality. In real-world scenes, there are many physical con-
straints which must be satisfied involving robot joints, object
collisions, stacking stability, etc. Explicit methods are less
robust, since the predicted optimal arrangement may violate
constraints. The cost function approach enables the use of ef-
ficient gradient-based constrained optimisation to determine
a high-quality arrangement which satisfies these constraints.
(3) Theoretical advantages. Prior work [8] has shown that
implicit methods have theoretical advantages over explicit
methods, such as better handling of discontinuities and
stronger generalisation.

When humans evaluate the quality of an arrangement,
we consider many factors: aesthetics, convenience, stability,
and others. We therefore learn this function from images of
human-arranged scenes. This is a scalable research direction
as images such as tidy desks and loaded dishwashers are
abundant on the Web. Unsupervised learning from this web-
scale data can lead to generalist cost functions for object
arrangement, analogous to successes in other fields [9], [10].

We learn the distribution of example arrangements using

https://sites.google.com/view/scenescore


an energy-based model, which can successfully learn com-
plex distributions [7], [8]. However, learning the distribution
from images directly is difficult due to their high dimen-
sionality. Instead, we first create an object-centric graph
representation of scenes, which separates an object’s pose
and semantic features. One of our key insights is that this
allows us to make the cost function conditional: the semantic
identities of the objects must remain fixed, but the robot is
free to vary the poses in order to create a higher-quality
arrangement.

The main contributions of this paper are as follows:
• An algorithm for learning the distribution of exam-

ple arrangements using techniques from energy-based
modelling, which enables a cost function to be learned
solely from example object arrangements, without also
requiring environment interaction or human supervision.

• A graph neural network architecture for predicting
the cost of an arrangement, with relative poses as
edge features and pose-invariant semantic embeddings
as node features. This object-centric, abstracted repre-
sentation which separates pose and semantics makes
generating arrangements offline possible.

• A vision pipeline for creating graphs from images
of scenes, using a pre-trained CLIP [11] model to
obtain visual and semantic features for each object, thus
allowing generalisation to new objects.

To the best of our knowledge, this is the first neural
network method for learning a rearrangement cost function
which uses only example images for training. Please visit
our website for videos, code, and supplementary materials
with real-world demos: sites.google.com/view/scenescore.

II. RELATED WORK

We now summarise several common approaches to object
rearrangement, followed by a brief overview of energy-based
models, the basis of our approach.

Classification methods select target poses from a fixed
set of discrete choices. Generalisation to novel objects can
be achieved using object taxonomies [12] or language models
[13]. A graph neural network [14] or transformer [15] policy
can select the correct goal for each object. This can be
trained with reinforcement learning to complete long-horizon
rearrangement tasks [16]. While these are effective for task
planning, our method addresses the case of predicting a
continuous target position and orientation for each object.

Explicit methods directly predict target poses for each
object. These solve a related but different problem to learning
a cost function. NeatNet [5] models user preferences as latent
vectors by training as a Variational Autoencoder on scenes.
However, this model only uses object names as semantic
embeddings, whereas our method also uses visual features.
Point clouds can also be used to represent objects as shown in
[6], where an autoregressive model conditioned on language
commands is used to place objects into the scene. Another
line of work takes a “denoising” approach to determine
goal arrangements [17], [18], [19]. While this helps avoid
collisions in rearrangement, it addresses a different problem:

we are interested in developing an implicit method which,
given an arrangement, can evaluate how desirable it is.

Energy-based models (EBMs) are generative models
which approximate the training distribution using an unnor-
malised energy function. Intuitively, the energy function is
usually “pushed down” at training examples, and “pushed
up” elsewhere. They have been used for generating high-
dimensional images [20]. They have also been used for
learning visual and spatial concepts [21], and for learning
from demonstrations [8], [22]. We use EBMs to model
the distribution of example arrangements. Recent work [23]
demonstrates compositionality by training a separate EBM
for every spatial relation (such as “left of” or “line”),
and composing them together to comply with detailed user
instructions. Our work investigates a different problem:
learning to evaluate autonomously whether an arrangement
of a scene looks natural, without requiring detailed user
instructions. This leads to several differences in our con-
tributions. For example, in Section IV-B, we train a single
EBM to learn the joint distribution of object poses (including
orientations), capturing what it means for a dining table to
be conveniently set for human use, and avoiding the need
to train separate EBMs for each low-level spatial relation.
Additionally, our EBM is conditioned on visual CLIP fea-
tures (rather than just object positions and sizes), allowing for
semantic generalization. We also show how the performance
advantage of implicit methods grows over explicit methods
as collision constraints become more restrictive.

Zero-shot approaches use visual-language models
(VLMs) to predict desirable target poses without training on
example arrangements [24], [25]. Instead, SceneScore allows
users to provide their own examples which reflect their needs.

III. METHOD

We start by formulating the learning of a rearrangement
cost function as a density estimation problem (Section III-A).
Then, we describe a method for learning this density function
from example arrangements (Section III-B), and show how
to sample arrangements from this model (Section III-C).
Then, we detail the graph neural network architecture used
to represent our model (Section III-D). Finally, we illustrate
how these graphs can be constructed from images of scenes
(Section III-E).

A. Formulating the Problem

To approximate the function that humans use to assess
the quality of a scene, we use a neural network model Eθ,
with learned parameters θ. The architecture is described in
Section III-D. We use the notation Eθ because this network
is trained as an EBM. The input to Eθ is a representation of
a scene, and the output is a scalar cost.

A scene is represented as an object-centric graph (the input
to our model). Each object in a scene is represented by its
pose and its semantic embedding. The semantic embedding
is a vector which captures visual and semantic features of an
object that are useful for arranging it, for example its shape,
or its semantic function (e.g. cutlery is often placed together

https://sites.google.com/view/scenescore


in a drawer). This graph is constructed from an image, as
described in Section III-E. Let x denote the set of absolute
pose vectors for all the objects in a scene, and s the set of
semantic embeddings. Then the cost of the scene according
to our model is Eθ(x|s). This separation between pose and
semantics is crucial under the definition of rearrangement:
the robot is allowed to vary the pose of objects x, but it
cannot alter or discard the objects themselves, so s must
remain fixed.

B. Training the Energy-Based Model

We fit the model to the training examples using Maxi-
mum Likelihood Estimation (MLE). The probability of an
arrangement under the distribution learned by our model is
defined as:

pθ(x|s) =
e−Eθ(x|s)

Zθ
Zθ =

∫
x

e−Eθ(x|s)dx (1)

This probability definition is widely used in EBM litera-
ture [26], [7], [8], [27]. Arrangements with a lower cost have
a higher probability. The MLE loss is obtained by minimising
the negative log-likelihood. We cannot compute an integral
over all possible arrangements, but we can approximate
the normalisation effect of Zθ by sampling arrangements
from our learned distribution pθ. The sampling algorithm is
described in Section III-C. Replacing Zθ using the training
example i and the sample arrangements indexed by j, we
get:

LMLE(θ) =
∑
i

− log

(
e−Eθ(xi|si)

e−Eθ(xi|si) +
∑

j e
−Eθ(xj |si)

)
(2)

This takes the form of an InfoNCE-style loss [28], anal-
ogous to those used for EBM training in [8], [22]. Note
that si = sj , i.e. the samples j all have the same semantic
embeddings as the training example i. Intuitively, this loss
function encourages the model to assign a low cost (i.e. high
probability) to the training examples, and a high cost (i.e. low
probability) to the generated arrangements which have been
sampled from the model – they can be viewed as counter-
examples. This creates a high-probability region around
the training examples, and “pushes down” the probability
elsewhere.

C. Sampling from the Energy-Based Model

We need to sample from the learned distribution Eθ(x|s)
to approximate the normalising constant in the loss function
in (2). To sample poses for a given set of objects with
semantic embeddings s, we use Langevin Dynamics [29],
which is often used to sample from energy-based models [7],
[8]. The initial poses x0 are drawn randomly from a uniform
distribution. The poses are then updated in each step t:

xt = xt−1 − λt(∇xt−1Eθ(xt−1|s) + ωt) ωt ∼ N (0, σ2
t )
(3)

We take the final poses x as the sampled arrangement,
following [29]. Here, ∇xt−1 means taking the gradient of

the cost function with respect to the object poses. λt is the
step size. This update rule is similar to gradient descent,
but with an added noise term ωt. Langevin Dynamics is
run for a finite, fixed number of steps. Further details
about hyperparameters are in the supplementary material. At
inference time, we also use Langevin Dynamics to sample
low-cost arrangements.

D. Graph Neural Network Architecture

Eθ(x|s) is represented by a graph neural network (GNN).
Each scene is a fully-connected graph with a node for each
object. The edge between two object nodes represents the
relative displacement and orientation between them. GNNs
are well-suited for this task because they can handle inputs
with a variable number of nodes, and they can capture
complex, multi-modal training distributions, e.g. if there are
multiple acceptable poses for an object. An insight we make
is that relative poses between objects often matter more than
their absolute pose in the scene, e.g. a pair of slippers being
placed together. This motivates our use of relative poses as
edge features in the graph, compared to prior work [5] which
uses absolute coordinates in the node feature vectors. When
sampling, we convert the absolute poses x to relative poses,
use the GNN to compute the cost of the scene Eθ(x|s), and
then improve the absolute poses using (3).

We now describe how one layer of our GNN computes
the output features for each node, which are used as input
features to the next layer. The input features in the first layer
are the semantic embeddings. The edge features stay the
same at each layer of the network. For node i, the input
feature vector is vi, and the output feature vector is v′i:

v′i =
∑
j

fϕ (vi, vj , eji) (4)

For each neighbouring node j in the graph, we compute a
message from j to i, and then aggregate all these messages
to produce the output feature vector for node i. To compute
this message, the feature vectors of nodes i and j are
concatenated together, along with the edge feature vector
eji, which represents the pose transformation to get from the
pose of j to the pose of i. This concatenated vector is then
passed through a linear neural network layer with learned
parameters ϕ. The GNN consists of several of these graph
layers, each separated by a LeakyReLU non-linearity [30].
We use global add pooling to aggregate the node feature
vectors into a single graph encoding vector. This is passed
through several linear layers, the output of which is a scalar,
which is the cost Eθ(x|s).

E. Constructing Graphs from Images

The GNN takes as input a graph representing a scene.
The system for constructing this graph from an image, and
obtaining a cost for this graph, is shown in Fig. 2. First,
our method detects objects in the image. We use a pre-
trained Mask R-CNN [31] from the detectron2 library [32].
For each object instance, it returns a segmentation mask. We
found that our method works even for objects not in the



Instance Segmentation

Mask 
R-CNN

segmented
instances

pretrained
and frozen

Graph Construction

pose
estimation

CLIP

pretrained
and frozen

semantic
embedding

pose

edges are 
relative 
poses

nodes are
semantic
embeddings

Energy-Based Model

0.3141

scalar 
cost

computes graph
energy using node
and edge features

graph 
neural 
network

Fig. 2: The pipeline for computing a cost from an image of a scene.

Mask R-CNN training dataset, as long as the mask has an
approximately correct shape.

Next, the pose for each object should be estimated. Our
method makes it easy to use any existing pose estimation
component, including 6-DoF pose estimators. In our ex-
periments, we focus on tabletop scenes where the methods
should predict the x and y position of each object, along with
a single angle θ along the axis perpendicular to the tabletop.
We use a straightforward method for pose estimation based
on image moments, which also applies to novel objects.
Further details are in the supplementary material. The pose
vector for an object is (x, y, cos θ, sin θ).

To derive an object’s semantic embedding we use features
from a pre-trained CLIP model [11]. This takes as input
an image of the object and returns a 512-dimensional CLIP
vector which captures visual features, as well as semantics:
e.g. a fork and chopsticks may share some semantic features,
which is useful as they are arranged in a related way. The
semantic embedding of an object should be pose-invariant:
the pose is separate so that we can optimise it. Therefore, we
rectify and crop the image of the object before inputting it
to CLIP. Details are in the supplementary material. Although
the CLIP model weights are frozen, we train a semantic
embedding extractor end-to-end, which is a 2-layer MLP that
extracts useful features from the CLIP vector. However, when
we pre-process an object image to be used as CLIP input, we
lose information about the scale of that object, which may
be useful for arranging it (e.g. ordering by size). To preserve
this information, we compute a scale descriptor (the width
and height of the object in its rectified pose), and append this
to the output of the semantic embedding extractor to create
the object’s semantic embedding.

IV. EXPERIMENTS

We investigate the following research questions: How
accurately can our method predict poses for missing ob-
jects (Section IV-B)? Can our method generalise to novel
objects (Section IV-C)? Can the learned cost function be
composed with constraints at inference time (Section IV-
D)? Further qualitative results are available on our website:
sites.google.com/view/scenescore.

A. Experimental Setup

We create a dataset of images of arranged scenes in
simulation, in order to compare predicted poses against
ground-truth poses. We use a data-generating process with
ground truth distributions, e.g. sampling relative poses be-
tween objects from a Gaussian Mixture Model. Details are in
the supplementary materials, along with the full datasets. The
methods must infer this distribution from example images
alone, which are created by rendering the example scenes in
a simulator.

B. Predicting Poses for Missing Objects

In this experiment, the method is shown an arranged scene
at inference time, with an object missing. The method must
predict the correct pose for the missing object, taking into
account the poses of the pre-placed objects, and using its
learned object-object relations. We compare the following
methods:

Fig. 3: Left: results for placing missing objects. Top: placing
fork, bottom: placing bowl. From left to right, methods
are: Nearest-Nbr, SceneScore, ground truth. Right:
experiment which requires ordering novel objects.

(1) SceneScore. Our method learns the distribution
of training arrangements. At inference time, the poses of
the pre-placed objects are fixed. The missing object’s po-
sition is randomly initialised, and then optimised using
Langevin Dynamics based on the learned cost function.
(2) SceneScore-Abs. This ablation study is similar to
our method, except that absolute poses are included as
node features instead of relative poses in edge features. (3)

https://sites.google.com/view/scenescore


Nearest-Nbr. This baseline compares the poses of pre-
placed objects against each training arrangement to find the
closest match, and from that training arrangement returns the
pose of the object which is missing from the test arrange-
ment. We expect it to perform well in this experiment be-
cause the set of objects is fixed, however it cannot generalise
to novel objects. (4) NeatNet [5]. We compare against this
prior work for arranging objects, which trains a masked VAE.
At inference time, the pose of the missing object is masked
out, and is predicted by the decoder. For a fair comparison,
we first extend this method to handle orientation. Further
implementation details are in the supplementary materials.

For this experiment, we focus on a dining table scenario
(Fig. 3 (left)). There are a pair of plates which are placed
circularly at any angle around a table. Beside each plate, a
fork and knife are placed an approximately equal distance
apart, where this distance varies. To test the methods on
multi-modal distributions, the fork and knife can be placed
on either side for each arrangement. Together, this creates
a challenging task because the methods have to learn rel-
ative poses in a circular arrangement, handle multi-object
relations, place multiple instances of the same class, and
learn multi-modal distributions. There are 48 arrangements
for training and 16 for testing.

As shown in Table I, our method SceneScore out-
performs the baselines, meaning that the cost function is
learned correctly. Using relative poses as edge features
improves performance, as shown by the comparison with the
SceneScore-Abs ablation. Nearest-Nbr is not able
to generalise well to novel configurations at inference time.
NeatNet struggles to learn relative poses in the complex
circular arrangements, and to tell apart instances of the
same class, showing that SceneScore’s EBM approach
is better able to learn these distributions and generalise to
new configurations.

C. Generalising to Novel Objects

We now test the method’s ability to use semantic features
to generalise to novel objects. A common rearrangement task
is to categorise and order objects: laying out cutlery in the
kitchen, stacking plates in order of size, etc. We use this
setting in this experiment (Fig. 3 (right)). The methods are
shown training examples where objects of varying size and
class are ordered according to some rule, which must be
learned by the method from the training images. At test time,
a set of novel objects is presented to the method, and it
must generalise the learned rule to these novel objects. In
the first scenario, the objects are first categorised according
to class (fork vs knife), and then ordered according to size
within each class. In the second scenario, the objects are
all ordered according to size, regardless of class. At test
time, the forks and knives are of different sizes to those
seen during training. In the third scenario, the model only
sees knives and forks during training, arranged as in the first
scenario. At inference time, it must generalize to an unseen
class, i.e. spoons, which appear alongside forks in the test
scene. This is challenging because it must group the unseen

objects together and generalize the learned ordering pattern
to them. There are 16 training and 16 test scenes for each
scenario. We compare SceneScore against NeatNet-R
[5], which learns to predict poses from semantic embeddings
via regression, where the word embedding for each object is
derived from the Mask R-CNN class output.

The results are in Table II. Our method SceneScore is
better able to generalise to novel objects. NeatNet-R can
categorise objects by class using language, but our method
allows for more precise placement because it also includes
visual features in its semantic embeddings. The Unseen-
Class task is more challenging for both methods, causing
higher-variance results. Our method uses CLIP features and
can generalise the learned object relations to scenes with an
unseen class.

D. Composing the Learned Cost Function with Constraints

In this experiment we investigate how constraints can be
incorporated into a rearrangement method. This is particu-
larly important for realistic, cluttered scenes. We compare
two approaches: an implicit method (ours) which samples
a solution and then performs gradient-based constrained
optimisation, and an explicit method (NeatNet [5]) which
samples solutions and rejects those that violate constraints.
We focus on object-object collision avoidance constraints,
but this approach can also be used with constraints such as
how far the robot arm can reach along a table.

Suppose that the robot learns a model which evaluates
the quality of a television and stereo speaker setup on a
living room floor, as shown in Fig. 4. For a balanced audio
experience, all three objects should be aligned vertically in
a straight line. Additionally, the setup should be horizon-
tally symmetrical, such that the left and right speakers are
equidistant from the television. During training, the methods
are provided with 36 training arrangements, generated using
a similar process to Section IV-A. They must learn that
distribution of high-quality arrangements. At inference time,
the methods must sample quality arrangements which also
satisfy constraints that prevent any objects from colliding.
Furthermore, there are now several new objects placed in
the scene as clutter, which are included in the constraints,
but cannot be moved by the method. These clutter objects
are excluded from the graph before pose prediction, since
they cannot be moved and were not trained on. Each method
is allocated an equal budget of 5000 samples they are
allowed to draw, and we report the number of correct samples
generated by each method. A correct sample is defined as one
which has alignment of objects within a fixed threshold, and
contains no object collisions. Collisions are detected from the
segmentation masks for objects, but in future work a model
such as CollisionNet [33] can be used. Further details are in
the supplementary material.

For the NeatNet [5] baseline, we sample arrangements
from the latent space of the VAE and reject the samples that
violate the constraints.

For the SceneScore method, the samples are drawn
using Langevin Dynamics, as before: the arrangements are



Method Bowl Fork Knife Mean
t t R t R t R

NeatNet [5] 17.6±0.7 24.1±1.8 147.8±21.5 23.6±1.4 145.4±23.5 21.7 146.6
Nearest-Nbr 5.4±3.4 9.9±9.0 16.0±11.8 8.4±8.0 17.9±11.5 7.9 16.9
SceneScore-Abs 5.2±6.6 6.3±5.3 9.1±4.5 7.8±8.7 20.4±40.0 6.5 14.8
SceneScore 3.4±2.3 4.1±2.4 6.4±4.9 5.6±4.3 13.0±17.9 4.4 9.7

TABLE I: Placing missing objects. For each object, the distance error t in cm between the predicted and true positions is
shown, followed by the orientation error R in degrees (excluding the bowl due to rotational symmetry).

initialised randomly and then optimised using the gradient
of the learned cost function, summed with the gradient
of the constraint function. To make the constraint function
differentiable, we use a standard Hinge Loss, which is zero
when two objects are not in collision, and linearly increases
as the object overlap increases if there is a collision.

The results are in Fig. 5. As the scene becomes more
cluttered and complex, the performance advantage of our
implicit method increases over explicit methods such as
NeatNet. Although it is possible for a solution to be sampled
from the VAE which luckily satisfies all the constraints,
our gradient-based constrained optimisation approach scales
much better as the constraints become more challenging, as
is the case in complex real-world scenes.

V. REAL-WORLD DEMO

We conduct a small-scale demo of our method on a real
scene, and visualise qualitative results in Fig. 6. As the
pen moves further from the book in the training examples,
the mug moves further as well. By fixing the other objects
and visualising the cost function for the mug positions, we
can see that the model has learned this spatial relation.
Additionally, it can generalise this relation when the pen
is replaced with an unseen class (a pencil), using semantic
features. Further details are in the supplementary material.

VI. CONCLUSIONS

Findings. Our method SceneScore learns the distribution
of example arrangements from images, using an EBM and
a graph representation of scenes. It learns offline, without
environment interaction or human supervision. The learned
cost function can be used to create low-cost arrangements,
generalise to novel objects, and can be composed with
constraints at inference time. This is the first method for
learning a cost function for arranging objects from images.
Limitations & future work. We currently focus on top-
down arrangements. This is sufficient to solve many re-
arrangement tasks, but future work can also apply our
method in a 3D context, e.g. with shelves. Our experiments
are mostly in simulation, since we want to compare our
predictions against ground truth poses. There are small-
scale real-world demos on our website, but future work can
investigate this approach in more complex real-world scenes.
A promising direction for future work based on this approach
is large-scale learning from in-the-wild images of scenes
arranged by humans.

Method Class-Size All-Size Unseen-Class Mean

NeatNet-R[5] 6.55±4.35 12.95±6.84 17.30±11.24 12.27
SceneScore 2.89±1.53 2.01±0.94 4.76±3.07 3.22

TABLE II: Mean and standard deviation of position error in
cm for ordering novel objects.

Fig. 4: Left: a training example for arranging the television
and two stereo speakers. Centre: clutter added at inference
time. Right: even more challenging clutter.

C
or

re
ct

 s
am

pl
es

0

500

1000

1500

9 Objects 12 Objects

NeatNet SceneScore

Fig. 5: Number of correct samples from each method as the
total number of objects in the scene increases and collisions
become harder to avoid.

Fig. 6: A small real-world demo. We visualise the learned
cost function for placing a mug in a desirable way.



REFERENCES

[1] D. Batra, A. X. Chang, S. Chernova, A. J. Davison, J. Deng, V. Koltun,
S. Levine, J. Malik, I. Mordatch, R. Mottaghi, M. Savva, and H. Su,
“Rearrangement: A challenge for embodied AI,” 2020.

[2] A. Goyal, A. Mousavian, C. Paxton, Y.-W. Chao, B. Okorn, J. Deng,
and D. Fox, “Ifor: Iterative flow minimization for robotic object
rearrangement,” in arXiv:2202.00732, 2022.

[3] V. Vosylius and E. Johns, “Where to start? collision-free transfer of
skills to new environments,” in Conference on Robot Learning (CoRL),
2022.

[4] A. Murali, A. Mousavian, C. Eppner, A. Fishman, and D. Fox,
“CabiNet: Scaling neural collision detection for object rearrangement
with procedural scene generation,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), May
2023. [Online]. Available: https://arxiv.org/abs/2304.09302

[5] I. Kapelyukh and E. Johns, “My house, my rules: Learning tidying
preferences with graph neural networks,” in Conference on Robot
Learning (CoRL), 2021.

[6] W. Liu, C. Paxton, T. Hermans, and D. Fox, “Structformer: Learning
spatial structure for language-guided semantic rearrangement of novel
objects,” 2022 International Conference on Robotics and Automation
(ICRA), 2022.

[7] Y. Du and I. Mordatch, “Implicit generation and modeling with energy
based models,” in Advances in Neural Information Processing Systems,
2019.

[8] P. Florence, C. Lynch, A. Zeng, O. Ramirez, A. Wahid, L. Downs,
A. Wong, J. Lee, I. Mordatch, and J. Tompson, “Implicit behavioral
cloning,” Conference on Robot Learning (CoRL), 2021.

[9] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton, S. K. S.
Ghasemipour, B. K. Ayan, S. S. Mahdavi, R. G. Lopes, T. Salimans,
J. Ho, D. J. Fleet, and M. Norouzi, “Photorealistic text-to-image
diffusion models with deep language understanding,” 2022.

[10] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, “Language models are few-shot learners,”
in Advances in Neural Information Processing Systems, 2020.

[11] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever,
“Learning transferable visual models from natural language supervi-
sion,” in Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event, ser. Proceedings
of Machine Learning Research, 2021.

[12] M. J. Schuster, D. Jain, M. Tenorth, and M. Beetz, “Learning organiza-
tional principles in human environments,” in 2012 IEEE International
Conference on Robotics and Automation, 2012.

[13] Y. Kant, A. Ramachandran, S. Yenamandra, I. Gilitschenski, D. Batra,
A. Szot, and H. Agrawal, “Housekeep: Tidying virtual households
using commonsense reasoning,” 2022.

[14] Y. Lin, A. S. Wang, E. Undersander, and A. Rai, “Efficient and
interpretable robot manipulation with graph neural networks,” 2021.

[15] V. Jain, Y. Lin, E. Undersander, Y. Bisk, and A. Rai, “Transformers
are adaptable task planners,” in 6th Annual Conference on Robot
Learning, 2022. [Online]. Available: https://openreview.net/forum?id=
Eal lL08v l

[16] N. Funk, G. Chalvatzaki, B. Belousov, and J. Peters, “Learn2Assemble
with structured representations and search for robotic architectural
construction,” in 5th Annual Conference on Robot Learning, 2021.

[17] W. Liu, T. Hermans, S. Chernova, and C. Paxton, “StructDiffusion:
Object-centric diffusion for semantic rearrangement of novel objects,”
arXiv, 2022.

[18] M. Wu, fangwei zhong, Y. Xia, and H. Dong, “TarGF: Learning target
gradient field for object rearrangement,” in Conference on Neural
Information Processing Systems, 2022.

[19] Q. A. Wei, S. Ding, J. J. Park, R. Sajnani, A. Poulenard, S. Sridhar,
and L. Guibas, “Lego-net: Learning regular rearrangements of objects
in rooms,” arXiv, 2023.

[20] Y. Song, S. Garg, J. Shi, and S. Ermon, “Sliced score matching: A
scalable approach to density and score estimation,” 2019.

[21] I. Mordatch, “Concept learning with energy-based models,” 2018.
[22] A. Ganapathi, P. Florence, J. Varley, K. Burns, K. Goldberg, and

A. Zeng, “Implicit kinematic policies: Unifying joint and cartesian
action spaces in end-to-end robot learning,” 2022.

[23] N. Gkanatsios, A. Jain, Z. Xian, Y. Zhang, C. G. Atkeson, and
K. Fragkiadaki, “Energy-based models are zero-shot planners for
compositional scene rearrangement,” Robotics: Science and Systems
XIX, 2023.

[24] I. Kapelyukh, V. Vosylius, and E. Johns, “Dall-e-bot: Introducing web-
scale diffusion models to robotics,” in IEEE Robotics and Automation
Letters (RA-L), 2023.

[25] I. Kapelyukh, Y. Ren, I. Alzugaray, and E. Johns, “Dream2Real:
Zero-shot 3D object rearrangement with vision-language models,” in
NeurIPS Robot Learning Workshop, 2023.

[26] Y. Song and D. P. Kingma, “How to train your energy-based models,”
2021.

[27] C. Finn, P. F. Christiano, P. Abbeel, and S. Levine, “A connection be-
tween generative adversarial networks, inverse reinforcement learning,
and energy-based models,” ArXiv, 2016.

[28] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” 2018.

[29] M. Welling and Y. W. Teh, “Bayesian learning via stochastic gradient
langevin dynamics,” in Proceedings of the 28th International Confer-
ence on International Conference on Machine Learning, 2011.

[30] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. ICML, 2013.

[31] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in 2017
IEEE International Conference on Computer Vision (ICCV), 2017.

[32] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,”
2019.

[33] A. Murali, A. Mousavian, C. Eppner, C. Paxton, and D. Fox, “6-DOF
grasping for target-driven object manipulation in clutter,” 2020 IEEE
International Conference on Robotics and Automation (ICRA), 2020.

https://arxiv.org/abs/2304.09302
https://openreview.net/forum?id=Eal_lL08v_l
https://openreview.net/forum?id=Eal_lL08v_l

	Introduction
	Related Work
	Method
	Formulating the Problem
	Training the Energy-Based Model
	Sampling from the Energy-Based Model
	Graph Neural Network Architecture
	Constructing Graphs from Images

	Experiments
	Experimental Setup
	Predicting Poses for Missing Objects
	Generalising to Novel Objects
	Composing the Learned Cost Function with Constraints

	Real-World Demo
	Conclusions
	References

