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Abstract001

Identifying arguments is a necessary prerequi-002
site for various tasks in automated discourse003
analysis, particularly within contexts such as004
political debates, online discussions, and scien-005
tific reasoning. Alongside theoretical insights006
into the structural constitution of arguments, a007
significant amount of research has focused on008
the practical extraction of arguments, leading to009
the growth of publicly available datasets where010
the classic BERT-like transformers prevail and011
consistently attain highly competitive bench-012
mark performance. Indeed, this has fostered013
the general assumption that argument mining is014
reliable and applicable in a variety of contexts.015
Our findings indicate that apparent progress of-016
ten arises from data limitations and labeling017
rather than the inherent capabilities of these018
models. Experiments show that these trans-019
formers learn the specifics of datasets rather020
than the composition of arguments. They per-021
form excellently on individual benchmarks, but022
have difficulty generalizing when tested on023
other datasets. Crucially, we demonstrate that024
task-specific pre-training for structurally em-025
bedding argument components can indeed im-026
prove generalization. At the same time, we027
stress the need for common methodologies that028
are able to unify different perspectives on how029
arguments are constituted in order to transform030
argument mining into a universally applicable031
research paradigm.032

1 Introduction033

Undeniably, discourse gives people the opportunity034

to express and discuss their beliefs on any topic.035

Argument mining, in this sense, is the automatic036

identification of the structure of inference and rea-037

soning expressed as arguments presented in natural038

language (Lawrence and Reed, 2019).039

Although there is no one-size-fits-all answer to040

What is an argument? (Stab et al., 2018), the idea041

suggests itself that arguments are latent yet ob-042

servable, and revolve around how they are consti-043

tuted in terms of their logical scaffolding of ar- 044

gument discourse units, rather than what specific 045

subject they address. In practice, these elements, 046

whether entire sentences or sub-sentence segments, 047

are pragmatically assigned functional roles, most 048

commonly claims and premises, and form the fun- 049

damental building blocks of an argument (Stab 050

and Gurevych, 2014; Daxenberger et al., 2017; 051

Lawrence and Reed, 2019). 052

Consider the example X should Y, because Z, 053

such as Students should study, because it improves 054

grades or We should reduce plastic use, because 055

it minimizes ocean pollution, which illustrates that 056

the manifestation of an argument should ideally 057

rely on structural components conveyed through 058

functional patterns, while remaining agnostic of 059

certain topics or other content-specific elements. 060

For this reason, one might assert that argument 061

mining, in theory, is applicable across different cor- 062

pora if the structural signals defining arguments 063

are reliably identifiable from appropriately labeled 064

data. Conversely, in practice, any inability to apply 065

these signals to diverse datasets may expose sys- 066

tematic biases in the field, an issue that has long 067

been informally discussed over coffee breaks. 068

Generalizability, in this regard, takes high pri- 069

ority, especially at leading NLP conferences such 070

as ACL 2025, as it allows models to make reliable 071

and reasonable predictions on data that does not 072

correspond to their training data. This is especially 073

true for real-world models, which should mimic 074

human-like generalization abilities, where emerg- 075

ing evidence indicates that such models are often 076

fine-tuned to the specifics of established benchmark 077

datasets, resulting in a significant performance drop 078

on out-of-distribution data. 079

Consequently, concerns have emerged about 080

model vulnerability to shortcut learning (Geirhos 081

et al., 2020), underscoring the broader challenge of 082

evaluating baselines beyond isolated benchmarks 083

(Rendle et al., 2019). 084
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Argument mining is one such area of natural lan-085

guage processing applications in which the ability086

to generalize is key. Hence, we raise the following087

questions:088

Q1: How comparable are the existing benchmark089

datasets for argument mining?090

Q2: Do state-of-the-art argument mining models091

generalize to out-of-distribution data from092

other benchmarks?093

Q3: Do these models acquire a generalizable con-094

cept of arguments?095

In this context, there has been speculation096

that BERT (Devlin et al., 2019), known to pay097

great attention to basic syntax, nouns, and co-098

references (Clark et al., 2019), is prone to learning099

shortcuts when mining arguments (Geirhos et al.,100

2020), with (Thorn Jakobsen et al., 2021) demon-101

strating that its generalization remains limited to102

specific topics when applied to a set of four datasets103

using similar criteria for argument sentences.104

Our aim is not to propose a new formalism for ar-105

guments, nor to pinpoint the best performing argu-106

ment mining model, but to use data from previous107

work in which different theories have been applied108

to see whether individual efforts and perspectives109

converge in terms of identifying arguments.110

With this being said, we perform the first large-111

scale experimental assessment of benchmarks, sys-112

tematically evaluating generalization across diverse113

argument mining datasets following a comprehen-114

sive review of datasets spanning 2008 to 2024.115

For our study we selected BERT (Devlin et al.,116

2019), RoBERTa (Liu et al., 2019), and Distil-117

BERT (Sanh et al., 2019) as exemplary BERT-118

like models, widely recognized as standard base-119

lines in various areas of natural language process-120

ing (Rogers et al., 2020), including recent research121

on argument mining (Shnarch et al., 2020; Mayer122

et al., 2020a; Fromm et al., 2021a; Alhamzeh et al.,123

2022; Feger and Dietze, 2024b). We also examine124

WRAP (Feger and Dietze, 2024a), the only trans-125

former whose language representation pre-training126

is extended by leveraging contrasts of inference and127

information signals to represent general argument128

components. Although originally designed for129

cross-topic generalization on Twitter (X), WRAP130

removes tweet-specific features to enhance its gen-131

eralizability, distinguishing it from the others and132

making it particularly interesting for this study.133

In this study, we start by detailing our process of 134

finding argument mining benchmark datasets and 135

explain the selection criteria and justifications in 136

Section 2. The core characteristics of these datasets, 137

addressing research question Q1, are then exam- 138

ined in Section 3. Next, we describe our exper- 139

imental setup in Section 4, covering both result 140

generation and the implementation of best prac- 141

tices for significance testing, which form the basis 142

for answering Q2 & Q3 in Section 5. The results 143

of this paper are then discussed in Section 6 and 144

concluded in Section 7. 145

In order not only to elucidate the process, but 146

also to foster discussion that may inspire new ap- 147

proaches for novel datasets and broader generaliza- 148

tion of argument mining methods, we contribute: 149

1. A survey of argument mining datasets be- 150

tween 2008 and 2024, primarily from the ACL 151

Anthology, identifying 52 relevant papers with 152

datasets from leading NLP conferences. 153

2. The first large-scale assessment that combines 154

benchmark evaluations for argument min- 155

ing, including controlled manipulation experi- 156

ments to determine whether the reported state- 157

of-the-art models (BERT, RoBERTa, Distil- 158

BERT, WRAP) actually learn generalizable 159

argument concepts. 160

3. Statistical evidence that shortcut learning un- 161

dermines generalization in argument mining. 162

Although each of the examined transform- 163

ers delivers strong results on benchmarks, all 164

struggle to varying degrees when applied to 165

other datasets, with WRAP generally perform- 166

ing slightly better. These challenges are com- 167

pounded by divergent argument definitions 168

and inconsistent annotations across datasets. 169

2 Argument Mining Benchmark Datasets 170

This section outlines the dataset collection and se- 171

lection process, emphasizing the rationale behind 172

our choice of benchmark datasets for argument min- 173

ing. The decisions for all 52 datasets reviewed are 174

present in Appendix A.1. Additionally, the code 175

and data are available in our repository1. 176

2.1 Collection Process 177

As part of our data collection process, we examined 178

the most recent and relevant survey papers on argu- 179

ment mining, primarily from the ACL Anthology 180

1Limited-Generalizability-AM
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Dataset Paper Genre Definition Arguments No-Arguments

ACQUA (Panchenko et al., 2019) Mixed Argumentative 1,949 5,236
WEBIS (Al-Khatib et al., 2016a) Online Debate Argumentative 10,804 5,543
ABSTRCT (Mayer et al., 2020b) Academic Claim-based 1,308 7,323
ARGUMINSCI (Lauscher et al., 2018) Academic Claim-based 6,554 9,548
CE (Rinott et al., 2015) Encyclopedia Claim-based 1,546 85,417
CMV (Hidey et al., 2017) Online Debate Claim-based 979 1,593
FINARG (Alhamzeh et al., 2022) Spoken Debate Claim-based 4,607 8,310
IAM (Cheng et al., 2022) Mixed Claim-based 4,808 61,715
PE (Stab and Gurevych, 2017) Academic Claim-based 2,093 4,958
SCIARK (Fergadis et al., 2021) Academic Claim-based 1,191 10,503
USELEC (Haddadan et al., 2019) Spoken Debate Claim-based 13,905 15,188
VACC (Morante et al., 2020) Online Debate Claim-based 4,394 17,825
WTP (Biran and Rambow, 2011) Online Debate Claim-based 1,135 7,274
AFS (Misra et al., 2016) Online Debate Conclusion-based 5,150 1,036
UKP (Stab et al., 2018) Mixed Evidence or Reasoning 11,126 13,978
AEC (Swanson et al., 2015) Online Debate Implicit-Markup 4,001 1,374
TACO (Feger and Dietze, 2024b) Twitter Debate Inference-Information 864 868

Table 1: The final 17 datasets that meet the sentential, binary label, and reproducibility criteria, each yielding at
least 1,700 instances (850 per label) under a stratified 60/20/20 split, ensuring adequate size for the experiments.

(Daxenberger et al., 2017; Cabrio and Villata, 2018;181

Lawrence and Reed, 2019; Vecchi et al., 2021;182

Schaefer and Stede, 2021; Ajjour et al., 2023), all183

of which catalog datasets addressing various sub-184

tasks within the field, where argument identifica-185

tion is a fundamental prerequisite for each.186

To expand and back up our dataset collection,187

we searched Google Scholar and Google Dataset188

Search for the keyword argument mining to find189

contributions beyond survey papers.190

Based on our assessment, we found 52 argu-191

ment mining papers with datasets, mostly from top192

NLP conferences like ACL, NAACL, LREC, or193

EMNLP.194

2.2 Selection Criteria195

The dataset selection process for this paper was196

conducted in two stages. In the primary inclusion197

phase, we evaluated all 52 datasets based on:198

• Sentential: The data and labels are at the199

sentence level or aggregatable to this level200

(e.g., from sub-sentence or token annotations).201

Tweets were excluded from classical sentence202

conventions due to their unique structure.203

• Binary: The dataset assigns binary labels to204

distinguish argument from no-argument sen-205

tences (e.g., based on the presence or absence206

of claims or other argument components).207

• Reproducible: The dataset is largely replica-208

ble, with minor discrepancies from the pub-209

lication (e.g., updates or duplicate removal210

affecting size). To ensure reproducibility, we 211

reviewed documentation, labels, guidelines, 212

and tools, and attempted to resolve access is- 213

sues (e.g., client-sided or coding errors). 214

We applied these criteria sequentially, excluding 215

datasets immediately upon failing any condition, 216

eliminating 24 of the initial 52. In the refined in- 217

clusion step, we assessed relationships and data 218

sufficiency to ensure adequate evaluation and gen- 219

eralization sizes, leading us to consider: 220

• Related: Connections between datasets such 221

as updated versions, additional non-task- 222

related features (e.g., stance added to a claim), 223

and curated subsets derived from repositories 224

that serve as data sources rather than datasets. 225

• Sufficiency: For a stratified 60/20/20 split, 226

each dataset must have at least 500 training 227

instances and 150 evaluation instances per la- 228

bel. An initial analysis revealed that two in 229

five datasets fell short of this threshold, and 230

alternative splits (e.g., 70/15/15 or 80/10/10) 231

would further reduce evaluation sizes, wors- 232

ening the small-data issue. 233

In total, this process resulted in 17 datasets en- 234

compassing ~345k labeled sentences, each meeting 235

the aforementioned criteria. The final selection of 236

datasets included in this study is listed in Table 1. 237
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3 Characterizing Argument Mining238

Benchmark Datasets and Definitions239

Before addressing Q1, we briefly introduce the in-240

dividual datasets, organizing them by their primary241

labels. We then give the answer to Q1 in terms of242

comparing definitions in Section 3.1 and textual243

characteristics in Section 3.2.244

Argumentative serves as an umbrella term, iden-245

tifying arguments with markers or patterns that246

suggest structural components, without necessarily247

specifying their roles (e.g, as claim or inference).248

In this sense, ACQUA (Panchenko et al., 2019) con-249

tains 7,185 argumentative sentences from Common250

Crawl (Panchenko et al., 2018), covering topics like251

computer science and brands, categorizing compar-252

isons (e.g., Matlab vs. Python) as argumentative253

or not. Similarly, WEBIS (Al-Khatib et al., 2016a)254

comprises 16,347 segments across 14 topics (e.g.,255

culture, health) from iDebate, with user-assigned256

labels (introduction, for, against) mapped to argu-257

mentative and non-argumentative labels.258

Claim-based approaches explicitly annotate for259

the presence of claims as the core of an argument.260

Thereby, ABSTRCT (Mayer et al., 2020b), sourced261

from PubMed, comprises 8,631 sentences extracted262

from abstracts related to five diseases (e.g., neo-263

plasm, glaucoma). ARGUMINSCI (Lauscher264

et al., 2018) provides annotations for the Dr. In-265

ventor dataset (Fisas et al., 2016) for computer266

graphics publications, totaling 16,102 sentences.267

CE (Rinott et al., 2015) contains 86,963 sentences268

from Wikipedia across 58 topics (e.g., one-child269

policy, physical education). CMV (Hidey et al.,270

2017) consists of 2,572 sentences from the Change271

My View subreddit, spanning a diverse range of272

topics. FINARG (Alhamzeh et al., 2022) com-273

prises 12,917 sentences sourced from transcribed274

earnings calls of Amazon, Apple, Microsoft, and275

Facebook. Moreover, IAM (Cheng et al., 2022)276

contains 66,523 sentences from various online plat-277

forms across 123 topics (e.g., vaccination, multi-278

culturalism), while PE (Stab and Gurevych, 2017)279

includes 7,051 annotated sentences from persuasive280

essays (e.g., about cloning). SCIARK (Fergadis281

et al., 2021) contains 11,694 annotated sentences282

from scientific literature (e.g., PubMed, Semantic283

Scholar) on sustainable development goals (e.g.,284

well-being, gender equality), also considering gen-285

eralization to ABSTRCT. On the other hand, US-286

ELEC (Haddadan et al., 2019) offers 29,093 sen-287

tences from transcripts of U.S. presidential debates288

from 1960 (Kennedy vs. Nixon) to 2016 (Clinton 289

vs. Trump), transcribed from the Commission on 290

Presidential Debates. VACC (Morante et al., 2020) 291

offers 22,219 sentences from a mixed collection of 292

online debates about vaccination, while WTP (Bi- 293

ran and Rambow, 2011) includes 8,409 sentences 294

from Wikipedia Talk Pages on various topics (e.g., 295

Darwinism, the Catholic Church). 296

Others represents a residual category encom- 297

passing a variety of distinct definitions. AFS (Misra 298

et al., 2016) comprises 6,186 annotated sentences 299

drawn from online debate platforms such as iDe- 300

bate and ProCon for three topics (e.g., gay mar- 301

riage, death penalty). Sentences are labeled based 302

on whether they explicitly convey a specific argu- 303

ment facet, with conclusions serving as the core 304

component of the argument. UKP (Stab et al., 305

2018) contains 25,104 sentences across eight top- 306

ics (e.g., nuclear energy, minimum wage) for cross- 307

topic argument mining from heterogeneous sources, 308

where arguments provide evidence or reasoning 309

to support or oppose a topic. On the other hand, 310

AEC (Swanson et al., 2015) contains 5,375 sen- 311

tences on four topics (e.g., evolution, gun control) 312

from CreateDebate, highlighting simple argument 313

signals with labels based on the implicit markups: 314

so, if, but, first, I agree that. Finally, TACO (Feger 315

and Dietze, 2024b) comprises 1,734 tweets span- 316

ning six topics (e.g., abortion, Squid Game). It is 317

designed for cross-topic argument mining on Twit- 318

ter, focusing on inference to shape arguments. 319

3.1 Comparing Argument Definitions 320

(Q1) Argument definitions vary, reflecting a spec- 321

trum of perspectives that contribute to a shared 322

understanding of arguments. Central to this is the 323

observation that definitions mutually inform each 324

other in explaining their concepts. For example, 325

in Table 1 most papers are claim-based but when 326

comparing the definitions some view a claim as ar- 327

gumentative (Lauscher et al., 2018; Fergadis et al., 328

2021), others as conclusive (Mayer et al., 2020b), 329

as stances (Rinott et al., 2015; Hidey et al., 2017; 330

Cheng et al., 2022; Stab and Gurevych, 2017), or 331

as a hybrid concept of all these (Haddadan et al., 332

2019; Morante et al., 2020). 333

Hence, further clarification is needed, especially 334

concerning their generalization as part of Q2 & 335

Q3. Thereby, Table 2, with examples from dif- 336

ferent definitions, illustrates whether their efforts 337

nevertheless converge in the identification of argu- 338

ments despite different perspectives. 339
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Label Dataset Example

ARG
ACQUA We chose MySQL over PostgreSQL primarily because it scales better and has embedded replication.
SCIARK In this case, if symptomatic, the treatment should be surgery, clinical follow-up, and counseling.
AEC So it would seem that if there is a scientific theory of [. . . ], it has been tested [. . . ] and therefore [. . . ].

¬ARG
WEBIS The Mo Ibrahim Prize was first established in 2007, and the prize represents [. . . ] African leadership.
FINARG For those unable to attend in person, these events will be webcast and you can follow [...] at URL.
TACO ’Bitter truth’: EU chief [...] on idea of Brits keeping EU citizenship after #Brexit URL via USER

Table 2: Examples of argument (ARG) and no-argument (¬ARG) sentences from various datasets. Despite
differences in definitions and topics, the similarities within and distinctions between label groups underscore the
shared endeavor of argument mining approaches in identifying arguments, though each emerged differently.

3.2 Comparing Dataset Dimensions340

First, the two text dimensions used to analyze the341

selected datasets are presented. For dataset-wise342

correlations of these, please refer to Appendix A.2.343

Sentence-Level: To capture a broad, macro-344

level view without delving into individual word345

details, we used spaCy2 to extract key textual at-346

tributes. These features reveal the overall structural347

and statistical properties of sentences, enabling a348

sentence-level characterization of each dataset by:349

• Length: Measured by the number of words350

per sentence, which serves as an indicator of351

linguistic complexity and verbosity.352

• Stop/Function Word Ratio: The ratio of stop353

words (e.g., it, is, are) and function words354

(e.g., against, because, therefore) to the other355

words in a sentence, indicating their relative356

frequency of use.357

• Type-Token Ratio: The ratio of unique words358

to total words in a sentence, assessing lexical359

diversity.360

• Readability: The Flesch Reading Ease score361

quantifies text clarity, with lower values (0 ≤)362

indicating complex academic language and363

higher values (≤ 100) denoting easy readabil-364

ity, understandable by an 11-year-old.365

• Entropy: Quantifies lexical unpredictability366

and the amount of information in a sentence,367

with values ranging from 0 (fully predictable368

text) to 1 (maximal unpredictability).369

• Sentiment: Defined by polarity, ranging from370

-1 (extremely negative) to 1 (extremely pos-371

itive), and subjectivity, ranging from 0 (ob-372

jective) to 1 (subjective), possibly revealing373

persuasive strategies through emotions.374

2spacy.io

• Part-of-Speech Tags: The distribution of the 375

17 universal POS tags reflects basic syntax, 376

lexical composition, and stylistic variation. 377

Word-Level: To compare datasets at the word 378

level, we analyze the vocabulary of unique words 379

used in each dataset. We extend this to words that 380

convey the central semantic content of a sentence 381

(e.g., government, abortion, freedom), that is, all 382

words except stop words and function words. Their 383

relatedness or uniqueness is described using Jac- 384

card similarity, a measure of similarity between 385

two sets based on the ratio of their intersection to 386

their union. 387

(Q1) The sentence structures are strongly cor- 388

related across datasets and labels. On average, 389

a sentence contains 21 words, with nearly every 390

second word (48%) being a stop or function word. 391

Sentences are lexically diverse (91% type-token 392

ratio) yet highly readable (63% readability). The 393

high predictability (22% entropy) and objective 394

tone (43% subjectivity) suggest clear, structured 395

writing with a slightly positive inclination (8% po- 396

larity). This is reinforced by the POS patterns, 397

where sentences typically include five nouns, three 398

punctuation marks, and two verbs, adpositions, and 399

determiners, with other tags averaging below two. 400

Moreover, an average sentence closely aligns 401

with both argument and no-argument sentences 402

across these 24 sentence-level features (Spearman’s 403

ρ ≥ 0.97), with a strong correlation (ρ ≥ 0.71) 404

across datasets. Slight differences exist in length, 405

with an argument sentence averaging 24 words 406

compared to 20 for a no-argument sentence, with 407

readability scores of 60% and 64%, respectively. 408

(Q1) While the datasets and labels share com- 409

mon stop and function words, their core semantic 410

content differs. Looking at the vocabularies, the 411

datasets remain largely distinct, with 7–36% Jac- 412

card similarity, a trend also observed for the core 413
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semantic content words outside the stop and func-414

tion categories, reflecting their open-class nature.415

In contrast, stop and function words exhibit over416

73% overlap, as they are closed by definition.417

Interestingly, while comparing sentences across418

labels shows similar patterns, words describing the419

core semantic content remain largely distinct, over-420

lapping below 48% and 19% on average, reinforc-421

ing lexical separation. Undeniably, the datasets422

share overlapping content, e.g., when discussing423

topics like the one-child policy (PE) and abortion424

(IAM, TACO, UKP) or, figuratively speaking, the425

death penalty (AEC). Similarly, when discussing426

vaccinations (VACC), overlaps are likely when talk-427

ing about medical treatments (ABSTRCT) or sus-428

tainability (SCIARK).429

However, we found that these similarities are not430

very pronounced and that the datasets and labels are431

largely disjointed in terms of their core semantic432

content. This could provide the models with a433

shortcut opportunity, not based on how the labels434

are constructed, but rather on what they represent.435

4 Experimental Setup436

In this section, we outline the experimental setup437

and the best practices used for statistical testing to438

generate the data needed to answer Q2 & Q3.439

Sampling: To create fixed training, develop-440

ment, and test sets, we used a 60/20/20 stratified441

split for each of the 17 datasets in Table 1, select-442

ing 850 instances per label, corresponding to 1,700443

samples per dataset and 28,900 in total.444

Transformers: We selected BERT (Devlin et al.,445

2019), RoBERTa (Liu et al., 2019), and Distil-446

BERT (Sanh et al., 2019) as widely accepted447

standard baselines for natural language process-448

ing (Rogers et al., 2020), including argument min-449

ing (Shnarch et al., 2020; Mayer et al., 2020a;450

Fromm et al., 2021a; Alhamzeh et al., 2022; Feger451

and Dietze, 2024b). Additionally, we examined452

WRAP (Feger and Dietze, 2024a), the only trans-453

former explicitly using a two-stage pre-training ap-454

proach to embed structural argument components.455

Our goal is not to identify the best-performing456

model but to evaluate the generalizability of those457

reported as state-of-the-art in argument mining. For458

these, we use the standard hyperparameter grid for459

GLUE, as accepted in the BERT and RoBERTa pa-460

pers, balancing performance and time with a batch461

size of 32, 3 epochs, and a learning rate between462

2e-5 and 5e-5, each trained on an A100 GPU.463

Benchmarking and Generalization: This 464

refers to the main experiment for Q2. Following 465

the transfer learning framework (Pan and Yang, 466

2010; Houlsby et al., 2019; Zhuang et al., 2019), 467

we perform pairwise comparisons where we train 468

on one dataset and evaluate on others, alongside 469

benchmark experiments on individual datasets. A 470

17 × 17 matrix (see Figure 1) is created for each 471

model, where the rows represent the training data 472

and the columns represent the test data from a tar- 473

get dataset. Each cell represents the test results 474

after tuning the hyperparameters to a target’s devel- 475

opment dataset, optimizing the macro F1 score to 476

ensure equal importance of both labels. 477

Disrupting Argument Signals: In this con- 478

trolled manipulation experiment, we assess a trans- 479

former’s performance on Q2 after removing stop- 480

and functional words (e.g., a, the, against, because) 481

and punctuation using spaCy2, eliminating roughly 482

half the words in each sentence. We assume these 483

word classes carry discriminative signals of argu- 484

ment structure. If performance remains compara- 485

ble, it may indicate that the model leverages the 486

sentence’s subject matter and broader semantic fea- 487

tures, rather than relying on structural or rhetorical 488

markers that signal how arguments are constituted. 489

Label Form Example

ARG Original
They should increase more routes to
make people transport more easily.

Manipulated increase routes people transport easily

¬ARG Original
Should governments spend more money
on improving roads and highways?

Manipulated
governments spend money improving
roads highways

Table 3: Example from PE showing an argument (ARG)
and no-argument (¬ARG) sentence in the original and
manipulated form.

Evaluation: We perform the two experiments 490

for Q2 & Q3 and repeat them three times each 491

with varied samples and training initializations. To 492

test significance, we use a two-way ANOVA with 493

repeated measures for experimental robustness and 494

one-tailed Student’s t-tests for pairwise compar- 495

isons of models, see Appendix B for full details. 496

5 Results 497

In this section, we will address and answer ques- 498

tions Q2 & Q3. To this end, we will mainly focus 499

on Figure 1, which compares the results to show 500

which state-of-the-art argument mining model per- 501
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Figure 1: The best macro F1 scores comparing WRAP
(W), BERT (B), RoBERTa (R), and DistilBERT (D) sug-
gest that strong performance is predominantly achieved
in baseline experiments, as evident along the main di-
agonal. Furthermore, WRAP excels in generalizing to
TACO, as seen on the right.

forms best, thus reflecting the current benchmark502

and generalization landscape. After that, we will503

discuss the significance of our results. However,504

for a better understanding, it can already be as-505

sumed that the results for each model and exper-506

iment follow a normal distribution, as confirmed507

with D’Agostino and Pearson’s K2 test (p ≥ .05).508

(Q2) Strong argument mining baselines do not509

necessarily imply strong argument generalization:510

A notable observation in Figure 1 is the contrast511

between baselines on individual datasets and gen-512

eralization across multiple datasets and definitions.513

Strikingly, 97% of generalization experiments fall514

below the mean benchmark results (M = 0.79),515

with 62% scoring under 0.65, while in 8% of cases516

generalization drops below 0.5 macro F1, highlight-517

ing the challenge of maintaining strong benchmark518

performances when tested on out-of-distribution519

datasets. We will further break down our answer:520

Generalizability seems to be the exception rather521

than the norm. Given the above-mentioned circum-522

stances, it is noticeable that there are exceptions523

ranging from good (≥ 0.75) to strong generaliz-524

ability (≥ 0.8) within and across definitions.525

These cases appear to be particularly frequent526

for claim-based datasets. SCIARK and ABSTRCT527

score 0.82 with BERT, ABSTRCT and ARGUMIN-528

SCI reciprocally achieve values of 0.77 with BERT529

and DistilBERT, while IAM and VACC also reach530

or even exceed their benchmarks with 0.76 and 0.78531

on CE with RoBERTa and WRAP, respectively.532

Looking at the generalizability across the defini- 533

tion groups, it is noticeable that UKP in particular 534

achieves values above 0.75 macro F1 for the claim- 535

based datasets ABSTRCT and CE with BERT and 536

WRAP. The most notable observation is that partic- 537

ularly strong generalizability, exceeding 0.8 macro 538

F1, is achieved for TACO across all definitions, 539

most notably when using WRAP. 540

Task-related pre-training appears to have a pos- 541

itive effect on overall performance and generaliza- 542

tion. Numerically, WRAP (M = 0.61, SD = 0.1) 543

shows the best overall performance in terms of 544

macro F1. Notably, WRAP is the only model 545

that attains a mean above 0.6 macro F1, while 546

BERT (M = 0.58, SD = 0.11), RoBERTa 547

(M = 0.57, SD = 0.12), and DistilBERT (M = 548

0.56, SD = 0.11) all perform worse. This perfor- 549

mance advantage is particularly evident in cases 550

where WRAP achieves the highest scores compared 551

to the other models. In fact, WRAP demonstrates 552

superior performance in 133 out of 289 experi- 553

ments (46%), whereas BERT does so in 58 experi- 554

ments (20%), RoBERTa in 50 experiments (17%), 555

and DistilBERT in 48 experiments (17%). 556

(Q3) State-of-the-art argument mining models 557

are not solely defined by argument signals: After 558

we performed the controlled manipulation experi- 559

ment, all transformers dropped to a similar level, 560

WRAP (M = 0.56, SD = 0.09), BERT (M = 561

0.56, SD = 0.09), DistilBERT (M = 0.55, SD = 562

0.1), RoBERTa (M = 0.57, SD = 0.1). In detail: 563

Shortcut learning influences generalization of 564

arguments, but task-related pre-training weakens 565

the impact. BERT and DistilBERT showed almost 566

no changes after manipulating inputs (∆ ≤ 0.02), 567

while RoBERTa maintained its performance com- 568

pletely, suggesting that the overall performance of 569

these models is not based on learning how argu- 570

ments are constituted. In contrast, WRAP, which 571

relies on its task-related pre-training to embed struc- 572

tural argument components across topics, showed 573

the largest drop in macro F1 with ∆ = 0.05. For 574

supplementary experiments on mixing data and 575

definitions, please refer to Appendix A.3. 576

Differences in definitions of arguments reinforce 577

the limitations of generalization. However, while 578

signs of shortcut learning are found, it is undeni- 579

ably not the sole limiting factor. Averaged across 580

all models, misclassification patterns show that ar- 581

guments are correctly classified 28% of the time 582

and no-arguments 37%, suggesting that identifying 583

no-arguments is easier. This is further supported by 584
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the lower misclassification rate for no-arguments585

(13%) compared to arguments (22%), highlighting586

practical differences in argument definitions that587

affect both generalization and benchmarks (e.g.,588

due to conflicting annotations). This can also be589

observed when analyzing the misclassifications of590

individual models. Here, all models misclassify no-591

arguments as arguments in fewer than 16% of cases.592

In contrast, BERT, RoBERTa, and DistilBERT ex-593

hibit higher misclassification rates, ranging from594

21% to 26%, while WRAP misclassifies arguments595

as no-arguments in 18% of cases, highlighting its596

superior generalization ability for arguments.597

(Q2 & Q3) The experiments demonstrate both598

statistical significance and practical relevance. Re-599

peated experiments support the robustness of these600

results. A two-way repeated measures ANOVA for601

Q2 showed a significant effect only when compar-602

ing model performances (F (3, 864) = 69.47, ϵ =603

0.56, pcorr < .05, η2G = 0.03), with negligible re-604

sampling or interaction effects. Similarly, repeating605

Q3 revealed no significant effects, confirming that606

once ablated, the models perform comparably over-607

all. For Q2, paired one-tailed t-tests showed that608

only comparisons involving WRAP were signifi-609

cant (pcorr < .05, 8.12 ≤ t(288) ≤ 10.14), with610

moderate effect sizes (0.39 ≤ d ≤ 0.49). Also, for611

Q3, when comparing pre- and post-manipulation612

results per model, only WRAP showed a relevant613

decrease (p < .05, t(288) = −8.91, d = −0.49).614

6 Discussion615

To summarize the limited generalization in argu-616

ment mining addressed, Table 4 compares the best617

baseline results pre- and post-manipulation. Macro-618

F1 differences remain within 0.13 per model, and619

in the best cases even exceed benchmark levels.620

In the single case of AEC, which relies on only621

five keywords for arguments, overemphasis on622

these signals also appears to impair generaliza-623

tion. Although AEC attains the highest score (0.96)624

and experiences the largest post-manipulation drop625

(≤ 0.45; Table 4), its generalization is limited to626

0.63 or even below 0.5 (Figure 1). Given the low627

performance and minimal differences between pre-628

and post-manipulation results, BERT, RoBERTa,629

and DistilBERT do not clearly demonstrate an in-630

herent ability to generalize arguments.631

Although these challenges may be widespread,632

positive examples serve as indicators of potential633

and progress for future approaches.634

WRAP BERT RoBERTa DistilBERT SOTA ∆max/min

ACQUA 0.73 0.77 0.76 0.78 0.84 0.06 / 0.11
WEBIS 0.61 0.66 0.66 0.67 0.74 0.07 / 0.13
ABSTRCT 0.83 0.87 0.84 0.87 0.89 0.02 / 0.06
ARGUMINSCI 0.78 0.79 0.77 0.77 0.84 0.05 / 0.07
CE 0.75 0.79 0.77 0.81 0.85 0.04 / 0.1
CMV 0.57 0.64 0.64 0.65 0.67 0.02 / 0.1
FINARG 0.62 0.61 0.66 0.69 0.68 -0.01 / 0.07
IAM 0.66 0.69 0.71 0.7 0.76 0.05 / 0.1
PE 0.66 0.67 0.71 0.73 0.78 0.05 / 0.12
SCIARK 0.71 0.8 0.77 0.79 0.83 0.03 / 0.12
USELEC 0.65 0.66 0.62 0.66 0.74 0.08 / 0.12
VACC 0.67 0.68 0.69 0.69 0.78 0.09 / 0.11
WTP 0.58 0.54 0.57 0.56 0.65 0.07 / 0.11
AFS 0.78 0.81 0.8 0.79 0.84 0.03 / 0.06
UKP 0.74 0.76 0.78 0.74 0.79 0.01 / 0.05
AEC 0.51 0.55 0.58 0.59 0.96 0.37 / 0.45
TACO 0.77 0.76 0.76 0.77 0.88 0.11 / 0.12

Table 4: Post-manipulation performance of each trans-
former compared to state-of-the-art (SOTA) results for
baseline experiments per dataset. Minimum and Maxi-
mum values are highlighted, with ∆max/min indicating
their deviation from SOTA.

Especially in cases where a variety of differ- 635

ent sources and topics were considered (VACC, 636

CE, TACO, UKP, and IAM), with UKP, IAM, and 637

TACO already aiming for generalizability of anno- 638

tations, it is not surprising that WRAP prevails. 639

Despite the shortcuts and definition-related ob- 640

stacles, the need for a robust structural methodol- 641

ogy to unify perspectives on arguments becomes ev- 642

ident. This is illustrated by the strong performance 643

of WRAP, particularly its ability to achieve an aver- 644

age score of 0.75 when generalizing to TACO from 645

all other datasets (see Figure 1). 646

7 Conclusion 647

We present the first large-scale evaluation of argu- 648

ment mining benchmarks using generalization to 649

assess whether the reported state-of-the-art trans- 650

formers reflect progress in this task. While struc- 651

tural patterns correlate strongly, variations in word- 652

ing across datasets create potential gateways for 653

shortcut learning, further reinforced by conflicting 654

labels. BERT, RoBERTa, and DistilBERT tend 655

to prioritize such shortcuts over argument signals, 656

whereas WRAP proved more resilient, likely due 657

to its topic-independent pre-training for encoding 658

structural argument components. While few ap- 659

proaches emphasize the generalization of their an- 660

notations, those that do benefit from using WRAP, 661

which shows strong results on deviant data. Taken 662

together, establishing a unified intra-disciplinary 663

methodology is crucial for integrating diverse per- 664

spectives on arguments, pushing argument mining 665

towards a universally applicable paradigm. 666
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Limitations667

While we mostly used publicly available datasets,668

some require granted access from the authors.669

Additionally, when extraction scripts were un-670

available, we derived our procedures from both the671

available documentation and our understanding of672

the original process. This was particularly relevant673

for datasets where .ann files only provided anno-674

tated sequence boundaries for larger documents675

stored in .txt or .json formats. In such cases,676

we used spaCy2 for sentence boundary extraction,677

which may produce boundaries that differ from the678

original assumptions. Nevertheless, we confirmed679

that over 95% of the extracted sentences ended with680

proper punctuation and began with a capital letter.681

We provide an extraction script1 that automatically682

retrieves and processes all datasets considered.683

The reproducibility of the experiments may be684

constrained by factors such as data size, runtime,685

and associated costs, with both experiments in this686

study running ~80 hours on a costly A100 GPU.687
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A Extended Descriptive and1129

Experimental Details1130

This appendix provides additional data and experi-1131

mental details omitted from Sections 2, 3, 4, 5.1132

A.1 Section 21133

For Section 2 we present the entire decision-1134

making process for the selection of the benchmark1135

datasets used in this work, which is in Table 6.1136

A.2 Section 31137

Figure 2 extends the analysis in Section 3.2 by1138

showing pairwise Spearman’s ρ correlations for all1139

reproducible datasets, including those omitted from1140

experiments due to their small size.1141
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Figure 2: The correlations of the individual datasets (as
well as the labels) in relation to the sentence-related
features show a strong overall correlation (ρ ≥ 0.68).
Most strikingly, the ABSTRCT dataset stands out as
medical texts exhibit different sentence structures from
conventional ones, characterized by technical language,
methodological details, and numerical values.

Figure 3 extends the vocabulary analysis from 1142

Section 3.2 by displaying word overlaps across all 1143

datasets with available data. 1144
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Figure 3: The word overlaps, measured by the Jac-
card similarity between the vocabularies of two datasets,
show that the datasets (as well as the labels) are gen-
erally distinct from each other. The overlaps range
between 3–36%, with an average of 19%.

A.3 Section 4 and 5 1145

We conducted a supplementary experiment by train- 1146

ing on all but one dataset and testing on the reserved 1147

one, forcing the models to generalize across hetero- 1148

geneous data with shuffled definitions. The results 1149

were statistically significant, albeit slightly lower 1150

for WRAP and the other models, see Table 5.

WRAP BERT RoBERTa DistilBERT SOTA ∆max/min

ACQUA 0.66 0.6 0.59 0.59 0.84 0.18 / 0.25
WEBIS 0.63 0.66 0.62 0.65 0.74 0.07 / 0.12
ABSTRCT 0.74 0.74 0.74 0.71 0.89 0.15 / 0.18
ARGUMINSCI 0.59 0.47 0.55 0.5 0.84 0.25 / 0.37
CE 0.77 0.72 0.76 0.72 0.85 0.08 / 0.13
CMV 0.63 0.62 0.62 0.58 0.67 0.04 / 0.09
FINARG 0.61 0.62 0.66 0.65 0.68 0.02 / 0.07
IAM 0.73 0.71 0.73 0.73 0.76 0.03 / 0.05
PE 0.65 0.65 0.69 0.65 0.78 0.09 / 0.13
SCIARK 0.75 0.73 0.74 0.73 0.83 0.08 / 0.1
USELEC 0.7 0.66 0.68 0.59 0.74 0.04 / 0.15
VACC 0.68 0.7 0.68 0.69 0.78 0.08 / 0.1
WTP 0.59 0.55 0.55 0.54 0.65 0.06 / 0.11
AFS 0.57 0.58 0.59 0.6 0.84 0.24 / 0.27
UKP 0.7 0.67 0.7 0.68 0.79 0.09 / 0.12
AEC 0.52 0.57 0.51 0.56 0.96 0.39 / 0.45
TACO 0.76 0.61 0.65 0.55 0.88 0.12 / 0.33

Table 5: Transformers trained on all but the reference
benchmark (used for testing) are evaluated against the
excluded dataset’s state-of-the-art baseline. Minimum
and Maximum values are highlighted, with ∆max/min

indicating their deviation from SOTA. While all models
fall short of benchmark performance, WRAP is the most
reliable, consistently integrating datasets to achieve near-
benchmark results of ∆max = 0.03.
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B Statistical Design Protocol1151

In this appendix we would like to explain our pro-1152

tocol for the best-practices of statistical testing as1153

described in Section 4 and applied in Section 5.1154

B.1 Two-Way Repeated Measures ANOVA1155

We employ a two-way repeated measures ANOVA1156

to evaluate the effects of sampling (factor 1) and1157

model choice (factor 2) on the macro F1 (dependent1158

variable), with each dataset pair treated as a subject.1159

For valid inference, the following assumptions1160

must be met:1161

• Continuous Dependent Variable: By def-1162

inition, the macro F1 score is a continuous1163

measure.1164

• Within-Subject Design: Each subject experi-1165

ences every variation of both factors.1166

• Normality: The dependent variable is approx-1167

imately normally distributed for each repeated1168

measure (D’Agostino and Pearson’s K2 test).1169

• Sphericity: The variances of the differences1170

between every pair of repeated measures are1171

equal. If the Greenhouse-Geisser ϵ is below1172

0.75 (with values near 1 indicating compli-1173

ance), we adjust the p-values (pcorr).1174

We can specifically evaluate for:1175

• Sampling Effect: Whether variations in data1176

sampling (via different random seeds) influ-1177

ence model performance.1178

• Model Choice Effect: The performance dif-1179

ferences among transformer models trained1180

and evaluated on fixed samples. Each model1181

is reinitialized in each trial using distinct ran-1182

dom seeds to prevent carry-over effects.1183

• Interaction Effect: Whether the effect of1184

sampling varies across the different models,1185

offering insights into model stability under1186

varying data conditions.1187

We evaluate the practical relevance of statistical1188

significance using the effect size:1189

• Generalized Eta Squared (η2G): Propor-1190

tion of the explained variance, interpreted1191

as: ~0.01 (small), ~0.06 (moderate), ~0.14+1192

(strong).1193

B.2 One-Tailed Paired Student’s t-Tests 1194

Further, we conduct one-tailed paired t-tests as 1195

post-hoc analysis to identify directional differences 1196

(e.g., one model consistently outperforming an- 1197

other). These tests use the same assumptions as 1198

the prior ANOVA, except for sphericity. We ap- 1199

ply the Bonferroni correction (pcorr) for multiple 1200

comparisons. 1201

For these tests, we evaluate their practical rele- 1202

vance using the effect size: 1203

• Cohen’s d: The mean difference between 1204

paired conditions relative to the standard devi- 1205

ation of the differences, interpreted as: ~0.2 1206

(small), ~0.5 (moderate), ~0.8+ (strong). 1207
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Dataset Paper Definition Genre Sent. Binary Reprod. Related Arg. N-Arg. Used

ACQUA (Panchenko et al., 2019) Argumentative Mixed Yes Yes Yes 1,949 5,236 Yes
AMPERE (Hua et al., 2019) Argumentative Academic Yes Yes Yes 6,729 242 No
ASRD (Shnarch et al., 2020) Argumentative Spoken Debate Yes Yes Yes 260 440 No
CDCP (Niculae et al., 2017) Argumentative Online Debate Yes No No
COMARG (Boltužić and Šnajder, 2014) Argumentative Online Debate No No
EDIT (Al-Khatib et al., 2016b) Argumentative Online Debate Yes No No
IAC (Walker et al., 2012) Argumentative Online Debate No No
MARG (Mestre et al., 2021) Argumentative Spoken Debate Yes No No
QMC (Levy et al., 2018) Argumentative Encyclopedia Yes Yes Yes 733 1,766 No
SDAT (Hansen and Hershcovich, 2022) Argumentative Twitter Debate Yes Yes Yes 387 210 No
WEBIS (Al-Khatib et al., 2016a) Argumentative Online Debate Yes Yes Yes 10,804 5,543 Yes
AAE (Stab and Gurevych, 2014) Claim-based Academic Yes Yes Yes PE No
ABSTRCT (Mayer et al., 2020b) Claim-based Academic Yes Yes Yes 1,308 7,323 Yes
AMECHR (Teruel et al., 2018) Claim-based Legal Yes Yes No No
AMSR (Fromm et al., 2021b) Claim-based Academic Yes Yes Yes 839 561 No
ARGUMINSCI (Lauscher et al., 2018) Claim-based Academic Yes Yes Yes 6,554 9,548 Yes
ASC (Wojatzki and Zesch, 2016) Claim-based Twitter Debate Yes Yes Yes 147 568 No
CDC (Aharoni et al., 2014) Claim-based Encyclopedia Yes Yes Yes CE No
CE (Rinott et al., 2015) Claim-based Encyclopedia Yes Yes Yes 1,546 85,417 Yes
CMV (Hidey et al., 2017) Claim-based Online Debate Yes Yes Yes 979 1,593 Yes
CS (Bar-Haim et al., 2017) Claim-based Encyclopedia Yes Yes Yes CE No
DT (Olshefski et al., 2020) Claim-based Spoken Debate No No
FINARG (Alhamzeh et al., 2022) Claim-based Spoken Debate Yes Yes Yes 4,607 8,310 Yes
IAM (Cheng et al., 2022) Claim-based Mixed Yes Yes Yes 4,808 61,715 Yes
MT (Peldszus and Stede, 2015) Claim-based Microtext Yes Yes Yes 112 337 No
OC (Biran and Rambow, 2011) Claim-based Online Debate Yes Yes Yes 702 7,824 No
PE (Stab and Gurevych, 2017) Claim-based Academic Yes Yes Yes 2,093 4,958 Yes
QT (Hautli-Janisz et al., 2022) Claim-based Spoken Debate Yes No AIFDB No
RCT (Mayer et al., 2018) Claim-based Academic Yes Yes Yes ABSTRCT No
SCIARK (Fergadis et al., 2021) Claim-based Academic Yes Yes Yes 1,191 10,503 Yes
UGWD (Habernal and Gurevych, 2017) Claim-based Online Debate Yes Yes Yes WD No
USELEC (Haddadan et al., 2019) Claim-based Spoken Debate Yes Yes Yes 13,905 15,188 Yes
VACC (Morante et al., 2020) Claim-based Online Debate Yes Yes Yes 4,394 17,825 Yes
VG (Reed et al., 2008) Claim-based Mixed Yes Yes Yes AIFDB 547 2,029 No
WD (Habernal and Gurevych, 2015) Claim-based Online Debate Yes Yes Yes 211 3,661 No
WTP (Biran and Rambow, 2011) Claim-based Online Debate Yes Yes Yes 1,135 7,274 Yes
ECHR (Poudyal et al., 2020) Conclusion-based Legal Yes Yes Yes 414 10,264 No
AFS (Misra et al., 2016) Conclusion-based Online Debate Yes Yes Yes IAC 5,150 1,036 Yes
ARGSME (Ajjour et al., 2019) Conclusion-based Online Debate Yes No No
BASN (Kondo et al., 2021) Conclusion-based Mixed Yes No No
BIOARG (Green, 2018) Conclusion-based Academic Yes No No
DEMOSTHENES (Grundler et al., 2022) Conclusion-based Legal Yes Yes No No
RSA (Houngbo and Mercer, 2014) Conclusion-based Academic Yes No No
AIFDB (Lawrence et al., 2012) AIF Mixed Yes No No
LAMECHR (Habernal et al., 2023) Custom Framework Legal Yes No No
ABAM (Trautmann, 2020) Evidence or Reasoning Mixed Yes No AURC No
ASPECT (Reimers et al., 2019) Evidence or Reasoning Mixed Yes No UKP No
AURC (Trautmann et al., 2020) Evidence or Reasoning Mixed Yes Yes No No
BWS (Thakur et al., 2021) Evidence or Reasoning Mixed Yes No UKP No
UKP (Stab et al., 2018) Evidence or Reasoning Mixed Yes Yes Yes 11,126 13,978 Yes
AEC (Swanson et al., 2015) Implicit-Markup Online Debate Yes Yes Yes IAC 4,001 1,374 Yes
TACO (Feger and Dietze, 2024b) Inference-Information Twitter Debate Yes Yes Yes 864 868 Yes

Table 6: Summary of the 52 datasets from the reviewed papers, sorted by their applied definitions. Data collection
followed the methodology described in Section 2.1, and selection criteria are detailed in Section 2.2. The Related
column indicates connections between datasets, such as updates (e.g., AAE to PE, CDC to CE, RCT to ABSTRCT),
additions of non-task-related features (e.g., CS adds stances to the claims from CE, ABAM adds aspects to the
claims of AURC), or curated subsets from larger repositories (e.g., VG and QT from AIFDB, AEC and AFS from
IAC).
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